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Abstract. Many enhancements have been proposed for Monte-Carlo
Tree Search (MCTS). Some of them have been applied successfully in the
context of General Game Playing (GGP). MCTS and its enhancements
are usually controlled by multiple parameters that require extensive and
time-consuming computation to be tuned in advance. Moreover, in GGP
optimal parameter values may vary depending on the considered game.
This paper proposes a method to automatically tune search-control pa-
rameters on-line for GGP. This method considers the tuning problem
as a Combinatorial Multi-Armed Bandit (CMAB). Four strategies de-
signed to deal with CMABs are evaluated for this particular problem.
Experiments show that on-line tuning in GGP almost reaches the same
performance as off-line tuning. It can be considered as a valid alternative
for domains where off-line parameter tuning is costly or infeasible.

1 Introduction

Monte-Carlo Tree Search (MCTS) [13, 21] is a simulation-based search technique
that has become popular in game playing and has found many application do-
mains [6]. A domain where MCTS has seen particular success is General Game
Playing [3]. GGP aims at creating agents that can play any abstract game by
only being given its rules and without using prior knowledge. Moreover, in this
domain the time available to select which moves to play is usually limited to a
few seconds. What makes MCTS suitable for GGP is that (1) it does not neces-
sarily require game-specific knowledge, (2) it favors the exploration of the most
promising regions of the search space and (3) it can make a decision within any
budget constraint.

Many search control strategies and enhancements have been proposed for
MCTS in various domains [6]. Some of the strategies that had particular success
are the Rapid Action Value Estimation (RAVE) technique [16, 18], its general-
ization, GRAVE [9], Progressive History [26], the Move Average Sampling Tech-
nique (MAST) [15] and its variant, the N-gram Selection Technique (NST) [36].
These strategies improve different phases of the search by exploiting in different
ways information about the general performance of the moves (collected either
in the whole game or in relevant sub-parts of the game tree).

The behavior of MCTS strategies is normally controlled by a certain number
of parameters. The performance of these strategies depends on how parameter



values are set. Usually, extensive off-line tuning is required to find the best
value for each parameter. Parameters might also be inter-constrained, so either
a large amount of time is spent testing all possible combinations of values or the
parameters are tuned separately ignoring the inter-dependency.

Research has also shown that the best values for strategy control parameters
are mainly game dependent [9, 26, 34, 36] and it is difficult to find a single set
of values that works best for all games. This means that to achieve the best
performance parameter values should be tuned for each game.

In the context of GGP, off-line tuning of parameters per game is infeasible
because agents have to deal with a theoretically unlimited number of games,
treating each of them as a new game that they have never seen before. This is
why off-line parameter tuning in GGP usually looks for a single combination
of values to use for all games, picking the one that performs overall best on a
certain (preferably heterogeneous) set of benchmark games.

Tuning search-control parameters for each game in GGP is still possible by
devising an on-line tuning strategy that adjusts the parameter values for each
new game being played. Such strategy should also aim at tuning the parameters
in combination, because parameter values are usually interdependent.

This paper considers the problem of tuning on-line a finite set of search-
control parameters for an MCTS-based GGP agent. Each parameter can assume
one single value at a time from a predefined finite set of values. This results
in a finite (usually high) number of possible values combinations that must be
evaluated during the search.

The proposed approach interleaves parameter tuning with MCTS and uses
each MCTS simulation to evaluate a different combination of parameter values.
An allocation strategy is required to decide how many simulations must be used
to evaluate each combination of values. This paper presents and evaluates four
possible allocation strategies: Multi-Armed Bandit (MAB) allocation [1, 27], Hi-
erarchical Expansion (HE) [30], Näıve Monte-Carlo (NMC) [27, 28] and Linear
Side Information (LSI) [33].

The remainder of this paper is structured as follows. Section 2 introduces
previous work related to parameter tuning. Section 3 gives background on the
MAB problem and MCTS. The general structure of the on-line parameter tuning
problem and the four proposed allocation strategies are discussed in Sect. 4.
Results obtained by testing these strategies in the context of GGP are presented
in Sect. 5, and Sect. 6 gives the conclusions and outlines possible future work.

2 Related Work

As mentioned in [17], in the research area of game playing, not much work has
been performed on on-line learning of search control. One example of such work
is [4]. This paper presents both an off-line and an on-line approach for learning
search-extension parameters for αβ-search. The method is based on gradient
descent and looks for the parameter values that minimize the growth rate (in
the number of visited nodes) of the search.



More attention has been given to automated off-line tuning of search-control
parameters. An example is the work of Kocsis et al. [20] that uses an enhanced
version of the Simultaneous Perturbation Stochastic Approximation (SPSA) al-
gorithm to tune parameters for Poker and Lines of Action. Another approach,
that recalls the structure of evolutionary approaches, is presented in [10] and pro-
poses to tune parameters for the game of Go using the Cross-Entropy Method
(CEM). This method keeps a probability distribution over possibly good pa-
rameter values and uses the evaluation of samples drawn from it to refine the
distribution over time. A genetic algorithm is the solution proposed in [12] to
tune the parameters that control the behavior of a rule-based bot for a first-
person shooter game.

What all these approaches have in common is that they require a high number
of samples against a benchmark player in order to find an optimal parameter
configuration. The final obtained configuration is then evaluated by matching an
agent that uses it against one that uses manually tuned parameters. All papers
conclude that automated tuning is at least equal to manual tuning.

CLOP [14] is another algorithm proposed for tuning game parameters and is
based on local quadratic regression. As the other mentioned approaches, it also
requires a fair amount of samples in order to find a good solution.

Another research area to mention is the one that focuses on designing Hyper-
Heuristics. As defined in [8], a hyper-heuristic is “a search method or learning
mechanism for selecting or generating heuristics to solve computational search
problems”. A recent application of the Hyper-Heuristic concept is presented
in [25]. This paper discusses the implementation of a hyper-agent for the Gen-
eral Video Game Playing [23] framework (GVG-AI). This agent uses a hyper-
heuristic to select from a portfolio of sub-agents the best one for the game at
hand. The approach works off-line by training the agent to recognize which con-
trollers perform best depending on certain game features. On the contrary, the
hyper-heuristic approach presented in [35] devises an on-line mechanism to select
from a portfolio of strategies the one that is best suited for the current game.

The work proposed in our paper is somewhat similar to the concept of hyper-
heuristic. Some of the parameters that can be tuned can decide whether to
(de)activate a certain search-control strategy depending on the value that is
assigned to them. In this sense, tuning the parameters can be seen as a hyper-
heuristic to choose which strategies to apply from a portfolio of available strate-
gies (determined by the available parameter configurations).

3 Background

This section provides background on the MAB problem (Subsect. 3.1) and on
MCTS (Subsect. 3.2).

3.1 Multi-Armed Bandit

The MAB problem [1] with n arms is defined as a set of n unknown independent
real reward distributions R = {R1, ..., Rn}, each of which is associated to one of



the arms. When one of the arms is played a reward is obtained as a sample of
the corresponding distribution.

The aim of a sampling strategy for a MAB problem is to maximize the
cumulative reward obtained by successive plays of the arms. For each iteration
the strategy chooses which arm to play depending on past played arms and
obtained rewards.

3.2 Monte-Carlo Tree Search

MCTS is a best-first search algorithm that incrementally builds a tree represen-
tation of the search space of a game and uses simulations to estimate the values
of game states [13, 21]. Four phases can be identified for each iteration of the
MCTS algorithm:

Selection: a selection strategy is used at every node in the tree to select the
next move to visit until a node is reached that is not fully expanded (i.e. not
for all the successors states a node has been added to the tree).

Expansion: one or more nodes are added to the tree according to a given
expansion strategy.

Play-out: starting from the last node added to the tree a play-out strategy
chooses which moves to play until a terminal state is reached.

Backpropagation: after reaching a terminal state, the result of the simulation
is propagated back through all the nodes traversed in the tree.

When the search budget expires, MCTS returns the best move in the root
node to be played in the real game. The best move might be the one that has
the highest estimated average score or the one with the highest number of visits.

Many strategies have been proposed for the different phases of MCTS. The
standard selection strategy is UCT [21] (Upper Confidence bounds applied to
Trees). UCT sees the problem of choosing an action in a certain node of the tree
as a MAB problem and uses the UCB1 [1] sampling strategy to select the move
to visit next. UCT selects in node s the action a that maximizes the following
formula:

UCB1(s, a) = Q(s, a) + C ×
√

lnN(s)

N(s, a)
, (1)

where Q(s, a) is the average result obtained from all the simulations in which
move a was played in node s, N(s) is the number of times node s has been
visited during the search and N(s, a) is the number of times move a has been
selected whenever node s was visited. The C constant is used to control the
balance between exploitation of good moves and exploration of less visited ones.

A selection strategy that proved successful in multiple domains, such as
Knighttrough, Domineering, some variants of Go and GGP is GRAVE [9, 34],
a modification of the RAVE strategy [16, 18]. GRAVE selects the move that
maximizes the UCB1 formula (1) where the term Q(s, a) is substituted by:

(1− β(s))×Q(s, a) + β(s)×AMAF (s′, a) . (2)



Here, s′ is the closest ancestor of s that has at least ref visits (note that it might
be s itself). The value AMAF (s′, a) is known as the All Moves As First [5, 7]
value, and represents the average result obtained from all the simulations in
which move a is performed at any moment after node s′ is visited. The AMAF
values are used to increase the number of samples when selecting a move in
nodes that have a low number of visits. In this way the variance of the move
value estimates is reduced and the learning process is faster. The parameter β(s)
controls the importance of the AMAF value and decreases it over time, when
the number of visits for the node increases. One of the proposed formulas to
compute β is the following [16, 18]:

β(s) =

√
K

3×N(s) +K
, (3)

where K is the equivalence parameter, that indicates for how many simulations
the two scores are weighted equal.

For the play-out phase, MAST [15] and its variant, NST [36] have shown to
improve the performance over a simple random strategy. During the search, for
each move a, MAST keeps track of a global average return value QMAST (a) of all
the simulations in which a was played. Then, when selecting a move for a certain
game state in the play-out, it chooses the move with the highest QMAST (a) with
probability (1 − ε) or a random move with probability ε. NST uses the same
strategy as MAST, but keeps track of a global average return value for sequences
of moves instead of just single moves.

4 On-line Parameter Tuning

This section presents the two main aspects of the proposed tuning strategy.
Subsection 4.1 discusses how the tuning strategy can be integrated within the
MCTS algorithm, while Subsect. 4.2 presents four allocation strategies that de-
cide how to distribute the available samples among the different combinations
of parameter values to be evaluated.

4.1 Integration of Parameter Tuning with MCTS

Figure 1 shows how parameter tuning is interleaved with MCTS simulations.
First, for each iteration of the algorithm an allocation strategy chooses a combi-
nation of values for the parameters. Next, the four phases of MCTS described
in Subsect. 3.2 are performed using the selected parameter values to control the
search. Finally, the result obtained by the simulation is used to update statistics
about the quality of the chosen combination of parameter values.

4.2 Allocation Strategies

An allocation strategy is required to decide how to divide the available number of
samples among all the combinations of parameter values that must be evaluated.
An ideal allocation strategy for the on-line parameter tuning problem should try
to assign the highest number of samples to the optimal combination, reducing
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Fig. 1. Interleaving on-line tuning with MCTS (Inspired by the figure representing the
Outline of a Monte-Carlo Tree Search in [11])

to the minimum the number of samples assigned to bad values combinations.
This is because each evaluated combination has an impact on the quality of the
actual search. If bad combinations are evaluated too often the quality of the
search results will decrease.

The main idea behind the design of the proposed allocation strategies is based
on the work presented in [35]. This paper discusses multiple allocations strategies
for a problem similar to ours (on-line adaptation of the search strategy to the
played game). Among all the approaches they show that the one considering
the simulation allocation as a MAB problem is the one that assigns the highest
number of samples to the best search strategy and the lowest to the worst.

The action-space of the on-line parameter tuning problem has a combinatorial
structure (i.e. the action of choosing a parameter setting consists of multiple sub-
actions that assign a certain value to each of the parameters). For this reason,
instead of considering the allocation problem as a MAB, this paper considers it
as a CMAB problem.

The CMAB problem is introduced in [27] as a variation of the MAB problem
and it is used to represent decision problems for which the rewards depend on
combinations of actions instead of single actions.

Following the definition of the CMAB problems, the problem of tuning multi-
ple parameters simultaneously can be defined by the following three components:

– A set of n parameters, P = {P1, ..., Pn}, where each parameter Pi can take
mi different values Vi = {v1i , ..., vmi

i }.
– A reward distribution R : V1× ...×Vn → R that depends on the combination

of value assigned to the parameters.

– A function L : V1 × ... × Vn → {true, false} that determines which combi-
nations of parameter values are legal.

Below four allocation strategies are introduced for the on-line parameter tun-
ing problem. All of them have already been proposed by previous research to
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Fig. 2. MAB and HE representation of the combinatorial action-space of the parameter
tuning problem

deal with games that have a combinatorial action-space [27, 28, 30, 33]. For these
games the problem of choosing an action in a state can be seen as a CMAB.

For the sake of simplicity, the pseudocode of the different allocation strategies
is given for one-player games. When tuning parameters for two- or multi-player
games, all the allocation strategies compute a different combination of parame-
ters for each role in the game independently (i.e. each role has its own instance of
the allocation strategy). All the computed arrays of parameters are then used to
control the MCTS strategy. Having a different parameter combination for each
role means that during the same MCTS simulation different selection or play-out
strategies might be used for different roles.

Multi-Armed Bandit Allocation. One trivial solution for dealing with a
CMAB problem is to translate it back to a MAB [1, 27], where each arm cor-
responds to a possible legal combination of values for the parameters. Then
the allocation strategy can use a policy πmab to select the next combination to
sample from the MAB problem.

In this way, however, the information on the combinatorial structure of the
parameter values is lost. Often, a value that is good (or bad) for a parameter in
a certain combination of values, is also good (or bad) in general or in many other
combinations. With a MAB this information is ignored and cannot be exploited.

Hierarchical Expansion. As an alternative to the previously presented MAB
representation for combinatorial action-spaces Hierarchical Expansion [30] is con-
sidered. The main idea behind HE is to represent the combinatorial action-space
as a tree, where each level corresponds to a different parameter. In this way,
the depth of the search of a combination of parameters is increased, but the
branching factor is reduced.

Figure 2 shows how the problem of tuning 3 parameters, each with 2 possible
values, is represented both with a MAB and with HE. To build the HE tree an
order must first be imposed on the parameters. Each node of the tree corresponds
to a partial combination of parameter values (the root corresponds to the empty
combination). At every level of the tree the partial combination is extended by
assigning a value to the next parameter in the order, until the combination is
complete. The HE tree is then used to sample a combination of parameters for



procedure HeParametersTuning( )
heTree← BuildHeTree([V1, ..., Vn])
while game not over do

p← ChooseParameterValues(heTree)
r ← PerformMctsSimulation(p)
UpdateValuesStatistics(heTree,p, r)

procedure ChooseParameterValues(heTree)
Input: The HE tree, heTree.
Output: Combination of parameter values p.

node← heTree.GetRoot( )
i← 1
while node corresponds to incomplete combination do

p[i]← πhe.ChooseValue(node)
node← heTree.GetNextNode(node,p[i])
i← i+ 1

return p

procedure UpdateValuesStatistics(heTree,p, r)
Input: The HE tree, heTree. Chosen parameter values p.

Reward r obtained from the simulation controlled
by parameter values p.

node← heTree.GetRoot( )
i← 1
while node corresponds to incomplete combination do

node.UpdateArmStatistics(p[i], r)
node← heTree.GetNextNode(node,p[i])
i← i+ 1

Fig. 3. Pseudocode for HE

each game simulation. MCTS can be applied to the HE tree, reducing to a MAB
problem the choice of the next value to add to the combination.

Figure 3 gives the pseudocode for the HE allocation algorithm. The pro-
cedure HeParametersTuning() shows the main structure of the algorithm.
First of all, the HE tree is built using the available parameter values Vi for each
parameter Pi. The rest of the algorithm reflects the structure discussed in Sub-
sect. 4.1, a combinations of parameters p is chosen and used to perform an MCTS
simulation. The result of the simulation is then used to update statistics for the
combination of parameters. The procedure PerformMctsSimulation(p) runs
an MCTS simulation with the parameters p and implements all the four MCTS
phases. It also takes care of checking the search budget for each game step and
plays a move in the real game when this budget expires. This procedure is the
same for all the allocation mechanisms discussed in this section.

The procedure ChooseParameterValues(heTree) constructs a parame-
ter combination p by visiting the HE tree. Starting from the root, the procedure
visits one path in the tree. In each visited node a policy πhe is used to select
the value for the next parameter and this value is added to the partial combina-
tion computed so far. The procedure UpdateValuesStatistics(heTree,p, r)
propagates in the HE tree the reward r of the game simulation controlled by p.

Näıve Monte-Carlo. First proposed in [27, 28], NMC is designed to exploit
the combinatorial structure of the decision space and is based on the so called
näıve assumption. For the parameter tuning problem this assumption can be
expressed as follows:

R(p = 〈p1, ..., pn〉) ≈
n∑

i=1

Ri(pi) , (4)

where, p is a vector representing a possible assignment of values 〈p1, ..., pn〉 to
the parameters. This means that the expected reward of a certain configuration
of parameter values can be approximated by a linear combination of expected
rewards of single parameter values.



procedure NmcParametersTuning( )
while game not over do

p← ChooseParameterValues( )
r ← PerformMctsSimulation(p)
UpdateValuesStatistics(p, r)

procedure UpdateValuesStatistics(p, r)
Input: Chosen parameter values p.

Reward r obtained from the simulation
controlled by parameter values p.

MABg.UpdateArmStatistics(p, r)
for i← 1 : n do

MABi.UpdateArmStatistics(p[i], r)

procedure ChooseParameterValues( )
Output: Combination of parameter values p.

phase← π0.choosePhase( )
if phase = exploration then . Generate combination

for i← 1 : n do
p[i]← πl.ChooseValue(MABi)

MABg.Add(p)
else if phase = exploitation then . Eval. combination

p← πg.ChooseCombination(MABg)

return p

Fig. 4. Pseudocode for NMC

The pseudocode for the NMC algorithm is shown in Fig. 4. The procedure
NmcParametersTuning() implements the structure discussed in Subsect. 4.1.

The procedure ChooseParameterValues() shows how NMC chooses the
combination of parameter values to test before an MCTS simulation. Two main
phases are distinguished, an exploration phase that generates new parameter
combinations and an exploitation phase that evaluates the combinations gener-
ated so far. These two phases are interleaved and for each iteration a policy π0
chooses which of the two to perform.

The exploration phase considers n local MABs, one per parameter and uses
them independently to generate a new combination of parameter values. Each
local MAB has an arm for each possible value of the associated parameter. A
policy πl is used to select one value pi for each parameter Pi using the corre-
sponding local MAB (i.e. MABi). The resulting combination of values, if not
yet present, is also added to the global MAB (i.e. MABg) used by the exploita-
tion phase. The global MAB considers each arm to be associated to a possible
parameter combination. Initially MABg has no arms and is filled during the
exploration phase. The evaluation phase uses a policy πg to select form MABg

an already generated parameter combination to evaluate.
The procedure UpdateValuesStatistics(p, r) shows how the reward ob-

tained by the MCTS simulation is used to update statistics about the chosen
parameter values. The statistics are updated in the global MAB for the given
combination and in the local MABs for each of the values in the combination.

Linear Side Information. The LSI algorithm [33] is similar to NMC and is
based on the same näıve assumption. Like NMC, LSI distinguishes two main
phases, called generation and evaluation. The generation phase, like the explo-
ration phase of NMC, generates new combinations of parameter values, while the
evaluation phase, like the exploitation phase of NMC, evaluates the generated
combinations. The main difference with NMC is that LSI performs these two
phases in sequence instead of interleaving them, and a total predefined budget
of available samples N = Ng +Ne is divided among them.

Figure 5 gives the pseudocode for the LSI algorithm. The procedure Lsi-
ParametersTuning(Ng, Ne, k) implements the main logic of LSI. The gener-
ation phase uses up to Ng samples (i.e. MCTS simulations) to generate a set
C∗ ⊆ C = V1 × ... × Vn of at most k legal combinations of parameters. The



procedure LsiParametersTuning(Ng, Ne, k)
Input: Num. samples, Ng, for the generation phase.

Num. samples, Ne, for the evaluation phase.
Num. candidates, k, to generate during the
generation phase.

C∗ ← Generate(Ng, k)
p∗ ← Evaluate(C∗, Ne)
while game not over do

PerformMctsSimulation(p∗)

procedure Generate(Ng, k)
Input: Num. samples, Ng, for the generation phase.

Num. candidates, k, to generate.
Output: Set of candidate parameter combinations

to evaluate, C∗.
R̂← SideInfo(Ng)
C∗ ← ∅
for k times do

p← empty array of size n
V ← ⋃n

i=1 Vi

while V 6= ∅ do
vji ∼ D[R̂ �V ]
V ← V \ Vi

p[i]← vji
C∗ ← C∗ ∪ {p}

return C∗

procedure SideInfo(Ng)
Input: Num samples, Ng, for the generation phase.

Output: Weight function R̂ over single parameter values.
V ← ⋃n

i=1 Vi

m←
⌊
Ng

|V |

⌋

for m times do
for each vji ∈ V do

p← RandomlyExtend(vji )
r ← PerformMctsSimulation(p)
average R̂(vji ) with r

return R̂

procedure Evaluate(C∗, Ne)
Input: Set of parameter combinations to evaluate, C∗.

Num. samples, Ne, for the evaluation phase.
Output: Best parameter combination.

C0 ← C∗

for i← 0 to (dlog2 |C∗|e − 1) do

m←
⌊

Ne

|Ci|dlog2 |C∗|e

⌋

for m times do
for each p ∈ Ci do

r ← PerformMctsSimulation(p)
average expected value of p with r

Ci+1 ← d|Ci|/2e elements with highest estimated value

return the only combination p ∈ Cdlog2 |C∗|e

Fig. 5. Pseudocode for LSI

evaluation phase uses up to Ne samples to evaluate the combinations of values
in C∗ and recommend the best one, p∗. When both phases of LSI are over,
the recommended best combination p∗ is used to control the rest of the MCTS
simulations until the game terminates. The PerformMctsSimulation(p) pro-
cedure, before returning the control to the LSI procedure, takes care of playing
a move in the real game if the timeout is reached.

The procedure SideInfo(Ng) constructs the function R̂ :
⋃n

i=1 Vi → R, that

associates to each parameter value vji the average reward R̂(vji ) obtained by all

the MCTS simulations that were allocated to vji . To construct R̂ the procedure
SideInfo(Ng) divides equally over all the parameter values the total number

of generation samples Ng. Every time a parameter value vji is sampled using an
MCTS simulation the other parameters are set to random legal values.

The procedure Generate(Ng, k) uses the function R̂ to generate up to k

combinations of parameter values. To do so, the function R̂ is normalized to
create a probability distribution over (a subset of) its domain. The notation
D[R̂ �V ] indicates the probability distribution induced by R̂ over the subset V
of its domain. Each combination is generated by repeatedly sampling a value
from the distribution D[R̂ �V ], where the first time V =

⋃n
i=1 Vi (i.e. all the

domain), while for each subsequent step the set of available values Vi for the last
set parameter Pi is removed from V .

The procedure Evaluate(C∗, Ne) uses sequential halving [19] to repeatedly
evaluate the generated combinations and finally recommend one. Sequential halv-
ing performs multiple iterations dividing equally among them the available sam-
ples Ne. During each iteration the considered combinations are sampled uni-



formly and only half of them is kept for the next iteration (the half with the
highest expected value). This process ends when only one combination is left.

It is important to note that LSI, as opposed to the other allocation strategies,
is based on a fixed number of simulations N that must be set in advance. In GGP
is not possible to exactly estimate how many simulations will be performed for
a game, thus the game might end before LSI can actually complete its execution
or LSI might complete its execution much earlier than the game end. This means
that choosing a value for N is not a trivial task. If the value is too high, the search
is likely controlled by parameter values selected randomly. On the contrary, if
the value is too low the search is likely controlled by a sub-optimal combination,
recommended using only a low number of samples.

An alternative to deal with this issue is to modify LSI to tune parameters per
move instead of per game. In this way the known play clock time can be used
to estimate the available budget for the tuning. The search time T available for
each move can be divided among a generation phase and an evaluation phase,
T = Tg+Te, and used to control the execution of the phases of LSI instead of the
total simulations budgetN . However, preliminary results obtained by testing this
strategy showed that it does not improve upon the original LSI implementation.

5 Empirical Evaluation

This section presents an empirical evaluation of the proposed on-line parame-
ter tuning mechanism and a comparison of the discussed allocation strategies.
The setup of the performed experiments is presented in Subsect. 5.1, while Sub-
sects. 5.2, 5.3, 5.4 and 5.5 report the obtained results.

5.1 Setup
The on-line parameter tuning mechanism has been implemented in the GGP
framework provided by the open source GGP-Base project [32]. The tuning
mechanism is used to tune the search parameters of a GGP agent that im-
plements MCTS and uses GRAVE as selection strategy and MAST as play-out
strategy.

Below are the MCTS parameters that are tuned on-line, together with their
set of possible values:
– The UCT constant C ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
– The equivalance parameter K ∈ {0, 10, 50, 100, 250, 500, 750, 1 000, 2 000,∞}

for the GRAVE strategy. Note that this parameter can turn off the GRAVE
strategy, because when K = 0 the AMAF statistics are not considered and
the selection strategy becomes pure UCT.

– The parameter ref ∈ {0, 50, 100, 250, 500, 1 000, 10 000,∞} for the GRAVE
strategy. This parameter can control which selection strategy is used. If
ref = 0 GRAVE behaves exactly like RAVE, while if ref = ∞ it behaves
like HRAVE [34].

– The parameter ε ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} for the ε-
greedy strategy used by MAST. This parameter controls which play-out
strategy is used. When ε = 1 the strategy becomes completely greedy, while
when ε = 0 it becomes completely random.



All combinations of values are considered legal, except combinations with K = 0,
that are legal only if the ref parameter is not considered in the combination.
This is because when K = 0 the GRAVE strategy is not used, thus the ref
parameter has no influence on the search.

The agents implemented1 for the experiments are the following five:

– PBASE: baseline agent that uses GRAVE and MAST with parameter values
C = 0.2,K = 250, ref = 50, ε = 0.4). These values were assigned by off-
line tuning on the following set of games: 3D Tic Tac Toe, Breakthrough,
Knightthrough, Skirmish, Battle, Chinook, Chinese Checkers.

– PMAB: agent that tunes parameters on-line using the MAB allocation strat-
egy. As selection policy πmab, it uses UCB1 with C = 0.7 (a few values were
tested and 0.7 proved to perform best). While performing experiments, it was
noticed that the allocation strategy of this agent introduces a high overhead
on each MCTS simulation because of the exponential number of combina-
tions that it has to check. To alleviate this issue this agent was set to choose
a new parameter combination every 10 simulations instead of 1. In this way
for each selected combination 10 samples are collected all at once and the
overhead is distributed over them.

– PHE: agent that tunes parameters on-line using the HE allocation strategy.
When building the HE tree the order of the parameters is randomized before
every run of a game. This choice was determined by the fact that experiments
with a fixed order for the parameters did not show a particular improvement
in the performance of the agent. The policy πhe was set to the UCB1 policy
with C = 0.7.

– PNMC: agent that tunes parameters on-line using the NMC allocation strat-
egy. The policy π0 is set to be an ε-greedy strategy, which performs the ex-
ploration phase with probability ε0 = 0.75 and the exploitation phase with
probability 1 − ε0 = 0.25. These values are the same that are set in [27].
The policies πl and πg are both set to UCB1 with C = 0.7. In the last se-
ries of experiments a variant of this agent is used. This variant sets ε0 = 1
(i.e. it uses only local MABs to choose the parameter values to test) and is
identified as LocalPNMC.

– PLSI: agent that tunes parameters on-line using the LSI allocation strategy.
The parameters for LSI are set as follows: N = 100 000 (total number of sam-
ples, divided among the generation phase, Ng = 75 000, and the evaluation
phase, Ne = 25 000), and k = 2 000. The values for Ng and Ne were chosen
to keep the proportion between generation and evaluation samples the same
as the proportion between exploration and exploitation in NMC. The value
for N is chosen to be the same for all games and during experiments 100 000
samples showed to be the best choice (lower and higher values decreased the
overall performance). However, using 100 000 samples will cause LSI to not
be able to finish execution for some of the considered games. A version of
LSI that repeats the algorithm for each move in the game using the avail-
able search time T as total budget has also been implemented and tested.

1 Available on request at https://bitbucket.org/CFSironi/ggp-project



Table 1. Win percentage of the tuning agents against the off-line tuned agent

Game PMAB PHE PNMC PLSI

3DTicTacToe 20.8(±3.38) 34.5(±3.97) 42.6(±4.10) 40.7(±4.07)
Breakthrough 8.0(±2.38) 53.6(±4.38) 57.4(±4.34) 40.8(±4.31)
Knightthrough 20.0(±3.51) 69.8(±4.03) 70.6(±4.00) 53.8(±4.37)

Chinook 21.5(±3.31) 30.8(±3.70) 34.9(±3.75) 20.0(±3.27)
ChineseCheckers3 38.7(±4.26) 34.9(±4.17) 36.3(±4.20) 36.5(±4.21)

Checkers 8.3(±2.23) 33.6(±3.92) 37.5(±3.95) 18.2(±3.17)
Connect 5 13.8(±2.29) 25.9(±3.01) 27.4(±2.91) 40.7(±3.23)

Quad 46.8(±4.23) 29.9(±3.76) 35.6(±3.98) 70.6(±3.78)
SheepAndWolf 42.6(±4.34) 43.2(±4.35) 45.2(±4.37) 49.0(±4.39)
TTCC4 2P 22.4(±3.63) 38.6(±4.15) 43.5(±4.21) 24.2(±3.69)
TTCC4 3P 43.9(±4.25) 40.6(±4.14) 41.6(±4.20) 48.2(±4.27)
Connect 4 42.0(±4.14) 37.0(±4.09) 43.5(±4.14) 52.2(±4.23)
Pentago 26.1(±3.75) 40.6(±4.14) 45.7(±4.15) 39.4(±4.09)
Reversi 31.1(±4.00) 41.5(±4.26) 38.3(±4.22) 34.3(±4.12)

Avg Win% 27.6(±1.01) 39.6(±1.10) 42.9(±1.11) 40.6(±1.11)

Its results are excluded from the paper because it did not show any increase
in the performance.

In addition, the last available version of CadiaPlayer2 [3], the three-time
champion of the GGP competition (in 2007, 2008 and 2012) is used in a series
of experiments as a benchmark to compare the performance of the best on-line
tuning agent with the one of the off-line tuned agent.

All agents are tested on a set of 14 heterogeneous games: 3D Tic Tac Toe,
Breakthrough, Knightthrough, Chinook, Chinese Checkers with 3 players, Check-
ers, Connect 5, Quad (the version played on a 7×7 board), Sheep and Wolf, Tic
Tac Chess Checkers Four (TTCC4 ) with 2 and 3 players, Connect 4, Pentago
and Reversi. The GDL descriptions of the games can be downloaded from the
GGP-Base repository [31].

For each experiment, two agents at a time are matched against each other.
For each game, all possible assignments of agents to the roles of the game are
considered, except the two configurations that assign the same agent to each role.
All configurations are run the same number of times until at least 500 games
have been been played. Each match runs with 1s start clock and 1s play clock,
except for the experiments that involve CadiaPlayer. In these experiments,
CadiaPlayer uses 10s start clock and 10s play clock while the other agents
use 1s both for the start clock and the play clock. The reason for this choice
is that our agents use a PropNet-based reasoner and can thus perform a higher
number of simulations per second than CadiaPlayer.

The results of the experiments always report the average win percentage
of one of the two involved agent types with a 95% confidence interval. The
average win percentage of an agent type is computed by assigning 1 point for
each game where it achieved the highest score, 0 points for each game where the
opponent achieved the highest score and 0.5 points for each game where both
agents achieved the same score.

2 Verision of November 18, 2012. Downloaded from the CadiaPlayer project website:
http://cadia.ru.is/wiki/public:cadiaplayer:main



Table 2. Iterations per second of all agents

Game PBASE PMAB PHE PNMC PLSI

3DTicTacToe 5259 3782 5918 5864 5945
Breakthrough 4344 3019 4554 4584 4310
Knightthrough 5466 3818 5857 5596 5810

Chinook 3559 2993 3302 3266 3896
ChineseCheckers3 4824 3152 4895 4243 4518

Checkers 630 634 647 651 631
Connect 5 2179 2168 2516 2551 2240

Quad 3614 3118 3890 3837 3934
SheepAndWolf 2381 2069 2423 1952 2239
TTCC4 2P 1401 1433 1527 1532 1406
TTCC4 3P 1970 1525 2108 1936 1910
Connect 4 8218 4488 8494 7915 8289
Pentago 4272 2937 4280 4167 3874
Reversi 287 284 291 287 288

5.2 On-line Tuning Agents vs Off-Line Tuned Agent

This series of experiments evaluated the performance of each of the tuning agents
against the baseline agent that is tuned manually off-line. Table 1 shows the
obtained results. None of the tuning agents can reach the performance of the
off-line tuned agent. PMAB shows the worst performance and is always worse
than the baseline agent. The poor performance of PMAB is due to the fact that
the high number of possible values combinations prevents the agent to be able
to sample each of them a sufficient number of times to start converging.

Another reason for the poor performance of PMAB is that every time a com-
bination must be selected there is quite some computational overhead due to the
necessity of iterating over all possible combinations to compute the one with the
highest UCB1 value. This reduces the number of simulations that can be per-
formed. Performing the evaluation of each parameter combination using a batch
of simulations instead of a single simulation is still not sufficient to increase the
performance to the same level as the off-line tuned agent.

Table 2 gives the average median of the number of simulations per second
that each of the agents can perform. For most of the games PMAB loses a few
thousands simulations with respect to the other agents. The other tuning agents,
instead, seem to gain a few hundred simulations per second with respect to PBASE

in most of the games. The explanation for this might be that the constantly
changing search-control parameters cause the agents to explore different parts
of the search space (with shorter paths) than the ones explored by PBASE.

PHE, PNMC and PLSI are close to each other in performance, but PNMC seems
to be slightly better than the others in most of the games. All three of them
show a better performance than PMAB, and can reach a statistically significant
improvement over PBASE for one or two games. PNMC performed even better
than PBASE in Knighttrough and Breakthrough, whereas PLSI performed better
than PBASE in Quad.

In most of the games, however, there is a statistically significant worsening of
the performance. It could be that the agents keep evaluating sub-optimal com-
binations and cannot reach the performance level of the off-line tuned agent.
Another explanation might be that, by the time they identify optimal combina-



Table 3. Win percentage of PNMC against all other tuning agents

Game vs PMAB vs PHE vs PLSI

3DTicTacToe 65.3(±4.00) 56.3(±4.19) 47.4(±4.16)
Breakthrough 88.2(±2.83) 62.4(±4.25) 69.0(±4.06)
Knightthrough 84.4(±3.18) 51.4(±4.39) 65.0(±4.19)

Chinook 57.7(±3.82) 56.4(±3.74) 60.2(±3.81)
ChineseCheckers3 44.8(±4.35) 56.2(±4.34) 51.8(±4.37)

Checkers 82.6(±3.06) 59.0(±4.07) 70.6(±3.72)
Connect 5 66.4(±3.39) 50.7(±3.62) 37.2(±3.57)

Quad 39.5(±4.13) 53.9(±4.18) 20.0(±3.35)
SheepAndWolf 49.6(±4.39) 48.0(±4.38) 46.6(±4.38)
TTCC4 2P 71.0(±3.93) 59.6(±4.22) 71.0(±3.93)
TTCC4 3P 47.7(±4.30) 45.9(±4.18) 49.7(±4.31)
Connect 4 37.3(±4.12) 58.1(±4.11) 39.0(±4.10)
Pentago 55.2(±4.17) 52.5(±4.21) 52.7(±4.22)
Reversi 57.6(±4.26) 52.5(±4.28) 56.9(±4.29)

Avg Win% 60.5(±1.10) 54.5(±1.12) 52.6(±1.13)

tions of parameters, PBASE has already gained an advantage in the game because
it was making better decisions from the start due to already tuned parameters.

An additional remark should be made for PLSI. As mentioned in Subsect. 4.2,
the performance of LSI depends on the choice for the total number of samples
assigned to the algorithm (N). The poor performance of PLSI in Checkers and
Reversi is due to the fact that these games produce a low number of simulations
per second. With a value of 100 000 for the total number of samples, LSI in
these game does not even reach the evaluation phase and thus selects random
parameters for the whole game.

5.3 Evaluation of Best On-Line Tuning Agent

From the previous series of experiments, PNMC seems to be the agent that
achieves the best performance among the on-line tuning agents. As a valida-
tion, this series of experiments matches PNMC against all of them.

Table 3 shows the obtained results. PNMC is overall better than PMAB, with
PMAB outperforming it only in Chinese Checkers and Connect 4. Against PHE,
it shows to have a better or at least equal performance in all games. PNMC is also
better that PLSI in most of the games, but for the games for which PLSI performs
better (Connect 5, Quad, Connect 4 ) the performance gap is consistent.

5.4 Best On-Line Tuning Agent vs CADIAPLAYER

In this series of experiments the off-line tuned agent, PBASE and the best on-
line tuning agent, PNMC are matched against CadiaPlayer. Table 4 shows
the obtained results. Four games (Chinese Checkers with 3 players, TTCC4
with 2 and 3 players, and Reversi) are excluded from the experiments because
CadiaPlayer was encountering some errors while playing them.

The results are in line with the other experiments. The agent PBASE shows
again a better performance than PNMC against CadiaPlayer for most of the
games, except for Breakthrough and Knightthrough. These are the only two games
for which PNMC proved to be consistently better than PBASE when the two agents
were matched against each other directly.



Table 4. Win percentage of PBASE and PNMC with 1s start clock and play clock against
CadiaPlayer with 10s start clock and play clock

Game PBASE PNMC

3DTicTacToe 94.4(±2.33) 89.6(±2.87)
Breakthrough 60.8(±4.32) 69.3(±4.24)
Knightthrough 47.6(±4.78) 71.0(±4.45)

Chinook 80.0(±3.44) 63.7(±3.85)
Checkers 90.5(±2.61) 81.1(±3.36)
Connect 5 71.4(±3.27) 48.8(±3.83)

Quad 98.7(±1.14) 94.9(±2.11)
SheepAndWolf 57.7(±4.35) 50.6(±4.52)

Connect 4 69.8(±3.96) 56.5(±4.65)
Pentago 73.4(±3.80) 64.7(±4.25)

Avg Win% 73.4(±1.25) 68.6(±1.31)

Table 5. Win percentage of LocalPNMC and Best(PNMC,PLSI) against PBASE

Game LocalPNMC Best(PNMC,PLSI)
3DTicTacToe 37.2(±4.03) 42.6(±4.10)
Breakthrough 54.8(±4.37) 57.4(±4.34)
Knightthrough 70.2(±4.01) 70.6(±4.00)

Chinook 30.0(±3.56) 34.9(±3.75)
ChineseCheckers3 30.6(±4.03) 36.5(±4.21)

Checkers 34.3(±3.95) 37.5(±3.95)
Connect 5 30.6(±3.23) 40.7(±3.23)

Quad 30.3(±3.79) 70.6(±3.78)
SheepAndWolf 45.4(±4.37) 49.0(±4.39)
TTCC4 2P 34.8(±4.07) 43.5(±4.21)
TTCC4 3P 41.3(±4.09) 48.2(±4.27)
Connect 4 36.7(±4.03) 52.2(±4.23)
Pentago 37.6(±4.11) 45.7(±4.15)
Reversi 33.1(±4.05) 38.3(±4.22)

Avg Win% 39.1(±1.09) 47.7(±1.12)

Moreover, the difference in performance between PBASE and PNMC against
CadiaPlayer is also comparable to the difference in performance that they
showed when matched against each other in the first series of experiments.

5.5 Parameters Inter-dependency

In the last series of experiments the performance of an agent that assumes no
inter-dependency between the parameters is compared with the performance
that can be obtained by exploiting this inter-dependency.

Table 5 first reports the results of LocalPNMC. This is the version of PNMC

that selects parameters combinations using only the local MABs, thus each pa-
rameter is always selected independently of the others.

In the last column, the table reports the best performance achieved in previ-
ous experiments by either PNMC or PLSI (Best(PNMC,PLSI)). Both these agents
take into account the inter-dependency of the parameters.

These results show how, for each game, at least one allocation strategy (either
NMC or LSI) that exploits the inter-dependency of the parameters can outper-
form a strategy that does not. This can be seen as a confirmation that there is
a dependency among the parameters and it should be exploited.



6 Conclusion and Future Work

This paper presented an on-line tuning method for search-control parameters
for the MCTS algorithm and evaluated the performance of this method in the
context of GGP. Four different sample allocation strategies were introduced and
tested for the parameter tuning algorithm, MAB allocation, Hierarchical Expan-
sion, Näıve Monte-Carlo and Linear Side Information.

Results show that, despite having a lower overall performance, the proposed
method for on-line parameter tuning can reach a performance almost as good
as an off-line tuning approach. This is especially remarkable because only a
single run of a game is used to tune the parameters, instead of a few hundred
per parameter or per parameter combination. Taking this consideration into
account, it may be concluded that the approach proposed in this paper is a valid
alternative when there is not sufficient time to tune off-line a high number of
parameters with many possible values.

Looking only at the on-line tuning approaches NMC is the one that performs
the best. One of the reasons for this is that it tunes the parameters consider-
ing their inter-dependency. However, its good performance also depends on the
fact that, at the same time, it speeds up the learning process by exploiting the
statistics of single parameters to predict the performance of their combinations.

For the same reasons mentioned for NMC, LSI also shows a good perfor-
mance. However, using it for parameter tuning has a risk: the exact length of
a game cannot be known in advance and it is difficult to correctly estimate an
appropriate initial budget N . This can negatively influence the performance for
games that are too short or for which a small number of simulations per second
can be performed.

Future work could look into solving this issue by devising a strategy that
chooses an appropriate budget N for each game. For example, a value for N could
be selected by estimating the average game length and the average simulations
per second that can be performed for the considered game.

Another direction for future work are evolutionary algorithms, which could
be used to evolve the set of parameter values over time. In this way the set
of available values will not be fixed but will change towards more and more
accurate values for the game being considered. Approaches based on evolutionary
algorithms have been successfully applied to a problem that is similar to the one
of search-control parameter tuning, that is the problem of tuning weights of a
state-evaluation function for MCTS [2, 24, 29]. Moreover, in [22] evolutionary
algorithms are investigated in the context of automatic game design, where they
are used in combination with MABs to evolve the set of parameters that control
the characteristics of the generated games.
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