
Evaluation-Function Based
Proof-Number Search

Mark H.M. Winands and Maarten P.D. Schadd

Games and AI Group, Department of Knowledge Engineering,
Faculty of Humanities and Sciences,

Maastricht University, Maastricht, The Netherlands
{m.winands,maarten.schadd}@maastrichtuniversity.nl

Abstract. This article introduces Evaluation-Function based Proof–
Number Search (EF-PN) and its second-level variant EF-PN2. It is a
framework for setting the proof and disproof number of a leaf node with
a heuristic evaluation function. Experiments in LOA and Surakarta show
that compared to PN and PN2, which use mobility to initialize the proof
and disproof numbers, EF-PN and EF-PN2 take between 45% to 85%
less time for solving positions. Based on these results, we may conclude
that EF-PN and EF-PN2 reduce the search space considerably.

1 Introduction

Most modern game-playing computer programs successfully apply αβ search
with enhancements for online game-playing. However, the enhanced αβ search
is sometimes not sufficient to play well in the endgame. In some games, such as
Chess, this problem is solved by the use of endgame databases. Due to memory
constraints this is only feasible for endgames with a relatively small state-space
complexity. An alternative approach is the use of a specialized binary (win or
non-win) search method, such as Proof-Number (PN) search [2]. In many do-
mains PN search outperforms αβ search in proving the game-theoretic value of
endgame positions. The PN-search idea is a heuristic, which prefers expanding
narrow subtrees over wide ones. PN search or a variant thereof has been suc-
cessfully applied to the endgames of Awari [1], Chess [3], Shogi [7, 11], Othello
[7], LOA [8, 9, 15], Go [5], Checkers [10], and Connect6 [17].

In contrast to other best-first algorithms PN search does not need a domain-
dependent heuristic evaluation function to determine the most-promising node
to be expanded next. Although, adding specific domain-dependent knowledge
has been shown to improve the performance of PN search in the past [1, 7,
10, 17]. These evaluation functions have been specially designed for PN search.
An alternative is to apply a traditional evaluation function, as used in an αβ
game-playing program. In this article we investigate how we can include such
an evaluation function in PN search. We introduce therefore a framework, called
Evaluation-Function based Proof-Number Search (EF-PN). Since (EF-)PN is a
best-first search, it has to store the complete search tree in memory. When

2 M.H.M. Winands and M.P.D. Schadd

the memory is full, the search has to end prematurely. To test the framework
for harder problems, we apply it to PN2 (subsequently called EF-PN2). In the
article, we test EF-PN and EF-PN2 in (6× 6) LOA and Surakarta.

The article is organized as follows. In Sect. 2 we discuss PN and PN2 search.
Next, we propose EF-PN search in Sect. 3. Subsequently, we test EF-PN and
its second-level variant EF-PN2 for the game of LOA and Surakarta in Sect. 4.
Finally, Sect. 5 gives conclusions and an outlook on future research.

2 Proof-Number Search

In this section, we give a short description of PN search (Subsect. 2.1) and PN2

search (Subsect. 2.2).

2.1 PN Search

Proof-Number (PN) search is a best-first search algorithm especially suited for
finding the game-theoretic value in game trees [1]. Its aim is to prove the correct
value of the root of a tree. A tree can have three values: true, false, or unknown.
In the case of a forced win, the tree is proved and its value is true. In the case of a
forced loss or draw, the tree is disproved and its value is false. Otherwise the value
of the tree is unknown. As long as the value of the root is unknown, the most-
promising node is expanded. In contrast to other best-first algorithms PN search
does not need a domain-dependent heuristic evaluation function to determine
the most-promising node [2]. In PN search this node is usually called the most-
proving node. PN search selects the most-proving node using two criteria: (1)
the shape of the search tree (the branching factor of every internal node) and
(2) the values of the leaves. These two criteria enable PN search to treat game
trees with a non-uniform branching factor efficiently.

Below we explain PN search on the basis of the AND/OR tree depicted in
Fig. 1, in which a square denotes an OR node, and a circle denotes an AND
node. The numbers to the right of a node denote the proof number (upper) and
disproof number (lower). A proof number (pn) represents the minimum number
of leaf nodes which have to be proved in order to prove the node. Analogously, a
disproof number (dpn) represents the minimum number of leaf nodes that have
to be disproved in order to disprove the node. Because the goal of the tree is to
prove a forced win, winning nodes are regarded as proved. So, they have pn = 0
and dpn = ∞ (e.g., node i). Lost or drawn nodes are regarded as disproved
(e.g., nodes f and k). They have pn = ∞ and dpn = 0. Unknown leaf nodes
have pn = 1 and dpn = 1 (e.g., nodes g, h, j, and l). The pn of an internal OR
node is equal to the minimum of its children’s proof numbers, since to prove an
OR node it suffices to prove one child. The dpn of an internal OR node is equal
to the sum of its children’s disproof numbers, since to disprove an OR node all
the children have to be disproved. The pn of an internal AND node is equal to
the sum of its children’s proof numbers, since to prove an AND node all the
children have to be proved. The dpn of an AND node is equal to the minimum

Evaluation-Function Based Proof-Number Search 3

1
a

b c

ih lk

ed gf

2

1

2
0

0

0
0

0

1

1

1

1

1

2

1

1

draw ??

loss ?

j

?

1

1

win

Fig. 1. An AND/OR tree with proof and disproof numbers

of its children’s disproof numbers, since to disprove an AND node it suffices to
disprove one child. The procedure of selecting the most-proving node to expand
next is as follows. The algorithm starts at the root. Then, at each OR node the
child with the smallest pn is selected as successor, and at each AND node the
child with the smallest dpn is selected as successor. Finally, when a leaf node
is reached, it is expanded (which makes the leaf node an internal node) and
the newborn children are evaluated. This is called immediate evaluation. The
selection of the most-proving node (j) in Fig. 1 is given by the bold path.

2.2 PN2 Search

A disadvantage of PN search is that the complete search tree has to be stored
in memory. When the memory is full, the search process has to be terminated
prematurely. A partial solution is to delete proved or disproved subtrees [1]. To
overcome the memory problem of PN search, depth-first variants such as PN*
[11], PDS [6], and df-pn [7] were proposed. They use multiple-iterative deepening
to transform the best-first search into a depth-first search. However, due to the
overhead of the re-searches, these depth-first variants can only function properly
by using a transposition table and garbage collection [6, 7]. An alternative to
these depth-first variants is PN2 [1, 4]. It is a straightforward extension of PN
search. PN2 performs two levels of PN search, one at the root and one at the
leaves of the first level. Although PN2 uses far less memory than PN search [1],
it does not fully overcome the memory obstacle. For the test positions used in
this paper, PN2 does not run out of memory.

As mentioned before, PN2 consists of two levels of PN search. The first level
consists of a regular PN search (PN1), which calls a PN search at the second
level (PN2) for an evaluation of the most-proving node of the PN1-search tree.

4 M.H.M. Winands and M.P.D. Schadd

In our implementation, the number of nodes y in a PN2-search tree is restricted
to the size of the PN1 tree and the number of nodes which can still be stored in
memory. The formula to compute y is:

y = min(x,M − x) , (1)

with x being the size of the first-level search and M the maximum number of
nodes to be stored in memory. The PN2 search is stopped when its number
of nodes stored in memory exceeds y or the subtree is (dis)proved. After com-
pletion of the PN2 search, the children of the root of the PN2-search tree are
preserved, but their subtrees are removed from memory. The children of the
most-proving node (the root of the PN2-search tree) are not immediately evalu-
ated by a second-level search; evaluation of such a child node happens only after
its selection as most-proving node. This is called delayed evaluation. We remark
that for PN2-search trees immediate evaluation is used.

As we have pointed out in Subsect. 2.1, proved or disproved subtrees can be
deleted. If we do not delete proved or disproved subtrees in the PN2 search, the
number of nodes searched is the same as y ; otherwise we can continue the search
longer. In our implementation, we do delete the subtrees in the PN2 search. This
gives the PN2 search a speedup of 10% [12].

3 Initializing Proof and Disproof Numbers

In the previous section we saw that pn and dpn are each initialized to unity in
the unknown leaves. However, this approach is rather naive. There are better
ways of initializing the pn and dpn, such that the performance of PN search
is increased. In Subsect. 3.1 we discuss initialization techniques proposed in the
past. Next, we introduce our evaluation-function based approach in Subsect. 3.2.

3.1 Alternative Initialization Techniques

Several techniques for initializing the pn and dpn were introduced in the past.
One of the most effective techniques, proposed by Allis [1], is taking the branching
factor, i.e., the mobility of the moving player in the leaf into account. The idea
is that mobility an important characteristic for most games (e.g., Give-Away-
Chess [1], Chess [3], LOA [12]). For an OR node, the pn and dpn are set to 1
and n (and the reverse for an AND node), where n is the number of legal moves.
The advantage of this technique is that it does not need domain knowledge to be
effective. In games such as Give-Away-Chess or LOA an improvement of a factor
6 has been reported [1, 12]. However, when computing the number of moves is
relatively expensive or mobility is not important for a game, it may not lead to
any improvement.

An alternative to mobility is to use a domain-specific heuristic evaluation
function. For instance, Allis [1] took material into account to set the variables
in Awari. Nagai [7] applied a pattern-based approach in his Othello df-pn pro-
gram. In Tsume-Go, Kishimoto and Müller [5] initialized the pn and dn for the

Evaluation-Function Based Proof-Number Search 5

defending player by approximating the minimum number of successive defender
moves to create two eyes. For the attacking player the pn and dn were set to
the estimated number of moves to create a dead shape. These approaches have
generally in common that instead of applying a complicated and expensive posi-
tional evaluation function as used by an αβ program, they apply a simpler (and
computationally inexpensive) evaluation function that is more suitable for PN
search. These evaluation functions have a smaller number of features than their
αβ counterpart. However, finding the right set of features may be complicated
(e.g., as seen in Checkers [10]). Moreover, for some games a large set of features
has to be considered, making the evaluation function more difficult to construct
(e.g., LOA [12]). An option is then to use a traditional positional evaluation
function – possibly available in an existing αβ program – instead.

3.2 Evaluation-Function Based Proof-Number Search

As discussed before, an option is to apply a traditional positional evaluation func-
tion to set pn and dn. Applying such an evaluation function evaluation raises
three issues. (1) They take too much time. The reduction of nodes per second
outweighs the benefit of a smaller search tree. (2) They violate the assumption
that the pn and dpn are lower bounds on the effort required to solve the tree
[1]. The positive influence of different initializations may at the same time result
in negative effects. Allis [1] found that for some games (e.g., Othello) it is nec-
essary to perform a large number of experiments to fine-tune the initialization
process. (3) They may ignore the benefit of taking the mobility into account. A
general purpose evaluation function may not give enough weight to mobility and
therefore be outperformed by simply counting the number of moves.

To tackle these three issues we propose Evaluation-Function based Proof-
Number Search (EF-PN). Regarding (1), we only evaluate a node when it is
expanded. We use its evaluation score to initialize its newborn children. Regard-
ing (2), we squash the evaluation score by using a step function. This reduces
the risk of overestimating the pn and dpn. This idea is similar to Nagai’s [7],
who used a sigmoid function to squash the evaluation scores in Othello. Dur-
ing the course of our research, we did not observe much difference between the
performance of the two functions. Regarding (3), we multiply the evaluation
score with the number of moves n available in the leaf node. For an OR leaf
node, this multiplication is used to set its dpn, while for an AND leaf node, this
multiplication is used to set its pn.

The initialization rule for an OR node i is now as follows:

pni = 1 + a · (1− step(eval(p))), (2)

dpni = ni + ni · b · (1 + step(eval(p))), (3)

where a and b are two parameters to be tuned, p the parent node, eval() the
evaluation function, and step() the step function. The evaluation score is positive

6 M.H.M. Winands and M.P.D. Schadd

when the OR player is ahead, and negative when the AND player is ahead.
Initialization for an AND node i is done in a similar way:

pni = ni + ni · b · (1− step(eval(p))), (4)

dpni = 1 + a · (1 + step(eval(p))). (5)

Finally, the step function is as follows:

step(x) =

−1, x ≤ −t
0, −t < x < t
1, x ≥ t

(6)

where t is a parameter that indicates a decisive winning advantage (e.g., a Rook
ahead in Chess).

The behavior of the above framework is as follows. In an OR node, when the
OR player has a substantial advantage the pn is 1 and the dpn is (2b + 1) · n.
When the AND player has a substantial advantage the pn is 2a+ 1 and the dpn
is n. Otherwise the pn is a+ 1 and the dpn is (b+ 1) ·n. In an AND node, when
the OR player has a substantial advantage the pn is n and its dpn is 2a + 1.
When the AND player has a substantial advantage the pn is (2b+ 1) ·n and the
dpn is 1. Otherwise the pn is (b+ 1) · n and the dpn is a+ 1.

4 Experiments

In this section we evaluate the performance of EF-PN and its second-level variant
EF-PN2. First, we describe the test environment in Subsect. 4.1. Next, the EF-
PN parameters a and b are tuned in Subsect. 4.2. Then, in Subsect. 4.3 PN,
PN2, EF-PN and EF-PN2 are compared with each other in the game of LOA.
Subsequently, Subsect. 4.4 matches PN2 and EF-PN2 against each other to solve
6× 6 LOA. Finally, we verify the results of EF-PN2 in the game of Surakarta in
Subsect. 4.5.

4.1 Test Environment

All experiments were performed on an AMD Opteron 2.2 GHz computer. The al-
gorithms were implemented in Java. Moreover, PN and PN2 used mobility to ini-
tialize their leaf nodes. As test domains we used the games of LOA and Surakarta,
which we explain below. The evaluation functions for LOA and Surakarta were
taken from the programs MIA [16] and SIA [13], respectively. To speed up com-
putation, opponent-independent evaluation-function features were cached [16].

LOA. Lines of Action (LOA) is a two-person zero-sum connection game with
perfect information. It is played on an 8 × 8 board by two sides, Black and
White. Each side has twelve pieces at its disposal. The black pieces are placed

Evaluation-Function Based Proof-Number Search 7

 Fig. 2. (a) Initial LOA position. (b) Initial Surakarta position.

along the top and bottom rows of the board, while the white pieces are placed in
the left- and right-most files of the board (see Fig. 2a). The players alternately
move a piece, starting with Black. A piece moves in a straight line, exactly
as many squares as there are pieces of either color anywhere along the line of
movement. A player may jump over its own pieces, but not the opponent’s,
although opponent’s pieces are captured by landing on them. The goal of the
players is to be the first to create a configuration on the board in which all own
pieces are connected in one unit. The connections within the unit may be either
orthogonal or diagonal.

Surakarta. The game of Surakarta is an Indonesian board game that tradi-
tionally is played by using stones vs. shells, though other easily-distinguished
sets of pieces may be used (e.g., Black and White in Fig. 2b). Players take turns
moving one of their own pieces. In non-capturing moves, a piece travels - either
orthogonally or diagonally - to a neighboring intersection. In a capturing move,
a piece travels along a line, traveling over at least one loop, until it meets one
of the opponent pieces. The captured piece is removed, and the capturing piece
takes its place. The first player to capture all opponent’s pieces wins.

4.2 Parameter Tuning

In the following series of experiments we tried to find the parameter setting (a
and b) of EF-PN, which gave the largest node reduction. A set of 333 LOA
positions was used that every parameter setting could solve within the limit of
5,000,000 nodes searched. This set of positions is a subset of 488 LOA endgame
positions,1 which has been used frequently in the past [8, 9, 15]. Parameter a
took the values of 0, 5, 10, 15, 20, 50, and 100, whereas parameter b took the
values of 0, 5, 10, 20, 50, and 100. The t value was fixed to 500, which indicates
a considerable winning advantage in the MIA 4.5 evaluation function. In Fig.
3 the total number of nodes searched for each pair of parameters is given. The
default PN result is given for comparison (cf. Def.).

1 The test set of 488 LOA positions can be found at:
http://www.personeel.unimaas.nl/m-winands/loa/tscg2002a.zip.

8 M.H.M. Winands and M.P.D. Schadd

0

50000000

100000000

150000000

200000000

250000000

300000000

0 20 40 60 80 100

b

N
od

es

a=0
a=1
a=5
a=10
a=15
a=20
a=50
a=100
Def.

Fig. 3. Tree sizes for different a and b.

In Fig. 3 we see that parameter configurations (5, 5), (10, 5), (10, 10), (15, 5),
(15, 20), (20, 5), and (20, 10) lead to a reduction of approximately 50% in nodes
searched. Moreover, setting either a or b to 0 gives a reasonable reduction in
nodes, but this reduction is considerably smaller than for the optimal parameter
configurations. Finally, we remark that if the parameter a is set too small in
comparison with b, e.g., (0, 50), (0, 100), (1, 50), (1, 100), or (5, 100), EF-PN
performs even worse than the regular PN.

4.3 Experiments in LOA

In this subsection we ran additional experiments in LOA to get a better insight in
the performance of EF-PN. We not only compared EF-PN with PN, but also its
two level-variant EF-PN2 with PN2. For each algorithm, the maximum number
of nodes stored in memory was 10,000,000 and the maximum number of nodes
searched was 50,000,000. The EF-PN parameters a, b, and t were set to 20, 5,
and 500, respectively.

In the first experiment of this subsection we compared EF-PN with PN-
Naive (initializing pn and dn with 1), PN, and PN-Eval (applying an evaluation
function in the leaf to set pn and dn). For PN-Eval, a step function with a = 20
is used in the following way: pn = 1 + a · (1 − step(eval(n)) and dn = 1 + a ·
(1 + step(eval(n))). We used the same set of 488 LOA endgame positions as in
Subsect. 4.2. The results are given in Table 1. In the second column we see that
367 positions are solved by PN-Naive, 436 PN-Eval, 461 by PN, and 478 by EF-
PN. In the third and fourth column the number of nodes and the time consumed
are given for the subset of 367 positions, which the algorithms are able to solve.
We observe that the performance of PN-Eval compared to PN and EF-PN is
disappointing. PN-Eval only explores 60% fewer nodes and consumes 40% less

Evaluation-Function Based Proof-Number Search 9

Table 1. Comparing the search algorithms on 488 test positions

Algorithm # of positions solved 367 positions
(out of 488) Total nodes Total time (ms.)

PN-Naive 367 1,336,925,805 1,195,800

PN-Eval 436 540,954,044 737,503

PN 461 162,286,551 198,092

EF-PN 478 97,880,765 125,254

time than PN-Naive. On the contrary, PN and EF-PN solve more problems, and
they explore considerably smaller trees than PN-Naive and PN-Eval. For the
best variant, EF-PN, positions were solved thirteen times faster in nodes and
almost ten times faster in CPU time than PN-Naive. Moreover, EF-PN used
40% fewer nodes and 35% less time than PN.

In the second experiment we tested the immediate variant of EF-PN, called
IEF-PN. Instead of using the parent’s evaluation score, this variant uses the
evaluation score of the leaf node. In Table 2 we compare EF-PN with IEF-PN
on a subset of 478 test positions, which both algorithms were able to solve. The
table shows that IEF-PN searches the least number of nodes. However, EF-PN is
between 15% to 20% faster in time than IEF-PN. Based on the results of Tables
1 and 2 we may conclude that EF-PN outperforms IEF-PN and PN in LOA.

In the third experiment we tested the performance of EF-PN’s second-level
variant EF-PN2. Table 3 gives the results of comparing PN, EF-PN, PN2, and
EF-PN2 with each other. The table shows that 461 positions are solved by PN,
478 by PN2, 476 by EF-PN, and 482 by EF-PN2. The reason that PN and EF-
PN solved less than their second-level variants is that they sometimes ran out
of memory. In the third and fourth column the number of nodes and the time
consumed are given for the subset of 459 positions, which all algorithms are
able to solve. The results suggest that the evaluation-function approach is more
beneficial for PN than for PN2. EF-PN solves positions in 55% less time than
PN, whereas EF-PN2 solves positions in 45% less time than PN2. The difference
in performance can be explained by the fact that the parameters were originally
tuned for EF-PN. Finally, we remark that the overhead in CPU time of PN2

and EF-PN2 compared to PN and EF-PN is 1.5 and 1.9, respectively.

PN2 and EF-PN2 are especially designed for harder problems, which PN or
EF-PN cannot solve due to memory constraints. Since PN or EF-PN were able
to solve most of the problems in the previous experiment, this set was not really
appropriate for comparing PN2 and EF-PN2 with each other. We therefore per-
formed a fourth experiment with a different set of LOA problems in an attempt
to find more insights into the intricacies of these complex algorithms. In the

Table 2. Comparing EF-PN on 478 test positions

Algorithm Total nodes Total time (ms.)

IEF-PN 328,748,918 655,512

EF-PN 406,941,802 542,564

10 M.H.M. Winands and M.P.D. Schadd

Table 3. Comparing (EF-)PN and (EF-)PN2 on 488 test positions

Algorithm # of positions solved 459 positions
(out of 488) Total nodes Total time (ms.)

PN 461 599,272,821 748,219

EF-PN 478 256,151,258 328,008

PN2 476 1,069,663,432 1,124,973

EF-PN2 482 546,398,711 636,154

Table 4. Comparing PN2 and EF-PN2 on 286 test positions

Algorithm # of positions solved 282 positions
(out of 286) Total nodes Total time (ms.)

PN2 282 15,342,372,938 16,510,118

EF-PN2 286 7,171,634,916 8,604,965

fourth experiment PN2 and EF-PN2 are tested on a set of 286 LOA positions,
which were on average harder than the ones in the previous test set.2 In this
context ‘harder’ means a longer distance to the final position (the solution), i.e.,
more time is needed. The conditions are the same as in the previous experiments
except that the maximum number of nodes searched is set at 500,000,000. In Ta-
ble 4 we see that PN2 solves 282 positions, and EF-PN2 solves all 286 positions.
The ratio in nodes and time between PN2 and EF-PN2 for the positions solved
by both (282) is roughly similar to the previous experiment. Based on these
results, we may draw the conclusion that EF-PN2 is a better solver than PN2.

4.4 Solving 6 × 6 LOA

Because the mobility of an opponent is increased when playing a non-forcing
move, PN search prefers to investigate the lines that confine the opponent the
most. At the moment PN search has to solve a position where the solution
requires mostly non-forcing moves, it does not perform well [3]. For PN search
every move seems the same then. However, adding heuristic knowledge may guide
PN search through these difficult situations. In the next experiment, PN2 and
EF-PN2 were used to compute the game-theoretic value of 6×6 LOA. Especially
in the beginning of this game, there are hardly any forcing moves. We remark
that this game was already solved by PN2 in 2008 [14].

For this experiment, symmetry was taken into account to prevent redun-
dancy. The parameter setting of EF-PN2 was the same as the previous subsec-
tion. The results are given in Table 5. The table reveals that applying EF-PN2

gives a reduction of 86% in nodes searched and a reduction of 85% in CPU
time. Compared to the results in the previous subsection, this improvement is
quite drastic and may be explained in the fact that EF-PN2 is better in tackling
situations with non-forcing moves.

2 The test set can be found at:
http://www.personeel.unimaas.nl/m-winands/loa/tscg2002b.zip.

Evaluation-Function Based Proof-Number Search 11

Table 5. Solving 6× 6 LOA

Algorithm Total nodes Total time (ms.) Outcome

PN2 220,375,986,787 350,194,664 Black Wins (b6-b4)

EF-PN2 31,345,495,339 54,584,203 Black Wins (b6-b4)

4.5 Experiments in Surakarta

To investigate the performance of the framework in another domain than LOA,
we compared PN2 and EF-PN2 with each other in the game of Surakarta. The
maximum number of nodes searched was set to 1,000,000,000. The t value was
set to 2,000, which indicates a two-stones winning advantage in SIA. For the
remainder, the setup was the same as in the previous experiments. The test set
consisted of 30 positions.3 In Table 6 we see that PN2 solves 7 positions and
EF-PN2 13 positions. For the 7 positions both algorithms could solve, EF-PN2

used almost 85% less CPU time than PN2. Although the number of 7 positions
may appear small, the total size in nodes was comparable to the subset used in
Table 3. We may therefore draw the conclusion that EF-PN2 is a better solver
than PN2 in Surakarta as well. Admittedly, a larger set is needed to determine
the exact speedup.

Table 6. Comparing EF-PN and EF-PN2 in Surakarta

Algorithm # of positions solved 7 positions
(out of 30) Total nodes Total time (ms.)

PN2 7 1,469,130,908 1,481,190

EF-PN2 13 239,265,507 226,610

5 Conclusion and Future Research

In this article we proposed Evaluation-Function based Proof-Number Search (EF-
PN) and its second-level variant EF-PN2. It is a framework for initializing the
proof and disproof number of a leaf node with a heuristic evaluation function.
This heuristic evaluation function is only applied when the node is expanded. Its
subsequent score is used to initialize the newborn children. To reduce the risk of
overestimating the proof and disproof numbers, its evaluation score is squashed
by using a step function. To take full advantage of mobility, the evaluation score
is multiplied with the number of moves for initializing the disproof number in
an OR node and the proof number in an AND node. Experiments in LOA and
Surakarta show that EF-PN and EF-PN2 use between 45% to 85% less time for
solving than PN and PN2. We may conclude that EF-PN and its second-level
variant EF-PN2 reduce the amount of time to solve a position considerably.

There are two directions for future research. First, it would be interesting to
test EF-PN and EF-PN2 in other game domains where mobility is important and
evaluation functions are good predictors but computationally expensive. A good

3 The test set can be found at:
www.personeel.unimaas.nl/m-winands/surakarta/CG2010.zip.

12 M.H.M. Winands and M.P.D. Schadd

candidate would be Chess, because the endgame is suitable for PN search [3],
mobility is important [3] and there is an abundance of good evaluations functions.
Second, experiments are envisaged to apply EF-PN in df-pn (especially with the
1 + ε trick [8]) on the same hard set of LOA positions.

Acknowledgments. We would like to thank the referees for their comments which

helped to improve this paper. This work is funded by the Netherlands Organisation for

Scientific Research (NWO) for the project TACTICS, grant number 612.000.525.

References

1. L.V. Allis. Searching for Solutions in Games and Artificial Intelligence. PhD
thesis, Rijksuniversiteit Limburg, Maastricht, The Netherlands, 1994.

2. L.V. Allis, M. van der Meulen, and H.J. van den Herik. Proof-number search.
Artificial Intelligence, 66(1):91–123, 1994.

3. D.M. Breuker. Memory versus Search in Games. PhD thesis, Universiteit Maas-
tricht, Maastricht, The Netherlands, 1998.

4. D.M. Breuker, J.W.H.M. Uiterwijk, and H.J. van den Herik. The PN2-search algo-
rithm. In H.J. van den Herik and B. Monien, editors, Advances in Computer Games
9, pages 115–132. Maastricht University, Maastricht, The Netherlands, 2001.

5. A. Kishimoto and M. Müller. Search versus knowledge for solving life and death
problems in Go. In M.M. Veloso and S. Kambhampati, editors, AAAI 2005, pages
1374–1379. AAAI Press / The MIT Press, 2005.

6. A. Nagai. A new depth-first-search algorithm for AND/OR trees. Master’s thesis,
The University of Tokyo, Tokyo, Japan, 1999.

7. A. Nagai. Df-pn Algorithm for Searching AND/OR Trees and its Applications.
PhD thesis, The University of Tokyo, Tokyo, Japan, 2002.

8. J. Pawlewicz and L. Lew. Improving depth-first pn-search: 1 + ε trick. In H.J.
van den Herik, P. Ciancarini, and H.H.L.M. Donkers, editors, Computers and
Games (CG 2006), volume 4630 of Lecture Notes in Computer Science (LNCS),
pages 160–171. Springer-Verlag, Heidelberg, Germany, 2007.

9. M. Sakuta, T. Hashimoto, J. Nagashima, J.W.H.M. Uiterwijk, and H. Iida. Appli-
cation of the killer-tree heuristic and the lamba-search method to Lines of Action.
Information Sciences, 154(3–4):141–155, 2003.

10. J. Schaeffer. Game over: Black to play and draw in checkers. ICGA Journal,
30(4):187–197, 2007.

11. M. Seo, H. Iida, and J.W.H.M. Uiterwijk. The PN*-search algorithm: Application
to Tsume-Shogi. Artificial Intelligence, 129(1-2):253–277, 2001.

12. M.H.M. Winands. Informed Search in Complex Games. PhD thesis, Universiteit
Maastricht, Maastricht, The Netherlands, 2004.

13. M.H.M. Winands. SIA wins Surakarta tournament. ICGA Journal, 30(3):162,
2007.

14. M.H.M. Winands. 6× 6 LOA is Solved. ICGA Journal, 31(3):234–238, 2008.
15. M.H.M. Winands, J.W.H.M. Uiterwijk, and H.J. van den Herik. An effective two-

level proof-number search algorithm. Theoretical Computer Science, 313(3):511–
525, 2004.

16. M.H.M. Winands and H.J. van den Herik. MIA: a world champion LOA program.
In The 11th Game Programming Workshop in Japan 2006, pages 84–91, 2006.

17. C. Xu, Z.M. Ma, J. Tao, and X. Xu. Enhancements of proof number search in
Connect6. In Control and Decision Conference, pages 4525–4529. IEEE, 2009.

