
Wall Building in the Game of StarCraft with
Terrain Considerations

Martin L. M. Rooijackers and Mark H. M. Winands
Games & AI Group, Department of Data Science and Knowledge Engineering, Maastricht University

Maastricht, The Netherlands
mlm.rooijackers@student.maastrichtuniversity.nl, m.winands@maastrichtuniversity.nl

Abstract—StarCraft is a Real-Time Strategy game, which has
a large state-space, is played in real-time, and commonly features
two opposing players, capable of acting simultaneously. One of
the aspects of the game is building walls. In this paper, we present
an algorithm that can be used for wall building for an agent
playing the game of StarCraft: Brood War.

Index Terms—StarCraft, Wall building, Real-Time Strategy
game

I. INTRODUCTION

One of the aspects of Real-Time Strategy (RTS) games is
wall building. The general strategy of wall building is placing
down structures such that you are safe from an attack at a
given position. Usually this is done to protect your base and
production facilities without having to rely solely on combat
units.

This topic is not unique to StarCraft. Previous work has
been done in the game Empire Earth [1], where the developers
used Graham Scan to decide where to place a wall. A generic
wall-building algorithm was also presented in [2].

In StarCraft: Brood War, wall building requires an extra
property, which these algorithms do not take into account.
Namely, buildings have gaps between them (see Figure 2).
Depending on the size of the unit, walls might not be closed
off for all units. This sometimes is desirable as well, in case
you want your own (small) units to pass through, but do not
want the enemy units to pass your wall.

For wall building specifically for StarCraft, there has been
an approach that uses answer set programming to add this extra
constraint [3]. By specifying the gaps and other constraints
through a declarative language, Certicky was able to use the
ASP solver clingo to create wall while considering building
gaps. This approach has been improved by Richoux et al. [4].

The problem with these approaches is that none of them
address the gap between buildings and the terrain (mainly cliffs
and other natural obstacles). Because of this, some of the walls
created with these methods will still have gaps in them that
let enemy units through. We propose an algorithm based on
the pathfinding algorithm A∗ to ensure that the wall from our
algorithm will stop whichever enemy unit it is supposed to
stop. The advantage of this method is that the constraints are
checked by checking if a path exists in the game itself, thus
ensuring that a wall found by our algorithm is tight. With
an extra calculation step, our algorithm can also create walls

where smaller units can pass through, but the larger units of
the opponent cannot.

This paper is structured as follows. First, Section II gives
the problem definition of wall building. Next, Sections III and
IV discuss the wall-building algorithm. Section V describes
the pseudocode implementation of the wall-building algorithm.
Section VI describes the experimental setup and the results of
the experiments. Finally, Section VII draws conclusions from
the results and presents future work.

II. PROBLEM DEFINITION

In the RTS game of StarCraft: Brood War, a wall is a set of
structures and units placed in such a way that no enemy unit
can pass from one side of the wall to the other. In this section
we describe the problem that our algorithm tries to solve.

The StarCraft map consists of two grid types: the walk grid,
where each cell is an 8 × 8 pixels square, and the build grid,
where each cell is a 4 × 4 walk tile square (hence 32 × 32
square of pixels). Some of these build tiles are buildable, and
others are not due to natural obstacles (e.g., cliffs) or due to
the game rules (buildings cannot overlap).

Each building has a build size and a real size. The build
size indicates the height and width of the building in terms of
building tiles. For example, a Terran supply depot has a build
width of 3 and a build height of 2. The real size indicates
how much walkable space the building takes up. In the case
of StarCraft: Brood War, the actual space taken up by some
of the buildings is less than its build size × 32 pixels, leaving
some additional space for passing it. This causes gaps to be
created between buildings placed next to each other and to
natural obstacles (cliffs have these gaps as well).

Thus the wall-building problem is about finding locations
for buildings such that a given enemy unit (given in pixel width
and height) cannot pass through the wall. An extra constraint
can be that another smaller unit has to be able to pass through
while the given enemy unit still cannot pass through (this allow
for hit & run tactics where ranged units can retreat behind a
wall after shooting).

The algorithm presented in this paper is specifically for
checking if a given set of buildings can satisfy these con-
straints. The problem of determining the minimum number
of buildings required for building a wall is beyond the scope
of this paper. This however can be easily added by having an
algorithm generating a list of buildings and using the algorithm

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18

presented in this paper to check if those buildings can form a
wall, until a suitable combination of buildings is found.

III. APPROACH

Fig. 1. Example of a wall found using the wall-building algorithm. Choke
point is indicated with a red line and a purple circle.

In our approach we use a wall to seal off a choke point. A
choke point is a location on the map (terrain) that connects
two regions [5] (see also Figure 1). If a wall is built near
this choke point, then the two regions of the choke point are
separated (no longer reachable by ground units).

Since both buildings and units can be used in a wall, we
use the term structure to indicate a part of a wall (either a
building or a unit). The first part of the wall-building algorithm
requires a way to generate a set of structure locations, which
can potentially form a wall. In the game of StarCraft, units
and buildings cannot overlap, buildings cannot overlap with
unsuitable ground and units cannot overlap with unwalkable
ground. We use a depth-first search algorithm to determine
possible structure locations. At the initial depth, the algorithm
places a structure close to the choke point. After selecting
a location for the first structure, the next depth includes a
new structure that is placed adjacent to any of the structures
already placed. This is done because a wall should not contain
a gap. Therefore each building and unit is adjacent to at least
one other building or unit. This process continues until all
structures have been placed.

Each time that the placement algorithm placed all structures
(reached maximum depth), the validation algorithm checks if
the placement of the structures forms a wall. Determining if
a set of structures forms a wall requires checking if there is a
path that goes from one side of the choke point to the other
side that passes through the choke point that is supposed to
be walled of. For this we compare two different methods. In
both methods we limit the search to a 16×16 build grid around
the choke point to ensure that all possible paths have to go
through the choke point that is supposed to be walled of. The

first method that we use is a flood fill starting from one side of
the choke point. If the flood fill reaches the other side of the
choke point then the algorithm will generate the next set of
possible structure locations which can potentially form a wall.
The second method is the A∗ algorithm. The A∗ algorithm
tries to reach the other side of the wall based on heuristic
search instead of a brute force approach like flood fill.

IV. WALL-BUILDING ALGORITHM

The wall-building algorithm used to calculate a wall is based
on a depth-first search approach to find possible structure
placements combined with flood fill or A∗ to check if a struc-
ture placement is a wall. Just like the declarative programming
approach from Certicky [3], we construct a 16×16 grid around
a choke point (see Section III for the definition of a choke
point). Besides the choke point location, the algorithm also
requires the list of buildings and units available to create the
wall.

The wall placement algorithm starts off with no structures
placed (depth-first search at a depth of 0). At this point (depth)
the algorithm will pick one of the possible structures and place
it down at a location close to the choke point. Determining
a possible location is performed by checking if every tile
occupied is buildable (if it is a building) or walkable (if it is a
unit). After the initial placement, the wall placement algorithm
places the next structure adjacent to the initial structure. This
adjacency is 8-ways (horizontal, vertical, and diagonal). Every
next structure from this point is then placed adjacent to at least
one of the structures already placed. This process continues
until all available structures have been placed.

Once all structures are placed (at the leaf node), the algo-
rithm starts a flood fill or A∗ from a tile on one side of the
wall. Both the flood fill and A∗ algorithm try to reach a tile
on the other side of the choke point by passing through the
choke point. If successful, the current placement of structures
is not a wall. In this case the depth-first search backtracks
and tries a different placement of structures. Besides walkable
gaps on the tiles not covered by the structure, the flood fill
and A∗ can also pass between gaps formed by buildings (see
also Figure 2). Each building has a certain number of pixels
as a gap on each side (top, bottom, left, and right). When a
side of a building is adjacent to the side of another building,
the corresponding sides combine the pixel values.

The algorithm used by Certicky et al. [3] did not take into
account that two buildings placed diagonally also create a gap.
Thus this algorithm sometimes misses a possible wall, because
it does not take the gap into account (see also http://wiki.
teamliquid.net/starcraft/Walling).

The algorithm from Richoux et al. [4] does not take the
terrain (cliffs and other natural obstacles) into account. These
terrain features have gap values as well. Although the gap
values of buildings are known, it is not yet known what the
exact gap values of all terrain features are. Therefore, our
algorithm uses the walk grid to calculate if a unit can fit
through the gap of a building and a cliff or other terrain feature.
Even though the gap size is not known, the Brood War API

Fig. 2. Gaps between Terran buildings in pixels. The numbers indicate the
size of the gaps in pixels. Picture taken from teamliquid wiki.

does give information about which tile can be walked on. Thus
instead of calculating the gap between a building and a cliff,
we instead take the total number of walkable tiles between a
building and a cliff. This is then multiplied by the pixel size
of a walkable tile (8 × 8, see Section II). This estimation is
an upper bound to the gap size, so the walls created with this
estimation will stop the unit it is supposed to stop. However,
if the actual gap is smaller than the estimation, our algorithm
might miss a possible wall. Determining the exact gap size
when terrain is involved is left for future work.

The exact details of this process is an implementation detail.
The code for the wall building can be found at https://github.
com/MartinRooijackers/LetaBot.

V. IMPLEMENTATION

The wall-building algorithm requires a choke point, a tile
on one side of the choke, a tile at the other side of the choke
and a list of structures. The other information about buildable
and walkable locations can be derived from the BWAPI. This
pseudocode gives a high level overview of the implementation
for a StarCraft agent.

The wall-building algorithm requires the following input:
• S: a list of structures, each containing its width and height
• B: a list of structures already placed, each containing its

width and height and (x, y) position
• choke: tile location of a choke point
• sTile: start location of the flood fill
• eTile: end location of the flood fill

• Enemy: (width, height) tuple indicating the size of the
unit that should not be able to pass through the wall

The algorithm is split into two components: the wall placement
algorithm that determines valid structure locations and a wall
validation algorithm that checks if these locations form a
wall. The second step can be performed by either A∗ or
flood fill. The wall placement algorithm is given in the
pseudocode below (see Algorithm 1). The algorithm starts with
calling the WALLIN function with the parameters mentioned
above. This function calls STRUCTUREPLACEMENT, which
uses depth-first search to place the structures. As long as a
structure needs to be placed, the algorithm uses the VALIDLOC
function to determine a place to put the building or the unit.
This process is repeated until all structures are placed. Once
all structures are placed, the algorithm checks whether the
structure placement is a wall with the CHECKWALL function.
Two variants of this function have been implemented by either
using a flood fill or A∗.

Algorithm 1 WallPlacement
1: procedure WALLIN(S, choke, sT ile, eT ile)
2: StructurePlacement(0, S, ∅, choke, sT ile, eT ile, Enemy)
3: end procedure
4:
5: procedure STRUCTUREPLACE-

MENT(depth, S,B, choke, sT ile, eT ile, Enemy)
6: if size(S) = 0 then . all structures placed
7: for all x ∈ {chokex − 8, . . . , chokex + 7} do
8: for all y ∈ {chokey−8, . . . , chokey +7} do
9: Visited(x, y) ← False . clear last flood fill

10: end for
11: end for
12: isWall← CheckWall(sT ile, eT ile, V isited,Enemy)
13: if isWall = false then
14: return . This is not a wall in, generate a new

structure location
15: end if
16: if isWall = true then return
17: Output/Store current structure locations and

end algorithm
18: end if
19: end if
20: for all x ∈ {chokex − 8, . . . , chokex + 7} do
21: for all y ∈ {chokey − 8, . . . , chokey + 7} do
22: if ValidLoc(x, y, S0, depth) then
23: StructurePlacement(depth+ 1, S \ S0, B ∪
{(S0, x, y)}, choke, sT ile, eT ile, Enemy)

24: end if
25: end for
26: end for
27: end procedure

The VALIDLOC function (see Algorithm 2) checks whether
a building can be placed at a certain location. Since a wall
requires all buildings to be adjacent, this function also checks
whether the build location is adjacent to another location

already occupied. The only exception is the first building, since
it cannot be adjacent to anything yet.

Algorithm 2 ValidLoc
1: procedure VALIDLOC(x, y, struct, depth)
2: Adjacent← False
3: for all xT ile ∈ {x, . . . , x+ (structw − 1)} do
4: for all yT ile ∈ {y, . . . , y + (structh − 1)} do
5: if Occupied(x, y) = True then . BWAPI

function
6: return False
7: end if
8: if Tile adjacent to other structure then .

8-way
9: Adjacent← True

10: end if
11: end for
12: end for
13: if Adjacent = False ∧ depth 6= 0 then . adjacency

check
14: return False
15: end if
16: return True
17: end procedure

There are two ways to implement the CHECKWALL func-
tion used in the wall placement algorithm. The first option is
to use the flood-fill algorithm. The second option is to use
the A∗ algorithm. Both algorithms use information from the
BWAPI to determine if a position is invalid. If a position is
invalid, it cannot be traversed. An invalid position is a position
where:

• The x or y position is outside of the map.
• The x or y position is outside of the 16×16 grid.
• The gap between buildings is not large enough (see Figure

2).
Hence, a valid position is a position on the map that does
not have these characteristics. The flood-fill algorithm uses 8
directional movements. For the implementation of A∗, we use
the Manhattan distance heuristic. Since the standard variant
of the algorithms are used, the pseudocode is not reproduced
here. The implementation details can be found in the source
code.

VI. EXPERIMENTS

A. Setup

In the first experiment of this paper, we investigated the
computing time of the wall-building algorithm. For this, we
have used the standard “1 barracks + 2 supply depots” to wall
off the starting location. This configuration is the standard
build order that is used in professional games where the
Terran player wants to protect the starting location from
rush strategies. We picked four CIG maps from the 2017
tournament and one from the general CIG map pool. The maps
we selected are:

• Hitchhiker 1.1
• Tau Cross 1.1
• Neo Aztec 2.1
• Andromeda 1.0
• Python 1.3
We have run the test on each map 20 times. The mean

running time of the flood fill and A∗ variant of the algorithm
can be found in Table I. The table reveals that A∗ decreases
the computation time considerably. The standard deviation can
be found in Table II. It shows that if our algorithm finds a
wall, it will do so quickly. However, if a wall does not exist,
our algorithm will try all possibilities, which causes the high
deviation.

Map/Algorithm Flood Fill A∗

Hitchhiker 1.1 11.6s 6.5s
Tau Cross 1.1 2.6s 1.7s
Neo Aztec 2.1 0.6s 0.7s
Andromeda 1.0 4.3s 3.3s
Python 1.3 15.3s 11.4s

TABLE I
RUNNING TIME OF EACH ALGORITHM VARIANT IN SECONDS. AVERAGE OF

20 EXPERIMENT RUNS.

Map/Algorithm Flood Fill A∗

Hitchhiker 1.1 11.0s 5.8s
Tau Cross 1.1 1.3s 0.6s
Neo Aztec 2.1 0.07s 0.7s
Andromeda 1.0 2.6s 0.2s
Python 1.3 14.4s 9.5s

TABLE II
STANDARD DEVIATION FROM THE RUNNING TIME OF EACH ALGORITHM

VARIANT IN SECONDS.

We have used this algorithm to give our StarCraft agent
LETABOT the capability to build a wall in order to stop a
rush build. Such rush builds are used by professional StarCraft
player and bots. Our wall-building algorithm was first used in
the CIG 2014 tournament. It has been used in every major
StarCraft AI tournament ever since. The effect of the wall
placement is especially notable when our agent plays against
a rush build, which is a popular strategy in the StarCraft AI
tournament. We got the following notable tournament results
with the help from this wall-building algorithm:

• CIG 2014: 3rd place
• CIG 2016: 3rd place
• CIG 2017: 4th place
• AIIDE 2014: 3rd place
• AIIDE 2016: 4th place
• SSCAI 2014: 1st place mixed+student
• SSCAI 2015: 1st place student division
• SSCAI 2016: 1st place mixed+student
• SSCAI 2017: 2nd place student division
In the last series of experiments we also tested what would

happen if LETABOT did not use the wall-building algorithm.
For this we disabled the wall-building algorithm in LETABOT
and put it up against two rush bots (CARSTEN NIELSEN and

WULIBOT) on the 5 maps from the first experiment. The
results of that can be seen in Table III, winning only 51%
(±9.8%) of the games. If the wall-building algorithm is turned
on, our bot scores a 100% win rate against these bots.

What is noticeable, is that the wall-building algorithm does
not add much when playing on a large map like “Andromeda”,
where the size alone makes rush strategies less effective. Maps
where you start on the high ground and have a ramp that can
be used as a choke point, help in the defensive without walls
as well (“Hitchhiker” and “Python”). But with the exception of
large maps like “Andromeda”, LETABOT benefits from using
a wall-building algorithm to deter rush strategies.

Map/Bot CARSTEN NIELSEN WULIBOT

Hitchhiker 1.1 4-6 3-7
Tau Cross 1.1 5-5 0-10
Neo Aztec 2.1 10-0 0-10
Andromeda 1.0 10-0 10-0
Python 1.3 7-3 2-8
Total 36-14 15-35

TABLE III
WIN RATE OF LETABOT WITHOUT USING A WALL-BUILDING ALGORITHM

(FORMAT: WINS-LOSES).

VII. CONCLUSIONS & FUTURE RESEARCH

In this paper, we have shown two variants of an algorithm
that can be used for building walls in StarCraft. Unlike
other methods, this algorithm guarantees that a wall can be
used to ensure that a given unit cannot pass through it.
The downside compared to other methods is that iterating
through the possibilities to ensure that the wall is tight, is
a costly calculation. The A∗ heuristic search improves this,
but this algorithm is still mainly recommended to be used
for pre-calculating building positions to ensure a tight wall.
Because the map of StarCraft is static, this information can
be calculated and stored, such that it can be retrieved next
game and be used immediately. Thus this algorithm becomes
a tool, like the terrain analysis tool BWTA, which is used by
our StarCraft agent for choke point analysis and splitting the
map in regions.

One of the things still missing from the pathfinding is
the exact data on gaps created by the terrain. For now our
algorithm used the walkable data given by the BWTA. The
walls created by this are tight, but the criteria are stricter than
they have to be. Thus our algorithm sometimes report that
there is no wall possible, even though one exists. This explain
the large variance of running time between maps, since our
algorithm takes less time if it finds a wall (because then it can
terminate the search). Most of the time, an alternative wall
(further away from the starting position) will be found at the
cost of extra running time. This is especially the case on maps
like “Python”.

A way to improve the running time is to have some extra
checks in place for the structure placement to reduce the
number of placement choices that can be trivially calculated
not to be walls.

REFERENCES

[1] T. Teich and I. Davis, “AI Wall Building in Empire Earth II,” in AIIDE,
2006, pp. 133–135.

[2] M. Grimani, “Wall building for RTS games,” AI Game Programming
Wisdom, vol. 2, pp. 425–437, 2004.

[3] M. Certicky, “Implementing a wall-in building placement in StarCraft
with declarative programming,” arXiv preprint arXiv:1306.4460, 2013.

[4] F. Richoux, A. Uriarte, and S. Ontañón, “Walling in strategy games via
constraint optimization.” in AIIDE, 2014, pp. 52–58.

[5] L. Perkins, “Terrain Analysis in Real-Time Strategy Games: An Integrated
Approach to Choke Point Detection and Region Decomposition,” in
Proceedings of the Sixth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, AIIDE 2010, G. M. Youngblood and
V. Bulitko, Eds. The AAAI Press, 2010, pp. 168–173.

