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Abstract—Monte-Carlo Tree Search (MCTS) is a state-of-the-
art stochastic search algorithm that has successfully been applied
to various multi- and one-player games (puzzles). Beam search is
a search method that only expands a limited number of promising
nodes per tree level, thus restricting the space complexity of
the underlying search algorithm to linear in the tree depth.
This paper presents Beam Monte-Carlo Tree Search (BMCTS),
combining the ideas of MCTS and beam search. Like MCTS,
BMCTS builds a search tree using Monte-Carlo simulations as
state evaluations. When a predetermined number of simulations
has traversed the nodes of a given tree depth, these nodes are
sorted by their estimated value, and only a fixed number of them
is selected for further exploration. In our experiments with the
puzzles SameGame, Clickomania and Bubble Breaker, BMCTS
significantly outperforms MCTS at equal time controls. We show
that the improvement is equivalent to an up to four-fold increase
in computing time for MCTS.

I. INTRODUCTION

Monte-Carlo Tree Search (MCTS) [1], [2] is a best-first
tree search algorithm with Monte-Carlo evaluation of states.
It effectively handles large search spaces by selectively deep-
ening the search tree, guided by the outcomes of Monte-Carlo
simulations. These simulations allow MCTS to take long-term
rewards into account even with distant horizons. Combined
with multi-armed bandit algorithms to balance exploration and
exploitation, MCTS has been shown to guarantee asymptotic
convergence to the optimal policy [2], while providing approx-
imations when stopped at any time.

MCTS has achieved considerable success in e.g. the games
of Go [3], [4], Amazons [5], LOA [6], and Ms. Pacman [7]; in
General Game Playing [8], planning [9], [10], and optimization
[11], [12], [13].

Beam search is a basic search method. It reduces the number
of nodes at each tree level to a constant number, allowing for
search effort linear in the tree depth. Since its first application
in speech recognition [14], it has been used in a multitude
of fields, such as machine translation [15], planning [16], and
scheduling [17].

In this paper, we propose Beam Monte-Carlo Tree Search
(BMCTS), combining the MCTS framework with the idea
of beam search. We demonstrate the significantly stronger
performance of BMCTS as compared to regular MCTS, at
equal time controls, in the three one-player test domains
SameGame, Clickomania, and Bubble Breaker.

This paper is organized as follows. Section II provides the
necessary background on MCTS. After an overview of related
work on beam search in Section III, Section IV proposes
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BMCTS. Section V introduces the test domains, and Section
VI shows the experimental results. Conclusions and future
work follow in Section VII.

II. MONTE-CARLO TREE SEARCH

Monte-Carlo Tree Search (MCTS) [1], [2] is a best-first
search algorithm using statistical sampling to evaluate states.
For each move decision of the player, MCTS constructs a
search tree T , starting from the current game state as root.
This tree is selectively deepened into the direction of the most
promising moves, which are determined by the success of
simulated games starting with these moves. After n simulated
games, the tree contains n+1 states, for which distinct value
estimates are maintained.

MCTS works by repeating the following four-phase loop
until computation time runs out [18]. Each loop represents
one simulated game.

Phase one: selection. The tree is traversed from the root
to one of the leaves. At each node, MCTS uses a selection
policy to choose the move to sample from this state. Critical
is a balance of exploitation of states with high value estimates
and exploration of states with uncertain value estimates.

Phase two: expansion. When a leaf has been reached, one or
more of its successors are added to the tree. In this paper, we
always add the immediate successor of the leaf in the rollout
(cf. [1]).

Phase three: rollout. A rollout (also called playout) policy
is used to choose moves until the game ends. Uniformly
random move choices are sufficient to achieve convergence
of MCTS to the optimal move in the limit, but rollout policies
utilizing basic domain knowledge can improve convergence
speed considerably.

Phase four: backpropagation. The result of the finished
game is used to update value estimates of all states traversed
during the simulation.

Listing 1 shows pseudocode of MCTS for deterministic one-
player games (puzzles), where not only the immediate next
move choice is of interest, but also the best solution sequence
found so far for the entire game. It assumes a uniformly
random rollout policy.

In a variety of applications, a variant of MCTS called Upper
Confidence Bounds for Trees (UCT) [2] has shown excellent
performance. UCT uses the UCB1 formula, originally devel-
oped for the multi-armed bandit problem [19], to select moves
in the tree and to balance exploration and exploitation. In
this paper, a variant of UCT with the selection policy UCB1-
TUNED is used. This policy takes the empirical variance of
moves into account and has been shown to be empirically
superior to UCB1 in several multi-armed bandit problems [19].



MCTS(startState) {
bestResult ← -Infinity
bestSolution ← {}
for(numberOfIterations) {

currentState ← startState
solution ← {}
while(currentState ∈ Tree) {

currentState ← selectAction(currentState)
solution ← solution + currentState

}
addToTree(currentState)
while(simulationNotEnded) {

currentState ← randomAction(currentState)
solution ← solution + currentState

}
result = cumulativeReward(currentState)
forall(state ∈ solution) {

state.value ← backPropagate(state.value, result)
}
if(result > bestResult) {

bestResult ← result
bestSolution ← solution

}
}
return (bestResult, bestSolution)

}

Listing 1. MCTS with random rollout policy.

Described in the framework of reinforcement learning, there
are two interacting processes within MCTS.

Policy evaluation: In the backpropagation phase after each
simulated game, the result of that game is used to update the
value estimates of each visited state s ∈ T .

ns ←− ns + 1 (1a)

V̂ π(s)←− V̂ π(s) + r − V̂ π(s)
ns

(1b)

where ns is the number of times state s has been traversed in
all simulations so far, r is the reward received at the end of
the current simulation, and V̂ π(s) is the current estimate of
the value of state s for a player following policy π.

Policy improvement: During each simulation, the policy
adapts to the current value estimates. In case of MCTS using
UCB1-TUNED in the selection phase, and a uniformly random
policy in the rollout phase, let
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be an upper confidence bound for the variance of move m in
state s, where ns,m is the number of times move m has been
chosen in state s in all simulations so far, and rs,m,t is the
game result achieved when move m was chosen in state s for
the t-th time. Let
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be an upper confidence bound for the value of move m in
state s. Then, the selection and rollout policies of the MCTS
algorithm using UCB1-TUNED are given by

π(s) =

argmax
m∈A(s)

(
V̂ π
(
Sm(s)

)
+ C × UVal(s,m)

)
if s ∈ T

random(s) otherwise

where Sm(s) is the state reached from s with move m,
random(s) chooses one of the moves available in s with
uniform probability, and C is an exploration coefficient, which
has a domain-dependent optimum.

III. BEAM SEARCH

Beam search [14] is a technique that reduces the memory
requirements of breadth-first or best-first search at the cost of
completeness and optimality. Its basic idea is using heuristic
value estimates to determine the most promising states at each
level of the search tree. Only these states are then selected for
further expansion, while all others are permanently pruned.
Consequently, time and memory complexity of the search
are linear in the beam width W and the tree depth D. By
increasing or decreasing the beam width, memory can be
traded off against solution quality, with W = 1 resulting in a
greedy search, and W =∞ resulting in a complete search.

Beam search has also been extended by combining it with
depth-first search [20] as well as with limited discrepancy
search [21]. These variants turn beam search into a complete
search algorithm, i.e. an algorithm guaranteed to find a solu-
tion when there is one.

In the Monte-Carlo framework, [22] combines beam search
with Nested Monte-Carlo Search (NMCS), a search algorithm
that has shown good results in various single-player games
[23]. Beam search has so far not been applied to MCTS.
A similar idea to beam search, however, has been applied
per node instead of per tree level. Progressive widening or
unpruning [18], [24] reduces the number of children of rarely
visited nodes. Heuristics are used to choose the most promis-
ing children. As the number of rollouts passing through the
node increases, i.e. as the node is found to be more and more
important by the search, the pruned children are progressively
added again. This way, search effort for most nodes can be
reduced, while retaining convergence to the optimal moves in
the limit.

In the next section, we describe an application of the beam
search idea in MCTS, reducing the time and space complexity
of MCTS to linear in the tree depth. Our algorithm does not
require heuristic knowledge.

IV. BEAM MONTE-CARLO TREE SEARCH

In this section, we propose Beam Monte-Carlo Tree Search
(BMCTS), our approach for combining beam search with
MCTS. In addition to the MCTS tree, BMCTS maintains a
counter for each tree depth, counting the number of simulated
games that have passed through any tree node at this depth in
the search so far. During backpropagation, these counters are



compared with the first parameter of BMCTS: the simulation
limit L. If any tree depth d reaches this limit, the tree is pruned
at level d.

Pruning restricts the number of tree nodes at depth d to the
maximum number given by the second parameter of BMCTS:
the beam width W . In order to do this, all tree nodes of depth
d are first sorted for their heuristic values. Due to the large
variance of Monte-Carlo value estimates at low simulation
counts, we use the number of visits of a tree node instead
of its estimated value as our heuristic—nodes that have seen
the highest numbers of simulations are judged to be most
promising by the search algorithm (cf. move selection in
computer Go, e.g. in [18]). Then, the best W nodes at level
d together with all of their ancestor nodes are retained, while
all of their descendants as well as the less promising nodes of
depth d are discarded.

When search continues, no new nodes up to depth d will be
created anymore. The selection policy takes only those moves
into account that lead to the retained nodes. Beyond depth d,
the tree grows as usual.

Listings 2 and 3 show pseudocode of BMCTS for deter-
ministic one-player games, using a uniformly random rollout
policy. Fig. 1 visualizes the three steps of the tree pruning
method pruneTree outlined in Listing 3.

BMCTS(startState) {
bestResult ← -Infinity
bestSolution ← {}
for(numberOfIterations) {

currentState ← startState
solution ← {}
while(currentState ∈ Tree) {

numberOfRolloutsThrough[currentState.depth]++
currentState ← selectAction(currentState)
solution ← solution + currentState

}
addToTree(currentState)
while(simulationNotEnded) {

currentState ← randomAction(currentState)
solution ← solution + currentState

}
result = cumulativeReward(currentState)
forall(state ∈ solution) {

state.value ← backPropagate(state.value, result)
if(numberOfRolloutsThrough[state.depth] = SIMLIMIT) {

pruneTree(state.depth)
}

}
if(result > bestResult) {

bestResult ← result
bestSolution ← solution

}
}
return (bestResult, bestSolution)

}

Listing 2. BMCTS with random rollout policy.

pruneTree(depth) {
nodeSet ← treeNodesAtDepth(Tree, depth)
nodeSet ← mostVisitedTreeNodes(nodeSet, BEAMWIDTH)
Tree ← nodeSet + ancestorNodes(nodeSet)

}

Listing 3. Tree pruning for BMCTS.

(a) The tree before pruning on depth d = 2.

(b) The nodes with d = 2 are collected.

(c) The W = 3 nodes with the highest visit
count are retained, the rest is pruned.

(d) Ancestor nodes are added. Search contin-
ues on the new tree.

Fig. 1. Sketch of tree pruning (depth d = 2, beam width W = 3) for
BMCTS.

V. TEST DOMAINS

We tested Beam Monte-Carlo Tree Search on three different
domains: The puzzles named “SameGame”, “Clickomania”
and “Bubble Breaker”, which are popular test domains for
Monte-Carlo search approaches [25], [26], [27], [28], [29].
These puzzles have identical move rules, but different scoring
rules, resulting in different distributions of high-scoring solu-
tions. The decision problem associated with these optimization
problems is NP-complete [30].

The rules of the puzzles are as follows. A two-dimensional
board or grid is filled with M × N tiles of C different
colors, usually randomly distributed, at the start. Each move
consists of selecting a group of two or more vertically or
horizontally connected, identically-colored tiles. When the
move is executed, the tiles of this group are removed from
the board. If there are tiles above the deleted group, they fall
down. If an entire column of the board is emptied of tiles,
the columns to the right shift to the left to close the gap. The



game ends when no moves are left to the player. The score the
player receives depends on the specific variant of the puzzle:

• Clickomania. The goal of Clickomania is to clear the
board of tiles as far as possible. At the end of each game,
the player receives a score equivalent to the number of tiles
removed.
• Bubble Breaker. The goal of Bubble Breaker is to create

and then remove the largest possible groups of tiles. After
each move removing a group of size groupSize, the
player receives a score of groupSize∗(groupSize−1)
points.
• SameGame. In SameGame, both the removal of large

groups and the clearing of the board are rewarded. Each
move removing a group of size groupSize results in a
score of (groupSize−2)2 points. Additionally, ending the
game by clearing the board completely is rewarded with an
extra 1000 points. If the game ends without clearing the
board, the player receives a negative score. It is computed
by assuming that all remaining tiles of the same color are
connected into virtual groups, and subtracting points for all
colors according to the formula (groupSize−2)2.
We compared regular MCTS and BMCTS in all three do-

mains, using a random rollout policy. For SameGame, we also
employed a state-of-the-art informed rollout policy, consisting
of the TabuColorRandomPolicy [28] (setting a “tabu color” at
the start of each rollout that is not chosen as long as groups of
other colors are available) in combination with a multi-armed
bandit learning the best-performing tabu color for the position
at hand (based on UCB1-TUNED).

VI. EXPERIMENTS

In Subsection VI-A, we show the parameter landscape of
BMCTS in our test domains, explaining how optimal parame-
ter settings were found. Afterwards, these settings are used in
Subsection VI-B to compare the performance of BMCTS and
regular MCTS.

A. Parameter Optimization

In our first experiments, we examined the influence of the
BMCTS parameters C, L and W , determining optimal values
for each test domain. The experiments were conducted on
500 randomly generated 20×20 boards with 10 different tile
colors in Clickomania, 250 randomly generated 15×15 boards
with 5 different tile colors in Bubble Breaker and SameGame
with random rollouts, and 1000 randomly generated 15×15
boards with 5 different tile colors in SameGame with informed
rollouts. Computation time per board was 60 seconds. Rollout
results were normalized to the interval [0, 1].

As a first step, we determined optimal exploration factors
C for regular MCTS in all test domains. 10 to 25 different
values of C were tested per game. The best settings found
were C = 0.0009 for SameGame with informed rollouts,
C = 0.0025 for SameGame with random rollouts, C = 0.0275
for Bubble Breaker and C = 0.012 for Clickomania. Manual
experimentation showed that the optimal setting of exploration
factor C for BMCTS was in most cases identical to the

optimal setting for MCTS at the same time controls. Only
in Clickomania, BMCTS performed better at a slightly more
explorative setting (C = 0.0175 instead of C = 0.012). Fig.
2, 3, 4 and 5 illustrate the influence of BMCTS parameters
further by showing the performance for different settings of L
and W . Here, C is set to the value that achieved best results
with the optimal choice of L and W .

In two of the puzzle variants considered (Bubble Breaker
and SameGame with random rollouts), the optimal beam
width found was 1. This setting reduces beam search to a
variant of move-by-move search as described in [26], a time-
management technique that distributes search time over all
moves in the game instead of globally searching from the ini-
tial position. In the two other variants however, optimal beam
widths are larger: 100 in Clickomania and 25 in SameGame
with informed rollouts. This demonstrates the positive effect
of genuine beam search, examining a number of alternative
moves instead of focusing on just one when proceeding with
the next move of the game. The effect is most pronounced
in Clickomania, as shown in Fig. 5. The specific class of
problems for which large beam widths are most successful
remains to be characterized in future work.
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Fig. 2. Performance of BMCTS in SameGame with random rollouts. C =
0.0009 for all conditions.

B. Comparison to MCTS
After finding for each game and time setting the optimal

settings for exploration coefficient C (both for MCTS and
BMCTS), simulation limit L and beam width W , independent
test sets of 1000 positions for each game were used to produce
the results reported in this subsection. Clickomania boards had
20×20 boards with 10 different tile colors, while in all other
test domains 15×15 boards with 5 different tile colors were
used.

Fig. 6, 7, 8 and 9 show the results of our comparison. In all
three puzzles—in SameGame using both random and informed
rollouts—BMCTS significantly outperformed regular MCTS
at 60 second time controls (p<0.0001 according to a two-
tailed paired t-test). In Clickomania and in SameGame using
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Fig. 3. Performance of BMCTS in SameGame with informed rollouts. C =
0.0025 for all conditions.
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Fig. 4. Performance of BMCTS in Bubble Breaker. C = 0.0275 for all
conditions.
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Fig. 5. Performance of BMCTS in Clickomania. C = 0.0175 for all
conditions.

informed rollouts, the improvement is comparable to almost a
doubling in search time for regular MCTS. In Bubble Breaker
and in SameGame using random rollouts, it is comparable to
roughly a four-fold increase in search time.
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Average best solution over 1000 test positions, in points

Fig. 6. Performance of MCTS vs. BMCTS in SameGame with random
rollouts. MCTS settings: C = 0.0009 for 60 seconds, C = 0.0016 for
120 seconds, C = 0.002 for 240 seconds. BMCTS settings: C = 0.0009,
L = 90, 000, W = 1.
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Fig. 7. Performance of MCTS vs. BMCTS in SameGame with informed
rollouts. MCTS settings: C = 0.0025 for 60 seconds, C = 0.0035 for
120 seconds, C = 0.0065 for 240 seconds. BMCTS settings: C = 0.0025,
L = 50, 000, W = 25.

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we proposed Beam Monte-Carlo Tree Search
(BMCTS), integrating the concept of beam search into an
MCTS framework. Experimental results show that BMCTS
significantly outperforms regular MCTS in the test domains of
Bubble Breaker, Clickomania and SameGame. Depending on
the domain, optimal parameter settings either result in a move-
by-move time management scheme (W = 1), or in a new
type of Monte-Carlo search that makes use of a predetermined
number of alternative moves per tree level (W > 1). The
performance improvement achieved by BMCTS is comparable
to that achieved by a two-fold increase in computation time for
regular MCTS in Clickomania and SameGame with informed
rollouts. It is comparable to the effect of a four-fold increase
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Fig. 8. Performance of MCTS vs. BMCTS in Bubble Breaker. MCTS
settings: C = 0.0275 for 60 seconds, C = 0.0475 for 120 seconds,
C = 0.055 for 240 seconds. BMCTS settings: C = 0.0275, L = 110, 000,
W = 1.
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Fig. 9. Performance of MCTS vs. BMCTS in Clickomania. MCTS settings:
C = 0.012 for 60 seconds, C = 0.016 for 120 seconds, C = 0.022 for 240
seconds. BMCTS settings: C = 0.0175, L = 3, 000, W = 100.

in computation time in Bubble Breaker and SameGame with
random rollouts.

Four directions appear promising for future work. First,
BMCTS as presented in this paper does not retain the asymp-
totic properties of MCTS—due to the permanent pruning of
nodes, optimal behavior in the limit cannot guaranteed. The
addition of e.g. gradually increasing beam widths, similar to
progressive widening [18], [24] but on a per-depth instead
of per-node basis, could restore this important complete-
ness property. Second, the basic BMCTS algorithm could
be refined in various ways, for instance by automatically
learning different simulation limits and beam widths for each
tree depth. Any such refinements should ideally go along
with characterizations of the classes of tasks for which they
are most effective. Third, it would be interesting to further
investigate the influence of the strength of the rollout policy
on the performance of BMCTS—testing SameGame with
both random and informed rollouts was a first step in this
direction. Fourth, it would be worthwhile to compare our beam
search variant of MCTS to the beam search variant of NMCS
proposed in [22].
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