
Monte-Carlo Tree Search

Mark H.M. Winands

Department of Knowledge Engineering, Maastricht University,
Maastricht, The Netherlands
m.winands@maastrichtuniversity.nl

Key words: Adversarial Search, Monte-Carlo Sampling, Game Tree

Synonyms

Monte Carlo Tree Search, MCTS, UCT

1 Definition

Monte-Carlo Tree Search (MCTS) [14, 21] is a best-first search method that
does not require a positional evaluation function. It is based on a randomized
exploration of the search space. Using the results of previous explorations,
the algorithm gradually builds up a game tree in memory, and successively
becomes better at accurately estimating the values of the most promising
moves. MCTS consists of four strategic steps, repeated as long as there is
time left [11]. The steps, outlined in Fig. 1, are as follows. (1) In the selection
step the tree is traversed from the root node downwards until a state is chosen,
which has not been stored in the tree. (2) Next, in the play-out step moves
are chosen in self-play until the end of the game is reached. (3) Subsequently,
in the expansion step one or more states encountered along its play-out are
added to the tree. (4) Finally, in the backpropagation step, the game result r
is propagated back along the previously traversed path up to the root node,
where node statistics are updated accordingly.

2 Structure of MCTS

MCTS usually starts with a tree containing only the root node. The tree is
gradually grown by executing the selection, play-out, expansion, and back-
propagation steps. Such an iteration is called a full simulation. After a certain

2 Mark H.M. Winands

Repeated X times

Selection Play-out Expansion Backpropagation

A selection strategy is
used to traverse the tree

One or more nodes
are created

One simulated
game is played

The result is propagated
back in the tree

Fig. 1. Outline of Monte-Carlo Tree Search.

number of simulations, a move is chosen to be played in the actual game.
This final move selection is based on the highest score or alternatively the
number of times being sampled. The detailed structure of MCTS is discussed
by explaining the four steps below.

2.1 Selection

Selection chooses a child to be searched based on previous information. It
controls the balance between exploitation and exploration. On the one hand,
the task consists of selecting the move that leads to the best results so far
(exploitation). On the other hand, the less promising moves still have to be
tried, due to the uncertainty of the simulations (exploration).

Several selection strategies [8] have been suggested for MCTS such as
BAST, EXP3, UCB1-Tuned, but the most popular one is based on the UCB1
algorithm [3], called UCT (Upper Confidence Bounds applied to Trees) [21].
UCT works as follows. Let I be the set of nodes immediately reachable from
the current node p. The selection strategy selects the child b of node p that
satisfies Formula 1:

b ∈ argmaxi∈I

(
vi + C ×

√
lnnp
ni

)
(1)

where vi is the value of the node i, ni is the visit count of i, and np is the visit
count of p. C is a parameter constant, which can be tuned experimentally
(e.g., C = 0.4). The value of vi should lie in the range [0, 1]. In case a child
has not been stored in the tree or has not been visited yet, a default value
is assumed. For example, the maximum value that a node could obtain by
sampling (i.e., vmax = 1) is taken.

Monte-Carlo Tree Search 3

2.2 Play-out

When in the selection step a state is chosen, which has not been stored in
the tree, the play-out starts. Moves are selected in self-play until the end of
the game is reached. This task might consist of playing plain random moves
or – better – semi-random moves chosen according to a simulation strategy.
Smart simulation strategies have the potential to improve the level of play
significantly. The main idea is to play interesting moves based on heuristics. In
the literature this play-out step is sometimes called the roll-out or simulation.

2.3 Expansion

Expansion is the procedure that decides whether nodes are added to the tree.
Standard the following expansion strategy is sufficient in most cases: one node
is added per simulation [14]. The added leaf node L corresponds to the first
state encountered during the traversal that was not already stored. This allows
to save memory, and reduces only slightly the level of play.

2.4 Backpropagation

Backpropagation is the procedure that propagates the result r of a simulated
game t back from the leaf node L, through the previously traversed nodes, all
the way up to the root. If a game is won, the result of a player j is scored as
rt,j = 1, in the case of a loss as rt,j = 0, and a draw as rt,j = 0.5. To deal with
multi-player games, the result is backpropagated as a tuple of size N , where
N is the number of players. For instance, if Player 1 and Player 3 both reach
a winning condition in a 3-player game, then the result r is returned as the
tuple (1

2 , 0,
1
2). Propagating the values back in the tree is performed similar

to maxn [31].
To compute the value vi of a node i a backpropagation strategy is applied.

Usually, it is calculated by taking the average of the results of all simulated
games made through this node [14], i.e., vi ← Ri,j/ni, where j is the player
to move in its parent node p, and Ri,j ←

∑
t rt,j the cumulative score of all

the simulations.

3 MCTS Enhancements

Over the past years, several enhancements have been developed to improve
the performance of MCTS [8]. First, there are many ways to improve the
selection step of MCTS. The major challenge is how to choose a promising
node when the number of simulations is still low. Domain-independent tech-
niques that only use information gathered during the simulations are Trans-
position Tables, Rapid Action Value Estimation (RAVE), and Progressive
History [12, 18, 24]. Techniques that rely on hand-coded domain knowledge

4 Mark H.M. Winands

are for instance Move Groups, Prior Knowledge, Progressive Bias, and Pro-
gressive Widening/Unpruning [11, 12, 18]. The used heuristic knowledge may
consist of move patterns and even static board evaluators. When a couple of
these enhancements are successfully incorporated, the C parameter of UCT
becomes usually very small or even zero.

Next, the play-outs require a simulation strategy in order to be accurate.
Moves are chosen based on only computationally light knowledge [18] (e.g.,
patterns, capture potential, and proximity to the last move). Adding compu-
tationally intensive heavy heuristic knowledge in the play-outs (such as a 1- or
2-ply search using a full board evaluator) has been beneficial in a few games
such as Chinese Checkers and Lines of Action. When domain knowledge is
not readily available, there exist various domain-independent techniques to
enhance the quality of the play-outs, including the Move Average Sampling
Technique (MAST), Last-Good-Reply policy, and N-Grams [32]. The princi-
ple of these techniques is that moves good in one situation are likely to be
good in other situations as well.

The basic version of MCTS converges to the game-theoretic value, but is
unable to prove it. The MCTS-Solver technique [34] is able to prove the game-
theoretic value of a state with a binary outcome (i.e., win or loss). It labels
terminal states in the search tree as a win or loss and backpropagates the
game-theoretic result in a maxn way [24]. For games with multiple outcomes
(e.g., win, loss, or draw) the technique has been extended to Score Bounded
Monte-Carlo Tree Search [9].

Finally, to utilize the full potential of a multi-core machine, parallelization
has to be applied in an MCTS program. There exist three different paralleliza-
tion techniques for MCTS: (1) root parallelization, (2) leaf parallelization, and
(3) tree parallelization [10]. In root parallelization, each thread has its own
MCTS tree. When the allotted search time is up, the results of the different
trees are combined. In leaf parallelization, one tree is traversed using a single
thread. Subsequently, starting from the leaf node, play-outs are executed in
parallel for each available thread. Once all threads have finished, the results
are backpropagated. When using tree parallelization, one tree is shared, in
which all threads operate independently. For shared memory systems, tree
parallelization is the natural approach that takes full advantage of the avail-
able bandwidth to communicate simulation results [16].

4 Historical Background

Classic search algorithms such as A*, αβ search, or Expectimax require an
evaluator that assigns heuristic values to the leaf nodes in the tree. The 15-
Puzzle and the board games Backgammon, Chess, and Checkers are instances
where this approach has led to world-class performance. However, for some
domains constructing a strong static heuristic evaluation function has been a
rather difficult or an even infeasible task.

Monte-Carlo Tree Search 5

Replacing such an evaluation function with Monte-Carlo sampling was
proposed in the early 1990s. Abramson [1] experimented with these so-called
Monte-Carlo evaluations in the games of Tic-tac-toe, Othello, and Chess. In
1993 Bernd Brügmann was the first to use Monte-Carlo evaluations in his 9×9
Go program Gobble. The following years the technique was incorporated in
stochastic games such as Backgammon [33] and imperfect-information games
such as Bridge [19], Poker [5], and Scrabble [30].

In the early 2000s the Monte-Carlo approach received new interest in the
Computer Go domain [7]. Bruno Bouzy’s Monte-Carlo Go engine Indigo
had some limited success as the main challenge was to effectively combine
Monte-Carlo evaluations with game-tree search. The breakthrough came when
Coulom presented the MCTS approach at the 2006 Computer and Games
Conference [14]. He subsequently demonstrated its strength by winning the
9× 9 Go tournament at the 12th ICGA Computer Olympiad with his MCTS
engine Crazy Stone. Simultaneously Kocsis and Szepesvári [21] introduced
the MCTS variant UCT. Its selection strategy became the standard for many
MCTS engines [8]. Techniques such as RAVE, Prior Knowledge, Progressive
Bias, and Progressive Widening [11, 18] were needed to make MCTS effective
in many challenging domains such as 19× 19 Go. Parallelization [17, 18] has
enabled MCTS to compete with human Go Grandmasters. As of 2014, an
MCTS engine can beat a 9-dan professional player with only a four-stone
handicap, whereas a decade ago 20 stones could be given.

5 Applications

In the past few years MCTS has substantially advanced the state of the art in
several abstract games [8], in particular Go [18], but other two-player deter-
ministic perfect-information games include Amazons [22], Hex [2], and Lines
of Action [34]. MCTS has even increased the level in multi-player games such
as Chinese Checkers [31] and games with stochasticity and/or imperfect infor-
mation such as Kriegspiel [13], Lord of the Rings: The Confrontation [15], and
Scotland Yard [25]. In the General Game Playing competition, where an agent
has to play many different abstract games without any human intervention,
MCTS has become the dominant approach as well [6].

Besides application to abstract games, MCTS has made inroads in the
video game domain. It has been applied in the arcade game Ms. Pac-Man
for controlling either the Ghosts or the Pac-Man [23, 26]. The technique has
been used for resource allocation and coordination in the turn-based strategy
game Total War: Rome II, and for tactical-assault planning in the real-time
strategy game Wargus [4]. The MCTS framework has also shown promise in
the General Video Game AI Competition [27], where the goal is to build an
agent that is capable of playing a wide range of (simple) video games.

MCTS has also been applied in puzzle games such as SameGame [29]
where it is hard to design an admissible evaluation function for A* or IDA*.

6 Mark H.M. Winands

As these games are close to scheduling and optimization problems, MCTS has
been introduced in real-life applications. They are for instance, high energy
physics [28], patient admission scheduling [35], and interplanetary trajectory
planning [20].

6 Future Directions

MCTS does not require a positional evaluation function, overcoming partially
the knowledge-acquisition bottleneck. It is therefore a promising method when
an agent has to play a wide range of games as is fostered in the General (Video)
Game Playing competitions. However, for MCTS to work effectively search-
control knowledge is required to guide the simulations. Domain-independent
techniques are able to boost the decision quality of an MCTS engine, but for
achieving expert level hand-coded domain knowledge is incorporated to grasp
high-level context. Instead of being hand coded by the programmer, a future
research direction is to automatically discover, extract, represent, and tune
this control knowledge during online search.

MCTS has been quite successful in abstract games, however the number
of successful applications in modern video games with high fidelity is rather
limited. There are three challenging for applying MCTS in these games. (1) In
these video games the action space is large if not infinite, and the state space
is often continuous. For MCTS to work effectively the game world has to be
abstracted automatically in such a way that (i) the number of possible moves
is limited and (ii) the number of moves required to finish the game is reduced
as well. (2) These games have a high degree of uncertainty, not only due to
non-determinism (the outcome of a move cannot be predicted) or imperfect
information (certain information is hidden for a player) but also because of
incomplete information (the behavior of the physics engine may be unknown).
For non-determinism and imperfect information, MCTS enhancements have
been investigated to a limited number of abstract games [15], but even less for
video games. Dealing with incomplete information in the MCTS framework is
a largely unexplored terrain. (3) Due to the real-time property the amount of
deliberation time is limited. MCTS has to generate a relatively large number
of simulations in a short time as otherwise the decision quality is quite low.

References

1. B. Abramson. Expected-outcome: A general model of static evaluation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12(2):182–193,
1990.

2. B. Arneson, R.B. Hayward, and P. Henderson. Monte Carlo Tree Search in Hex.
IEEE Transactions on Computational Intelligence and AI in Games, 2(4):251–
258, 2010.

Monte-Carlo Tree Search 7

3. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2–3):235–256, 2002.

4. R-K. Balla and A. Fern. UCT for tactical assault planning in real-time strategy
games. In C. Boutilier, editor, Proceedings of the Twenty-First International
Joint Conference on Artificial Intelligence (IJCAI-09), pages 40–45, 2009.

5. D. Billings, L. Peña, J. Schaeffer, and D. Szafron. Using probabilistic knowledge
and simulation to play poker. In J. Hendler and D. Subramanian, editors,
Proceedings of the Sixteenth National Conference on Artificial Intelligence and
Eleventh Conference on Innovative Applications of Artificial Intelligence, pages
697–703. AAAI Press / The MIT Press, 1999.

6. Y. Björnsson and H. Finnsson. CadiaPlayer: A simulation-based General Game
Player. IEEE Transactions on Computational Intelligence and AI in Games,
1(1):4–15, 2009.

7. B. Bouzy and B. Helmstetter. Monte-Carlo Go developments. In H.J. van den
Herik, H. Iida, and E.A. Heinz, editors, Advances in Computer Games 10:
Many Games, Many Challenges, volume 135 of IFIP Advances in Information
and Communication Technology, pages 159–174. Kluwer Academic Publishers,
Boston, MA, USA, 2004.

8. C.B. Browne, E. Powley, D. Whitehouse, S.M. Lucas, P.I. Cowling, P. Rohlfsha-
gen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of Monte
Carlo Tree Search methods. IEEE Transactions on Computational Intelligence
and AI in Games, 4(1):1–43, 2012.

9. T. Cazenave and A. Saffidine. Score bounded Monte-Carlo Tree Search. In
H.J. van den Herik, H. Iida, and A. Plaat, editors, Computers and Games (CG
2010), volume 6515 of Lecture Notes in Computer Science, pages 93–104, Berlin,
Germany, 2011. Springer-Verlag.

10. G.M.J-B. Chaslot, M.H.M. Winands, and H.J. van den Herik. Parallel Monte-
Carlo Tree Search. In H.J. van den Herik, X. Xu, Z. Ma, and M.H.M. Winands,
editors, Computers and Games (CG 2008), volume 5131 of Lecture Notes in
Computer Science, pages 60–71, Berlin Heidelberg, Germany, 2008. Springer.

11. G.M.J-B. Chaslot, M.H.M. Winands, H.J. van den Herik, J.W.H.M. Uiterwijk,
and B. Bouzy. Progressive strategies for Monte-Carlo Tree Search. New Math-
ematics and Natural Computation, 4(3):343–357, 2008.

12. B.E. Childs, J.H. Brodeur, and L. Kocsis. Transpositions and move groups in
Monte Carlo Tree Search. In P. Hingston and L. Barone, editors, Proceedings
of the 2008 IEEE Symposium on Computational Intelligence and Games, pages
389–395, 2008.

13. P. Ciancarini and G.P. Favini. Monte Carlo Tree Search in Kriegspiel. AI
Journal, 174(11):670–684, 2010.

14. R. Coulom. Efficient selectivity and backup operators in Monte-Carlo Tree
Search. In H.J. van den Herik, P. Ciancarini, and H.H.L.M. Donkers, editors,
Computers and Games (CG 2006), volume 4630 of Lecture Notes in Computer
Science, pages 72–83, Berlin Heidelberg, Germany, 2007. Springer-Verlag.

15. P.I. Cowling, E.J. Powley, and D. Whitehouse. Information Set Monte Carlo
Tree Search. IEEE Transactions on Computational Intelligence and AI in
Games, 4(2):120–143, 2012.

16. M. Enzenberger and M. Müller. A lock-free multithreaded Monte-Carlo Tree
Search algorithm. In H.J. van den Herik and P. Spronck, editors, Advances
in Computer Games (ACG 2009), volume 6048 of Lecture Notes in Computer
Science (LNCS), pages 14–20, Berlin Heidelberg, Germany, 2010. Springer.

8 Mark H.M. Winands

17. M. Enzenberger, M. Müller, B. Arneson, and R. Segal. Fuego – An open-source
framework for board games and Go engine based on Monte Carlo Tree Search.
IEEE Transactions on Computational Intelligence and AI in Games, 2(4):259–
270, 2010.

18. S. Gelly, L. Kocsis, M. Schoenauer, M. Sebag, D. Silver, C. Szepesvári, and
O. Teytaud. The grand challenge of computer Go: Monte Carlo Tree Search
and extensions. Communications of the ACM, 55(3):106–113, 2012.

19. M.L. Ginsberg. GIB: Steps toward an expert-level bridge-playing program. In
T. Dean, editor, Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence (IJCAI-99), volume 1, pages 584–589. Morgan Kaufmann,
1999.

20. D. Hennes and D. Izzo. Interplanetary trajectory planning with Monte Carlo
Tree Search. In Q. Yang and M. Wooldridge, editors, Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015),
pages 769–775, 2015.

21. L. Kocsis and C. Szepesvári. Bandit Based Monte-Carlo Planning. In
J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, editors, Machine Learning:
ECML 2006, volume 4212 of Lecture Notes in Artificial Intelligence, pages 282–
293, 2006.

22. R.J. Lorentz. Amazons discover Monte-Carlo. In H.J. van den Herik, X. Xu,
Z. Ma, and M.H.M. Winands, editors, Computers and Games (CG 2008), vol-
ume 5131 of Lecture Notes in Computer Science, pages 13–24, Berlin Heidelberg,
Germany, 2008. Springer.

23. K.Q. Nguyen and R. Thawonmas. Monte Carlo Tree Search for collaboration
control of Ghosts in Ms. Pac-Man. IEEE Transactions on Computational Intel-
ligence and AI in Games, 5(1):57–68, 2013.

24. J.A.M. Nijssen and M.H.M. Winands. Enhancements for multi-player Monte-
Carlo Tree Search. In H.J. van den Herik, H. Iida, and A. Plaat, editors, Comput-
ers and Games (CG 2010), volume 6151 of Lecture Notes in Computer Science,
pages 238–249, Berlin Heidelberg, Germany, 2011. Springer.

25. J.A.M. Nijssen and M.H.M. Winands. Monte-Carlo Tree Search for the hide-
and-seek game Scotland Yard. Transactions on Computational Intelligence and
AI in Games, 4(4):282–294, 2012.

26. T. Pepels, M.H.M. Winands, and M. Lanctot. Real-time Monte Carlo Tree
Search in Ms Pac-Man. IEEE Transactions on Computational Intelligence and
AI in Games, 6(3):245–257, 2014.

27. D. Perez, S. Samothrakis, and S.M. Lucas. Knowledge-based fast evolutionary
MCTS for general video game playing. In Proceedings of the IEEE Conference
on Computational Intelligence and Games (CIG 2014), pages 68–75, 2014.

28. B. Ruijl, J. Vermaseren, A. Plaat, and H.J. van den Herik. Combining simu-
lated annealing and Monte Carlo Tree Search for expression simplification. In
ICAART 2014, pages 724–731, 2014.

29. M.P.D. Schadd, M.H.M. Winands, M.J.W. Tak, and J.W.H.M. Uiterwijk.
Single-player Monte-Carlo Tree Search for SameGame. Knowledge-Based Sys-
tems, 34:3–11, 2012.

30. B. Sheppard. World-championship-caliber Scrabble. Artificial Intelligence,
134(1–2):241–275, 2002.

31. N.R. Sturtevant. An analysis of UCT in multi-player games. ICGA Journal,
31(4):195–208, 2008.

Monte-Carlo Tree Search 9

32. M.J.W. Tak, M.H.M. Winands, and Y. Björnsson. N-Grams and the last-good-
reply policy applied in General Game Playing. IEEE Transactions on Compu-
tational Intelligence and AI in Games, 4(2):73–83, 2012.

33. G. Tesauro and G.R. Galperin. On-line policy improvement using Monte-Carlo
search. In M.C. Mozer, M.I. Jordan, and T. Petsche, editors, Advances in Neural
Information Processing Systems, volume 9, pages 1068–1074, 1997.

34. M.H.M. Winands, Y. Björnsson, and J-T. Saito. Monte Carlo Tree Search in
Lines of Action. IEEE Transactions on Computational Intelligence and AI in
Games, 2(4):239–250, 2010.

35. G. Zhu, D. Lizotte, and J. Hoey. Scalable approximate policies for Markov
decision process models of hospital elective admissions. Artificial Intelligence in
Medicine, 61(1):21–34, 2014.

