
Optimizing Propositional Networks

Chiara F. Sironi(�) and Mark H. M. Winands

Games & AI Group, Department of Data Science and Knowledge Engineering
Maastricht University, The Netherlands

{c.sironi,m.winands}@maastrichtuniversity.nl

Abstract. General Game Playing (GGP) programs need a Game De-
scription Language (GDL) reasoner to be able to interpret the game
rules and search for the best actions to play in the game. One method
for interpreting the game rules consists of translating the GDL game
description into an alternative representation that the player can use to
reason more efficiently on the game. The Propositional Network (Prop-
Net) is an example of such method. The use of PropNets in GGP has
become popular due to the fact that PropNets can speed up the reason-
ing process by several orders of magnitude compared to custom-made or
Prolog-based GDL reasoners, improving the quality of the search for the
best actions. This paper analyzes the performance of a PropNet-based
reasoner and evaluates four different optimizations for the PropNet struc-
ture that can help further increase its reasoning speed in terms of visited
game states per second.

1 Introduction

The aim of General Game Playing (GGP) is to develop programs that are able to
play any arbitrary game at an expert level by being only given its rules. These
programs must devise a playing strategy without having any prior knowledge
about the game. Moreover, the rules are given to the player just before game
playing starts and usually for each game step only few seconds are available to
choose a move. Thus, the player has to learn an appropriate playing strategy
on-line and in a limited amount of time.

To be able to play games, a GGP program has two main components: a way
to interpret the game rules, written in the Game Description Language (GDL),
and a strategy to choose which actions to play.

Regarding the first component, many different approaches have been pro-
posed to parse the game rules. Three main methods to interpret GDL can be
identified: (1) Prolog-based interpreters that translate the game rules from GDL
into Prolog and then use a Prolog engine to reason about them, (2) custom-
made interpreters written for the sole purpose of interpreting GDL rules, and
(3) reasoners that translate the GDL description into an alternative representa-
tion that the player can use to efficiently reason about the game. A description
and performance evaluation of available GDL reasoners is given in [7].

Regarding the second component, most of the approaches that proved suc-
cessful in addressing the challenges of GGP are based on Monte-Carlo simulation

techniques and especially on Monte-Carlo Tree Search (MCTS) [1, 2]. For Monte-
Carlo methods the choice of the best action to play is based on game statistics
collected by sampling the state space of the game. The number of samples that
Monte-Carlo methods can collect directly influences their performance. A higher
number of samples in general improve the quality of the chosen actions.

A faster GDL reasoner, which in a given amount of time can analyze a higher
number of game states than other reasoners, can positively influence Monte-Carlo
based search. Propositional Networks (PropNets) [3, 8] have become popular in
GGP because they can speed up the reasoning process by several orders of mag-
nitude compared to custom-made or Prolog-based GDL reasoners. Nowadays,
all the best GGP programs use a PropNet-based reasoner [4, 5, 9].

The purpose of this paper is to analyze the performance of the implemen-
tation of the PropNet-based reasoner provided in the GGP-Base framework [9],
discuss four optimizations of the structure of the PropNet and empirically eval-
uate their impact on the speed of the reasoning process. The performance of
the custom-made GDL reasoner provided in the GGP-Base framework, called
GGP-Base Prover, has been used as a reference.

The reminder of the paper is structured as follows. Section 2 gives a short
introduction to GDL and PropNets. Sections 3 and 4 give some details about
the PropNet implementation and a description of the PropNet optimizations
respectively. Section 5 presents the empirical evaluation of the PropNet and
Sect. 6 concludes and indicates potential future work.

2 Background

PropNets are one of the promising representations that can be used to reason
about GDL descriptions. Subsection 2.1 gives a brief introduction to GDL and
Subsect. 2.2 briefly describes the structure of a PropNet.

2.1 The Game Description Language

The Game Description Language (GDL) is a first order logic language used in
GGP to represent the rules of games [6]. In GDL a game state is defined by
specifying which propositions are true in that state. A set of reserved keywords
is used to define the characteristics of the game.

Figure 1 shows as an example the GDL description of a simple game, where
a player can independently turn on two lights (p and q). After being turned on,
each light will remain on. The game ends when both lights are on and the player
achieves a goal with score 100. In the figure, the GDL keywords are represented
in bold.

2.2 The PropNet

A Propositional Network (PropNet) [3, 8] can be seen as a graph representation
of GDL. Each component in the PropNet represents either a proposition or a

(role player)

(light p) (light q)

(<= (legal player (turnOn ?x)) (not (true (on ?x))) (light ?x))

(<= (next (on ?x)) (does player (turnOn ?x)))

(<= (next (on ?x)) (true (on ?x)))

(<= terminal (true (on p)) (true (on q)))

(<= (goal player 100) (true (on p)) (true (on q)))

Fig. 1. Example of GDL game description.

logic gate. Propositions can be distinguished into three types: input propositions
that have no input components, base propositions that have one single transition
as input, and view propositions that are the remaining ones. The truth values of
base propositions represent the state of the game. The dynamics of the game are
represented by transitions that are identity gates that output their input value
with one step delay and control the truth values of base propositions in the next
step. The truth value of every other component is a function of the truth value
of its inputs, except for input propositions, for which the game playing agent
sets a value when choosing the action to play. Figure 2 shows as an example the
PropNet that corresponds to the GDL description given in Fig. 1.

TRANSITIONTRANSITION

AND

OR OR

NOT

BASE BASE

INPUT INPUT

VIEW

VIEW

VIEW

VIEWVIEW

(on p)

(legal player

(turnOn q))

(does player

 (turnOn q))

(does player

 (turnOn p))

(on q)

(goal player

 100)
terminal

NOT

VIEW

(legal player

(turnOn p))

Fig. 2. PropNet structure example.

3 PropNet Implementation

To create the PropNet the algorithm provided in the GGP-Base framework
is used.1 This algorithm is implemented in the create(List<Gdl> description)
method of the OptimizingPropNetFactory class and builds the PropNet accord-
ing to the rules in the given GDL description.

The final product of the algorithm is a set of all the components in the Prop-
Net, each of which has been connected to its input and output components. This
set can then be used to initialize a PropNet object. The algorithm distinguishes
six different types of components: constants (TRUE and FALSE), propositions,
transitions and three different gates (AND, OR, NOT).

The GGP-Base framework also provides a PropNet class that can be initial-
ized using the created set of components. We used this class as a starting point
and implemented some changes to the initialization process to ensure that the
PropNet respects certain constraints that are needed for the optimizations algo-
rithms to work consistently. The first step of the initialization iterates over all
the components in the PropNet and inserts them in different lists according to
their type. While iterating over all the components, the following are the main
actions that the initialization algorithm performs:

– Identify a single TRUE and a single FALSE constant, creating them if they
do not exist, or removing the redundant ones.

– Identify the type of each proposition. Each proposition must be associated
to one type only. A proposition that has a transition as input is identi-
fied as BASE type and a proposition that corresponds to a GDL relation
containing the does keyword is identified as INPUT type. The propositions
corresponding to GDL relations containing the legal, goal or terminal key-
word are identified as LEGAL, GOAL and TERMINAL type respectively.
To all other propositions the type OTHER is assigned.

– Make sure that all the INPUT and LEGAL propositions are in a 1-to-1
relation. If a proposition is detected as being an INPUT but there is no
corresponding LEGAL in the PropNet, then it can be removed since we are
sure that the corresponding move will never be chosen by the player. On the
contrary, if there is a LEGAL proposition with no corresponding INPUT, the
INPUT proposition is added to the PropNet, since the LEGAL proposition
might become true at a certain point of the game and the player might
choose to play the corresponding move.

– Make sure that only constants and INPUT propositions have no input com-
ponents. If a different component is detected as having no inputs, set one of
the two constants as its input. This action is needed because as a by-product
of the PropNet creation some OR gates and non-INPUT propositions might
have no inputs. The behavior of the PropNet has been empirically tested to
be consistent when such components are connected to the FALSE constant.

1 We have used a more recent and improved version than the one tested in [7].

4 Optimizations

The PropNets built by the algorithm given in the GGP-Base framework [9] con-
tain usually many components that are not strictly necessary to reason about
the game. This section presents four optimizations that can be performed on
the PropNet structure to reduce the number of these components. Opt0 (Sub-
sect. 4.1) removes components that are known to have a constant truth value,
Opt1 (Subsect. 4.2) removes propositions that do not have a particular meaning,
Opt2 (Subsect. 4.3) detects more constant components and removes them, and
Opt3 (Subsect. 4.4) removes components that have no output and are not influ-
ential. All the optimization algorithms except the last one are already provided
in the GGP-Base framework. The algorithms described here contain some minor
modifications with respect to the original GGP-Base version in order to adapt
them to the changes that were performed on the PropNet class structure.

4.1 Opt0: Remove Constant-value Components

This optimization removes from the PropNet the components that are known
to be always true or always false and at the same time do not have a particular
meaning for the game. For example an AND gate that has an input that is
always false will also always output false, thus the gate can be removed and all
its outputs can be connected directly to the FALSE constant of the PropNet.

Algorithm 1 shows the main steps of this optimization. The sets OT and
OF , at any moment, contain respectively the outputs of the TRUE and the
outputs of the FALSE constant that still have to be checked for removal. At the
beginning OT contains all the outputs of the TRUE constant and OF contains
all the outputs of the FALSE constant (Lines 2 and 3).

The procedure RemoveFromTrue(propnet,OT , OF) (Line 5) and the pro-
cedure RemoveFromFalse(propnet,OT , OF) (Lines 6) check the outputs of
the TRUE and of the FALSE constant respectively. Algorithm 2 shows exactly
which components the first procedure removes. The algorithm for the second
procedure removes the outputs of the FALSE constant in a similar way. In the
case of the FALSE constant, also always false GOAL and LEGAL propositions
are removed since they will never be used. Moreover, whenever a LEGAL propo-
sition is removed also the corresponding INPUT proposition is removed, since it
is certain that the corresponding move will never be played.

Note that whenever a component is removed or detected as having always a
constant value, it means that also its output is constant, thus its output com-
ponents are connected directly to one of the two constants. In this case each
output component will be added to the appropriate set (either OT or OF) to be
checked in the next steps.

Algorithm 1 alternates between the two procedures mentioned above until
both sets, OT and OF , are empty. This repetition is needed because of the NOT
gate. Whenever this gate is removed from the outputs of a constant, its outputs
are connected to the other constant, thus the set of outputs to be checked for
that constant will still have at least one element.

Algorithm 1 Remove constant-value components

1: procedure Opt0(propnet)
2: OT ← propnet.TRUE .outputs
3: OF ← propnet.FALSE .outputs
4: while OT ̸= ∅ or OF ̸= ∅ do
5: RemoveFromTrue(propnet,OT , OF)
6: RemoveFromFalse(propnet,OT , OF)
7: end while
8: end procedure

Algorithm 2 Remove true components

1: procedure RemoveFromTrue(propnet,OT , OF)
2: while OT ̸= ∅ do
3: c← OT .removeElement()
4: switch c.compType do
5: case TRANSITION
6: if |c.outputs| = 0 then
7: propnet.remove(c)
8: end if
9: case NOT
10: connect c.outputs to FALSE
11: OF ← OF ∪ c.outputs
12: propnet.remove(c)

13: case AND
14: if |c.inputs| = 1 then ◃ Only TRUE as input
15: connect c.outputs to TRUE
16: OT ← OT ∪ c.outputs
17: propnet.remove(c)
18: else if |c.inputs| = 2 then ◃ Only 2 inputs, one is TRUE
19: connect c.outputs to other input
20: propnet.remove(c)
21: else ◃ More than 2 inputs, one is TRUE
22: disconnect c form TRUE
23: end if
24: case OR
25: connect c.outputs to TRUE
26: OT ← OT ∪ c.outputs
27: propnet.remove(c)

28: case PROPOSITION
29: connect coutputs to TRUE
30: OT ← OT ∪ c.outputs
31: if c.propType ∈{OTHER, BASE} then
32: propnet.remove(c)
33: end if
34: end switch
35: end while
36: end procedure

4.2 Opt1: Remove Anonymous Propositions

This optimization is trivial, nevertheless useful as it removes many useless com-
ponents from the PropNet. The algorithm for this optimization (Algorithm 3)
simply iterates over all the propositions in the PropNet and removes the ones
with type OTHER, connecting their input directly to each of their outputs. These
propositions can be safely removed as they do not have any special meaning for
the game.

Algorithm 3 Remove anonymous propositions

1: procedure Opt1(propnet)
2: for all p ∈ propnet.propositions do
3: if p.propType = OTHER then
4: connect p.input with p.outputs
5: propnet.remove(p)
6: end if
7: end for
8: end procedure

4.3 Opt2: Detect and Remove Constant-value Components

This optimization can be seen as an extension of Opt0 where, before remov-
ing from the PropNet the constant value components directly connected to the
TRUE and FALSE constant, the algorithm detects if there are other constant
value components that have not been discovered yet.

This optimization (see Algorithm 4) associates to each component c in the
PropNet a set Vc that contains all the truth values that such component can
assume during the whole game. There are only four possible sets of truth values,
namely:

– N = ∅: if the corresponding component can assume neither of the truth
values.

– T = {true}: if the corresponding component can only be true during all the
game.

– F = {false}: if the corresponding component can only be false during all
the game.

– B = {true, false}: if the corresponding component can assume both values
during the game.

The idea behind the algorithm is to start from the components for which the
truth value that they will assume in the initial state of the game is known. It then
propagates this value to each of their outputs o and updates the corresponding
truth value set Vo. Whenever the truth values set of a component is updated, the
algorithm propagates such changes on to its output components. This process

Algorithm 4 Detect and remove constant-value components

1: procedure Opt2(propnet)
2: Initialize all the parameters and the stack S
3: while S ̸= ∅ do
4: (c, Pi)← S.pop()
5: Oc ← ToOutputValueSet(c, Pi)
6: Pc ← Oc \ Vc

7: if Pc ̸= N then
8: Vc ← Vc ∪ Pc

9: for all o ∈ c.outputs do
10: S.push(o, Pc)
11: end for
12: if c.compType = PROPOSITION and c.propType = LEGAL then
13: i← c.correspondingInput
14: S.push(i, Pc)
15: end if
16: end if
17: end while
18: for all c ∈ propnet.components do
19: if Vc = T or Vc = F then
20: Connect c to the appropriate constant
21: end if
22: end for
23: Opt0(propnet)
24: end procedure

will eventually end when the truth values sets of all components stop changing.
Termination is guaranteed since only the truth values just added to the truth
values set of a component are propagated to its outputs and the number of
possible truth values is finite.

When the algorithm starts, the set Vc of each component c is set to N , since it
is not known yet which values the component can assume. For each AND gate a
the algorithm keeps track of TIa, i.e. the number of inputs of a that can assume
the true value. Similarly, for each OR gate o the algorithm keeps track of FIo,
i.e. the number of inputs of o that can assume the false value. This parameters
are used to detect when an AND gate and an OR gate can assume respectively
the true (if TIa = |a.inputs|) and the false (if FIo = |o.inputs|) value. These
values are initialized to 0 for all the gates.

The algorithm exploits a stack structure S to keep track of the components
for which the set of truth values that their input(s) can assume is changed. A
pair (c, Pi) is added to the stack when the algorithm detects that an input i of
the component c can also assume the values in the set Pi ⊆ Vi, and such values
must be propagated to the component c. At the beginning the stack is filled with
the following pairs:

– (TRUE , T), the TRUE constant can assume value true.
– (FALSE , F), the FALSE constant can assume value false.

– (i, F), for each INPUT proposition i in the PropNet. Each INPUT proposi-
tion can be false since we assume that no game exists where one player can
only play a single move for the whole game.

– (bj , T), for each BASE proposition bj in the PropNet that is true in the
initial state.

– (bj , F), for each BASE proposition bj in the PropNet that is false in the
initial state.

During each iteration, the algorithm pops a pair (c, Pi) from the stack (Line 4)
and checks if, given the new truth values Pi that the input i can assume, also
the truth values Vc of its output c will change. Note that not for each type of
component the set of truth values that its input can assume corresponds to the
set of truth values that the component itself can output. The NOT component
n, for example, has Vn = T if its input i has Vi = F . Moreover, for an AND
gate a, true ∈ Va ⇔ true ∈ Vi, ∀i ∈ a.inputs. The same holds for the false
value for an OR gate. This means that the algorithm must first change the
values in Pi according to the type of the component c, obtaining the new set
of truth values Oc that c can output. This is done at Line 5 by the function
ToOutputValueSet(c, Pi). Subsequently, the algorithm checks if in Oc there
are some values Pc that were not in Vc yet (Line 6), and if so, it adds them to
the set Vc (Line 8) and records on the stack that they have to be propagated
to all the outputs o of c (Lines 9-11). Here the algorithm treats each LEGAL
propositions as if it was a direct input of the corresponding INPUT proposition,
thus whenever the truth values set of a LEGAL proposition changes, the values
are propagated to the corresponding INPUT proposition (Lines 12-15).

When no more changes are detected in the truth values sets (Line 3), the
process terminates. At this point, the truth values set of each component is
checked (Line 19) and if it equals the set T or F it is certain that the component
will always be respectively true or false. It can then be disconnected from its
input(s) and connected to the correct constant (Line 20).

The last step the algorithm performs consists in running the same algorithm
that was proposed as Opt0 to remove all the newly detected constant components
(Line 23).

4.4 Opt3: Remove Output-less Components

This optimization is also quite trivial, but helps remove some more useless com-
ponents. Algorithm 5 shows this procedure: all the components in the PropNet
are checked, if they are gates, or propositions of type OTHER and they have
no output they are removed from the PropNet. Every time a component is re-
moved, its inputs are added again to the set of components to be checked, since
removing their outputs might have made them output-less.

5 Empirical Evaluation

In this section an empirical evaluation of the performance of the PropNet and its
optimizations is presented. Subsection 5.1 describes the setup of the performed

Algorithm 5 Remove output-less components

1: procedure Opt3(propnet)
2: Q← propnet.components
3: while Q ̸= ∅ do
4: c← Q.removeElement()
5: if ((c.compType = PROPOSITION and c.propType = OTHER)

or c.compType ∈ {AND, OR, NOT}) and |c.outputs| = 0 then
6: Q← Q ∪ c.inputs
7: propnet.remove(c)
8: end if
9: end while
10: end procedure

experiments. Subsections 5.2 and 5.3 discuss the results of the experiments that
compare the performance of single optimizations and combinations of them re-
spectively. The combination of PropNet optimizations that performs overall best
is then compared with the default Prover. Subsection 5.4 presents a comparison
of PropNet and Prover in terms of their speed, while Subsect. 5.5 presents a
comparison in terms of their game-playing performance.

5.1 Setup

To evaluate the performance of the PropNet multiple series of experiments are
performed. Each of them tests the performance of the PropNet with different
optimizations and combinations of them. Each series of experiments poses the
bases to decide which other combinations of optimizations to check.

The different PropNet optimizations and their combinations are tested using
flat Monte-Carlo Search (MCS) on a set of heterogeneous games. For each opti-
mized PropNet the search is run from the initial state of the game with a time
limit of 20s. This experiment is repeated 100 times for each of the chosen games.
Such games are the following: Amazons, Battle, Breakthrough, Chinese Checkers
with 1, 2, 3, 4 and 6 players, Connect 4, Othello, Pentago, Skirmish and Tic
Tac Toe. The GDL descriptions of these games can be found on the GGP-Base
repository [10].2

One of the reasons behind the choice of repeating each experiment multiple
times for each game is that for each repetition of the game a different seed is used
for the random number generator that controls the random exploration of the
search tree with the MCS algorithm. Thus, for different seeds different results
might be obtained and different parts of the search space explored.

Another reason is that the number of components that the PropNet of a
game has when created by the basic algorithm (i.e. without optimizations) is
not always constant. This variance in the number of components could be due

2 The GDL descriptions used for the experiments were downloaded from the repository
on 03/02/2016.

to the non-determinism of the order in which game rules are translated into Prop-
Net components for different runs of the algorithm. This can cause a different
grounding order of the GDL description, originating more or less propositions
and can also cause gates and propositions to be connected in different equivalent
orders.

The optimized PropNet that showed the best overall performance in the
previous series of experiments is compared with the GGP-Base Prover in another
series of experiments. Both reasoners are also tested with the addition of a cache
that memorizes the queries results.

This series of experiments matches two MCS-based players that use the
Prover, one with cache and one without, against each other, and two MCS-
based players that use the best optimized PropNet, one with cache and one
without, against each other. We use the same 13 games that were used for the
other experiments. Each player has 10s per move to perform the search. A new
PropNet is built for each match in advance, before the game playing starts. For
each game, if r is the number of roles in the game, there are 2r different ways in
which 2 types of players can be assigned to the roles [11]. Two of the configu-
rations involve only the same player type assigned to all the roles, thus are not
interesting and excluded from the experiments. Each configuration is run the
same number of times until at least 100 games have been played in total.

At the end of each game repetition the speed of the reasoners is computed by
dividing the total number of nodes visited by the total time spent on the search
during the whole game. Since we are only interested in the reasoning speed, for
this experiment we do not consider the 10s search time per move strictly, but
we allow each player to finish the current simulation when this time expires.

The final series of experiments aims at evaluating the impact of the reasoners
on the win rate of game playing agents. This experiments match two MCTS-
based players, one that uses the fastest version of the Prover (i.e. with the cache)
and one that uses the fastest optimized PropNet (also with the cache), against
each other. The settings are the same as in the previous experiment, except the
minimum number of played games that is increased to 200. Moreover, for this
experiment the 10s search time per move is considered strictly.

Before running any of the described experiments, the PropNet and all its
optimized versions were tested against the Prover for consistency. For each game
(about 300) in the GGP-Base repository [10], for a duration of 60s, the same
random simulations were performed querying both the Prover and the currently
tested version of the PropNet for next states, legal moves, terminality and goals
in terminal states. The results returned by the PropNet were compared with the
ones returned by the Prover for consistency. All the PropNet versions passed
this test on all the games in the repository, except for 12 games for which the
PropNet construction could not be completed in the given time.

In all experiments, a limit of 10 minutes was given to the program to build
the PropNet. The experiments that compare the speed of PropNet and Prover
with and without cache were performed on an AMD Opteron 6174 2.2-GHz. All
other experiments were performed on an AMD Opteron 6274 2.2-GHz.

5.2 Comparison of Single Optimizations

The first series of experiments compares with the basic version of the PropNet
(BasicPN) the performance of each of the previously described optimizations
applied singularly (Opt0, Opt1, Opt2, Opt3). Table 1 shows the obtained results.
For each PropNet variant, for each game the first block of the table gives the
average simulation speed in nodes per second, the second block gives the average
number of components and the third block gives the average total initialization
time (creation+optimization+state initialization) in milliseconds. The line at the
bottom of each block reports the average over the 13 games of the percentage
increase of the values considered in the block, relative to the basic version of the
PropNet (BasicPN).

The main interest is the speed increase that the optimizations induce on
the PropNet, however the other two aspects are also relevant. A low number of
components means less memory usage, and a shorter initialization time means
more time for metagaming at the beginning of a match (or more chances to avoid
timing out when the start clock time is short). From the table it seems that for
most of the games, as expected, the increase in the simulation speed is related
to the decrease in the number of components in the PropNet.

As can be seen, none of the optimizations outperforms the others in speed
for all games. Opt0 and Opt2 seem to have the best performance in Amazons,
Battle, Othello and Connect 4, while Opt1 performs best in the other games.
When looking at the initialization time, Opt2 is the one that increases it the
most for almost all the games. Another observation is that the performance of
Opt2 is overall better than the one of Opt0. This was expected because Opt2 is
an extension of Opt0, thus for the same PropNet it always removes at least the
same number of components as Opt0.

The speed is used as main criterion to choose which of the four optimization
to use as starting point for further experiments that involve testing combinations
of optimizations. If we consider the speed, Opt0 and Opt2 are the ones that, on
average, produce the highest increase. However, the high average is due to the
considerable relative increase that they produce in Othello. If we consider the
optimization that produces the highest speed in most of the games, then Opt1 is
the most suitable to be selected. Moreover, Opt1 is the optimization that reduces
the most the number of components of the PropNet without consistently slowing
down the initialization process.

5.3 Comparison of Combined Optimizations

In this series of experiments Opt1 is combined with other optimizations applied
in sequence. In general, when we refer to OptXY we refer to the PropNet opti-
mization obtained by applying OptX and OptY in sequence. These experiments
first compare the combinations of optimizations Opt13, Opt12 and Opt102. The
combination Opt10 has been excluded from the test since it is considered less
interesting. As also previously mentioned, Opt0 always removes a subset of the
components that are removed by Opt2, thus Opt10 is expected to perform less

Table 1. Comparison of single optimizations

Game BasicPN Opt0 Opt1 Opt2 Opt3
A
v
g
.
sp

ee
d
(n
o
d
es
/
se
co
n
d
)

Amazons 35.1 41.4 32.7 41 40.2
Battle 34957 49666 37877 51257 35276
Breakthrough 50557 50932 65518 51357 51058
Chinese Checkers 1P 426374 427773 550230 444671 424516
Chinese Checkers 2P 125581 128623 189368 128910 127519
Chinese Checkers 3P 155886 157242 169352 161000 159267
Chinese Checkers 4P 105766 106738 127886 107153 105660
Chinese Checkers 6P 119650 118547 126863 113700 118783
Connect 4 110081 113484 105081 112920 109672
Othello 290 1610 235 1604 295
Pentago 76336 76786 116065 76721 96782
Skirmish 5887 6022 6780 6230 6151
Tic Tac Toe 223403 228056 248769 234915 222952

Avg. relative increase - 40.59% 15.51% 41.44% 3.95%

A
v
g
.
n
u
m
b
er

o
f
co
m
p
o
n
en

ts

Amazons 1497649 1254742 741874 1192364 1023913
Battle 51197 14267 36863 14262 50721
Breakthrough 10745 10678 5933 10678 10584
Chinese Checkers 1P 793 785 559 785 789
Chinese Checkers 2P 1540 1524 1179 1524 1532
Chinese Checkers 3P 2411 2389 1845 2236 2400
Chinese Checkers 4P 3159 3119 2465 2999 3133
Chinese Checkers 6P 4451 4411 3473 4123 4431
Connect 4 2164 2063 1724 1291 2114
Othello 1311988 274940 1033197 274940 1305515
Pentago 3696 3706 1470 3708 2111
Skirmish 126019 124267 108171 124267 78575
Tic Tac Toe 312 291 249 291 302

Avg. relative increase - -14.28% -29.21% -18.62% -9.49%

A
v
g
.
to
ta
l
in
it
.
ti
m
e
(m

s)

Amazons 311335 313719 314455 417097 315637
Battle 5756 6027 5897 6303 5869
Breakthrough 3989 4007 4012 4358 3910
Chinese Checkers 1 2699 2651 2659 2653 2707
Chinese Checkers 2 2848 2773 2810 2873 2775
Chinese Checkers 3 3162 3140 3159 3251 3149
Chinese Checkers 4 3258 3261 3241 3473 3244
Chinese Checkers 6 3225 3203 3204 3639 3205
Connect 4 2437 2465 2456 2698 2430
Othello 35756 36486 37074 39417 36544
Pentago 4249 4230 4278 4390 4232
Skirmish 11887 11702 11664 12089 11824
Tic Tac Toe 1525 1529 1523 1522 1508

Avg. relative increase - 0.13% 0.24% 7.69% -0.19%

than Opt12. However, Opt0 has less negative impact than Opt2 on the total
initialization time. This is why these experiments include the test of Opt102: we
want to see if the application of Opt0 before Opt2 can speed up the process of
Opt2 that will then run on a smaller PropNet.

The results of this series of experiments can be seen in columns 3, 4 and
5 of Table 2. The structure of this table is the same as Table 1. The average
percentage increase reported in the last line of each block is still computed with
respect to the basic version of the PropNet (BasicPN).

As the table shows, regarding the speed, Opt12 seems to be the one achieving
the best overall performance. However, the performance of Opt102 is rather close,
as expected, because these two combinations should reduce each PropNet to the
same number of components. The small difference in performance is probably due
the reasons already mentioned in Sect. 5.1. Both the difference in the random
seed used for each repetition of the game and the variance in the number of
components generated by the algorithm that creates the initial PropNet can
influence the performance.

One more thing that can be noticed from Table 2 is that running Opt0 before
Opt2 helps reducing the initialization time for large games, while it seems to have
almost no effect on smaller games. Moreover, Opt13 is the one that, regarding
the speed, performs worse in this series of experiments, thus it has been excluded
from further tests. Among Opt12 and Opt102, it has been chosen to keep testing
on top of Opt102 because of its shorter initialization time for games with large
PropNets, given that its speed is still comparable with the one of Opt12.

Using Opt102 as starting point, there is only one more interesting combina-
tion of optimizations left to test: Opt1023. No further gain in performance can
be obtained by repeating the same optimizations multiple times in a row, since
no further change will take place in the structure of the PropNet. Thus, it is not
interesting to evaluate combinations of optimizations that extend Opt1023.

The last column of Table 2 shows the statistics for Opt1023. For most of
the games, Opt1023 seems to be the fastest. It is also the one that reduces
the number of PropNet components the most. As for the initialization time,
this optimization is between a few milliseconds and a bit more than 1 second
slower that the basic version of the PropNet, except for Amazons. Optimizing
the large PropNet of Amazons can slow down the initialization time by more
than a minute.

5.4 Comparison of PropNet and Prover

In this series of experiments the overall fastest combination of optimizations
among the tested ones (Opt1023) is compared with the Prover. More precisely,
Opt1023 and the Prover are compared measuring their speed over complete
games (as opposed to previous experiments that were comparing the speed only
on the first step of the game).

Moreover, for both of them also a cached version is tested (i.e. CachedProver
and CachedOpt1023). The GGP-Base framework [9] provides a cache structure

Table 2. Comparison of combined optimizations

Game BasicPN Opt12 Opt102 Opt13 Opt1023
A
v
g
.
sp

ee
d
(n
o
d
es
/
se
co
n
d
)

Amazons 35 38.5 41.4 32.3 41
Battle 34957 59308 59697 39981 60419
Breakthrough 50557 66943 66551 66833 66991
Chinese Checkers 1P 426374 570858 562737 541682 561634
Chinese Checkers 2P 125581 194442 192048 190161 193752
Chinese Checkers 3P 155886 175410 176162 170722 176185
Chinese Checkers 4P 105766 130362 130279 129194 130451
Chinese Checkers 6P 119650 127535 128111 127619 129000
Connect 4 110081 127053 126535 105978 129272
Othello 290 1934 1894 245 1979
Pentago 76336 116353 115064 117127 121108
Skirmish 5887 7075 7042 7403 7600
Tic Tac Toe 223403 259980 257285 247246 257525

Avg. relative increase - 70.32% 69.39% 17.38% 73.48%

A
v
g
.
n
u
m
b
er

o
f
co
m
p
o
n
en

ts

Amazons 1497649 623460 623460 711596 596240
Battle 51197 11084 11077 36676 10902
Breakthrough 10745 5900 5900 5869 5836
Chinese Checkers 1P 793 556 556 559 556
Chinese Checkers 2P 1540 1172 1172 1179 1172
Chinese Checkers 3P 2411 1718 1718 1845 1718
Chinese Checkers 4P 3159 2362 2362 2465 2362
Chinese Checkers 6P 4451 3238 3238 3473 3238
Connect 4 2164 1063 1063 1724 1056
Othello 1311988 208510 208510 1031580 206846
Pentago 3696 1464 1473 1338 1337
Skirmish 126019 107296 107296 62427 61552
Tic Tac Toe 312 239 239 249 239

Avg. relative increase - -42.34% -42.32% -32.52% -45.65%

A
v
g
.
to
ta
l
in
it
.
ti
m
e
(m

s)

Amazons 311335 411905 400113 312793 401559
Battle 5756 6367 6233 5968 6329
Breakthrough 3989 4354 4415 3982 4328
Chinese Checkers 1P 2699 2693 2654 2707 2652
Chinese Checkers 2P 2848 2848 2843 2817 2842
Chinese Checkers 3P 3162 3214 3186 3160 3167
Chinese Checkers 4P 3258 3405 3330 3275 3379
Chinese Checkers 6P 3225 3423 3430 3207 3395
Connect 4 2437 2536 2555 2417 2525
Othello 35756 39170 36689 35359 37804
Pentago 4249 4269 4286 4308 4325
Skirmish 11887 12386 12285 11870 12577
Tic Tac Toe 1525 1532 1535 1524 1555

Avg. relative increase - 6.38% 5.18% 0.18% 5.66%

Table 3. Comparison of the PropNet with the Prover and effect of the cache

Game Prover CacheProver Opt1023 CacheOpt1023

A
v
g
.
sp

ee
d
(n
o
d
es
/
se
co
n
d
)

Amazons 5.7 2316 28.1 30519
Battle 45.2 2457 38656 36607
Breakthrough 235 241 56275 51569
Chinese Checkers 1P 2273 466014 532426 862408
Chinese Checkers 2P 1478 93251 159935 258639
Chinese Checkers 3P 1105 28300 118160 133733
Chinese Checkers 4P 536 32684 82955 117017
Chinese Checkers 6P 607 5744 57008 53230
Connect4 180 2455 122325 207508
Othello 3.2 5502 649 80328
Pentago 152 155 93185 75998
Skirmish 26 4081 2997 3946
Tic Tac Toe 1650 287380 225127 547398

Avg. relative increase - 22139% - 9321%

that memorizes the results returned by the underlying reasoner and prevents it
from computing the same queries multiple times.

The results of these experiments are shown in Table 3. The last row of this
table reports for both CachedProver and CachedOpt1023 the average percentage
increase of the speed with respect to their non-cached versions.

From the table it is visible how the optimized PropNet achieves a much better
performance than the Prover in the considered games. When adding the cache
to both reasoners the difference in performance is reduced, however the PropNet
is still faster in all games but one, Skirmish, for which the speed of the cached
PropNet and the cached Prover are quite close.

The use of a cache provides some benefits increasing the overall performance
of both reasoners with respect to their non-cached version. However, the cache
gives more benefits to the Prover. For the Prover the speed is increased for all
the games, while for the PropNet it is increased for most, but not all of them.
To be noticed is that the increase in speed provided by the cache is especially
relevant in the games of Amazons and Othello.

Moreover, observing the results for all the Chinese Checkers versions it is
clear that the speed of the cached Prover and the speed of the cached PropNet
both decrease when increasing the number of players. However, for the PropNet
this decrease is slower. For Chinese Checkers with 1 player the cached PropNet
is about 2 times faster than the cached Prover, while for the version with 6
players it is almost 10 times faster.

When performing the experiments it was also noticed that in many games
the cache decreases the speed of the PropNet reasoner during the initial steps.
This loss is then balanced towards the endgame, when the chance of finding
cached query results increases. It takes some time for the cache to be filled with
a sufficient number of entries and thus have a positive impact on the speed of
the PropNet.

The same effect was not observed for the Prover. For the first steps of the
games the cache did not decrease the speed of the Prover for any of the games,
and for some of them increased it. The explanation for this is that the time for
computing the answer of a query with the Prover is in general much higher than
the one of the PropNet. Thus, for the Prover finding in the cache even a small
number of query results saves enough computational time to compensate the
extra time spent looking in the cache for results that are not present yet.

Finally, the results of Table 3 also help putting the PropNet into perspective
with the other GDL reasoners analyzed in the paper [7]. Even if that paper uses
different experimental settings than ours, we can still make some general obser-
vations. Considering the performance of the reasoners that, like the PropNet,
rely on an alternative representation of the GDL description, it seems that our
implementation of the PropNet provides for most of the games a speed increase
of the same order of magnitude when compared to the Prover. Moreover, for
Amazons, Othello and Chinese Checkers with 4 and 6 players, it seems that
our optimized PropNet, especially with the cache, could even achieve a better
performance in similar circumstances.

5.5 Game Playing Performance

In this series of experiments an MCTS player that uses the cached PropNet
reasoner with the fastest combination of optimizations (Opt1023) is matched
against an MCTS player that uses the cached Prover. Because Sect. 5.4 showed
the cache to be overall beneficial for both reasoners, it has been included in this
experiment.

Table 4 shows the win percentage of the cached PropNet-player against the
cached Prover-player. The table does not include the results for the single-player
version of Chinese Checkers because this game is tested separately and the score
is used to measure the performance of the players. This game has a relatively
small search space, so both players achieved the maximum score in every match.

Table 4. Win percentage of the PropNet-player against the Prover-player

Game Opt1023

Battle 100.0(±0.0)
Breakthrough 100.0(±0.0)
Chinese Checkers 2P 96.0(±2.72)
Chinese Checkers 3P 77.5(±5.75)
Chinese Checkers 4P 68.1(±6.32)
Chinese Checkers 6P 64.7(±5.73)
Connect 4 99.3(±1.09)
Pentago 100.0(±0.0)
Skirmish 100.0(±0.0)
Tic Tac Toe 50.0(±0.0)

Moreover, no results are shown for Amazons and Othello because for both
games, during the first game steps, the cached Prover-player could not return
a move within the given time limit. Even with the use of the cache, during the
first game steps the number of memorized query results is not sufficient to allow
the Prover to complete even one MCTS simulation within the time limit.

Looking at the results for the remaining games, for most of them the cached
PropNet-player achieves a win percentage close or equal to 100%. The games in
which the performance of the cached PropNet-player seems to drop are the ones
with more than 2 players. Chinese Checkers with 4 and 6 players are the ones
where the win percentage for the cached PropNet-player is the lowest, but it is
still significantly better than the one of the cached Prover-player. The game of
Tic Tac Toe is the only exception, because its state space is so small that both
players can easily reach a sufficient number of simulations to play optimally and
result in a tie.

The results of Table 4 are in line to what would be expected when looking
at the average speed reported in Table 3 for the two cached reasoners. For all
the games for which the speed of the cached PropNet is at least one order
of magnitude higher than the one of the cached Prover, the cached PropNet-
player achieves a significantly higher win percentage. However, for the game of
Skirmish Table 3 reports a similar average speed for both the cached reasoners
so their performance would be expected to be close. A win rate of 100% for
the cached PropNet can be explained by the fact that the speed per game step
of the Prover exhibits a higher variance than the speed of the PropNet. The
speed of the PropNet in the initial game steps is close to the average speed.
The Prover, instead, is about 340 times slower than the PropNet in this stage.
Its speed increases only in the last few steps of the game. At this point the
PropNet-player already gained enough advantage over the Prover-player to win
the game.

6 Conclusion and Future Work

In this paper the performance of a PropNet-based reasoner has been evaluated,
together with four possible optimizations of the structure of the PropNet and
their impact on the performance. Even though the tested implementation of
the PropNet is based on the code provided by the GGP-Base framework, the
principles behind its representation and its optimizations can also be applied in
general.

Experiments have shown that the use of a PropNet substantially increases
the reasoning speed by, on average, at least two orders of magnitude with respect
to the GGP-Base Prover. Moreover, the addition of a combination of optimiza-
tions that reduce the size of the PropNet increases the reasoning speed further.
Experiments also show that the reasoning speed increase has a positive effect on
the performance of the PropNet-based player. This player achieves a win rate
close to 100% in most of the games for which it is matched against an equivalent
player based on the Prover. Thus, it is possible to conclude that for a general

game playing agent a reasoner based on a PropNet, especially when optimized, is
in general a better choice than a custom-made GDL interpreter like the Prover.

Also the use of a cache proved to be useful for the PropNet in most of the
games. For small games its effect is already visible in the first steps, while for
most of the other games it helps only during later game steps. However, we may
conclude that the use of a cache is overall positive for a PropNet reasoner.

Future work could further investigate the use of the cache with the PropNet,
for example by devising a strategy to detect for each game if and when the use
of a cache is helpful. Finally, another interesting aspect that future work could
consider is the impact that the use of different strategies to propagate truth
values among the components of the PropNet would have on the reasoning speed.

Acknowledgments. This work is funded by the Netherlands Organisation for Sci-
entific Research (NWO) in the framework of the project GoGeneral, grant number
612.001.121.

References

1. Björnsson, Y., Finnsson, H.: CadiaPlayer: A simulation-based general game player.
Computational Intelligence and AI in Games, IEEE Transactions on 1(1), 4–15
(2009)

2. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M. (eds.) Proceedings of the
5th International Conference on Computer and Games. Lecture Notes in Computer
Science (LNCS), vol. 4630, pp. 72–83. Springer-Verlag, Heidelberg, Germany (2007)

3. Cox, E., Schkufza, E., Madsen, R., Genesereth, M.R.: Factoring general games us-
ing propositional automata. In: Björnsson, Y., Stone, P., Thielscher, M. (eds.) Pro-
ceedings of the IJCAI Workshop on General Intelligence in Game-Playing Agents
(GIGA). pp. 13–20 (2009)

4. Draper, S., Rose, A.: Sancho GGP player. http://sanchoggp.blogspot.nl/2014/
07/sancho-is-ggp-champion-2014.html (2014)

5. Emslie, R.: Galvanise. https://bitbucket.org/rxe/galvanise_v2 (2015)
6. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.R.: General Game

Playing: Game Description Language specification. Tech. rep., Stanford University,
Stanford, CA, USA (2008)

7. Schiffel, S., Björnsson, Y.: Efficiency of GDL reasoners. Computational Intelligence
and AI in Games, IEEE Transactions on 6(4), 343–354 (2014)

8. Schkufza, E., Love, N., Genesereth, M.R.: Propositional automata and cell au-
tomata: representational frameworks for discrete dynamic systems. In: Wobcke,
W., Zhang, M. (eds.) AI 2008: Advances in Artificial Intelligence. Lecture Notes
in Artificial Intelligence (LNAI), vol. 5360, pp. 56–66. Springer Berlin Heidelberg,
Berlin, Heidelberg (2008)

9. Schreiber, S.: The General Game Playing base package. https://github.com/

ggp-org/ggp-base (2013)
10. Schreiber, S.: Games - base repository. http://games.ggp.org/base/ (2016)
11. Sturtevant, N.R.: An analysis of UCT in multi-player games. ICGA Journal 31(4),

195–208 (2008)

