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Abstract—Hierarchical Task Network Planning is an Auto-
mated Planning technique. It is, among other domains, used in
Artificial Intelligence for video games. Generated plans cannot
always be fully executed, for example due to nondeterminism
or imperfect information. In such cases, it is often desirable to
re-plan. This is typically done completely from scratch, or done
using techniques that require conditions and effects of tasks to
be defined in a specific format (typically based on First-Order
Logic). In this paper, an approach for Plan Reuse is proposed
that manipulates the order in which the search tree is traversed
by using a similarity function. It is tested in the SimpleFPS
domain, which simulates a First-Person Shooter game, and shown
to be capable of finding (optimal) plans with a decreased amount
of search effort on average when re-planning for variations of
previously solved problems.

I. INTRODUCTION

The problem of deciding what tasks should be executed
by an agent in a real-time video game can be addressed in
a number of different ways. Commonly used techniques [1],
[2] are Finite State Machines, Behavior Trees, Utility-based
decision making systems, and Automated Planning. One of
the first well-known applications of Automated Planning in
video games is in F.E.A.R. [3].

Hierarchical Task Network (HTN) Planning [4], [5] is an
automated planning technique that has seen some use in video
games. HTN Planning has been used to control a team of
bots in the game Unreal Tournament 2004 [6], to generate
scripts offline for the game The Elder Scrolls IV: Oblivion
[7], in serious gaming [8], [9], and in the adversarial real-
time strategy game µRTS [10]. Examples of commercial video
games that are known to use HTN Planners are Killzone 3 and
Transformers 3: Fall of Cybertron [11].

Generated plans cannot always be successfully executed,
because HTN Planners are not able to predict the actions of
other agents or deal with imperfect information and nondeter-
minism in the environment without incorporating extensions
[12], [13]. Existing systems using HTN Planning in video
games typically construct new plans from scratch whenever a
plan fails during execution [8]. Planning systems outside the
context of video games do the same in some cases [14], but
there is also work describing more sophisticated approaches
[15]–[20]. These approaches require conditions and effects
of tasks on the environment to be explicitly defined in a
predefined format (typically based on First-Order Logic).

This paper proposes an approach for reusing old plans of
an HTN Planner that does not require conditions and effects

to be explicitly defined, but allows for them to be defined
in functions that are essentially black boxes from the point
of view of the Planner. The main purpose of reusing plans
is to speed up the process of finding a new plan. Another
motivation for reusing plans is to increase the likelihood of
finding a plan that is similar to a partially executed previous
plan. In video games this can reduce the number of times that
an agent abruptly changes behavior, and therefore increase the
believability of the agent’s behavior. It is tested on problems
from the SimpleFPS [21] domain, using the Unreal Engine
4 (UE4) game engine as test environment. UE4 is the latest
version of a commercial and widely-used game engine. Ex-
periments have been carried out to measure the effect of Plan
Reuse on the search effort required to find optimal plans. The
effect of Plan Reuse on the quality of plans returned when
terminating a search process early has also been measured.

The remainder of the paper is structured as follows. Sec-
tion II provides background information on HTN Planning. In
Section III, the implementation of the HTN Planning algorithm
is described. The approach used for reusing old plans is
described in Section IV. A description of the experiments can
be found in Section V. Finally, Section VI concludes the paper
and provides ideas for future research.

II. HIERARCHICAL TASK NETWORK PLANNING

A Hierarchical Task Network (HTN) Planning Problem [4],
[5], [22] can be defined as a tuple P = (S, T,O,M), where
S is the current World State, T is the current Task Network,
O is the set of Operators, andM is the set of Methods. More
specifically, S is a description of the environment in which the
agent is located, and should contain all the information that
is relevant for the planning process. T is a collection of tasks
that need to be accomplished by the agent, where tasks can
be constrained to require accomplishment before certain other
tasks in the network. A task can be either primitive, meaning
that it directly corresponds to an action that the agent can
execute, or compound, meaning that it represents a higher-
level plan that needs to be decomposed into a Task Network.
S and T change during the planning process.

Every Operator o ∈ O represents the execution of a single
primitive task tp. Given S, o defines conditions that must hold
in S for tp to be applicable in S, defines how S changes
if tp is applied (executed by the agent) in S, and defines a
nonnegative cost for applying tp. Similarly, every Method m ∈
M represents the execution of a single compound task tc.



Fig. 1. Example Task Network. An arrow pointing from one task to another
task means that the first task is constrained to require execution before the
second task (the first task is a predecessor of the second task). Boxes with a
double line are compound tasks, boxes with a single line are primitive tasks.

Fig. 2. Example Method. “Take Out ?Enemy” is the compound task for
which this method is defined, where “?Enemy” is a variable. The boxes with
dashed lines denote task networks. The two arrows pointing away from this
compound task point to task networks that the original compound task can be
decomposed into, under certain conditions. The left decomposition consists
of only a single compound task, whereas the right decomposition consists of
an ordered sequence of two primitive tasks.

Given S, m defines all the different Task Networks that tc
can be decomposed into. O and M remain constant during
the planning process.

An HTN Planning system is expected to take a Problem P
as input, and produce a valid plan Π as output. A plan Π is
a valid plan for P if it is an ordered list of primitive tasks
that can be obtained by consecutively applying Methods and
Operators from M and O to the tasks in T in an order that
satisfies the constraints of T , until T is empty. Applying an
Operator o removes the corresponding primitive task tp from
T , appends it to Π, and changes S as defined by o. Applying
a Method m replaces the corresponding compound task tc in
T with a subnetwork that is a valid decomposition according
to m in S (m can have more than one valid decomposition
in any given state S). A decomposition is a Task Network
that must be fully executed for the original compound task to
be considered executed, and can be viewed as a lower-level
description of the more abstract compound task.

An example of a Task Network is depicted in Figure 1. An
agent can execute this Task Network by first taking out two
defenders, then picking up an enemy flag, and then returning
home (to his own base). It does not matter in which order the
two enemy defenders are taken out, but they both need to be
taken out before the agent can pick up the enemy flag. The
two tasks to take out defenders are compound tasks, meaning
that they cannot be executed directly but need to be refined
further. An example method to do so is depicted in Figure 2.
This method defines that the compound task to take out an

enemy can be decomposed into a single compound task to
snipe the enemy under the condition that the agent has a Sniper
Rifle, or it can be decomposed into an ordered sequence of
two primitive tasks under the condition that the agent has a
weapon. If neither condition is satisfied, the compound task
cannot be decomposed and therefore cannot be executed.

In this description of the HTN Planning formalism, it has
only been specified what information needs to be defined by
the various structures (such as Operators and Methods), and
not how this should be specified. Many existing planners, such
as SHOP2, define world states, conditions and effects in (a
subset of) First-Order Logic. The framework described in this
paper makes no assumptions about the form in which this
information is defined, and allows for it to be implemented
directly in C++ functions and variables, as described in more
detail in Section III. It means that there are few restrictions
on what can be specified in an HTN Planning problem. It is
possible to define planning problems where the tasks are not
totally ordered, and variables are allowed. Such problems can
become undecidable [23].

III. HTN PLANNER

This section describes the implementation of the HTN
Planner plugin that has been developed for Unreal Engine 4.

A. Planning Problem Definition

Many HTN Planners, like SHOP2 [22], define the struc-
tures of an HTN Planning problem, such as Operators, using
formalisms based on logical expressions. The HTN Planner
described in this paper does not use such a logic-based
formalism, but instead uses a similar approach as SHPE [24].
Instead of defining all the relevant information of a planning
problem using logical expressions, it is defined directly using
C++ functions and variables. The main motivation for this
approach is that it does not require an inference engine, and
is expected to require less processing time [24].

For primitive and compound tasks, two base classes are
provided with a number of virtual functions that can be
implemented in subclasses to define domain-specific tasks.
A primitive task tp has the following functions that can
be overridden; ApplyTo(S), which should be implemented to
apply any effects of tp to a world state S; ExecuteTask(), which
should be implemented to execute tp during real gameplay
(as opposed to during the planning process); GetCost(S),
which can be implemented to return the cost of applying tp
in the world state S; and IsApplicable(S), which should be
implemented to return a boolean value indicating whether or
not tp is applicable in a world state S. A compound task tc
only has a single function to override; FindDecompositions(S),
which should be implemented to return a list T , where every
T ∈ T is a Task Network that is a valid decomposition of
tc in the world state S. Note that, in this implementation, the
concepts of Operators and Methods as mentioned in Section II
are no longer used, and any information that these structures
contained is instead located directly in the corresponding
primitive and compound tasks.



Algorithm 1 The HTN Planning algorithm
1: function INITIALIZE(T0, S0)
2: Fringe ← [(T0, S0,∅, 0)]
3: BestCost ←∞

4: function FINDPLAN
5: while Fringe 6= ∅ and TIMEAVAILABLE() do
6: (Ti, Si,Πi, Ci)← Fringe.NEXT()
7: if Ti is empty then
8: BestPlan ← Πi

9: BestCost ← Ci

10: continue
11: for all t ∈ Ti without predecessors do
12: if t is primitive then
13: if t.ISAPPLICABLE(Si) then
14: T ′ ← Ti.REMOVE(t)
15: S′ ← t.APPLYTO(Si)
16: Π′ ← [Πi, t]
17: C′ ← Ci + t.GETCOST(Si)
18: Fringe.ADD((T ′, S′,Π′, C′))
19: else
20: D ← t.FINDDECOMPOSITIONS(Si)
21: for all D ∈ D do
22: T ′ ← Ti.REPLACE(t,D)
23: Fringe.ADD((T ′, Si,Πi, Ci))

B. Finding a Plan

The HTN Planner is expected to take a Task Network T0 and
an initial World State S0 as input, and produce a valid plan Π
as output, as described in Section II. The algorithm that has
been implemented to do this is similar to the algorithm used
by SHPE [24] and SHOP2 [22]. It performs a search through
the space of all (partially) decomposed networks, starting from
T0. The intuition behind it is that T0 is a highly abstract Task
Network, containing a relatively large number of compound
tasks, and it is gradually simplified by decomposing compound
tasks and moving primitive tasks from the network into the
plan. Primitive actions are inserted into the plan in the same
order in which they are intended to be executed after planning.

Pseudocode for this algorithm can be found in Algorithm 1.
The algorithm is initialized with a single tuple (T0, S0,∅, 0)
in the Fringe. The Fringe is the collection of nodes in the
search tree that have not been processed yet. Every element
in this collection contains the Task Network of tasks that have
not yet been completed, the current world state, the (partial)
plan constructed so far, and the execution cost so far.

In each iteration, one node (Ti, Si,Πi, Ci) is removed from
the Fringe, and every task t ∈ Ti that does not have any
predecessors is processed. A predecessor of t is a task that
is constrained by Ti to require processing before t. All tasks
that are allowed to be executed directly according to Ti are
processed, and all other tasks are not yet processed.

If t is a primitive task that is applicable in Si, t is applied
to Si, appended to Πi, and removed from Ti. This results
in a single new tuple that is placed in the Fringe. If t is a
compound task, one new tuple is placed in the Fringe for
every valid decomposition D of t in Si. In this case, Ti is
modified in every new tuple by replacing t in Ti with D.

In the planner described in this paper, the Fringe has been
implemented as a stack. This means that the algorithm acts as
a depth-first search. Many other planners, such as SHOP2 and
SHPE, are also implemented in this way.

C. Branch-and-bound and Heuristic Cost Estimation

A branch-and-bound optimization can speed up the search
algorithm described above when searching for an optimal
solution. Immediately after taking a tuple (Ti, Si,Πi, Ci) from
the Fringe in line 6 of Algorithm 1, the cost Ci for executing
the partial solution Πi is compared to the cost of the best
solution found so far (BestCost). If at this stage Ci ≥ BestCost,
Πi cannot lead to an improvement on the best solution found
so far, and the algorithm can immediately continue with the
next element of the Fringe. This is the same branch-and-bound
optimization as described in [22], [24].

An admissible heuristic function h(Ti, Si) that estimates the
future cost of executing the remaining Task Network Ti given
a current world state Si can be used to improve the branch-
and-bound optimization. Given such a function, the algorithm
can prune partial solutions where Ci + h(Ti, Si) ≥ BestCost.

Such a heuristic function can incorporate domain-specific
knowledge, but if two extra restrictions are placed on the
problem definition it is also possible to define a domain-
independent heuristic function. The first of these restrictions is
that the cost of executing a primitive task cannot depend on the
world state in which it is executed. The second restriction is
that compound tasks cannot be defined in such a way that they
can result in an infinitely long sequence of decompositions
(which is possible when using recursion in the definition
of compound tasks). Under these restrictions, the following
domain-independent heuristic function h(Ti) is well-defined:

h(Ti) =
∑
t∈Ti

h(t) (1)

h(tp) = Cost(tp) (2)

h(tc) = min
D∈D

h(D) (3)

In Equation 1, the world state Si has been omitted as an
argument because it cannot provide any information for a
domain-independent heuristic. The heuristic function h(t) for
a single task t used in Equation 1 is defined by Equation 2
for the case where t is primitive, or Equation 3 for the case
where t is compound. In Equation 3, D denotes the set of all
possible decompositions of tc in any possible world state.

IV. PLAN REUSE

In this section, an approach for reusing old plans to more
efficiently find new plans for similar problems is described.
This approach does not require effects and conditions of tasks
to be explicitly defined in a predefined format.

When an HTN Planner has previously found a plan for some
planning problem, and is later required to find a plan for a new
planning problem that is similar to the previous problem, it



is expected to be possible to make use of the old solution
to speed up the planning process. Existing approaches for
reusing or repairing plans in an HTN Planner [15]–[20] require
effects and conditions of tasks to be defined in a predefined
format (typically using First-Order Logic). In most cases, this
is because they analyze dependencies between the conditions
and effects of tasks and store this information in graphs or
other structures. These approaches are not compatible with
the implementation of the planner as described in Section III,
where the conditions of tasks and the effects of tasks on the
world state are implemented in functions that are black boxes
from the point of view of the Planner. The following approach
does not have this problem.

Let Pold = (Sold, T old,O,M) be an old planning problem
for which an optimal plan Πold was generated using the HTN
Planning algorithm as described in the previous section. Let
Pnew = (Snew, Tnew,O,M) be a new planning problem for
which the HTN Planner needs to find a solution Πnew. O and
M are equivalent for the two problems, so the same sets of
primitive and compound tasks are defined. The assumption is
made that Sold and Snew are in some sense similar, and that
T old and Tnew are also in some sense similar. Finally, the
assumption is made that an optimal solution Πnew will, due
to the previous assumptions, also be similar to Πold.

The intuition behind the approach is that it is likely to find
higher quality solutions first if branches of the search tree that
led to Πold are prioritized when traversing the new search tree
to look for Πnew. Similar ideas have also previously been used
in game-tree search algorithms for abstract games [25], [26].
There are two benefits to finding high quality solutions as soon
as possible. The first benefit is that, if in a real-time setting
such as a video game the planning process is terminated early,
a higher quality plan will be available. The second benefit
is that the upper bound on the cost of the optimal plan is
lowered more quickly, and therefore the branch-and-bound
optimization can prune larger parts of the search space.

A. Search Tree Structure

Because the approach for plan reuse relies on manipulating
the order in which the planning algorithm traverses branches
of the search tree, it is useful to first take a closer look at the
structure of this search tree.

An example of a search tree for a simple planning prob-
lem, with only a single compound task in the initial Task
Network, is depicted in Figure 3. A node Ni in the search
tree encapsulates a tuple (Ti, Si,Πi, Ci) as found in Algo-
rithm 1. When Ni is visited (returned by Fringe.Next() and
processed as seen in the pseudocode), a set of successor nodes
Successors(Ni) can be generated. For example, in Figure 3,
Successors(A) = {B,E}. Successors(Ni) is empty if Ni

gets pruned by the branch-and-bound optimization, or if Ni

is a leaf node. A leaf node is either a solution node if Ti
is empty, or a failed node if Ti is non-empty and does not
contain any tasks without predecessors that can be executed
in Si. In the figure, D and G are solution nodes.

Fig. 3. Example search tree. Every circle represents a node in the search tree.
The boldface letters are used to refer to specific nodes in the text. The Task
Network of tasks that still need to be solved is shown under this identifier for
every node. Ci are compound tasks, and Pi are primitive tasks. The text on
every branch describes the change that is applied on that transition between
two nodes. Nodes D and G have empty Task Networks.

If Successors(Ni) is non-empty, Ni has at least one succes-
sor node. If Ti is totally ordered, meaning that there is exactly
one task t ∈ Ti that does not have any predecessors, there will
be exactly one successor node if t is primitive, and there can
be more than one successor node if t is compound. Traversing
a branch in this situation can be viewed as committing to solve
t in a certain, concrete way. If Ti is not totally ordered, there
is one set of branches for every task t ∈ Ti that does not
have any predecessors, and within these sets it is again true
that there is exactly one branch if t is primitive, and there can
be more branches if t is compound. In this case, traversing
a branch corresponds to selecting a task t and then choosing
a concrete way to solve that task t. All Task Networks that
appear in Figure 3 are totally ordered.

B. Similarity-Based Branch Reordering

The proposed approach for Plan Reuse requires a similarity
function Sim(Πold, Ni), which computes a measure of simi-
larity between Πold and a current node Ni in the search tree.
The information available in Ni is the tuple (Ti, Si,Πi, Ci).
The approach described in this paper only makes use of Πi,
which simplifies the similarity function to Sim(Πold,Πi).

The example search tree in Figure 3 depicts how the Task
Network T changes in every node, and a description of the
processing that is done to generate successor nodes is placed
on every branch. When a compound task is processed to
generate a successor, only the contents of T change. This
means that, in Figure 3, nodes A, B, C and E all share the same
plan Π. When a primitive task is processed, the description on
the branch indicates how Π changes. This means that nodes
D, F and G all have different plans from the other nodes.

Suppose that, at some point in the planning process that
generated Πold, the compound task C1 was solved using the



path in the right-hand side of the figure. Without any changes
to the definition of a plan Π, any function Sim(Πold,Πi)
returns the same results for the nodes A, B, C and E because
they share the same plan. This means that F is the first node in
which it can be recognized that a path is being continued that
was a part of the optimal solution of Πold. The first change
made to the planning algorithm is to redefine the concept of
a plan Π to also append compound tasks to Π as they are
processed. With this change, it is already possible to recognize
in nodes B and E that they have some similarity with Πold

(they all contain the compound task C1). In node C, it can
then be recognized that an “incorrect” path is traversed (C2

has been added which does not occur in Πold), and in node
F it can be recognized that the “correct” path is continued,
leading to different levels of similarity.

The similarity function proposed in this paper is the function
that computes the longest Currently Matching Streak (CMS).
Intuitively, it is the function that finds the length of the longest
sequence of consecutive tasks in Πold that also occurs at the
end of the current (partial) plan Π. More formally, let Π[i]
denote the ith task in a plan Π. Let m denote the number
of tasks in a plan Π. The similarity measure CMS(Πold,Π)
is then defined as the maximum possible value n such that,
for some index x, Πold[x] = Πi[m], and Πold[x − n + j] =
Πi[m − n + j] for all j where 1 ≤ j < n. A score of 0 is
assigned if Πi[m] does not occur anywhere in Πold.

For example, let Πold = [A,B,C,D,E], Πi = [A,B,C]
and Πj = [A,B,C,X,D,E]. Then CMS(Πold,Πi) = 3,
because the entire sequence of tasks of Πi also occurs as
a consecutive sequence in Πold. Πj also contains the same
sequence, but in Πj the sequence is followed by a non-
matching task X , and then followed by another streak of
length 2 that occurs in Πold. Therefore, CMS(Πold,Πj) = 2.

This similarity measure “rewards” streaks of consecutive
tasks that also occurred in the same order in Πold, and
also instantly punishes appending a non-matching task to an
existing matching streak by resetting the score to 0. It is used
to sort nodes for processing as follows. A node Ni is processed
before a node Nj if CMS(Πold,Πi) > CMS(Πold,Πj). If
CMS(Πold,Πi) = CMS(Πold,Πj) = 0, the CMS scores of
the closest ancestor nodes with non-zero CMS scores are used
instead of the CMS scores of the nodes themselves. Finally,
ties are broken by using the same ordering as a regular DFS.
An example search tree is depicted in Figure 4. The numbers
in this figure indicate the order in which parts of the subtree
are processed.

C. Domain-Specific Ordering

The approach for reordering branches based on a similarity
measure as described above is expected to be better than an
arbitrary ordering of branches in cases where the new planning
problem is related to the old planning problem. In reality,
however, the branches typically are not ordered arbitrarily but
are already ordered more efficiently based on domain-specific
knowledge. For example, if a compound task is processed to
find an item of a specific type somewhere in a map, and

Fig. 4. Example search tree with plan reuse. Circles represent individual
nodes, and triangles represent arbitrarily large subtrees. The numbers indicate
the order in which nodes or subtrees are processed. Thick lines represent
branches where a “correct” choice was made, meaning a task was added that
continued a current matching streak or started a new streak.

one valid decomposition is created for every item of that
type, these branches can be ordered according to the distance
between the agent and those items. Branches for items that
are already nearby are then explored first.

When there is already a good ordering of branches based
on domain-specific knowledge, Plan Reuse can be detrimental,
especially if it is also uncertain if a new planning problem is
really similar to an old problem. Two approaches are proposed
to reduce the likelihood of Plan Reuse having detrimental
effects in the presence of domain-specific ordering, at the cost
of also reducing the potential gains of Plan Reuse.

The first approach is the introduction of a parameter M
denoting the Minimum Streak Length required for branches to
be reordered according to their CMS score. Any CMS score
that is less than M is simply set to 0. This makes the plan reuse
less aggressive, which means there are fewer potential gains,
but it is also more likely that a matching streak of tasks can
actually be continued when it already has a sufficient length.

The second approach is to make the search probabilistic.
This idea is inspired by a probabilistic approach for resuing
plans in classical planning [27]. A parameter p is introduced,
where 0 ≤ p ≤ 1, which defines the probability with which
the planner temporarily ignores parts of the search tree that are
prioritized according to Plan Reuse, and instead searches parts
that are not prioritized in a DFS manner. This idea has been
implemented as follows. Whenever the planning algorithm
processes a leaf node, the algorithm is set in a mode where
it ignores prioritized nodes with probability p, and it is set
in a mode where it does not ignore prioritized nodes with
probability 1 − p. Nodes are considered to be prioritized if
and only if they are on a path that contains some node with
CMS > 0. The reason for continuing to run in the same
mode until a leaf node is processed is to avoid switching
modes too often. Nodes that are pruned by the branch-and-
bound optimization are not considered to be leaf nodes. The
parameter value p = 0 means that the ordering of Plan Reuse



always overrides the ordering of domain-specific heuristics,
and p = 1 means that Plan Reuse is not used. With 0 < p < 1,
lower values for p are more suitable for cases where Plan
Reuse is expected to be more reliable than domain-specific
heuristics, and higher values are more suitable otherwise.

V. EXPERIMENTS

This section describes the setup and the results of the exper-
iments that have been carried out to evaluate the performance
of the approach for Plan Reuse.1

A. Experimental Setup

SimpleFPS [21] is a planning domain that has been designed
to simulate planning problems in FPS games. Originally it
was defined as a classic planning domain, but it has also
been translated into an HTN Planning domain and used for
the evaluation of the HTN Planner SHPE [24]. Even though
SimpleFPS is only a simulation of an FPS game, and not a
real game, the generated planning problems are not necessarily
less complex. With an average optimal plan length of 32 in the
experiments described below, the problems can be estimated to
be an order of magnitude more complex than those observed
in real games [28].

Problems of this planning domain have been randomly
generated and used to evaluate the performance of Plan Reuse
in comparison to the same planning algorithm without Plan
Reuse. The experiments have been carried out inside UE4.
This means that any overhead involved in implementing and
running a planner inside a game engine, as opposed to running
it in isolation, is included in the results. The results were
obtained using an Intel Core i5 CPU (2.67GHz), running on
Windows 7. During the planning processes in these experi-
ments, the memory usage of the entire plugin (including the
SimpleFPS map data and the constant memory usage of the
planner when idle) was at most in the order of 1 MB.

The original version of SimpleFPS is deterministic (after
random problem generation), and assumes that the agent has
access to perfect information. This means that these problems
do not require any re-planning. For these experiments, the
problems have been changed such that all doors in the maps
are assumed to be unlocked initially, and the agent only obtains
the information that a door is locked if the agent attempts
to move through it. This means that the planner typically
finds invalid solutions first, and problems often require re-
planning when new information is obtained. To evaluate the
performance of Plan Reuse, these “re-planning episodes” have
been performed both with and without Plan Reuse. The
previous plan is used as Πold for Plan Reuse, but first pre-
processed to remove all tasks that have already been executed.

Furthermore, the SimpleFPS domain was changed to punish
the agent with an extra cost (equivalent to 50 “normal” tasks)
for plans in which it chose for a different attacking approach
from the original plan, where the three possible attacking

1The implementation of the planner used in these experiments, and
a more detailed description of the implementation, are available at
https://github.com/DennisSoemers/HTN Plan Reuse.

TABLE I
EFFECTS OF PLAN REUSE IN TOTAL

Parameter Values ∆Nodes Processed ∆Time

M = 10, p = 0 -7.04% -11.11%
M = 10, p = 0.25 -11.51% -18.60%
M = 20, p = 0 -1.70% +1.86%

M = 20, p = 0.25 -1.18% +3.53%
M = 30, p = 0 -2.81% -2.41%

M = 30, p = 0.25 -2.43% -0.98%

approaches are melee, ranged and stealth. This means that
if, for example, the old plan involved picking up a knife that
turns out to be behind a closed door, it is unlikely that a new
optimal plan will instead involve picking up a gun somewhere
else. With this change, the likelihood of parts of Πold still
being useful for a new optimal solution is increased. It is still
possible that there also is a second knife somewhere in a more
convenient location, so there also still are problems where Plan
Reuse can be detrimental.

Six different variants of Plan Reuse have been tested based
on the approach described in Section IV, with different values
for the parameters M and p. For M , the values 10, 20 and
30 have been tested. The optimal value for this parameter
is domain-specific though, and different values may be more
suitable for different problems. The value M = 1 has also
shortly been tested, but was found to be too aggressive, and
has not been included in the results. For p, the values 0 and
0.25 have been tested, where p = 0 means the use of Plan
Reuse is not probabilistic. The value of p = 0.25 was chosen
after a smaller number of tests, but is also close to 0.3, which
is one of the values used for a similar parameter in [27].

B. Results

A total of 209 problems were completely processed by all
variants of Plan Reuse, of which 10 problems were proven not
to have any solutions. There were 22 problems that were not
solved by any of the variants because they were terminated due
to taking too much time. Planning processes were terminated
early and declared a failure if no solution was found at all
within 75 seconds, or no optimal solution within 150 seconds.

Table I shows the total change in the number of nodes
processed and the amount of time spent planning of all the
planning problems added together. It shows that especially the
two most aggressive variants of Plan Reuse, with M = 10,
perform well. The variants with M = 20 have a weak
performance. This is largely caused by one specific problem,
which is one of the largest problems in the set, where Plan
Reuse with M = 20 turned out to be highly detrimental. The
mean change in the absolute number of nodes processed by
the variant with M = 10 and p = 0.25 is significant according
to a paired, two-tailed Student’s t-test with a significance level
of 0.05 (p-value ≈ 0.037).

Figure 5 shows the difference in plan quality that Plan Reuse
makes as a function of the search effort. In this figure, all
planning problems have been mapped to a single measure of
search effort and a single measure of plan quality. Informally,
if a plot has a point y at x = 0.5, that variant of Plan Reuse
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Fig. 5. The change in relative solution quality obtained by adding Plan Reuse
as a function of relative search effort.

changes the plan quality by y% on average if a planning
process is interrupted after half the search effort that planning
without Plan Reuse would require to find the optimal solution.
A point x on the x-axis denotes that x× n number of nodes
have been processed, where n is the number of nodes that
were required to find (but not necessarily prove) the optimal
solution when planning without Plan Reuse. A point y on the
y-axis denotes the difference in the average quality of the best
solution found so far between planning with and without Plan
Reuse. The quality of a solution is defined as C∗

C × 100%,
where C is the cost of that solution and C∗ is the cost of an
optimal solution for that problem.

All the plots show a decrease close to x = 1. This is simply
because all variants of Plan Reuse have at least some problems
where Plan Reuse is detrimental, and x = 1 denotes exactly
the amount of search effort that planning without Plan Reuse
requires for all problems. So, x = 1 denotes the point in time
where it is no longer possible to do any better than planning
without Plan Reuse, and it is only possible to do worse. The
figure shows that all the variants of Plan Reuse are above the
x-axis (indicating an improvement in average plan quality of
up to 8%) until x approaches 1. The variants with lower values
for M show larger improvements on average. All variants peak
with low amounts of search effort, indicating that Plan Reuse is
especially beneficial if solutions are required in a short amount
of time (for instance, in real-time). For the variants with M <
30, the changes in quality are significant (p-value < 0.05).
There appears to be less variance in the changes in quality for
the variants with p = 0.25 (p-value < 0.01).

C. Unchanged Problems Removed

The results for the problems as described above include all
the problems on which none of the variants of Plan Reuse
made any difference at all in the number of nodes processed
compared to re-planning without Plan Reuse. On some of these
problems, Plan Reuse cannot have any effect because the value
for M is too conservative. This is a side effect of avoiding
detrimental cases, and therefore these problems have not been
excluded from the results above.

TABLE II
EFFECTS OF PLAN REUSE IN TOTAL - NO UNCHANGED PROBLEMS

Parameter Values ∆Nodes Processed ∆Time

M = 10, p = 0 -11.57% -18.26%
M = 10, p = 0.25 -18.92% -29.89%
M = 20, p = 0 -2.79% +1.68%

M = 20, p = 0.25 -1.93% +4.26%
M = 30, p = 0 -4.62% -4.81%

M = 30, p = 0.25 -3.99% -2.75%
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Fig. 6. The change in relative solution quality obtained by adding Plan Reuse
as a function of relative search effort. (No unchanged problems)

However, these unchanged problems can also include prob-
lems where M was not set too high, but Plan Reuse simply did
not result in any significant changes in the ordering, such as
trivial problems where the domain-specific ordering is (nearly)
optimal. For planning domains where such planning problems
are not expected to occur, it can be interesting to look at
the results obtained by removing the problems that remained
unchanged by all variants of Plan Reuse from the sets.

The results with these unchanged problems (117 problems)
removed can be found in Table II and Figure 6. On this set
of problems, Plan Reuse reduces the total number of nodes
processed by up to 18.92% and the processing time by up to
29.89% (both for M = 10, p = 0.25). The peak increase in
average plan quality is up to 20% at a relative search effort
of 20% (M = 20, p = 0.25). The p-values of these results are
nearly identical to those of the corresponding results including
unchanged problems.

VI. CONCLUSION AND FUTURE WORK

In this paper, an approach has been proposed for reusing
previously found plans in an HTN Planner when presented
with new planning problems that are similar to one that was
previously solved. Unlike existing approaches, it does not
require conditions and effects of the domain to be specified in
a pre-determined form, but allows for them to be implemented
in black box functions. The main idea behind the approach is
to manipulate the order in which the search tree is traversed
by using a similarity function for plans.



Plan Reuse has been shown to be capable of reducing the
average number of nodes required to find optimal solutions
for SimpleFPS planning problems [21] that are likely to
have similar solutions to previously solved problems, and
also reduce the computation time. It has also been shown to
improve the average quality of plans when using the planning
algorithm as an anytime algorithm.

For future work, it would be interesting to investigate
whether it is possible to estimate whether Plan Reuse will be
likely to be beneficial or detrimental for a specific planning
problem before the planning process is started. A direction of
future research is to do this automatically by, for instance,
computing a similarity measure between the old and the
new planning problem. If this likelihood can be estimated
accurately, Plan Reuse can be turned off in problems where
it is expected not to be beneficial, and it can be turned on in
problems where it is expected to be beneficial.

Furthermore, it could be interesting to investigate if Plan
Reuse finds plans that are more similar to the old plan in
cases where there are multiple plans that are all optimal
with respect to the cost function. This has been mentioned
as a motivation for Plan Reuse in the paper, because it can
reduce the likelihood of an agent abruptly changing behavior
in a video game and therefore increase the believability of
the behavior. It has not been investigated in this paper’s
experiments because the SimpleFPS problems were found to
typically have a low number of different optimal solutions. The
planner and approach for Plan Reuse have also briefly been
tested in an alpha version of the game of Unreal Tournament,
which uses Unreal Engine 4. These tests are not described in
more detail because the planning problems were too simple
for Plan Reuse to make a noticeable difference. Experiments
with more complex planning problems in later versions of the
game, or in other games, could be done in future research.

Finally, a direction for future work would be to look into
different variants of similarity measures. For instance, the
CMS measure could be changed to have a lower value when
appending a non-matching task to an existing streak, instead
of resetting the score entirely to 0.
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