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Abstract— This article describes a new, game-independent
forward-pruning technique for EXPECTIMAX, called CHAN-
CEPROBCUT. It is the first technique to forward prune
in chance nodes. Based on the strong correlation between
evaluations obtained from searches at different depths, the
technique prunes chance events if the result of the chance
node is likely to fall outside the search window. In this article,
CHANCEPROBCUT is tested in two games, i.e., Stratego and
Dice. Experiments reveal that the technique is able to reduce
the search tree significantly without a loss of move quality.
Moreover, in both games there is also an increase of playing
performance.

I. INTRODUCTION

Human players do not consider the complete game tree to
find a good move. Using experience, they are able to prune
unpromising variants in advance [1]. Their game trees are
narrow and deep. By contrast, the original minimax algorithm
searches the entire game tree up to a fixed depth. Even its
efficient variant, the αβ algorithm [2], is only allowed to
prune if a position is known to be irrelevant to the principal
variation (backward pruning). However, there are several
forward-pruning techniques for the αβ algorithm [3], [4], [5],
[6]. These techniques have been only applied to deterministic
games so far (e.g., Chess, Checkers, and Go).

Non-deterministic games introduce an element of chance
by the roll of dice or the shuffle of cards (e.g., Backgammon
and Ludo [7]). Also imperfect-information games, where not
all information is available to a player, can be treated as non-
deterministic games as if they contained an element of chance
(e.g., Stratego1). For non-deterministic games, EXPECTIMAX
[8] is the algorithm of choice. It extends the minimax concept
to non-deterministic games, by adding chances nodes to the
game tree. So far, no specific αβ forward-pruning technique
has been designed for these chance nodes.

This paper describes CHANCEPROBCUT, a forward-
pruning technique inspired by PROBCUT [4] which is able
to cut prematurely in chance nodes. This technique estimates
values of chance events based on shallow searches. Based
on the strong correlation between evaluations obtained from
searches at different depths, the technique prunes chance
events if the result of the chance node is likely to fall outside
the search window.

This paper will first explain the EXPECTIMAX algorithm in
Section II and explain possible STAR1 and STAR2 pruning in
Section III. Thereafter, Section IV discusses Variable-Depth
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Search. We introduce the new forward-pruning technique
CHANCEPROBCUT in Section V. Section VI describes the
games Stratego and Dice. The experiments are presented in
Section VII. Finally, Section VIII draws the conclusions of
this research.

II. EXPECTIMAX

EXPECTIMAX [8] is a brute-force, depth-first game-tree
search algorithm that generalizes the minimax concept to
non-deterministic games, by adding chances nodes to the
game tree (in addition to MIN and MAX nodes). At chance
nodes, the heuristic value of the node (or EXPECTIMAX
value) is equal to the weighted sum of the heuristic values
of its successors. For a state s, its EXPECTIMAX value is
calculated with the function:

EXPECTIMAX(s) =
∑

i

P (ci)× V (ci)

where ci represents the ith child of s, P (c) is the probability
that state c will be reached, and V (c) is the value of state c.

We explain EXPECTIMAX in the following example. Fig-
ure 1 depicts an EXPECTIMAX tree. In the figure squares
represent chance nodes, regular triangles MAX nodes and
inversed triangles MIN nodes.

Fig. 1. An example EXPECTIMAX tree

In Figure 1, Node A corresponds to a chance node with
two possible events, after which it is the MIN player’s turn.
The value of Node A is calculated by weighting the outcomes
of both chance events. In this example, Expectimax(A) =
0.9×−250 + 0.1× 250 = −200.



III. STAR1 AND STAR2

As stated by Hauk et al. [9], the basic idea of EXPECTI-
MAX is sound but slow [10]. STAR1 and STAR2 exploit a
bounded heuristic evaluation function to generalize the αβ
pruning technique to chance nodes [9], [10]. αβ pruning
imposes a search window (α,β) at each MIN or MAX node
in the game tree. Remaining successor nodes can be skipped
as soon as the current node’s value is proven to fall outside
the search window. STAR1 and STAR2 apply this idea to
chance nodes. The difference is that the search cannot return
as soon as one successor falls outside the search window.
The weighted sum of all successors has to fall outside the
search window to be able to return.

STAR1 is able to create cutoffs if the lower and upper
bound of the evaluation function are known (called L and
U ). These bounds are the game-theoretical value of terminal
positions (Loss and Win, respectively). If we have reached
the ith successor of a chance node, after having searched
the first i− 1 successors and obtained their values, then we
can obtain bounds for the value of the chance node. A lower
bound is obtained by assuming that all remaining successors
return L, an upper bound is obtained by assuming that all
remaining successors return U . A safe pruning can be done
if either one of these bounds falls outside the search window.

While STAR1 results in an algorithm which returns the
same result as EXPECTIMAX, and uses fewer node expan-
sions to obtain the same result, its results are generally not
impressive. A reason for this is its pessimistic nature. In
order to obtain more accurate bounds for a node, STAR2
probes each child. By only searching one of the available
opponent moves, an upper bound for this node is obtained.
This upper bound is then back propagated for calculating a
more accurate upper bound for the chance node.

We explain STAR2 in the following example. Figure 2
depicts an EXPECTIMAX tree with two STAR2 prunings.
Node A is reached with an αβ window of (-150, 150).
At this point, the theoretical lower and upper bounds of

Fig. 2. Successful STAR2 pruning

node A are [−1000, 1000], which correspond to losing
and winning the game. STAR2 continues with probing the
first possible chance event (i.e., investigating node B only).
The result of this probe produces an upper bound for this
chance event (≤ −250). The theoretical upper bound for A
is now updated to following the EXPECTIMAX procedure:
−250 × 0.9 + 1000 × 0.1 = −125. A cut is not possible
yet and the same procedure is applied to the second chance
event. After the second probe, the theoretical window of A is
[−1000, −175] which is outside the αβ window. Now nodes
C and E can be pruned. Extra search effort would be caused
if no pruning would occur. This effect can be nullified by
using a transposition table.

IV. VARIABLE DEPTH SEARCH

Human players are able to find good moves without
searching the complete game tree. Using their experience
they are able to prune unpromising variations in advance
[1]. Human players also select promising variants and search
these deeper. In αβ search this concept is known as Variable
Depth Search [11]. The technique to abandon some branches
prematurely is called forward pruning. The technique to
search branches beyond the nominal depth is called search
extensions. As such, the search can return a different value
than that of a fixed-depth search.

In the case of forward pruning, the full critical tree is not
expanded, and good moves may be overlooked. However,
the rationality is that although the search occasionally goes
wrong, the time saved by pruning non-promising lines of
play is generally better used to search other lines deeper,
i.e., the search effort is concentrated where it is more likely
to benefit the quality of the search result.

The real task when doing forward pruning is to identify
move sequences that are worth considering more closely, and
others that can be pruned with minimal risk of overlooking
a good continuation. Ideally, a forward pruning should have
low risk, limited overhead, be applicable often, and domain
independent. Usually, improving one factor will worsen the
others [12].

The null-move heuristic [3], [13] is a famous way of
forward pruning. Forfeiting the right to move is called a null
move. In general, a move can be found with a higher value
than the null move. This is not true for zugzwang positions,
where doing nothing is the best option. The idea of the
null-move heuristic is to search the null move and use the
resulting value as a lower bound for the node. If this value
exceeds β, a pruning takes place.

The Multi-Cut heuristic prunes an unpromising line of
play if several shallow searches would produce a cutoff [12].
This technique was improved for ALL nodes later [14]. The
ProbCut [4] heuristic uses shallow searches to predict the
result of deep searches. A branch is pruned if the shallow
search produces a cutoff, with a certain confidence bound.
This heuristic works well for techniques where the score of a
position does not significantly change when searched deeper,
as in Othello. The technique was further enhanced as the
Multi-ProbCut procedure [5].



All these heuristics are applicable at MIN and MAX nodes.
However, not much work has been done on forward pruning
in trees with chance nodes. Smith and Nau [15] perform
an analysis of forward-pruning heuristics on binary trees
with chance nodes. No forward-pruning techniques in chance
nodes have been proposed so far.

V. CHANCEPROBCUT

So far, it has not been investigated if forward pruning can
be beneficial in chance nodes. The null move and Multi-
Cut heuristic cannot be adapted to chance nodes because
these techniques are based on applying moves. We introduce
CHANCEPROBCUT to forward prune unpromising chance
nodes. This technique is inspired by PROBCUT [4], and
uses this idea to generate cutoffs in chance nodes. In this
case, a shallow search of depth d−R is an indicator of the
true expectimax value vd for depth d. Now, it is possible
to determine whether vd would produce a cutoff with a
prescribed likelihood. If so, the search is terminated and the
appropriate window bound is returned. If not, a normal search
has to be performed.

CHANCEPROBCUT adapts the PROBCUT idea to alter the
lower and upper bounds for each possible event in chance
nodes. A search with reduced depth is performed for each
chance event. The result of this search, vd−R, is used for
predicting the value of the chance event for depth d (vd).
The prediction of vd is calculated by confidence bounds in
a linear regression model [4]. The bounds can be estimated
by:

ELowerBound(vd) = −PERCENTILE × σ + vd−R × a− b

EUpperBound(vd) = PERCENTILE × σ + vd−R × a− b

where a, b and σ are computed by linear regression, and
PERCENTILE determines the size of the bounds. Using these
bounds, it is possible to create a cutoff if the bounds
multiplied with the corresponding chances fall outside the
search window.

In a chance node, variables containing the lower and
upper bounds are updated during each step. A cutoff may
be obtained with values computed from different techniques.
It is possible that during the normal search a cut is pro-
duced using a combination of Transposition Table Probing,
CHANCEPROBCUT, STAR2 and exact values, because each
time the bound is updated after new information becomes
available.

When the normal search with depth d is started, the bounds
obtained by CHANCEPROBCUT can be used as search win-
dow. It is unlikely that vd falls outside this interval. We note
that it is possible to do a re-search after the normal search
returns with a value outside the search window. However,
we did not implement this because an error only partially
contributes to the value of the chance node.

An example of how CHANCEPROBCUT prunes is given in
Figure 3. Here, the regression model vd = vd−R is assumed,
with confidence interval 50. The first CHANCEPROBCUT
search returns the bounds [300, 400] for the first chance

Fig. 3. ChanceProbCut prunes

Fig. 4. The normal search prunes with help of ChanceProbCut

event, changing the bounds of the chance node to [−480,
760]. After the second CHANCEPROBCUT search returns the
window [700, 800], the bounds of the chance node, [200,
680], fall outside the search window and a pruning takes
place.

Figure 4 depicts a second example, in which CHAN-
CEPROBCUT fails to produce a pruning. At first, the search
finds the same values as in the previous example. The next
search reveals [0, 100] as bounds for the second event.
This time, it is not possible to prune. Even after the next
search produces the bounds [50, 150] for the third event,
the bounds for the chance node [130, 230] still fall inside
the search window. However, after the normal search returns
value 400 for the first event, the search is terminated based
on previously estimated CHANCEPROBCUT values.

Finally, Algorithm 1 shows pseudo code for CHAN-
CEPROBCUT. The procedure checkPruning() computes
whether the lower and upper bounds of the chance
nodes exceed the search window and returns if applicable.
The computeLowerBound() and computeUpperBound()
functions compute the confidence interval around the ob-
tained value, based on a linear regression model [4]. The



Algorithm 1 CHANCEPROBCUT Forward Pruning
ChanceNode(alpha, beta, depth)

for all ChanceEvent i do
lowerBound[i] = ELowerBound[i] = L;
upperBound[i] = EUpperBound[i] = U;

end for

//ChanceProbCut
if depth>R then

for all ChanceEvent i do
doMove(i);
v = search(lowerBound[i], upperBound[i],

depth-1-R)
ELowerBound[i] =

max(lowerBound[i], computeLowerBound(v));
EUpperBound[i] =

min(upperBound[i], computeUpperbound(v));
undoMove(i);
if

∑
j

Pj× ELowerbound[j]>beta then return beta;

if
∑

j

Pj× EUpperbound[j]<alpha then return alpha;

end for
end if

//Star2
for all ChanceEvent i do

doMove(i);
v = probe(lowerBound[i], upperBound[i], depth-1);
upperBound[i] = max(upperBound[i], v);
EUpperBound[i] =

min(upperBound[i], EUpperBound[i]);
if upperBound[i] < ELowerBound[i] then

ELowerBound[i] = L;
undoMove(i);
if

∑
j

Pj× upperbound[j]<alpha then return alpha;

end for

//Normal Search
for all ChanceEvent i do

doMove(i);
v = search(ELowerBound[i], EUpperBound[i],

depth-1);
lowerBound[i] = v;
upperBound[i] = v;
undoMove(i);
if

∑
j

Pj× lowerbound[j]>beta then return beta;

if
∑

j

Pj× upperbound[j]<alpha then return alpha;

end for

return
∑

i

Pi× lowerbound[i]

probe method is used for obtaining an upper bound of the
chance node [9], [10] and the search method investigates
the position further using the EXPECTIMAX framework.

VI. TEST DOMAIN

To test whether CHANCEPROBCUT performs well, we use
two different games, Stratego and Dice.

A. Stratego

Stratego is an imperfect-information game. It was devel-
oped at least as early as 1942 by Mogendorff. The game was
sold by the Dutch publisher Smeets and Schippers between
1946 and 1951 [16]. In this subsection, we will first briefly
describe the rules of the game and thereafter present related
work.

1) Rules: The following rules are an edited version of the
Stratego rules published by the Milton Bradley Company in
1986 [17].

Stratego is played on a 10×10 board. The players, White
and Black, place each of their 40 pieces in such a way that
the back of the piece faces the opponent in a 4×10 area. The
movable pieces are divided in ranks (from the lowest to the
highest): Spy, Scout, Miner, Sergeant, Lieutenant, Captain,
Colonel, Major, General, and Marshal. Each player has also
two types of unmovable pieces, the Flag and the Bomb. An
example initial position is depicted in Figure 5. The indices
represent the ranks, where the highest rank has index 1 (the
Marshal), and all decreasing ranks have increasing indices
(Exceptions are S=Spy, B=Bomb, F=Flag).

Fig. 5. A possible initial position in Stratego

Players move alternately, starting with White. Passing
is not allowed. Pieces are moved to orthogonally-adjacent
vacant squares. The Scout is an exception to this rule, and
may be moved like a rook in chess. The Two-Squares Rule
and the More-Squares Rule prohibit moves which result in



repetition.2 The lakes in the center of the board contain no
squares; therefore a piece can neither move into nor cross
the lakes. Only one piece may occupy a square.

A piece, other than a Bomb or a Flag, may attempt to
capture an orthogonally adjacent opponent’s piece; a Scout
may attempt to capture from any distance. When attempting
a capture, the ranks are revealed and the weaker piece
is removed from the board. The stronger piece will be
positioned on the square of the defending piece. If both
pieces are of equal rank, both are removed. The Flag is the
weakest piece, and can be captured by any moving piece. The
following special rules apply to capturing. The Spy defeats
the Marshal if it attacks the Marshal. Each piece, except the
Miner, will be captured when attempting to capture the bomb.

The game ends when the Flag of one of the players is
captured. The player whose Flag is captured loses the game.
A player also loses the game if there is no possibility to
move. The game is drawn if both players cannot move.

2) Previous Work: Stratego has not received much
scientific attention in the past. De Boer [18], [19] describes
the development of an evaluation function using an extensive
amount of domain knowledge in a 1-ply search. Treijtel [20]
created a player based on multi-agent negotiations. Stengård
[21] investigates different search techniques for this game.
At this moment, computers play Stratego at an amateur level
[22]. An annual Stratego Computer Tournament3 is held on
Metaforge with an average of six entrants.4

B. Dice

The game of Dice is a two-player non-deterministic game,
recently developed by Hauk [23], in which players take
turns placing checkers on an m×m grid. One player plays
columns, the other plays rows. Before each move, a dice is
rolled to determine the row or column into which the checker
must be placed. The winner is the first player to achieve a
line of m checkers (orthogonally or diagonally).

The advantages of this game are that (1) it is straightfor-
ward to implement and (2) that many chance nodes exist.
A disadvantage is that the outcome of the game is partially
dependent on luck. A deep search is still beneficial. Hauk
showed that a 9-ply player wins 65% against a 1-ply player
[23].

Hauk uses this game to demonstrate the pruning effec-
tiveness of STAR-minimax algorithms in a non-deterministic
game [23]. Moreover, Veness used it to test StarETC [24].

C. Engine

We implemented an EXPECTIMAX engine for Stratego
and Dice, enhanced with the STAR1 and STAR2 pruning
algorithms [10], [23]. Furthermore, the History Heuristic
[25], Killer Moves [26], Transposition Tables [27], [28] and
StarETC [24] are used.

2For details of these rules we refer to the International Stratego Federation
(ISF), www.isfstratego.com.

3http://www.strategousa.org/wiki/index.php/Main Page
4http://www.metaforge.net/

In Stratego, the evaluation function is material based. Fur-
thermore, it awards a bonus for unknown pieces. This creates
a game play where the player has to hide his important
pieces as long as possible, but tries to reveal the location
of the opponent’s important pieces as soon as possible. A
player receives a bonus for moving pieces to the side of
the opponent, to promote the progression of the game. The
evaluation function is bound to the interval [−1000, 1000].

In Dice, the evaluation function counts the number of
checkers which can be used for forming lines of size m.
Checkers, which are fully blocked by the opponent, are not
counted. Partially blocked checkers get a lower value. The
evaluation function is bound to the interval [−10, 10].

In both evaluation functions, a small random value is
included for modeling the mobility [29].

VII. RESULTS

In this section, we first discuss the results of CHAN-
CEPROBCUT in the game of Stratego. Second, we test
CHANCEPROBCUT in the game of Dice.

A. Stratego

This subsection presents all the results obtained in the
domain of Stratego.

1) Determining Parameters: The first parameters to
choose are the depth reduction R and the depths d in which
CHANCEPROBCUT is applied. The game tree in Stratego is
not regular, meaning that not always a chance node follows a
MIN/MAX node. Due to this we will not count chance nodes
as a ply for Stratego. While in theory this technique can be
applied on each search depth, we limit the applicability to
d ∈ {4, 5}. R is set to 2, because otherwise an odd-even
effect might occur. In order to find the parameters σ, a, and
b for the linear regression model, 300 value pairs (vd−R,
vd) have been determined. These value pairs are obtained
from 300 begin, middle and endgame positions, created using
selfplay.5 In Figure 6 the model is shown for depths 2 and
4. Figure 7 shows the linear regression model for depths 3
and 5. vd−R is denoted on the x-axis; vd is denoted on the
y-axis. Both figures show that the linear regression model is
able to estimate the value of vd with a small variance.

Fig. 6. Evaluation pairs at depths 2 and 4 in Stratego

5All test positions for Stratego and Dice can be downloaded at
http://www.personeel.unimaas.nl/Maarten-Schadd/TestSets.html



Fig. 7. Evaluation pairs at depths 3 and 5 in Stratego

2) Tuning Selectiveness: Next, we have to find the optimal
value for PERCENTILE. If a too large value for PERCENTILE
is chosen, the original search will always be performed. The
reduced-depth searches will just cause an overhead. If a too
small value for PERCENTILE is chosen, a selective search is
created which might return incorrect values. For tuning this
parameter, we look at the reduction of the game tree and
the quality of the returned move. For this experiment, the
regression model from Figures 6 and 7 are used at depths 4
and 5, respectively. For tuning, the PERCENTILE is varied.
300 positions were tested, from begin, middle and endgame
situations. Tables I and II give the results of tuning the
PERCENTILE parameter for depths 9 and 11, respectively.

TABLE I
SEARCH QUALITY FOR DEPTH 9 IN STRATEGO

PERCENTILE ADE Nodes Reduction Same Move

- 1.9 793,377,181 0% 79.3%

3.2 1.9 782,202,021 1.4% 80.1%

1.6 1.9 588,904,187 25.8% 80.0%

0.8 2.3 480,861,361 39.4% 79.7%

0.4 2.4 389,211,656 50.9% 78.5%

0.2 3.7 492,000,516 38.0% 75.9%

0.1 3.8 480,002,096 39.5% 77.4%

0.05 4.2 424,511,159 46.5% 75.9%

TABLE II
SEARCH QUALITY FOR DEPTH 11 IN STRATEGO

PERCENTILE ADE Nodes Reduction Same Move

- 1.9 17,797,964,580 0% 80.5%

3.2 2.4 15,781,147,865 11.3% 82.8%

1.6 5.4 9,433,921,421 47.0% 81.6%

0.8 6.5 5,576,812,889 68.7% 81.2%

0.4 8.3 4,216,966,331 76.3% 77.8%

0.2 27.2 2,927,878,965 83.7% 50.9%

0.1 26.5 2,496,375,320 86.0% 53.6%

0.05 25.4 2,353,464,841 86.8% 52.1%

In these tables, ADE is the average difference of the
returned evaluation value. The percentage that the same move
is returned is shown in the last column. The first row of each

table is for reference. It indicates that even with the same
technique for two different runs, only in approximately 80%
of the cases the same move is returned. This is due to the
random factor in the evaluation function. There exist moves
that are equally good, according to the evaluation function.
The random factor is the tie-breaker in that case. Nodes per
second are hardly affected and therefore not shown.

In both tables we observe that it is possible to reduce
the size of the tree significantly without a loss of quality.
At depth 9, the tree is reduced with 39.4% of its size. At
depth 11, a reduction of 68.7% is possible before the quality
decreases.

In general we may observe that when the PERCENTILE
parameter is decreased to a value of 0.2, the error grows,
resulting in a larger difference of the evaluation score, and
selecting weaker moves.

3) Selfplay: For forward-pruning techniques, a reduc-
tion of nodes searched cannot be seen as an indicator of
improvement. Selfplay experiments have to be played in
order to examine if CHANCEPROBCUT improves the playing
strength.

We decided to test CHANCEPROBCUT with one second
per move. Ten starting setups of equal strength were used, of
which six were designed by De Boer, World Classic Stratego
Champion in 2003, 2004 and 2007 [18]. The programs were
matched on each possible combination of positions multiple
times. Each match was played twice with different colors, to
remove the advantage of the initiative. The results are shown
in Table III.

TABLE III
SELFPLAY EXPERIMENT ON STRATEGO, 1 SECOND PER MOVE

Percentile ChanceProbCut Normal Win rate
3.2 3,833 3,667 51.1%
1.6 3,831 3,669 51.1%
0.8 3,772 3,728 50.3%
0.4 3,809 3,691 50.8%
0.2 3,285 4,215 43.8%
0.1 2,846 4,654 37.9%
0.05 2,783 4,717 37.1%

For PERCENTILE values 1.6 and 3.2, a win rate of 51.1%
is achieved, which is significant. For small values of PER-
CENTILE, the program clearly plays worse. The search has
become too selective and makes many mistakes.

B. Dice

1) Determining Parameters: Because Dice has a regular
game tree, chance nodes are counted as plies. We limit the
applicability to d ∈ {7, 9}. R is set to 4 to handle the odd-
even effect. On a test set of 1,000 5×5 positions value pairs
(vd−R,vd) have been determined and a regression line is
calculated. We have chosen the 5×5 board for reference,
because Hauk has used this variant to test node reductions
of the STAR1 and STAR2 techniques [23]. In Figure 8 the
model is shown for depths 3 and 7. Figure 9 shows the linear
regression model for depths 5 and 9. These figures show that
the linear regression model is suitable for estimating vd.



Fig. 8. Evaluation pairs at depths 3 and 7 in Dice

Fig. 9. Evaluation pairs at depths 5 and 9 in Dice

2) Tuning Selectiveness: Again, we have to find the
optimal value for PERCENTILE. This tuning will be done
in a similar fashion as in the previous subsection. For this
experiment, at depths 7 and 9 the regression model from
Figures 8 and 9 are used and the PERCENTILE is varied.
1,000 positions were tested with 5 up to 12 checkers on
the board. Tables IV, V and VI give the results of tuning the
PERCENTILE parameter for depths 9, 11 and 13, respectively.

In the three tables we observe that the average differ-
ence of the returned evaluation value increases when the
PERCENTILE is decreased. Moreover, the amount of correct
moves is slightly decreased. Table IV shows that when using
PERCENTILE 0.05 for depth 9 a reduction of 64.6% can be

TABLE IV
SEARCH QUALITY FOR DEPTH 9

PERCENTILE ADE Nodes Reduction Same Move

- 0.002 283,919,146 0% 77.8%

3.2 0.060 248,949,119 12.3% 80.8%

1.6 0.016 216,908,729 23.6% 80.5%

0.8 0.047 178,774,337 37.0% 80.1%

0.4 0.094 146,325,442 48.5% 76.1%

0.2 0.137 119,721,255 57.8% 77.2%

0.1 0.164 106,329,883 62.5% 75.2%

0.05 0.178 100,484,818 64.6% 76.1%

TABLE V
SEARCH QUALITY FOR DEPTH 11

PERCENTILE ADE Nodes Reduction Same Move

- 0.001 4,283,166,807 0% 83.5%

3.2 0.020 3,533,643,758 17.5% 86.0%

1.6 0.018 2,548,443,196 40.5% 85.5%

0.8 0.054 1,727,565,360 59.7% 83.6%

0.4 0.097 1,090,612,333 74.5% 80.3%

0.2 0.152 470,174,688 89.0% 80.6%

0.1 0.208 212,490,811 95.0% 79.9%

0.05 0.245 146,313,875 96.6% 78.7%

TABLE VI
SEARCH QUALITY FOR DEPTH 13

PERCENTILE ADE Nodes Reduction Same Move

- 0.001 62,135,790,037 0% 80.9%

3.2 0.005 50,148,996,143 19.3% 79.9%

1.6 0.024 35,969,087,210 42.1% 78.8%

0.8 0.062 24,316,045,552 60.9% 77.8%

0.4 0.100 13,649,007,595 78.0% 72.3%

0.2 0.122 17,532,456,401 71.8% 68.7%

0.1 0.218 1,353,392,195 97.8% 69.4%

0.05 0.256 798,171,386 98.7% 67.6%

achieved without a great loss in quality. In Table V, it may
be observed that with the same values for the PERCENTILE
parameter, a much larger reduction can be achieved. This is
due to the fact that the regression model for estimating v9
based on v5 can be used more often. Furthermore, we see
that the majority of the game tree can be pruned without a
large deterioration of quality. Finally, Table VI shows that
even a larger reduction is obtained at search depth 13.

A general observation in these tables is that the deeper
the search, the larger the game-tree reduction is for the same
PERCENTILEs. It indicates that for increasing depth, a larger
PERCENTILE should be chosen for sustaining quality. In
general, the search tree can be reduced to less than 40%
of its original size without losing quality.

3) Selfplay: We decided to test CHANCEPROBCUT on the
11×11 board. There are two reasons why a large board size
has to be chosen. (1) Previous experiments in Dice were
conducted on the 11×11 board [9], [23]. (2) With games
such as Dice, it is easy to perform a deep search. Our engine
is able to evaluate more than 2 million nodes per second.
In non-deterministic games, an increase in search depth has
limited influence on the playing strength after the first few
plies. Due to these reasons, a large board has to be chosen
to create an interesting variant.

Table VII gives the results of the selfplay experiments on
the 11×11 board using 100 ms. per move. With these time
settings, our search engine reaches 9 plies in the begin game,
and 13 plies in the endgame.

We see that CHANCEPROBCUT does have a small, but sig-
nificant improvement in playing strength. With PERCENTILE
set to 1.6, a win rate of 50.7% is achieved.



TABLE VII
SELFPLAY EXPERIMENT ON THE 11×11 VARIANT

Percentile ChanceProbCut Normal Win rate
3.2 10,103 9,897 50.5%
1.6 10,133 9,867 50.7%
0.8 9,964 10,036 49.8%
0.4 10,060 9,940 50.3%
0.2 9,981 10,019 50.1%
0.1 9,982 10,018 50.1%
0.05 9,882 10,118 49.4%

VIII. CONCLUSIONS

In this article we have introduced the forward-pruning
technique CHANCEPROBCUT for EXPECTIMAX. This tech-
nique is the first in its kind to forward prune in chance nodes.

CHANCEPROBCUT is able to reduce the size of the game
tree significantly without a loss of decision quality in Stratego
and Dice. At depth 11 in Stratego, the game tree can safely
be reduced to 31.3%, for PERCENTILE value 0.8. In Dice, a
safe reduction to 57.9% of the game tree with 13 plies can
be achieved, using PERCENTILE value 1.6. Thus, the first
conclusion we may draw, is that CHANCEPROBCUT finds a
good move faster in the EXPECTIMAX framework, while not
affecting the playing strength. Because CHANCEPROBCUT
finds a good move faster, one might consider different
approaches of investing the gained time. For instance, this
time can be utilized for a more time-consuming evaluation
function.

Selfplay experiments reveal that there is a small im-
provement in playing strength, which is still significant. In
Stratego, CHANCEPROBCUT achieves a win rate of 51.1%
and in Dice 50.7%. The small increase in playing strength
is due to the nature of EXPECTIMAX. We point out two
reasons. (1) The outcome of a game is dependent on luck.
Even a weak player can win some games. (2) Deeper
search has a small influence on the playing strength. Hauk
showed that searching nine plies instead of five increased
the win rate by only 2.5% [23]. A similar phenomenon was
observed in Backgammon [30]. If we take this into account,
CHANCEPROBCUT performs rather well. Thus, the second
conclusion we may draw, is that CHANCEPROBCUT also
improves the playing strength.
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