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Abstract— Monte-Carlo Tree Search (MCTS) is a recent
paradigm for game-tree search, which gradually builds a game-
tree in a best-first fashion based on the results of randomized
simulation play-outs. The performance of such an approach is
highly dependent on both the total number of simulation play-
outs and their quality. The two metrics are, however, typically
inversely correlated — improving the quality of the play-
outs generally involves adding knowledge that requires extra
computation, thus allowing fewer play-outs to be performed
per time unit. The general practice in MCTS seems to be more
towards using relatively knowledge-light play-out strategies for
the benefit of getting additional simulations done.

In this paper we show, for the game Lines of Action (LOA),
that this is not necessarily the best strategy. The newest version
of our simulation-based LOA program, MC-LOAαβ , uses a
selective 2-ply αβ-search at each step in its play-outs for
choosing a move. Even though this reduces the number of
simulations by more than a factor of two, the new version
outperforms previous versions by a large margin — achieving
a winning score of approximately 60%.

I. INTRODUCTION

For decades αβ search [1] has been the standard approach
used by programs for playing two-person zero-sum games
such as Chess and Checkers (and many others) [2], [3]. In the
early days deep search was not possible because of limited
computational power, so heuristic knowledge was widely
used to prune the search tree. The limited lookahead search
typically investigated only a subset of the possible moves
in each position, chosen selectively based on promise. With
increased computational power the search gradually became
more brute-force in nature, typically investigating all moves,
although not necessarily to the same depth [4]. Over the years
many search enhancements, including for controlling how
deeply different moves are investigated, have been proposed
for this framework that further enhance its effectiveness. The
best tradeoff between using a fast search and incorporating
informative heuristic knowledge for search guidance [5], [6]
is constantly shifting based on new advancements in both
hardware and software.

This traditional game-tree-search approach has, however,
been less successful for other types of games, in particular
where a large branching factor prevents a deep lookahead
or the complexity of game state evaluations hinders the
construction of an effective evaluation function. Go is an
example of a game that has so far eluded this approach [7].

In recent years a new paradigm for game-tree search has
emerged, so-called Monte-Carlo Tree Search (MCTS) [8],
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[9]. In the context of game playing, Monte-Carlo simulations
were first used as a mechanism for dynamically evaluating
the merits of leaf nodes of a traditional αβ-based search [10],
[11], [12], but under the new paradigm MCTS has evolved
into a full-fledged best-first search procedure that replaces
traditional αβ-based search altogether. MCTS has in the past
couple of years substantially advanced the state-of-the-art
in several game domains where αβ-based search has had
difficulties, in particular computer Go, but other domains
include General Game Playing [13], Amazons [14] and Hex
[15].

The right tradeoff between search and knowledge equally
applies to MCTS. The more informed we make each sim-
ulation play-out the slower it gets. On the one hand, this
decreases the total number of simulations we can run in
an allotted time, but on the other hand the result of each
simulation is potentially more accurate. The former degrades
the decision quality of MCTS whereas the latter improves
it, so the question is where the right balance lies. The
trend seems to be in favor of fast simulation play-outs
where moves are chosen based on only computationally light
knowledge [16], [17], although recently, adding heuristic
knowledge at the cost of slowing down the simulation play-
outs has proved beneficial in some games. This approach has
been particularly successful in Lines of Action (LOA) [18],
which is a highly-tactical slow-progression game featuring
both a moderate branching factor and good state evaluators
(the best LOA programs use highly sophisticated evaluation
functions). In 2008, we showed that backpropagating game-
theoretic values improved our MCTS LOA playing program
MC-LOA considerably [19]. In 2009, we used a selective 1-
ply search equipped with a sophisticated evaluation function
for choosing the moves in the play-out of MC-LOA [20].
Such a 1-ply lookahead equates to what is often referred to
as greedy search. That version of the program played at the
same level as the αβ program MIA, the best LOA playing
entity in the world.

In this paper we further extend on previous results by using
a 2-ply αβ-search for choosing the moves during the play-
outs. To reduce the search overhead, special provisions must
be taken in selectively choosing moves to fully expand. We
evaluate the new version, MC-LOAαβ , both on tactical test-
suites and in tournament matches. Although the αβ-search
slows down the simulation runs considerably, it improves the
program’s overall playing strength significantly.

The article is organized as follows. In Section II we
explain the rules of LOA. Section III discusses MCTS and
its implementation in our LOA program. In Section IV
we describe how to enhance MCTS with αβ search. The
enhancement is empirically evaluated in Section V. Finally,
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Fig. 1. (a) The initial position. (b) Example of possible moves. (c) A terminal position.

in Section VI we conclude and give an outlook on future
research.

II. LINES OF ACTION

Lines of Action (LOA) is a two-person zero-sum game
with perfect information; it is a Chess-like game (i.e., with
pieces that move and can be captured) played on an 8×8
board, albeit with a connection-based goal. LOA was in-
vented by Claude Soucie around 1960. Sid Sackson [21]
described the game in his first edition of A Gamut of Games.
The game has over the years been played in competitions
both at the Mind Games Olympiad and on various sites
on the world-wide web, gathering a community of expert
human players. The strongest contemporary LOA programs
have reached a super-human strength [22].

LOA is played on an 8×8 board by two sides, Black and
White. Each side has twelve (checker) pieces at its disposal.
Game play is specified by the following rules:1

1) The black pieces are placed in two rows along the top
and bottom of the board, while the white pieces are
placed in two files at the left and right edge of the
board (see Figure 1(a)).

2) The players alternately move a piece, starting with
Black.

3) A move takes place in a straight line, exactly as many
squares as there are pieces of either color anywhere
along the line of movement (see Figure 1(b)).

4) A player may jump over its own pieces.
5) A player may not jump over the opponent’s pieces, but

can capture them by landing on them.
6) The goal of a player is to be the first to create a

configuration on the board in which all own pieces are
connected in one unit. Connected pieces are on squares
that are adjacent, either orthogonally or diagonally
(e.g., see Figure 1(c)). A single piece is a connected
unit.

7) In the case of simultaneous connection, the game is
drawn.

1These are the rules used at the Computer Olympiads and at the MSO
World Championships. In some books, magazines or tournaments, there may
be a slight variation on rules 2, 7, 8, and 9.

8) A player that cannot move must pass.
9) If a position with the same player to move occurs for

the third time, the game is drawn.
In Figure 1(b) the possible moves of the black piece on d3

(using the same coordinate system as in Chess) are shown
by arrows. The piece cannot move to f1 because its path is
blocked by an opposing piece. The move to h7 is not allowed
because the square is occupied by a black piece.

III. MONTE-CARLO TREE SEARCH

In this section we discuss how we applied MCTS in LOA
so far [18]. First, Subsection III-A gives an overview of
MCTS. Next, Subsection III-B explains the four MCTS steps.

A. Overview

Monte-Carlo Tree Search (MCTS) [8], [9] is a best-first
search method that does not require a positional evaluation
function. It is based on a randomized exploration of the
search space. Using the results of previous explorations,
the algorithm gradually builds up a game tree in memory,
and successively becomes better at accurately estimating the
values of the most promising moves.

MCTS consists of four strategic steps, repeated as long as
there is time left [23]. The steps, outlined in Figure 2, are as
follows. (1) In the selection step the tree is traversed from
the root node until we reach a node E, where we select a
position that is not added to the tree yet. (2) Next, during
the play-out step moves are played in self-play until the end
of the game is reached. The result R of this “simulated”
game is +1 in case of a win for Black (the first player in
LOA), 0 in case of a draw, and −1 in case of a win for
White. (3) Subsequently, in the expansion step children of
E are added to the tree. (4) Finally, in the backpropagation
step, R is propagated back along the path from E to the root
node, adding R to an incrementally computed result average
for each move along the way. When time is up, the move
played by the program is the child of the root with the highest
average value (or the most frequently visited child node, or
some variation thereof [23]).

MCTS is unable to prove the game-theoretic value. How-
ever, in the long run MCTS equipped with the UCT formula
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Fig. 2. Outline of Monte-Carlo Tree Search (adapted from Chaslot et al. [23]).

[9] converges to the game-theoretic value. For instance, in
endgame positions in fixed termination games like Go or
Amazons, MCTS is often able to find the optimal move
relatively quickly [24], [25]. But in a tactical game like LOA,
where the main line towards the winning position is typically
narrow with many non-progressing alternatives, MCTS may
often lead to an erroneous outcome because the nodes’ values
in the tree do not converge quickly enough to their game-
theoretic value. We use therefore a newly proposed variant
called Monte-Carlo Tree Search Solver (MCTS-Solver) [19]
in our MC-LOA program, which is able to prove the game-
theoretic value of a position. The backpropagation and se-
lection mechanisms have been modified for this variant.

B. The Four Strategic Steps

The four strategic steps of MCTS are discussed in detail
below. We will clarify how each of these steps is used in our
Monte-Carlo LOA program (MC-LOA).

1) Selection: Selection picks a child to be searched based
on previous information. It controls the balance between
exploitation and exploration. On the one hand, the task often
consists of selecting the move that leads to the best results
so far (exploitation). On the other hand, the less promising
moves still must be tried, due to the uncertainty of the
evaluation (exploration).

We use the UCT (Upper Confidence Bounds applied
to Trees) strategy [9], enhanced with Progressive Bias
(PB) [23]. PB is a technique to embed domain-knowledge
bias into the UCT formula. It is e.g. successfully applied in
the Go program MANGO. UCT with PB works as follows.
Let I be the set of nodes immediately reachable from the
current node p. The selection strategy selects the child k of
node p that satisfies Formula 1:

k ∈ argmaxi∈I

(
vi +

√
C × lnnp

ni
+

W × Pmc√
li + 1

)
, (1)

where vi is the value of the node i, ni is the visit count of i,
and np is the visit count of p. C is a coefficient, which can be
tuned experimentally. W×Pmc

li+1 is the PB part of the formula.
W is a constant, which is set manually (here W = 10). Pmc

is the transition probability of a move category mc [26].
Instead of dividing the PB part by the visit count ni as done
originally [23], it is here divided divide it by

√
li + 1, where

li is the number of losses [18]. In this approach, nodes that
do not perform well are not biased too long, whereas nodes
that continue to have a high score, continue to be biased (cf.
[27]).

For each move category (e.g., capture, blocking) the
probability that a move belonging to that category will be
played is determined. The probability is called the transition
probability. This statistic is obtained from game records of
matches played by expert players. The transition probability
for a move category mc is calculated as follows:

Pmc =
nplayed(mc)

navailable(mc)
, (2)

where nplayed(mc) is the number of game positions in
which a move belonging to category mc was played, and
navailable(mc) is the number of positions in which moves
belonging to category mc were available.

The move categories of our MC-LOA program are similar
to the ones used in the Realization-Probability Search of the
program MIA [28]. They are used in the following way. First,
we classify moves as captures or non-captures. Next, moves
are further subclassified based on the origin and destination
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squares. The board is divided into five different regions: the
corners, the 8 × 8 outer rim (except corners), the 6 × 6
inner rim, the 4× 4 inner rim, and the central 2× 2 board.
Finally, moves are further classified based on the number of
squares traveled away from or towards the center-of-mass.
In total 277 move categories can occur according to this
classification.

The aforementioned selection strategy is only applied in
nodes with visit count higher than a certain threshold T
(here 5) [8]. If the node has been visited fewer times than
this threshold, the next move is selected according to the
Corrective strategy [20]. The move categories together with
their transition probabilities are used to select the moves
pseudo-randomly. We use the MIA 4.5 evaluation function
[29] to further bias the move selection towards minimizing
the risk of choosing an obviously bad move. This is done
in the following way. First, we evaluate the position for
which we are choosing a move. Next, we generate the moves
and scan them to get their weights. If the move leads to a
successor which has a lower evaluation score than its parent,
we set the weight of a move to a preset minimum value
(close to zero).

One additional improvement is to perform a 1-ply looka-
head at leaf nodes (i.e., where the visit count equals
one) [19]. We check whether they lead to a direct win for the
player to move. If there is such a move, we can skip the play-
out, label the node as a win, and start the back-propagation
step. If it were not for such a lookahead, it could take many
simulations before a child leading to a mate-in-one is selected
and the node proven.

2) Play-out: The play-out step begins when we enter a
position that is not a part of the tree yet. Moves are selected
in self-play until the end of the game. This task might
consist of playing plain random moves or – better – pseudo-
random moves chosen according to a simulation strategy.
Good simulation strategies have the potential to improve the
level of play significantly [16]. The main idea is to play
interesting moves according to heuristic knowledge.

In MC-LOA the following strategy is implemented [20].
At the first position entered in the play-out step, the Cor-
rective strategy is applied. For the remainder of the play-out
the Greedy strategy is applied [20]. In this strategy the MIA
4.5 evaluation function is more directly applied for selecting
moves: the move leading to the position with the highest
evaluation score is selected. However, because evaluating
every move is time consuming, we evaluate only moves that
have a good potential for being the best. For this strategy it
means that only the k-best moves according to their transition
probabilities are fully evaluated. When a move leads to a
position with an evaluation over a preset threshold (i.e., 700
points [20]), the play-out is stopped and scored as a win. The
remaining moves, which are not heuristically evaluated, are
checked for a mate. Finally, if a selected move would lead to
a position where heuristic evaluation function gives a value
below a mirror threshold (i.e., −700 points); the play-out is
scored as a loss.

3) Expansion: Expansion is the strategic task that decides
whether nodes will be added to the tree. Here, we apply
a simple rule: one node is added per simulated game [8].
The added leaf node L corresponds to the first position
encountered during the traversal that was not already stored.

4) Backpropagation: Backpropagation is the procedure
that propagates the result of a simulated game k back from
the leaf node L, through the previously traversed node, all the
way up to the root. The result is scored positively (Rk = +1)
if the game is won, and negatively (Rk = −1) if the game
is lost. Draws lead to a result Rk = 0. A backpropagation
strategy is applied to the value vL of a node. Here, it is
computed by taking the average of the results of all simulated
games made through this node [8], i.e., vL = (

∑
k Rk)/nL.

In addition to backpropagating the values {1,0,−1}, game-
theoretic values ∞ or −∞ can be propagated [19]. The
search assigns ∞ or −∞ to a won or lost terminal position
for the player to move in the tree, respectively. Backpropagat-
ing proven values in the tree is performed similar to regular
negamax. Assume a simulation is run that ends in the game-
tree at a node with a proven game-theoretic value. When
backing such a proven value up the tree, there are several
cases to consider. First, if the selected move (child) of a
node returns ∞, the node is a win. That is, to prove that a
node is a win, it suffices to prove that one child of that node
is a win. Second, in the case that the selected child of a node
returns −∞, all the node’s children must be checked. Now
one of two possibilities can occur. Either all have values of
−∞, in which case the node is a loss. That is, to prove that
a node is a loss, we must prove that all its children lead to a
loss. Alternatively, one or more children of the node have a
non-loss value, in which case we cannot prove the loss. The
value the simulation is backing up is and remains a loss,
however, it is not proven in the current position. Therefore,
we still back up a loss value, but not a proven one. That is,
−1 is now backpropagated. The node will thus simply be
updated according to the regular backpropagation strategy
for non-proven nodes as described previously.

IV. αβ SEARCH IN THE PLAY-OUT STEP

In most abstract board games there is a delicate tradeoff
between search and knowledge, as has been studied for
αβ search [5], [6], including in LOA [22]. There is also
such a tradeoff in MCTS. Adding heuristic knowledge to
the play-off strategy increases the accuracy and reliability
of each play-out. However, if the heuristic knowledge is
too computationally expensive, the number of play-outs per
second decreases, offsetting the benefits [30]. For MCTS a
consensus until recently seemed to be that the most beneficial
tradeoff is achieved by choosing the moves in the play-outs
based on some computationally light knowledge [16], [17].
However, in MC-LOA [18] choosing a move based on a
selective 1-ply search equipped with a static evaluation func-
tion (i.e., the Greedy strategy) was shown to perform better
than drawing the moves based only on light knowledge items
(i.e., the move categories). Moreover, Lorentz [31] improved
his MCTS program for the of Havannah by checking in the
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beginning of the play-out whether the opponent has a mate
in one.

In here we move even further in this direction, now
proposing to apply a 2-ply selective minimax-based search
to choose the moves in the play-out step. However, to reduce
the computational overhead we do this selectively, by fully
evaluating only the first 7 moves at the root node and
by looking at only the first 5 moves at the second ply.
This specific configuration was obtained by trial-and-error.
We observed that the playing strength of MC-LOA drops
significantly if the number of moves to be considered is set
too high. Next, at the root of the search we additionally check
all moves for a terminal condition, that is, if they lead to an
immediate win. The αβ mechanism [1] is applied to prune
the branches irrelevant for the search tree. The pseudo-code
for this selective search is depicted in Figure 3. It is called
on each turn in a play-out to decide on the move to play;
the move at the root of the sab search that leads to the best
search value is chosen (details not shown). The code is a
regular (fail-soft) αβ search augmented such that: a) only the
first x moves are fully explored by the search; (b) the next
y moves are checked for a terminal condition only; (c) the
remaining moves are ignored altogether. The arrays n eval
and n look, indexed by the search ply, are used to decide
how many moves fall into each category.

The success of αβ search is strongly dependent on the
move ordering [32]. In the 2-ply search, we always first try
two killer moves [33]. These are the last two moves that were
best, or at least caused a cutoff, at the given depth. Moreover,
if the 2-ply search is completed, we store the killer moves
for that specific level in the play-out. In such a way there
are always killer moves available for the αβ-search. Next,
the move categories (III-B.1) together with their weights are
used to order the remaining moves. The details of the move
ordering are not shown in the aforementioned pseudo-code,
but rather abstracted away in the getMoves method. Finally,
we use an aspiration window [32] when invoking the search
to prune even more branches. The window is based on the
thresholds configuration −600 and 600 that are used to stop
the play-out.2

In the early game, the default version of MC-LOA runs
at 5,100 sps (simulations per second) on a AMD Opteron
2.2 GHz, while the version equipped with αβ-search runs at
2,200 sps. If we consider the fact that LOA has an average
branching of 30, a decrease of a factor 2.3 in sps is quite
reasonable. Finally, we remark that if we would not have
included killer moves in the αβ-search, the program would
have slowed down by additional 10%.

V. EXPERIMENTS

In this section we evaluate empirically the addition of a 2-
ply αβ search in the play-out step of MC-LOA, via self-play
and against the world’s strongest αβ-based LOA program
MIA 4.5. The tactical performance on endgame positions is

2These values are more tight as in the default MC-LOA (i.e., −700 and
700), but do not affect the strength of the program (cf. [20]).

// At first ply, fully evaluate first 7 moves,
// and check all remaining ones for a terminal
// cond. At second ply, fully evaluate first
// 5 moves, and do not check any additional
// moves for a terminal condition.
n_eval[] = { 7, 5 };
n_look[] = { INF, 0 };

sab( pos, ply, d, alpha, beta )
{

if ( d <= 0 || pos.isTerminal( ) ) {
return pos.evaluate( );

}
best = alpha;
stop = false;
n = pos.getMoves( moves ) ;
for ( i = 0; i < n && !stop; ++i ) {

v = best;
pos.make( moves[i] );
if ( i < n_eval[ply] ) {

// Search and evaluate move.
v = -sab(pos,ply+1,d-1,-beta,-best);

}
else if (i < n_eval[ply]+n_look[ply]) {

// Check whether a move leads to an
// immediate terminal position, in
// particular a winning one, which
// causes a cutoff.
if ( pos.isTerminal( ) ) {

v = pos.evaluate( );
}

}
else {
// Do not explore more moves.

stop = true;
}
pos.unmake( moves[i] );
if ( v > best ) {

best = v;
if ( best >= beta ) {

stop = true; // cutoff
}

}
}
return best;

}

Fig. 3. Pseudo code for αβ based move selection in the play-outs

evaluated as well. We refer to the αβ-based MCTS player as
MC-LOAαβ . All experiments in this section were performed
on an AMD Opteron 2.2 GHz computer.

This remainder of this section is organized as follows.
First, we briefly explain MIA in Subsection V-A. Next, we
match MIA, MC-LOA, and MC-LOAαβ in a round-robin
tournament in Subsection V-B. Finally, in Subsection V-C
we evaluate the tactical strength of MC-LOAαβ .

A. MIA (Maastricht In Action)

MIA is a world-class LOA program, which won the
LOA tournament at the eighth (2003), ninth (2004), eleventh
(2006) and fourteenth (2009) Computer Olympiad. Over
its lifespan of 10 years it has gradually been improved
and has for years now been generally accepted as the best
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LOA-playing entity in the world. All our experiments were
performed using the latest version of the program, called
MIA 4.5. The program is written in Java.3

MIA performs an αβ depth-first iterative-deepening search
in the Enhanced-Realization-Probability-Search (ERPS)
framework [28]. A two-deep transposition table [34] is
applied to prune a subtree or to narrow the αβ window.
At all interior nodes that are more than 2 plies away from
the leaves, it generates all moves to perform Enhanced
Transposition Cutoffs (ETC) [35]. Next, a null-move [36]
is performed adaptively [37]. Then, an enhanced multi-cut
is applied [38], [39]. For move ordering, the move stored
in the transposition table (if applicable) is always tried first,
followed by two killer moves [33]. These are the last two
moves that were best, or at least caused a cutoff, at the
given depth. Thereafter follow: (1) capture moves going to
the inner area (the central 4 × 4 board) and (2) capture
moves going to the middle area (the 6 × 6 rim). All the
remaining moves are ordered decreasingly according to the
relative history heuristic [40]. At the leaf nodes of the regular
search, a quiescence search is performed to get more accurate
evaluations.

B. Round-Robin Experiments

In the first set of experiments we quantify the performance
of MIA, MC-LOA, and MC-LOAαβ in three round-robin
tournaments with each a thinking time of 1, 5, and 30 seconds
per move. To determine the relative playing strength of two
programs we play a match between them consisting of many
games (to establish a statistical significance). In the following
experiments each match data point represents the result of
1,000 games, with both colors played equally. A standardized
set of 100 3-ply starting positions [22] is used, with a small
random factor in the evaluation function preventing games
from being repeated.

TABLE I
1 SECOND PER MOVE TOURNAMENT RESULTS (WIN %). EACH DATA

POINT IS BASED ON A 1000-GAME MATCH.

MIA 4.5 MC-LOA MC-LOAαβ

MIA 4.5 - 55.40± 3.1 55.20± 3.1
MC-LOA 44.60± 3.1 - 56.60± 3.1
MC-LOAαβ 44.80± 3.1 43.40± 3.1 -

TABLE II
5 SECONDS PER MOVE TOURNAMENT RESULTS (WIN %). EACH DATA

POINT IS BASED ON A 1000-GAME MATCH.

MIA 4.5 MC-LOA MC-LOAαβ

MIA 4.5 - 47.85± 3.1 42.40± 3.1
MC-LOA 52.15± 3.1 - 47.35± 3.1
MC-LOAαβ 57.60± 3.1 52.65± 3.1 -

3A Java program executable and test sets can be found at: http://
www.personeel.unimaas.nl/m-winands/loa/.

TABLE III
30 SECONDS PER MOVE TOURNAMENT RESULTS (WIN %). EACH DATA

POINT IS BASED ON A 1000-GAME MATCH.

MIA 4.5 MC-LOA MC-LOAαβ

MIA 4.5 - 50.95± 3.1 40.15± 3.0
MC-LOA 49.05± 3.1 - 40.55± 3.0
MC-LOAαβ 59.85± 3.0 59.45± 3.0 -

In Tables I, II, and III the results of the tournaments are
given for searches with a thinking time of 1, 5, and 30
seconds per move, respectively. Both the winning percentage
and a 95% confidence interval (using a standard two-tailed
Student’s t-test) are given for each data point. In Table I,
we see that for a short time setting MC-LOAαβ is weaker
than MIA or MC-LOA. However, as the time controls
increase the relative performance of MC-LOAαβ increases.
Table II shows that for 5 seconds per move MC-LOAαβ

plays on equal footing with MC-LOA, and defeats MIA
in approximately 58% of the games. For 30 seconds per
move, Table III shows that the performance gap widens even
further, with MC-LOAαβ wining against MIA and MC-LOA
almost 60% of the games. MC-LOA, on the other hand, is
not able to gain from the increased time controls, still having
a winning percentage around 50% against MIA on both the 5
and 30 second setting. With increased time controls the more
accurate play-outs of MC-LOAαβ do more than outweigh
the computational overhead involved. Although MC-LOAαβ

generates on average around 2.3 times fewer simulations than
MC-LOA, it still performs much better. With future increases
in hardware speed the result suggests that this tradeoff will
even further bias in MC-LOAαβ’s favor.

Based on the results we may conclude the following.
(1) Given sufficient time per move, performing small αβ
guided play-offs offers a better tradeoff in LOA, thus further
improving MCTS-based programs. (2) MCTS using such an
enhancement convincingly outperforms even the best αβ-
based programs in LOA.

C. Tactical strength of MC-LOAαβ

In [18], it was shown that the αβ search of MIA was
more than 10 times quicker in solving endgame positions
than the MCTS search of MC-LOA. In the next series of
experiments we investigate whether adding αβ in the play-
out step would improve the tactical strength of MC-LOA.
The tactical performance of MC-LOAαβ was contrasted to
that of MC-LOA. We measure the effort it takes the programs
to solve selected endgame positions in terms of both nodes
and CPU time. For MC-LOA, all children at a leaf node
evaluated for the termination condition during the search are
counted (see Subsection III-B.1). The maximum number of
nodes the programs are allowed to search on each problem
is 20,000,000. The test set consists of 488 forced-win LOA
positions.4

4The test set is available at www.personeel.unimaas.nl/
m-winands/loa/tscg2002a.zip.
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Table IV presents the results. The second column shows
that MC-LOAαβ was able to solve 3 more positions than
MC-LOA. In the third and fourth column the number of
nodes and the time consumed are given for the subset of
373 positions that both programs were able to solve. We
observe that the performance of MC-LOAαβ compared to
MC-LOA is somewhat disappointing. MC-LOAαβ explores
approximately 5% more nodes and consumes almost 20%
more CPU time than MC-LOA. From this result it is clear
that the improved strength of the MC-LOAαβ is not because
of improved endgame play, which in LOA is typically the
most tactical phase of the game. The improved playing
strength seems more likely to be a result of improved
positional play in the opening and middle game.

TABLE IV
COMPARING THE SEARCH ALGORITHMS ON 488 TEST POSITIONS

Algorithm # of positions solved 373 positions
(out of 488) Total nodes Total time (ms.)

MC-LOAαβ 391 884,503,705 4,877,737
MC-LOA 388 846,007,567 4,106,377

VI. CONCLUSION AND FUTURE RESEARCH

In this paper we described the application of αβ search
in the LOA-playing MCTS program MC-LOA. The new
version, MC-LOAαβ , applies a selective 2-ply αβ search to
choose the moves during the play-out. This αβ search uses
enhancements such as killer moves and aspiration windows
to reduce the overhead.

Round-robin experiments against MIA and MC-LOA re-
vealed that MC-LOAαβ performed better with increasing
search time. For example, at a time setting of 30 seconds
a move, MC-LOAαβ was able to defeat both opponents
in approximately 60% of the games. On a test set of 488
LOA endgame positions MC-LOAαβ did not perform better
in solving them than MC-LOA. This experiment suggests
that the improvement in playing strength is due to better
positional play in the opening and middle game, rather than
improved tactical abilities in the endgame phase.

The main conclusion is that given sufficient time per
move performing small αβ searches in the play-out can
improve the performance of a MCTS program significantly.
We only experimented with this approach in the game of
LOA, however, as there is nothing explicitly game specific
with the approach, we believe that similar trends could also
be seen in many other games. The exact tradeoff between
search and knowledge will though differ from one game to
the next (and from one program to another). For example, in
our test domain the overhead of performing a 3-ply (or more)
αβ search decreased the strength of MC-LOAαβ drastically.
This clear phase transition between 2- and 3-ply search is
though not unlikely to shift with further advancements in
both hardware and software. For example, with the advance
of multi-core machines many more simulations are possible
than before, potentially reaching the point of diminishing

returns, in which case one avenue of further improvements
would be through more knowledge-rich simulations. As
future work we plan to investigate such issues as well as
experimenting with alternative game domains.

ACKNOWLEDGMENTS

This research is financed by the Netherlands Organisation
for Scientific Research in the framework of the project COM-
PARISON AND DEVELOPMENT OF TECHNIQUES FOR EM-
BEDDING SEARCH-CONTROL KNOWLEDGE INTO MONTE-
CARLO TREE SEARCH, grant number 040.11.203, as well as
the Icelandic Centre for Research (RANNIS).

REFERENCES

[1] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,”
Artificial Intelligence, vol. 6, no. 4, pp. 293–326, 1975.

[2] F. Hsu, Behind Deep Blue: Building the Computer that Defeated the
World Chess Champion. Princeton, NJ, USA: Princeton University
Press, 2002.

[3] J. Schaeffer, One Jump Ahead: Computer Perfection at Checkers,
2nd ed. New York, NY, USA: Springer, 2009.

[4] T. A. Marsland and Y. Björnsson, “Variable-depth search,” in Advances
in Computer Games 9, H. J. van den Herik and B. Monien, Eds.
Universiteit Maastricht, Maastricht, The Netherlands, 2001, pp. 9–24.

[5] H. J. Berliner, G. Goetsch, M. S. Campbell, and C. Ebeling, “Mea-
suring the performance potential of chess programs,” Artificial Intel-
ligence, vol. 43, no. 1, pp. 7–20, 1990.

[6] A. Junghanns and J. Schaeffer, “Search versus knowledge in game-
playing programs revisited,” in IJCAI-97, 1997, pp. 692–697.

[7] M. Müller, “Computer Go,” Artificial Intelligence, vol. 134, no. 1-2,
pp. 145–179, 2002.

[8] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in Computers and Games (CG 2006), ser. Lecture Notes
in Computer Science (LNCS), H. J. van den Herik, P. Ciancarini, and
H. H. L. M. Donkers, Eds., vol. 4630. Berlin Heidelberg, Germany:
Springer-Verlag, 2007, pp. 72–83.
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