
1

Best-Reply Search for Multi-Player Games
Maarten P.D. Schadd and Mark H.M. Winands

Abstract—This article proposes a new algorithm, called Best-
Reply Search (BRS), for deterministic multi-player games with
perfect information. In BRS, only the opponent with the strongest
counter move is allowed to make a move. More turns of the root
player can be searched resulting in long-term planning. We test
BRS in the games of Chinese Checkers, Focus and RolitTM. In
all games, BRS is superior to the maxn algorithm. We show that
BRS also outperforms paranoid in Chinese Checkers and Focus.
In Rolit, BRS is on equal footing with paranoid. We conclude that
BRS is a promising search method for deterministic multi-player
games with perfect information.

Index Terms—Multi-Player Games; Best-Reply Search; Maxn;
Paranoid; Chinese Checkers; Focus; Rolit

I. INTRODUCTION

In deterministic two-player games with perfect information,
the majority of research has focused on the minimax algorithm
[1]. For deterministic perfect-information multi-player games,
the choice of search algorithm is not as straightforward.
The two main algorithms are maxn [2] and paranoid [3],
each approaching the problem from a different angle. Maxn

assumes that every player tries to maximize the own score,
while paranoid assumes that all opponents form a coalition
against the root player. Maxn and the paranoid algorithm may
have conceptual drawbacks. Just changing the tie-breaking
rule for the maxn algorithm can have arbitrary results for the
value of the root [4]. When performing a deep search with the
paranoid algorithm, the other players may dominate the root
player [5].

This article proposes Best-Reply Search (BRS). This search
algorithm tries to overcome the problems of the maxn and
paranoid algorithms. For multi-player games, we assume that
not every opponent is trying to minimize the root player’s
score. Instead, only one opponent is minimizing the root
player’s score. BRS chooses which opponent is allowed to
play a counter move at a so-called MIN node in the search
tree. The selected opponent is the one that has the strongest
counter move against the root player. The other players have
to pass their turn. By searching in this way, a significant
lookahead can be achieved even with many opponents. Fur-
thermore, the playing style is less cautious compared to the
paranoid algorithm. In this article, we test BRS solely from
a deterministic perfect-information standpoint. We apply BRS
in three domains, Chinese Checkers, Focus, and RolitTM.

The outline of the article is as follows. First, the maxn and
the paranoid algorithms are discussed in Section II. Next, BRS
is introduced in Section III. Thereafter, Section IV describes
the test domains, the games Chinese Checkers, Focus and

Maarten Schadd and Mark Winands are members of the Games and
AI Group, Department of Knowledge Engineering, Faculty of Humanities
and Sciences, Maastricht University, Maastricht, The Netherlands; E-mail:
{maarten.schadd, m.winands}@maastrichtuniversity.nl

Rolit. Section V presents the experiments. Finally, Section VI
gives the conclusions and an outlook on future research.

II. SEARCH ALGORITHMS FOR MULTI-PLAYER GAMES

This section discusses two well-understood search algo-
rithms for deterministic multi-player turn-taking games with
perfect information, the maxn [2] and the paranoid algorithm
[3]. We first introduce the maxn algorithm in Subsection II-A
and thereafter discuss the paranoid algorithm in Subsection
II-B.

A. Maxn

The maxn algorithm [2] can be used in games with any
number of players. At a leaf node, an n-tuple is generated,
where n is the number of players and every entry corresponds
to the score a player receives. At internal nodes, a player
chooses the child with the highest score for that player. An
example maxn tree is depicted in Figure 1.

1
(a)

(7,2,9)

(b)

(6,2,6)
2

(c)

(7,2,9)

3 3 3 3

(6,2,6) (4,1,6) (7,2,9) (5,2,1)

2

Fig. 1. An example maxn tree.

Nodes (a), (b) and (c) are internal nodes. In Node (a), Player
1 is to move. In Nodes (b) and (c), Player 2 is to move. Player
2 has the choice between (6,2,6) and (4,1,6) in Node (b) and
chooses (6,2,6) to maximize the own score. In Node (c), both
options are equally good for Player 2. In this example the left
child is chosen and Node (c) gets value (7,2,9). Player 1 now
prefers Node (c) above Node (b), because it gives a higher
score for Player 1.

In multi-player games, there may exist multiple equilibrium
points. It has been proven that maxn computes one equilibrium
point [2]. Furthermore, if the tie-breaking rule is altered, it
may arbitrarily affect the maxn value of the tree [4]. We
demonstrate this by changing the tie-breaking rule in Figure
1. Instead of choosing the left-most child in case of a tie, now



2

the policy is used that the child which has the lowest value
for the root player is chosen. In this case, Node (c) has value
(5,2,1). This implies that the Player 1 prefers Node (b) over
(c) and Node (a) has value (6,2,6) instead of (7,2,9).

The weakness of maxn is twofold. (1) Compared to αβ
search, less pruning is possible, resulting in a limited looka-
head [6]. Pruning is possible in maxn if there is a lower bound
on each player’s score and an upper bound on the sum of
scores. The basic pruning is then shallow [7]. Sturtevant [8]
showed that “less-shallow” pruning is feasible, up to n ply
deep. He proposed two techniques, last-branch pruning and
speculative pruning. Last-branch pruning additionally prunes
when intermediate players between the first and last player are
all on their last branch of their search. Speculative pruning is
identical to last-branch pruning, except that it does not wait
until intermediate players are on their last branch. Instead,
it prunes speculatively, re-searching if needed. Deep pruning
in maxn is, however, not possible [7]. (2) Furthermore, the
underlying assumption of maxn may be unrealistic. The maxn

algorithm assumes that there is no coalition forming by the
opponents. The result may be that maxn is too optimistic.
To make maxn somewhat more cautious, the tie-breaking
rule which assumes the worst case for the root player is
used in this article. To further increase the cautiousness of
maxn, a “paranoid” evaluation function (i.e., it assumes that all
opponents have formed a coalition) may be considered. Several
other variations of the maxn algorithm exist, which try to
overcome both weaknesses. Careful maxn [9] uses a weighted-
average update rule to model uncertainty if the opponent has
multiple good moves. The comixer algorithm [9] considers
possible coalitions against the strongest player at every node of
the search tree. This may be a correct assumption if a player is
ahead, but might lead to weak play if no such coalition exists.
For handling imperfect opponent models, two variations have
been introduced, soft-maxn [10] and prob-maxn [11].

B. Paranoid

The paranoid algorithm [3] reduces the multi-player game to
a two-player game by making the “paranoid” assumption. The
algorithm assumes that all opponents have formed a coalition
against the root player. By doing so, regular αβ pruning is
possible. This leads to a larger search depth. Figure 2 depicts
an example of the paranoid algorithm. It is the same tree as in
Figure 1, but now the leaf nodes are evaluated in a paranoid
way. Here, the sum of the evaluation scores of Player 2 and
3 are subtracted from the evaluation score of Player 1 [6]. A
second possibility is that Players 2 and 3 ignore their own
score, and only minimize Player 1’s score [4]. In this article
we apply the first approach. In Node (b), the right child is
preferred with value -3. After finding -4 as value of the first
child of Node (c), all the remaining children can be safely
pruned according to the standard αβ rule. The root node (a)
receives value -3.

In the best case, O(bd/2) nodes are expanded for two-player
games [1], where b is the average branching factor and d the
search depth. Sturtevant and Korf [4] showed that the paranoid
algorithm expands O

(
bd×(n−1)/n

)
nodes in the best case for

1
(a)

-3

(b)

-3
2

(c)

≤-4

3 3 3 3

-2 -3 -4 2

2

Fig. 2. An example paranoid tree.

multi-player games, which is a generalization of the best case
for two-player games. Paranoid may outperform maxn due to
the larger lookahead (e.g., for Chinese Checkers or Hearts)
[6].

Because of the unrealistic paranoid assumption, suboptimal
play can occur [3]. Furthermore, if an infinite amount of
time would be available, the root player might assume that
all moves are losing, leading to poor play. For the game of
RolitTM, Saito and Winands [5] showed that for three players
on the 6×6 board, the first and second player cannot gain any
points under the paranoid assumption (and the third player
only 1 point because he places the last stone). Usually, it is
not possible to win when all opponents form a coalition. As
a general observation, the deeper the search goes, the more
pessimistic the value of the root becomes.

III. BEST-REPLY SEARCH

Sturtevant proposed a table-based evaluation function for
Chinese Checkers which assumes solitary play [6]. Although
this assumption is unrealistic, this evaluation function proved
to work well. Inspired by this result, we investigate in this
section whether this idea may be transferred from the eval-
uation function to the search tree. We propose Best-Reply
Search (BRS) to overcome some weaknesses of the maxn and
paranoid algorithms.

Subsection III-A presents the underlying idea behind BRS.
The pseudo code of BRS is given in Subsection III-B. In
Subsection III-C the best-case analysis of BRS is given.
Finally, Subsection III-D discusses strengths and weaknesses
of BRS.

A. Idea

Traditional search methods allow every player to make
a move, resulting in large search trees. In BRS, not every
opponent is allowed to make a move. Only the opponent with
the strongest move against the root player may move. At a
MIN node, all moves for all opponents are searched. It means
that an opponent is allowed to make a move even if it is
not its turn. At the following MAX node, it is again the root
player’s turn. BRS achieves long-term planning because more



3

1
(a)

2

(b)

2

(c)

≤1

1 1 1 1

3 9 5 2

2,3

1 1 1 1

1 7 4 6

2 2 3 3 2 2 3 3

2,3

Fig. 3. An example BRS tree.

MAX nodes are visited along the search path while being
at the same time less paranoid. When iterative deepening is
applied in BRS, a MIN node always contains all players.
When comparing this to the standard search depth of the
paranoid algorithm, the search depth is increased irregularly.
For instance with 4 players, the search depth of BRS is
increased to depth 1, 4, 5, 8, 9, etc., with respect to the standard
depth. An example of BRS is depicted in Figure 3.

Nodes (b) and (c) are labeled ‘2,3’, which represents that
one of the opponents (i.e., Player 2 or 3) is allowed to make
a counter move. The labels near the edges underneath Nodes
(b) and (c) indicate which player’s move is played. At the next
ply, it is again Player 1’s turn to play. Node (b) is assigned
value 2, because Player 3 has the strongest counter move.
When searching the first child of Node (c), which is a move
by Player 2, a regular αβ pruning occurs. In this case, the
remaining moves of Player 2 and all moves of Player 3 are
pruned.

B. Pseudo Code

Algorithm 1 shows the pseudo code for BRS. The first
change to the standard αβ algorithm for the NegaMax frame-
work is shown in lines 7−15. If the current node is a MAX
node, the moves are generated as usual (Line 8). If it is a
MIN node the moves for all opponents are generated (Lines
11−13). Before performing the traversal of all moves (Line
17), the type of node should have been altered at every ply
(Lines 9 and 14).

C. Best-Case Analysis of BRS

If pruning is not feasible, maxn has to examine the complete
search tree. With average branching factor b and search depth
d, maxn searches O

(
bd
)

nodes. Sturtevant and Korf [4]
showed that the paranoid algorithm explores O

(
bd×(n−1)/n

)
nodes in the best case, where n is the number of players.
Analogous to their proof, we can prove the best case of BRS.

Theorem. Best-Reply Search explores in the best case
O
(
(b× (n− 1))d

2×d
n e/2

)
nodes.

Algorithm 1 Best-Reply Search.
1: BRS(alpha, beta, depth, turn)
2:
3: if depth ≤ 0 then
4: return eval()
5: end if
6:
7: if turn == MAX then
8: Moves = GenerateMoves(MaxPlayer);
9: turn = MIN;

10: else
11: for all Opponents o do
12: Moves += GenerateMoves(o);
13: end for
14: turn = MAX;
15: end if
16:
17: for all Moves m do
18: doMove(m);
19: v = −BRS(−beta, −alpha, depth−1, turn);
20: undoMove(m);
21:
22: if v ≥ beta then
23: return v;
24: end if
25: alpha = max(alpha, v);
26: end for
27:
28: return alpha;

Proof: Assume a uniform tree is searched until depth d. In
BRS, this search depth is reduced to

⌈
2×d
n

⌉
because the layers

of n successive players is reduced to 2 layers. The branching
factor b is increased to b × (n− 1) at MIN nodes, assuming
that the opponent moves do not interact with each other. To
calculate the minimum number of nodes that have to be exam-
ined within the game tree, we need a strategy for the MAX and
MIN player. For finding a strategy for the MAX player, 1 move
has to be searched at a MAX node, and b × (n− 1) moves
at a MIN node, resulting in (b× (n− 1))d

2×d
n e/2 nodes. For

finding a strategy for the MIN player, the collection of all
opponents, 1 move has to be searched at a MIN node and b

moves at a MAX node, resulting in bd
2×d
n e/2 nodes. Therefore,

the total number of nodes by both the MAX and MIN player is
(b× (n− 1))d

2×d
n e/2 + bd

2×d
n e/2 nodes. Thus, BRS explores

in the best case O
(
(b× (n− 1))d

2×d
n e/2

)
nodes.

We remark that for two players, the best case of BRS is
identical to the best case of αβ, which is O

(
bd/2

)
.

D. Strengths and Weaknesses of BRS

We point out two advantages of BRS over the maxn and
paranoid algorithms. (1) More MAX nodes are visited along
the search path, leading to more long-term planning. (2) It
softens the unrealistic maxn and paranoid assumptions. Maxn

assumes that there are no coalitions, while paranoid assumes



4

that all opponents form a coalition against the root player. An
additional advantage over maxn is that BRS may be able to
prune parts of the tree.

We point out two drawbacks of BRS as well. (1) Not
all players are allowed to make a move, leading to illegal
positions. (2) Opponent moves which are beneficial for the
root player might not be considered.

For trick-based card games, such as Hearts and Spades, BRS
is not an appropriate method. The first problem is that the first
player to play a card in a trick determines which suit is played.
If BRS would be applied here, a suit may be played which
the first player does not have, creating an illegal position that
is considerably different from a legal position. The second
problem occurs when not all opponents play a card during
a trick. This causes that players have a different number of
cards in their hands, and it is not defined what happens at the
end of the game. A third problem in the game of Hearts is
that playing the Ace of Hearts card may result in only gaining
2 points instead of 4 when applying BRS. Problems such as
these make BRS not applicable to trick-based card games.

IV. TEST DOMAIN

To test whether BRS works well, we have decided to use
three games, Chinese Checkers, Focus, and RolitTM. Chinese
Checkers is a race game and the rules are given in Subsection
IV-A. Focus is a material-based game and is explained in
Subsection IV-B. In Subsection IV-C the rules of the territorial-
based game Rolit are given. Rolit is the multi-player version
of Othello.1 The game engines are described at the end of each
subsection.

A. Chinese Checkers

Chinese Checkers is a board game that can be played by two
to six players. It was invented in 1893 and has since then been
released by various publishers under different names. Chinese
Checkers is played on a star-shaped board. The most common
board contains 121 fields, where each player starts with 10
pieces. We decided to play on a slightly smaller board [12]
(see Figure 4). In this version, each player plays with 6 pieces.
The advantage of a smaller board is that it allows us to use a
strong evaluation function [6].

The goal of each player is to move the own pieces to the
own base at the other side of the board. Pieces may move to
one of the adjacent squares or they may jump over another
piece to an empty field. A player may also make multiple
jumps with one piece in one turn. It is possible to create a
setup that allows pieces to jump over a large distance. The
first player who manages to fill the home base wins the game.
To avoid blocking behavior, the player wins the game when
the home base is filled and the player owns at least one of the
pieces in the home base.

Engine: To evaluate a board position, we use a lookup
table which stores the number of moves a single player would
require to finish the game [13]. This number does not take into
account opponent pieces, which results in erroneous evaluation

1Also known as Reversi.

Fig. 4. A three-player Chinese Checkers board [12].

in the midgame. In the endgame, this lookup table allows
perfect play. The value found in the table was multiplied by
1,000. Additionally, a random factor of 5 points was included
to prevent games from being repeated (due to deterministic
play) in the experiments.

The moves are ordered statically such that moves which
approach the home base the most are investigated first (e.g.,
long jumping moves towards the home base).

B. Focus

Focus is an abstract multi-player strategy board game,
invented in 1963 by Sid Sackson [14]. This game has also
been released under the name Domination. Focus is played on
an 8×8 board where in each corner 3 squares are removed. It
can be played by two, three or four players. Each player starts
with a number of pieces on the board. In Figure 5, the initial
board positions for the two-, three- and four-player variants
are given. The letters R, G, B, and Y correspond to the piece
colors of the game: red, green, blue, and yellow, respectively.

R R R R

R R

R R

R R

R R

R R

R R

R R

G G

G G

G G

G G

G G G G

G G

G G G G

R

G G

G G

G G

G G

G G

G G

G G

G G

G G

R

R R

R R R R

R R

R R

R R

R R

R R

(a) Two players

R R B B

R R

R R

R R

R R

G G

G G

G G

G G

G G

G G

B B

B B

B B

B B

B B R R

R G

B

G

G G

G G

G G

G G

G G

R

RR

RR

RR

RR

RR

B

B B

B B

B B

B B

B B

(b) Three players

R

Y

R B

B

R R

RR

R R

R

G

GG G

G G

G

G

G

G

G

G

B

B

B

B

B

B

B

B B B

R R

R R

G

YYY

B

YYY

Y

Y

Y

Y

Y

Y

G

BR

Y

Y

Y

Y

Y

Y

Y Y Y Y

Y Y Y

G G

G G GG G

G

G

G

G

G

R

R RR R

R

R

R

R

R

R

R

B

B

B

B

B

B

B B B B

B B

(c) Four players

Fig. 5. Setups for Focus [15].

In contrast to many other games, pieces in Focus may be
stacked on top of each other. Each turn a player may move
a stack, which contains one or more pieces, orthogonally as
many squares as the stack is tall. The player may only move a
stack of pieces if a piece of their color is on top of the stack.
Players are also allowed to split stacks in two smaller stacks.
If they decide to do so, then they only move the upper stack
as many squares as the number of pieces in that stack.

If a stack is moved onto another stack, then the stacks are
merged. If the merged stack has a size of n>5, then the bottom
n−5 pieces are captured by the player, such that there are 5



5

pieces left. If a player captures one of the own pieces, the
player may later choose to place an own piece back on the
board, instead of moving a stack.

An example move is depicted in Figure 6. Here, Blue
chooses to move three pieces of Stack 1, three positions to
the right. By this move, the control of Stack 1 is transferred
to Red, which owns the highest piece of Stack 1 after Blue has
moved. Stack 4 would contain 6 pieces after Blue has moved,
indicating that a capture shall take place. Only the bottom red
piece is captured because 5 pieces are allowed per stack.

G

B

G

R

R

G

Y

B

Y

Y

B

R

G

R

G

B

R

R

Y

R R

G

Y

B

Y

Y

B

G

B

R

R

Y

1 2 3 4 5

1 2 3 4 5

R R

G

Y

B

1 2 3 4 5

R R

R

R

G

R

Y

Y

Y

B

G

B

R

1 2 3 4 5

R

R

R

G

R

Y

Y

Y

B G

Y

B

(a) Blue to move.

G

B

G

R

R

G

Y

B

Y

Y

B

R

G

R

G

B

R

R

Y

R R

G

Y

B

Y

Y

B

G

B

R

R

Y

1 2 3 4 5

1 2 3 4 5

R R

G

Y

B

1 2 3 4 5

R R

R

R

G

R

Y

Y

Y

B

G

B

R

1 2 3 4 5

R

R

R

G

R

Y

Y

Y

B G

Y

B

(b) Blue has captured a piece of
Red.

Fig. 6. Example move for Focus.

There exist two variations of the game, each with a different
winning condition. In the standard version of the game, a
player has won if all other players cannot perform a legal
move. However, these games may take a long time to finish.
Therefore, in this article the shortened version of the game
is used. In this version, a player has won if either a certain
number of pieces or a certain number of pieces from each
opponent have been captured. In the two-player variant, a
player wins if at least 6 pieces from the opponent are captured.
In the three-player variant, a player has won if either at least
10 pieces in total or at least 3 pieces from each opponent
are captured. Finally, in the four-player variant, the goal is to
either capture 10 opponent pieces or at least 2 pieces from
each opponent. If the game is not decided after 300 moves, it
is scored as a draw.

Engine: The evaluation function consists of two parts. (1)
The first term is the minimum number of pieces needed to
finish the game for either finish condition. This number is
multiplied by 1,000. (2) The second term is the position of
pieces in a stack. The higher the piece on a stack of pieces,
the more points it is worth. Being on top of a stack gives
control of the stack, and this is especially valuable if the stack
is tall. Furthermore, the higher a piece, the more difficult it
is to capture it. For every own piece its height is squared and
added to the total score. A small random factor of 5 points is
included to prevent repetition.

The static move ordering consists of two parts. (1) Moves
which involve a large number of pieces (pieces of the moved
stack plus pieces of the target stack). (2) Moves which increase
the number of stacks a player controls. The first term is the
dominant one.

C. Rolit

RolitTM is a multi-player variant of the well-known game
Othello. Therefore, we start with a description of this game
before turning to Rolit. Othello is a deterministic two-player

game with perfect information played on an 8×8 board. The
players are called Black and White and their objective is to
maximize their number of pieces on the board. The initial
position is shown in Figure 7. A player may only place a
piece as part of a flipping move and a player has to pass if
no such move is available. A flipping move places a piece at
the end of a flipping line. A flipping line is a straight line of
squares on the board such that four conditions are met: (1) The
squares on the line have to be all vertically, all horizontally,
or all diagonally connected. (2) All squares on the line are
occupied. (3) Both ends of the line must contain a piece of
the player to move. (4) All pieces between are of the opponent.
If a flipping move is played, the opponent pieces between the
ends of the flipping line are flipped over to its own color.2 If
a move enables more than one flipping line, all flipping lines
are executed. The game ends when the board is completely
occupied or one player has no pieces left. The player with
more pieces on the board wins the game.

(a) Othello

R

B

G

Y

(b) Rolit

Fig. 7. Setups for Othello and Rolit. Legal moves are marked with ×.

Rolit is the multi-player generalization of Othello and has
only minor differences in the rules. It may be played with two,
three and four players, called Red, Green, Yellow and Blue.
The initial position, which is identical for the two-, three- and
four-player variant, is depicted in Figure 7. This implies that
when playing with two or three players, there initially exist
pieces on the board which do not belong to any of the players.
Red starts the game and immediately has the opportunity to
eliminate an opponent. In order to allow a player who has no
piece left on the board to come back into the game, the rules
are changed compared to Othello. When no flipping move
is available (either because a player is eliminated or because
there are just no flipping moves available) a player is allowed
to place a piece on an empty field. The empty field has to be
horizontally, vertically, or diagonally adjacent to a piece on
the board. The game is scored analogously to Othello.

Engine: Our evaluation function is pattern based, inspired
by the work of Buro [16]. Almost 100,000 games of the
WTHOR database3 were analyzed on 10 different patterns for
12 stages of the game. These patterns are the orthogonal lines
of size 8 (4 lines due to symmetry), the entire diagonals of
at least size 4 (5 diagonals due to symmetry) and the 2×4
corner region [16]. These add up to a total number of 511,272
patterns. For each pattern the average score at the end of the
game was computed. All the pattern scores are averaged for

2The pieces are black one side, and white on the other.
3http://www.ffothello.org/info/base.php



6

evaluating a position, and a random factor of 0.1 point is
added. These patterns are based on two players, while we need
to evaluate positions for three and four players in Rolit. To
bridge the gap, we assume that all opponent pieces have the
same color when looking up pattern values in the database.
It would be more accurate to create a pattern database for
three and four players, but we abandoned this idea due to
the combinatorial explosion and the unavailability of a Rolit
database. The pattern-based approach, though, was superior
to our original evaluation function that employed standard
Othello features.

Our static move ordering prefers moves on squares which
are known to be good. For example, the most preferred ones
are the corners. The squares adjacent to the corners are the
least preferred.

V. EXPERIMENTS

In this section, the experiments with BRS are presented
for the games of Chinese Checkers, Focus, and Rolit. The
performance of BRS is tested with three different time settings
(250, 1000, 5000 ms) and with three, four and/or six players
against one type of opponent (maxn or paranoid). In a three-
player game there are 23 = 8 different player-type assign-
ments. Games where only one type of algorithm is playing
are not interesting, leaving 6 ways to assign player types.
For four players, there are 24 − 2 = 14 assignments, and
for six players, there are 26 − 2 = 62 assignments [4]. Each
assignment is played multiple times until at least 1,000 games
are reached and each assignment was played equally often.
The random factor in each evaluation function prevented board
repetition. All experiments were performed on an AMD64 2.4
GHz computer.

The following techniques were used if not mentioned oth-
erwise. All algorithms used Two-Deep Transposition Tables
[17], [18] and iterative deepening until the available time was
depleted. Furthermore, Paranoid and BRS used the History
Heuristic [19] and Killer Moves [20]. In all columns labeled
‘Win Ratio’ a 95% confidence interval is applied.

Advanced pruning techniques were not used during this
research. For maxn, speculative pruning is able to significantly
increase the playing strength [6], [8]. However, the tight upper
bounds that are required are not present for our evaluation
function. For the paranoid algorithm and BRS, well-known
forward-pruning techniques could be used as well. These
include the null-move heuristic [21], [22], Multi-Cut [23] and
ProbCut [24]. In order to successfully apply these forward-
pruning techniques, the preconditions and parameters need to
be tuned rather well. We did not enable any of these techniques
because the effect of each of them is domain dependent.

In Subsection V-A, we present the experiments to validate
the implementation. The average search depth that the different
algorithms are able to achieve is shown in Subsection V-B.
Subsection V-C presents the performance of BRS against
maxn. In Subsection V-D, the experiments of BRS against
paranoid are discussed. Subsection V-E shows experiments
with three players, where there is 1 BRS player, 1 paranoid
player and 1 maxn player.

TABLE I
WINNING STATISTICS FOR PARANOID VS. MAXn FOR CHINESE

CHECKERS WITH 250 MS PER MOVE.

Two-player Paranoid Maxn Win Ratio
Basic Settings 955 45 95.5% ± 1.3%

Advanced Settings 917 83 91.7% ± 1.7%
Three-player Paranoid Maxn Win Ratio

Basic Settings 350 250 58.3% ± 3.9%
Advanced Settings 474 126 79.0% ± 3.3%

TABLE II
WINNING STATISTICS FOR PARANOID VS. BRS FOR TWO-PLAYERS WITH

250 MS PER MOVE.

Chinese Checkers Paranoid BRS Win Ratio
Basic Settings 527 473 52.7% ± 3.1%

Advanced Settings 475 525 47.5% ± 3.1%
Focus Paranoid BRS Win Ratio

Basic Settings 529 471 52.9% ± 3.1%
Advanced Settings 506 494 50.6% ± 3.1%

Rolit Paranoid BRS Win Ratio
Basic Settings 476.5 523.5 47.7% ± 3.1%

Advanced Settings 487.5 512.5 48.8% ± 3.1%

A. Validation

To check whether the implementation of maxn and paranoid
is similar to Sturtevant [4], we reconstructed his experiments.
Paranoid played 600 three-player Chinese Checkers games
against maxn using 250 ms (approximately 250k nodes). The
results are presented in the lower part of Table I. With the
basic settings, maxn and paranoid did not use any additional
techniques. In the advanced settings, maxn and paranoid used
Transposition Tables, and paranoid was furthermore allowed to
use the History Heuristic and Killer Moves. The results of the
basic setting confirm the results by Sturtevant [4]. He reports a
win ratio of 60.6% for his paranoid program. Out of curiosity,
we also performed this experiment for the two-player version
of Chinese Checkers. The results of 1,000 games are given in
the upper part of Table I. Here it is clear that paranoid, which
is now a regular αβ search, outperforms maxn due to larger
lookahead. The reason for the advanced setting winning fewer
games in the two-player variant might be that it plays more
defensive and takes less risk.

If BRS is applied to a two-player game, it should behave
identical to the paranoid algorithm. For verification purposes,
paranoid was matched against BRS for two-player Chinese
Checkers, Focus and Rolit. There may be a slight overhead
in BRS due to the move generation, but a win ratio of 50%
should be expected. 1,000 games were played for each setting
and game. Table II shows that for the two-player version of
all three games, paranoid and BRS are equally strong.

B. Average Search Depth

The average search depth, which maxn, paranoid and BRS
can achieve in Chinese Checkers, Focus and Rolit with differ-
ent time settings and different number of players, is shown in
Table III.

Here we see that in all games paranoid is always able
to search deeper than maxn. In Chinese Checkers, paranoid
performs close to the best case, or even better (e.g., the best-
case depth for four players with 5 seconds thinking time is



7

TABLE III
AVERAGE SEARCH DEPTH.

Chinese Checkers
Players Time (ms) Maxn Paranoid BRS

3 250 3.0 4.9 4.7
3 1,000 3.2 5.0 5.0
3 5,000 4.0 5.7 6.0
4 250 3.0 4.8 4.5
4 1,000 3.6 5.1 5.0
4 5,000 4.0 5.9 5.5
6 250 3.0 3.9 3.9
6 1,000 3.5 4.2 4.9
6 5,000 4.0 4.9 5.0

Focus
Players Time (ms) Maxn Paranoid BRS

3 250 3.0 4.5 4.6
3 1,000 3.2 5.0 5.0
3 5,000 3.9 5.5 5.8
4 250 3.0 4.1 4.4
4 1,000 3.3 4.9 5.1
4 5,000 4.0 5.5 5.6

Rolit
Players Time (ms) Maxn Paranoid BRS

3 250 3.3 5.0 5.1
3 1,000 4.1 5.7 5.9
3 5,000 4.6 7.0 7.3
4 250 3.4 5.0 4.8
4 1,000 4.2 5.9 5.4
4 5,000 4.9 6.6 6.7

approximately 4.0× 4
3 ≈ 5.3). This performance is due to the

effective move ordering. For instance, 1.1 moves are searched
in CUT nodes [25] on average for three players, and only 1.05
for four players. Moreover, there are two explanations how it
is possible to perform better than the theoretical best case,
O(bd(n−1)/n). (1) Because only complete plies are counted,
the data is coarse-grained. (2) The paranoid algorithm can
perform better than O(bd(n−1)/n) if the domain-dependent
move ordering prefers slim subtrees above large subtrees,
taking advantage of the non-uniform nature of the game tree
(i.e., a variable branching factor and search depth [26]). For
Chinese Checkers these are moves which enter the own goal
area, because once entered, pieces are not allowed to leave
anymore. In the games of Focus and Rolit, paranoid is close
to the best case.

For all games BRS achieves a similar search depth as
paranoid for every setting. However, these numbers are not
strictly comparable due to the different search approaches.
One conclusion we may draw is that BRS visits along the
search path at least as many MAX nodes as paranoid. For
example, for six players and 5 seconds thinking time, paranoid
and BRS search approximately 5 ply. Due to the large number
of players, paranoid only visits 1 MAX node, which is the root
node. BRS is able to visit 3 MAX nodes in this case.

C. BRS against Maxn

Table IV shows the winning performance of BRS against
maxn for Chinese Checkers, Focus, and Rolit. In Chinese
Checkers there are no draws possible. For Focus, draws are
counted as 1

3 or 1
4 point for the three- and four-player variants,

respectively. In Rolit, a draw may be shared between a subset
of players. For example, if there are 2 BRS players and 1

paranoid player, both BRS players may share the highest score.
The winning players receive the corresponding fraction of a
point.

TABLE IV
WINNING STATISTICS FOR BRS VS. MAXn .

Chinese Checkers
Players Time (ms) BRS Maxn Win Ratio

3 250 818 184 81.6% ± 2.4%
3 1,000 882 120 88.0% ± 2.0%
3 5,000 871 131 86.9% ± 2.1%
4 250 730 278 72.4% ± 2.8%
4 1,000 857 151 85.0% ± 2.2%
4 5,000 846 162 83.9% ± 2.3%
6 250 735 319 72.9% ± 2.7%
6 1,000 793 261 78.7% ± 2.5%
6 5,000 832 222 82.5% ± 2.3%

Focus
Players Time (ms) BRS Maxn Win Ratio

3 250 940.7 61.3 93.9% ± 1.5%
3 1,000 952.0 50.0 95.0% ± 1.3%
3 5,000 868.0 134.0 86.6% ± 2.1%
4 250 841.0 167.0 83.4% ± 2.3%
4 1,000 823.3 184.8 81.7% ± 2.4%
4 5,000 818.5 189.5 81.2% ± 2.4%

Rolit
Players Time (ms) BRS Maxn Win Ratio

3 250 637.5 364.5 63.6% ± 3.0%
3 1,000 661.5 340.5 66.0% ± 2.9%
3 5,000 650.5 351.5 64.9% ± 3.0%
4 250 690.5 317.5 68.5% ± 2.9%
4 1,000 696.9 311.1 69.1% ± 2.9%
4 5,000 664.5 343.5 65.9% ± 2.9%

For Chinese Checkers we see that maxn is outperformed
by BRS. In the worst case, a win ratio of 72.4% ± 2.8% is
still achieved. In most cases, the performance is approximately
80%. In the best case, a win ratio of 88.0% ± 2.0% is achieved
with 1,000 ms per move. We observe that in general, BRS gets
stronger with more thinking time. In the material-based game
Focus, we observe that BRS is outperforming maxn easily. In
the worst case, a win ratio of 81.2% ± 2.4% is still achieved.
The maxn algorithm plays the strongest in Rolit. However, it
is still outperformed by BRS with a win ratio between 65%
and 70%.

D. BRS against Paranoid

Table V shows the performance of BRS against paranoid in
Chinese Checkers, Focus, and Rolit. Draws are addressed in a
similar manner as in Table IV. For the 5,000 ms experiment
of Rolit we played the double number of games to reach
statistical significance (2,004 games for three players and
2,016 for four players).

For three-player Chinese Checkers, BRS wins above 70%
of the games against paranoid. For four and six players, a
win ratio of approximately 60% is achieved. In this game, we
do not observe a clear performance trend when increasing the
thinking time. As expected, paranoid performs better against
BRS than maxn did in Chinese Checkers.

In the experiments of BRS against paranoid in Focus, we
see that a relatively stable win ratio between 58.0% and 68.2%
is achieved. We again may conclude that BRS plays stronger
than paranoid.



8

TABLE V
WINNING STATISTICS FOR BRS VS. PARANOID.

Chinese Checkers
Players Time (ms) BRS Paranoid Win Ratio

3 250 713 289 71.2% ± 2.8%
3 1,000 763 239 76.1% ± 2.6%
3 5,000 722 280 72.1% ± 2.8%
4 250 594 414 58.9% ± 3.0%
4 1,000 593 415 58.8% ± 3.0%
4 5,000 572 436 56.7% ± 3.1%
6 250 610 444 60.5% ± 3.0%
6 1,000 611 443 60.6% ± 3.0%
6 5,000 596 458 59.1% ± 3.0%

Focus
Players Time (ms) BRS Paranoid Win Ratio

3 250 581.3 420.7 58.0% ± 3.1%
3 1,000 683.7 318.3 68.2% ± 2.9%
3 5,000 673.0 329.0 67.2% ± 2.9%
4 250 654.3 353.8 64.9% ± 2.9%
4 1,000 659.3 348.8 65.4% ± 2.9%
4 5,000 609.5 398.5 60.5% ± 3.0%

Rolit
Players Time (ms) BRS Paranoid Win Ratio

3 250 293.5 708.5 29.3% ± 2.8%
3 1,000 580.0 422.0 57.9% ± 3.1%
3 5,000 992.5 1011.5 49.5% ± 2.2%
4 250 490.0 518.0 48.6% ± 3.1%
4 1,000 580.2 427.8 57.6% ± 3.1%
4 5,000 1055.5 960.5 52.4% ± 2.2%

In Rolit, we see that BRS is weaker in a short time setting
for three and four players when playing against paranoid. A
possible reason for this is that due to the short thinking time,
the paranoid player is not too paranoid yet. With a deeper
search, paranoid may become too careful. With 1,000 ms per
move, BRS wins about 57% of the games. With 5,000 ms
thinking time, the performance of BRS is dropping again to
49.5% ± 2.2% for three players and 52.4% ± 2.2% for four
players. A possible explanation for this is that a move in Rolit
changes the board significantly and the illegal states have a
large influence on this time setting.

E. BRS vs. Paranoid vs. Maxn

When competing against one type of opponent, one can
win the game if the opponent’s weakness is discovered.
When playing against different kinds of opponents, the game
dynamics change. Every opponent has different weak spots
which have to be exploited at the same time. Therefore, we
matched BRS, paranoid, and maxn against each other in the
three-player variant of Chinese Checkers, Focus, and Rolit.
The results are shown in Table VI. Draws are addressed in a
similar manner as before. If all algorithms would be equally
strong, a win ratio of 33.3% would be expected.

The results show that maxn clearly is the weakest algorithm
of the three, having its best performance in Rolit. For Chinese
Checkers and Focus, BRS is clearly the best algorithm. In
Rolit, the performance of BRS and paranoid are comparable
with 250 and 1,000 ms per move. For 5,000 ms, paranoid is
the best algorithm.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this article we proposed a new search algorithm called
Best-Reply Search (BRS) for deterministic multi-player games

TABLE VI
TOURNAMENT RESULTS.

Chinese Checkers
Time (ms) BRS Paranoid Maxn BRS Win ratio

250 582 333 87 58.1% ± 3.1%
1,000 600 324 78 59.9% ± 3.0%
5,000 661 193 163 66.0% ± 2.9%

Focus
Time (ms) BRS Paranoid Maxn BRS Win ratio

250 507.7 431.7 62.7 50.7% ± 3.1%
1,000 619.7 319.7 62.7 61.8% ± 3.0%
5,000 616.7 265.7 119.7 61.5% ± 3.0%

Rolit
Time (ms) BRS Paranoid Maxn BRS Win ratio

250 416.0 393.5 192.5 41.5% ± 3.1%
1,000 399.0 417.5 185.5 39.8% ± 3.0%
5,000 372.0 453.0 177.0 37.1% ± 3.0%

with perfect information. The algorithm allows only one
opponent to play a counter move. This opponent is the one
with the strongest move against the root player. The other
players have to pass their turn. Using this approach, more
turns of the root player can be searched, resulting in long-
term planning. At the same time, some sort of cautiousness is
preserved by searching the strongest opponent move.

The first conclusion we may draw is that BRS is able to
significantly outperform maxn in Chinese Checkers, Focus,
and Rolit. In Chinese Checkers, BRS wins between 72% and
88% of the games. For Focus, BRS wins more than 80% of
the games. An impressive 95% win ratio for three players
with 1,000 ms per move was achieved. In Rolit, BRS wins
approximately 65% of all games.

Our second conclusion is that against paranoid, BRS is
significantly stronger in Chinese Checkers and Focus. In these
games BRS won approximately 60% across all experiments.
In Rolit, BRS did not perform well with 250 ms of thinking
time. However, BRS was stronger than paranoid with 1,000
ms, and on equal footing with 5,000 ms of thinking time. A
possible reason why BRS is not outperforming paranoid in
Rolit is that the board changes significantly with every move.

Our third conclusion is that when playing different kind of
opponents, BRS is the strongest algorithm in Chinese Checkers
and Focus. In Rolit, BRS was somewhat behind paranoid.

The fourth conclusion we may draw is that increasing the
search time generally does not have a negative effect on the
performance of BRS (in Chinese Checkers and Focus). This
implies that searching illegal positions, which are generated by
forcing opponents to pass, does not have a large influence. The
possible negative effect is outbalanced by the larger lookahead.
In spite of this negative effect being visible in Rolit, BRS was
still competitive with paranoid.

The first direction of future research is the application of
Monte-Carlo algorithms. Over the past years, Monte-Carlo
Tree Search (MCTS) [27], [28] has become increasingly
popular for letting computers play games. It has been applied
successfully in quite some two-player games (e.g., Go [27],
[29], [30], Amazons [31], [32], Lines of Action [33], Hex [34]
and Kriegspiel [35]). Moreover, Cazenave [36] applied MCTS
successfully for multi-player Go. Sturtevant [12] showed that
MCTS outperforms maxn and paranoid in Chinese Checkers,



9

when given enough time. An interesting experiment would be
to compare the playing strength of BRS against an MCTS
program in Chinese Checkers and Focus. Furthermore, the
BRS principle can be used in MCTS programs as well. This
might lead to an improvement in playing strength.

The second direction of future research is variable-depth
search [37]. Forward-pruning techniques prune unpromising
branches in advance with only a small risk. The most promi-
nent techniques are null moves [21], [22], ProbCut [24]
and Multi-Cut [23]. A prerequisite of successfully applying
these techniques is to have a strong evaluation function. This
function should be a good predictor and not suffer from the
horizon or odd-even effects. Using these techniques, an even
larger lookahead would be possible. Because of the direct
succession of MAX and MIN nodes in BRS, we expect that
forward-pruning techniques are more effective in BRS than in
paranoid. This could give BRS an edge over paranoid.

The third to seventh directions for future research are as fol-
lows. (3) Searching illegal positions is not necessary for BRS.
Instead, the opponents who are not selected for the counter
move could be allowed to play the first move from the static
move ordering. This may make BRS applicable to the game of
Hearts. (4) BRS should be tested for more domains, such as
four-player chess [9]. (5) Because lookahead is important, it
would be interesting to test how an algorithm performs which
only searches moves by the root player (making it a one-player
game, as in the evaluation function for Chinese Checkers by
Sturtevant [6]). (6) The MP-Mixed algorithm chooses a search
method based on the current situation of the game [38]. BRS
may be able to improve the strength of this technique as well.
(7) It should be investigated what the applicability of BRS is in
non-deterministic games or games with imperfect information.

ACKNOWLEDGMENT

This work is funded by the Netherlands Organisation for
Scientific Research (NWO) in the framework of the project
TACTICS, grant number 612.000.525. Moreover, the authors
would like to thank Jos Uiterwijk and the anonymous review-
ers for their helpful comments.

REFERENCES

[1] D. E. Knuth and R. W. Moore, “An Analysis of Alpha-Beta Pruning,”
Artificial Intelligence, vol. 6, no. 4, pp. 293–326, 1975.

[2] C. A. Luckhardt and K. B. Irani, “An Algorithmic Solution of N-Person
Games,” in Proceedings of the 5th National Conference on Artificial
Intelligence (AAAI-86). Menlo Park, CA, USA: AAAI Press, 1986, pp.
158–162.

[3] N. R. Sturtevant and R. Korf, “On Pruning Techniques for Multi-Player
Games,” in Proceedings of the 17th National Conference on Artificial
Intelligence (AAAI-00). Menlo Park, CA, USA: AAAI Press, 2000, pp.
201–207.

[4] N. R. Sturtevant, “A Comparison of Algorithms for Multi-Player
Games,” in Computers and Games (CG 2002), ser. Lecture Notes in
Computer Science (LNCS), J. Schaeffer, M. Müller, and Y. Björnsson,
Eds., vol. 2883. Berlin, Germany: Springer-Verlag, 2003, pp. 108–122.

[5] J.-T. Saito and M. H. M. Winands, “Paranoid Proof-Number Search,”
in Proceedings of the 2010 IEEE Conference on Computational Intelli-
gence and Games (CIG 2010), G. N. Yannakakis and J. Togelius, Eds.
Piscataway, NJ, USA: IEEE press, 2010, pp. 203–210.

[6] N. R. Sturtevant, “Multi-Player Games: Algorithms and Approaches,”
Ph.D. dissertation, Computer Science Department, University of Cali-
fornia, Los Angeles, CA, USA, 2003.

[7] R. E. Korf, “Multi-Player Alpha-Beta Pruning,” Artificial Intelligence,
vol. 48, no. 1, pp. 99–111, 1991.

[8] N. R. Sturtevant, “Last-Branch and Speculative Pruning Algorithms for
Maxn,” in Proceedings of the Eighteenth International Joint Conference
on Artificial Intelligence (IJCAI-03), G. Gottlob and T. Walsh, Eds. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003, pp. 669–
678.

[9] U. Lorenz and T. Tscheuschner, “Player Modeling, Search Algorithms
and Strategies in Multi Player Games,” in Advances in Computer Games
(ACG 2005), ser. Lecture Notes in Computer Science (LNCS), H. J.
van den Herik, S.-C.. Hsu, T.-S.. Hsu, and H. H. L. M. Donkers, Eds.,
vol. 4250. Berlin, Germany: Springer-Verlag, 2006, pp. 210–224.

[10] N. R. Sturtevant and M. H. Bowling, “Robust Game Play
Against Unknown Opponents,” in 5th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2006),
H. Nakashima, M. P. Wellman, G. Weiss, and P. Stone, Eds. Hakodate,
Japan: ACM, 2006, pp. 713–719.

[11] N. R. Sturtevant, M. Zinkevich, and M. H. Bowling, “Prob-Maxn:
Playing N-player Games with Opponent Models,” in Proceedings of the
21st National Conference on Artificial Intelligence (AAAI-06). Menlo
Park, CA, USA: AAAI Press, 2006, pp. 1057–1063.

[12] N. R. Sturtevant, “An Analysis of UCT in Multi-Player Games,” in
Computers and Games (CG 2008), ser. Lecture Notes in Computer
Science (LNCS), H. J. van den Herik, X. Xu, Z. Ma, and M. H. M.
Winands, Eds., vol. 5131. Berlin, Germany: Springer-Verlag, 2008, pp.
37–49.

[13] ——, “An Analysis of UCT in Multi-Player Games,” ICGA Journal,
vol. 31, no. 4, pp. 195–208, 2008.

[14] S. Sackson, A Gamut of Games. New York, NY, USA: Random House,
1969.

[15] J. A. M. Nijssen and M. H. M. Winands, “Enhancements for Multi-
Player Monte-Carlo Tree Search,” in Computers and Games (CG 2010),
ser. Lecture Notes in Computer Science (LNCS), H. J. van den Herik,
H. Iida, and A. Plaat, Eds., vol. 6515. Berlin, Germany: Springer-
Verlag, 2011, pp. 238–249.

[16] M. Buro, “The Evolution of Strong Othello Programs,” in Entertainment
Computing - Technology and Applications, ser. IFIP Advances in Infor-
mation and Communication Technology, R. Nakatsu and J. Hoshino,
Eds., vol. 112. Dordrecht, The Netherlands: Kluwer Academic Pub-
lishers, 2003, pp. 81–88.

[17] R. D. Greenblatt, D. E. Eastlake, and S. D. Crocker, “The Greenblatt
Chess Program,” in Proceedings of the AFIPS Fall Joint Computer
Conference 31, 1967, pp. 801–810, Reprinted (1988) in Computer Chess
Compendium (ed. D. N. L. Levy), pp. 56–66. B. T. Batsford Ltd.,
London, United Kingdom.

[18] D. M. Breuker, “Memory versus Search in Games,” Ph.D. dissertation,
Department of Computer Science, Maastricht University, Maastricht,
The Netherlands, 1998.

[19] J. Schaeffer, “The History Heuristic,” ICCA Journal, vol. 6, no. 3, pp.
16–19, 1983.

[20] S. G. Akl and M. M. Newborn, “The Principal Continuation and the
Killer Heuristic,” in 1977 ACM Annual Conference Proceedings. New
York, NY, USA: ACM Press, 1977, pp. 466–473.

[21] D. F. Beal, “Experiments with the Null Move,” in Advances in Computer
Chess 5, D. F. Beal, Ed. Amsterdam, The Netherlands: Elsevier Science
Publishers, 1989, pp. 65–89.

[22] G. Goetsch and M. S. Campell, “Experiments with the Null-move
Heuristic,” in Computers, Chess, and Cognition, T. A. Marsland and
J. Schaeffer, Eds. New York, NY, USA: Springer-Verlag, 1990, pp.
159–168.

[23] Y. Björnsson and T. A. Marsland, “Multi-Cut αβ-Pruning in Game-Tree
Search,” Theoretical Computer Science, vol. 252, no. 1–2, pp. 177–196,
2001.

[24] M. Buro, “ProbCut: An Effective Selective Extension of the Alpha-Beta
Algorithm,” ICCA Journal, vol. 18, no. 2, pp. 71–76, 1995.

[25] T. A. Marsland and F. Popowich, “Parallel Game-Tree Search,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI–
7, no. 4, pp. 442–452, 1985.

[26] A. Plaat, “Research Re: Search & Re-Search,” Ph.D. dissertation, Tinber-
gen Institute and Department of Computer Science, Erasmus University
Rotterdam, Rotterdam, The Netherlands, 1996.

[27] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search,” in Computers and Games (CG 2006), ser. Lecture Notes
in Computer Science (LNCS), H. J. van den Herik, P. Ciancarini, and
H. H. L. M. Donkers, Eds., vol. 4630. Heidelberg, Germany: Springer-
Verlag, 2007, pp. 72–83.



10

[28] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo Planning,”
in Proceedings of the 17th European Conference on Machine Learn-
ing (ECML 2006), ser. Lecture Notes in Computer Science (LNCS),
J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, Eds., vol. 4212. Berlin
Heidelberg, Germany: Springer-Verlag, 2006, pp. 282–293.

[29] G. M. J.-B. Chaslot, M. H. M. Winands, J. W. H. M. Uiterwijk, H. J.
van den Herik, and B. Bouzy, “Progressive Strategies for Monte-Carlo
Tree Search,” New Mathematics and Natural Computation, vol. 4, no. 3,
pp. 343–357, 2008.

[30] S. Gelly and D. Silver, “Combining Online and Offline Knowledge in
UCT,” in Proceedings of the 24th International Conference on Machine
Learning (ICML ’07), Z. Ghahramani, Ed. New York, NY, USA: ACM
Press, 2007, pp. 273–280.

[31] J. Kloetzer, H. Iida, and B. Bouzy, “Playing Amazons Endgames,” ICGA
Journal, vol. 32, no. 3, pp. 140–148, 2009.

[32] R. J. Lorentz, “Amazons Discover Monte-Carlo,” in Computers and
Games (CG 2008), ser. Lecture Notes in Computer Science (LNCS),
H. J. van den Herik, X. Xu, Z. Ma, and M. H. M. Winands, Eds., vol.
5131. Berlin, Germany: Springer-Verlag, 2008, pp. 13–24.

[33] M. H. M. Winands and Y. Björnsson, “Evaluation Function based Monte-
Carlo LOA,” in Advances in Computer Games (ACG 2009), ser. Lecture
Notes in Computer Science (LNCS), H. J. van den Herik and P. Spronck,
Eds., vol. 6048. Berlin, Germany: Springer-Verlag, 2010, pp. 33–44.

[34] T. Cazenave and A. Saffidine, “Utilisation de la Recherche Arborescente
Monte-Carlo au Hex,” Revue d’Intelligence Artificielle, vol. 23, no. 2–3,
pp. 183–202, 2009, in French.

[35] P. Ciancarini and G. P. Favini, “Monte Carlo Tree Search Techniques in
the Game of Kriegspiel,” in Proceedings of the Twenty-first International
Joint Conferences on Artificial Intelligence (IJCAI-09), C. Boutilier, Ed.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2009, pp.
474–479.

[36] T. Cazenave, “Multi-player Go,” in Computers and Games (CG 2008),
ser. Lecture Notes in Computer Science (LNCS), H. J. van den Herik,
X. Xu, Z. Ma, and M. H. M. Winands, Eds., vol. 5131. Berlin, Germany:
Springer-Verlag, 2008, pp. 50–59.

[37] T. A. Marsland and Y. Björnsson, “Variable-Depth Search,” in Advances

in Computer Games (ACG 9), H. J. van den Herik and B. Monien, Eds.
Maastricht, The Netherlands: Universiteit Maastricht, 2001, pp. 9–24.

[38] I. Zuckerman, A. Felner, and S. Kraus, “Mixing Search Strategies for
Multi-Player Games,” in Proceedings of the Twenty-first International
Joint Conferences on Artificial Intelligence (IJCAI-09), C. Boutilier, Ed.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2009, pp.
646–651.

Maarten Schadd received the M.Sc. degree in
Artificial Intelligence from the Maastricht ICT Com-
petence Centre, Maastricht University, Maastricht,
The Netherlands, in 2004. Currently, he is working
on his Ph.D. degree in Artificial Intelligence at
the Department of Knowledge Engineering, Maas-
tricht University, Maastricht, The Netherlands. His
research covers various classes of games, from one-
player games to multi-player games.

Mark Winands received the Ph.D. degree in Ar-
tificial Intelligence from the Department of Com-
puter Science, Maastricht University, Maastricht,
The Netherlands, in 2004. Currently, he is an As-
sistant Professor at the Department of Knowledge
Engineering, Maastricht University, Maastricht, The
Netherlands. His research interests include heuristic
search, machine learning and games. Dr. Winands
regularly serves on program committees of major AI
and computer games conferences. Since 2009 he is a
member of the editorial board of the ICGA Journal.


