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Abstract

Classic methods such as A* and IDA* are a popular and successful choice for
one-player games. However, without an accurate admissible evaluation func-
tion, they fail. In this article we investigate whether Monte-Carlo Tree Search
(MCTS) is an interesting alternative for one-player games where A* and IDA*
methods do not perform well. Therefore, we propose a new MCTS variant, called
Single-Player Monte-Carlo Tree Search (SP-MCTS). The selection and back-
propagation strategy in SP-MCTS are different from standard MCTS. Moreover,
SP-MCTS makes use of randomized restarts. We tested IDA* and SP-MCTS
on the puzzle SameGame and used the Cross-Entropy Method to tune the SP-
MCTS parameters. It turned out that our SP-MCTS program is able to score
a substantial number of points on the standardized test set.

Keywords: Monte-Carlo Tree Search, One-Player Game, Puzzle, SameGame,
Cross-Entropy Method

1. Introduction

The traditional approaches to deterministic one-player games with perfect
information (Kendall et al., 2008) are applying A* (Hart et al., 1968), IDA*
(Korf, 1985) or one of their variants (e.g., Multiobjective A* (Stewart and
White, 1991), Limited-Damage A* (Bayili and Polat, 2011)). These methods
have been quite successful for solving this type of games. The disadvantage of
the methods is that they require an admissible heuristic evaluation function.
The construction of such a function can be difficult. Since Monte-Carlo Tree
Search (MCTS) (Chaslot et al., 2006b; Coulom, 2007; Kocsis and Szepesvári,
2006) does not require an admissible heuristic and because of its success in
two-player games (Lee et al., 2010) and multi-player games (Sturtevant, 2008),
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MCTS seems a promising approach for deterministic one-player games with
perfect information as well (Schadd et al., 2008b; Tak, 2010).

So far, MCTS has not been widely applied in one-player games. One ex-
ample is the Sailing Domain (Kocsis and Szepesvári, 2006), which is a non-
deterministic game with perfect information. MCTS has also been used for
optimization and planning problems which can be represented as deterministic
one-player games. Chaslot et al. (2006a) applied MCTS in production man-
agement problems. Mesmay et al. (2009) proposed the MCTS variant TAG for
optimizing libraries for different platforms.

This article proposes an MCTS method, called Single-Player Monte-Carlo
Tree Search (SP-MCTS), for a one-player game.1 MCTS for two-player games
forms the starting point for this search method. We adapted MCTS by two
modifications resulting in SP-MCTS. The modifications are (1) in the selection
strategy and (2) in the backpropagation strategy. SP-MCTS is tested in the puz-
zle2 SameGame, because there exists no reliable admissible heuristic evaluation
function for this game. This article also investigates whether the Cross-Entropy
Method (Rubinstein, 2003) is able to fine tune the parameters of SP-MCTS.

The article is organized as follows. In Section 2 we present the rules, com-
plexity and related work of SameGame. In Section 3 we discuss why classic
approaches such as A* and IDA* are not suitable for SameGame. Then, we
introduce the SP-MCTS approach in Section 4. Section 5 describes the Cross-
Entropy Method which is used for tuning the SP-MCTS parameters. Experi-
ments and results are given in Section 6. Section 7 gives the conclusions and
indicates future research.

2. SameGame

SameGame is a puzzle invented by Kuniaki Moribe under the name Chain
Shot! in 1985. It was distributed for Fujitsu FM-8/7 series in a monthly per-
sonal computer magazine called Gekkan ASCII (Moribe, 1985). The puzzle was
afterwards re-created by Eiji Fukumoto under the name of SameGame in 1992.

In this section, we first explain the rules in Subsection 2.1. Subsequently,
we analyze the complexity of SameGame in Subsection 2.2. Finally, we present
related work in Subsection 2.3.

2.1. Rules

SameGame is played on a vertically oriented 15×15 board initially filled with
blocks of 5 colors at random. A move consists of removing a group of (at least
two) orthogonally adjacent blocks of the same color. The blocks on top of the
removed group fall down. As soon as an empty column occurs, the columns to
the right of the empty column are shifted to the left. Therefore, it is impossible

1Preliminary work has been performed by Schadd et al. (2008b).
2From now on, we call one-player deterministic games with perfect information for the

sake of brevity puzzles (Kendall et al., 2008).
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(a) Playing “B” in the cen-
ter column.
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(c) Resulting position.

Figure 1: Example SameGame moves.

to create separate subgames. For each removed group points are rewarded. The
number of points is dependent on the number of blocks removed and can be
computed by the formula (n− 2)

2
, where n is the size of the removed group.

We show two example moves in Figure 1. When the “B” group in the third
column with a connection to the second column of position 1(a) is played, the
“B” group is removed from the game. In the second column the “CA” blocks
fall down and in the third column the “C” block falls down, resulting in position
1(b). Due to this move, it is now possible to remove a large group of “C” blocks
(n = 6). Owing to an empty column the two columns at the right side of the
board are shifted to the left, resulting in position 1(c).3 The first move is worth
1 point; the second move is worth 16 points.

The game is over if no more blocks can be removed. This happens when
either the player (1) has removed all blocks or (2) is left with a position where
no adjacent blocks have the same color. In the first case, 1,000 bonus points are
rewarded. In the second case, points are deducted. The formula for deducting
is similar to the formula for awarding points but now iteratively applied for each
color left on the board. Here it is assumed that all blocks of the same color are
connected.

There are variations that differ in board size and the number of colors, but
the 15×15 variant with 5 colors is the accepted standard. If a variant differs
in the scoring function, it is named differently (e.g., Clickomania (Biedl et al.,
2002) or Jawbreaker (Julien, 2008)).

2.2. Complexity of SameGame

The complexity of a game indicates a measure of difficulty for solving the
game. Two important measures for the complexity of a game are the game-
tree complexity and the state-space complexity (Allis, 1994). The game-tree

3Shifting the columns at the left side to the right would not have made a difference in
number of points. For consistency, we always shift columns to the left.
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complexity is the number of leaf nodes in the solution search tree of the initial
position(s) of the game. The state-space complexity is the number of legal game
positions reachable from the initial position(s) of the game.

For SameGame these complexities are as follows. The game-tree complexity
is approximated by bd, where b is the average branching factor and d is the
average game length. b and d may be obtained by self-play experiments. We
used our engine to play 250 puzzles. The average length of the game was
estimated to be 62.2 moves and the average branching factor to be 21.1, resulting
in a game-tree complexity of 1082. The first step for computing the state-space
complexity is to compute the number of possible states for one column. It is
possible to calculate the number of states for one column by C =

∑r
n=0 c

n

where r is the height of the column and c is the number of colors. To compute
the state-space complexity we take Ck where k is the number of columns. For
SameGame, using c = 5, r = 15 and k = 15, there exist 10159 states. This is an
over-estimation because a small percentage of the positions are symmetrical.

Furthermore, the difficulty of a game can be described by deciding to which
complexity class it belongs (Johnson, 1990). The similar game Clickomania was
proven to be NP-complete by Biedl et al. (2002). However, the complexity of
SameGame could be different. The more points are rewarded for removing large
groups, the more the characteristics of the game may differ from Clickomania.
In Clickomania the only goal is to remove as many blocks as possible, whereas
in SameGame points are rewarded for removing large groups as well. In the
following, we show that SameGame independently from its scoring function is
at least NP-complete (Schadd et al., 2008a), such as the 3-SAT problem (Cook,
1971).

Theorem. SameGame is at least NP-complete.

Proof. To prove that SameGame is at least NP-complete, it is sufficient to reduce
SameGame to a simpler problem which is NP-complete. Instead of proving that
finding the optimal path in SameGame is NP-complete, we prove that checking
whether a given solution S is optimal is already NP-complete. A solution S is
defined as a path from the initial position to a terminal position. Either S (1) has
removed all blocks from the game or (2) has finished with blocks remaining on
the board. In both cases a search has to be performed to investigate whether a
solution exists that improves the score by clearing the board. If finding a solution
that clears the board with a higher score is NP-complete, then SameGame is at
least NP-complete.

Clickomania is a variant of SameGame where no points are rewarded and the
only objective is to clear the board. Finding only one solution to this problem
is easier than finding a higher scoring solution (as in SameGame). Therefore,
SameGame is at least as difficult as Clickomania. Because Clickomania is NP-
complete with 5 colors and at least 2 columns (Biedl et al., 2002), SameGame
with 5 colors and 15 columns is thus at least NP-complete.
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2.3. Related Work

For the game of SameGame some research has been performed. The con-
tributions are benchmarked on a standardized test set of 20 positions.4 The
first SameGame program was written by Billings (2007). This program ap-
plies a non-documented method called Depth-Budgeted Search (DBS). When
the search reaches a depth where its budget has been spent, a greedy simula-
tion is performed. On the test set his program achieved a total score of 72,816
points with 2 to 3 hours computing time per position. When we first intro-
duced Single-Player Monte-Carlo Tree Search (SP-MCTS), it was able to set a
new high score of 73,998 points (Schadd et al., 2008b). This article will describe
SP-MCTS in detail and further improve that score. Takes and Kosters (2009)
proposed Monte Carlo with Roulette-Wheel Selection (MC-RWS). It is a simula-
tion strategy that tries to maximize the size of one group of a certain color and
at the same time tries to create larger groups of another color. On the test set
their program achieved a total score of 76,764 points with a time limit of 2 hours.
In the same year Cazenave (2009) applied Nested Monte-Carlo Search which led
to an even higher score of 77,934. Until the year 2010, the top score on this set
was 84,414 points, held by the program spurious ai.5 This program applies a
method called Simple Breadth Search (SBS), which uses beam search, multiple
processors and a large amount of memory (cf. Takes and Kosters, 2009). Fur-
ther details about this program are not known. Later in 2010 this record was
claimed to be broken with 84,718 points by using a method called Heuristically
Guided Swarm Tree Search (HGSTS) (Edelkamp et al., 2010), which is a paral-
lelized version of MCTS. The scores of HGTS were not independently verified
to be correct.

3. Search Algorithms for Puzzles

The classic approach to puzzles involves methods such as A* (Hart et al.,
1968) and IDA* (Korf, 1985). A* is a best-first search where all nodes have
to be stored in a list. The list is sorted by an admissible evaluation function.
At each iteration the first element is removed from the list and its children are
added to the sorted list. This process is continued until the goal state arrives at
the start of the list. IDA* is an iterative deepening variant of A* search. It uses
a depth-first approach in such a way that there is no need to store the complete
tree in memory. The search continues depth-first until the cost of arriving at a
leaf node and the value of the evaluation function exceeds a certain threshold.
When the search returns without a result, the threshold is increased.

Both methods are strongly dependent on the quality of the evaluation func-
tion. Even if the function is an admissible under-estimator, it still has to give
an accurate estimation. Classic puzzles where this approach works well are the
Eight Puzzle with its larger relatives (Korf, 1985; Sadikov and Bratko, 2007)

4The positions can be found at: www.js-games.de/eng/games/samegame.
5The exact date when the scores were uploaded to http://www.js-games.de/ is unknown.
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and Sokoban (Junghanns, 1999). Here a good under-estimator is the well-known
Manhattan Distance. The main task in this field of research is to improve the
evaluation function, e.g., with pattern databases (Culberson and Schaeffer, 1998;
Felner et al., 2005).

These classic methods fail for SameGame because it is not straightforward
to make an admissible function that still gives an accurate estimation. An
attempt to make such an evaluation function is by just awarding points to the
current groups on the board. This resembles the score of a game where all
groups are removed in a top-down manner. However, if an optimal solution to a
SameGame problem has to be found, we may argue that an “over-estimator” of
the position is required, because in SameGame the score has to be maximized,
whereas in common applications costs have to be minimized (e.g., shortest path
to a goal). An admissible “over-estimator” can be created by assuming that
all blocks of the same color are connected and would be able to be removed
at once. This function can be improved by checking whether there is a color
with only one block remaining on the board. If this is the case, the 1,000 bonus
points for clearing the board may be deducted because the board cannot be
cleared completely. However, such an evaluation function is far from the real
score for a position and does not give good results with A* and IDA*. Our
tests have shown that using A* and IDA* with the proposed “over-estimator”
results in a kind of breadth-first search. The problem is that after expanding
a node, the heuristic value of a child can be significantly lower than the value
of its parent, unless a move removes all blocks with one color from the board.
We expect that other Depth-First Branch-and-Bound methods (Vempaty et al.,
1991) suffer from the same problem. Since no good evaluation function has been
found yet, SameGame presents a new challenge for puzzle research.

Another alternative is to apply the Graphplan algorithm (Blum and Furst,
1997). This algorithm constructs a planning graph in which there exist propo-
sition nodes and action nodes. Special edges are used to denote relations, such
as preconditions. At each iteration i of the algorithm, a search is run to prove
or disprove if a plan using i steps exists. This algorithm is effective if (1) such a
planning graph can easily be constructed and (2) planning-graph-based heuris-
tics can be developed. SameGame can be represented as a directed acyclic
graph, although the goal criterion is not known (i.e., the maximum number of
points achievable in a position is usually unknown). A move may drastically
change the board, making the application of heuristics rather difficult.

4. Single-Player Monte-Carlo Tree Search

MCTS is a best-first search method, which does not require a positional eval-
uation function. MCTS builds a search tree employing Monte-Carlo simulations
at the leaf nodes. Each node in the tree represents an actual board position and
typically stores the average score found in the corresponding subtree and the
number of visits. MCTS constitutes a family of tree-search algorithms applica-
ble to the domain of board games (Chaslot et al., 2006b; Coulom, 2007; Kocsis
and Szepesvári, 2006).
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In general, MCTS consists of four steps, repeated until time has run out
(Chaslot et al., 2008b). (1) A selection strategy is used for traversing the tree
from the root to a leaf. (2) A simulation strategy is used to finish the game
starting from the leaf node of the search tree. (3) The expansion strategy is
used to determine how many and which children are stored as promising leaf
nodes in the tree. (4) Finally, the result of the MC evaluation is propagated
backwards to the root using a backpropagation strategy.

Based on MCTS, we propose an adapted version for puzzles: Single-Player
Monte-Carlo Tree Search (SP-MCTS) (Schadd et al., 2008b). We discuss the
four steps (selection, play-out, expansion and backpropagation) and point out
differences between SP-MCTS and MCTS in Subsection 4.1. SameGame serves
as example domain to explain SP-MCTS. The final move selection is described in
Subsection 4.2. Subsection 4.3 describes how randomized restarts can improve
the score.

4.1. The Four Steps of SP-MCTS

In this subsection we discuss the four steps of SP-MCTS that are applied
iteratively until time runs out. These steps consist of (1) the Selection Step, (2)
the Play-out Step, (3) the Expansion Step, and (4) the Backpropagation Step.

Selection Step

Selection is the strategic task to select one of the children of a given node. It
controls the balance between exploitation and exploration. Exploitation is the
task to focus on the moves that led to the best results so far. Exploration deals
with the less promising moves that still may have to be explored, due to the
uncertainty of their evaluation so far. In MCTS at each node starting from the
root, a child has to be selected until a position is reached that is not part of
the tree yet. Several strategies have been designed for this task (Chaslot et al.,
2006b; Coulom, 2007; Kocsis and Szepesvári, 2006).

Kocsis and Szepesvári (2006) proposed the selection strategy UCT (Upper
Confidence bounds applied to Trees). For SP-MCTS, we use a modified UCT
version. At the selection of node p with children i, the strategy chooses the
move, which maximizes the following formula.

vi + C ×
√

lnnp
ni

+

√∑
r2 − ni × v2i +D

ni
(1)

The first two terms constitute the original UCT formula. It uses ni as the
number of times that node i was visited where i denotes a child and p the
parent to give an upper confidence bound for the average game value vi. For
puzzles, we added a third term, which represents a possible deviation of the child
node (Chaslot et al., 2006a; Coulom, 2007). It contains the sum of the squared
results

(∑
r2
)

so far achieved at the child node corrected by the expected results
ni × v2i . A high constant D is added to ensure that nodes, which have been
rarely explored, are considered promising. As this deviation term is not domain
specific, it may also be beneficial in other domains where the variation on the
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scores is an important feature (e.g., puzzles with the aim to score points). Below
we describe two differences between puzzles and two-player games, which may
affect the selection strategy.

First, the essential difference between puzzles and two-player games is the
range of values. In two-player games, the outcome of a game is usually denoted
by loss, draw, or win, i.e., {−1, 0, 1}. The average score of a node always
stays within [−1, 1]. In a puzzle, an arbitrary score can be achieved that is
not by definition within a preset interval. For example, in SameGame there are
positions, which result in a value above 5,000 points. As a first solution to this
issue we may set the constants C and D in such a way that they are feasible for
a certain interval (e.g., [0, 6000] in SameGame). A second solution would be to
scale the values back into the above mentioned interval [−1, 1], given a maximum
score (e.g., 6,000 for a SameGame position). When the exact maximum score is
not known a theoretical upper bound can be used. For instance, in SameGame
a theoretical upper bound is to assume that all blocks have the same color. A
direct consequence of such an upper bound is that due to the high upper bound,
the game scores are located near to zero. It means that the constants C and D
have to be set with completely different values compared to two-player games.
We have opted for the first solution in our program.

A second difference is that puzzles do not have any uncertainty on the op-
ponent’s play. It means that the line of play has to be optimized without the
hindrance of an opponent (Chaslot, 2010). Due to this, not only the average
score but the top score so far of a move can be used as well. Based on manual
tuning, we add the top score using a weight W with a value of 0.02 to the
average score.

Here we remark that we follow Coulom (2007) in choosing a move according
to the selection strategy only if np reaches a certain threshold T . Based on
preliminary experiments, we set T to 10. This parameter will be tuned in
Subsection 6.6. As long as the threshold is not exceeded, the simulation strategy
is used. The latter is explained below.

Play-Out Step

The play-out step begins when we enter a position that is not part of the
tree yet. Moves are randomly selected until the game ends. This succeeding
step is called the play-out. In order to improve the quality of the play-outs, the
moves are chosen quasi-randomly based on heuristic knowledge (Bouzy, 2005;
Chen and Zhang, 2008; Gelly et al., 2006). For SameGame, several simulation
strategies exist.

We have proposed two simulation strategies, called TabuRandom and Tabu-
ColorRandom. Both strategies aim at creating large groups of one color. In
SameGame, creating large groups of blocks is advantageous. TabuRandom
chooses a random color at the start of a play-out. The idea is not to allow
playing this color during the play-out unless there are no other moves possible.
With this strategy large groups of the chosen color are formed automatically.
The new aspect in the TabuColorRandom strategy with respect to the previous
strategy is that the chosen color is the color most frequently occurring at the

8



start of the play-out. This may increase the probability of having large groups
during the play-out. We also use the ε-greedy policy to occasionally deviate
from this strategy (Sutton and Barto, 1998). Before the simulation strategy is
applied, with probability ε a random move is played. Based on manual tuning,
we chose ε = 0.003.

An alternative simulation strategy for SameGame is Monte-Carlo with
Roulette-Wheel Selection (MC-RWS) (Takes and Kosters, 2009). This strat-
egy not only tries to maximize one group of a certain color, but also tries to
create bigger groups of other colors. Tak (2010) showed that MC-RWS does not
improve the score in SP-MCTS because it is computationally more expensive
than TabuColorRandom.

Expansion Step

An expansion strategy decides on which nodes are stored in memory. Coulom
(2007) proposed to expand one child per play-out. With his strategy, the ex-
panded node corresponds to the first encountered position that was not present
in the tree. This is also the strategy we used for SP-MCTS.

Backpropagation Step

During the backpropagation step, the result of the play-out at the leaf node
is propagated backwards to the root. Several backpropagation strategies have
been proposed in the literature (Chaslot et al., 2006b; Coulom, 2007). The best
results that we have obtained for SP-MCTS was by using the plain average of
the play-outs. Therefore, we update (1) the average score of a node. Additional
to this, we also update (2) the sum of the squared results because of the third
term in the selection strategy (see Formula 1), and (3) the top score achieved
so far.

4.2. Final Move Selection

The four steps are repeated until time runs out.6 When this occurs, a final
move selection is performed to determine which move should be played. There
exist two standard final move selection strategies, which base their choice on the
children of the root node. They are (1) choosing the child with highest average
score and (2) choosing the child with highest number of play-outs. For puzzles
however, the aim is to find the move with the highest topscore. We propose to
use (3) the topscore for the final move selection. The highest scoring play-out
is saved, and its first move is chosen for the final move selection. We investigate
the effectiveness of this final move selection strategy in Subsection 6.5.

An essential difference between deterministic one-player games and two-
player games is that there is no uncertainty on the opponent’s play. It is
therefore possible to perform one large search from the initial position and then
play all moves at once. With this approach all moves at the start are under

6In general, there is no time limitation for puzzles. However, a time limit is necessary to
make testing possible.
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consideration until the time for SP-MCTS runs out. It has to be investigated
whether this approach outperforms an approach that allocates search time for
every move. These experiments are presented in Subsection 6.3.

4.3. Randomized Restarts

We observed that it is important to generate deep trees in SameGame (see
Subsection 6.2). However, by exploiting the most-promising lines of play, the
SP-MCTS can be caught in local maxima. So, we randomly restart SP-MCTS
with a different seed to overcome this problem. Because no information is
shared between the searches, they explore different parts of the search space.
This method resembles root parallelization (Chaslot et al., 2008c).

Root parallelization is an effective way of using multiple cores simultaneously
(Chaslot et al., 2008c). However, we argue that root parallelization may also
be used for avoiding local maxima in a single-threaded environment. Because
there is no actual parallelization, we call this randomized restarts. Subsection
6.3 shows that randomized restarts are able to increase the average score signif-
icantly.

5. The Cross-Entropy Method

Choosing the correct SP-MCTS parameter values is important for its success.
For instance, an important parameter is the C constant which is responsible for
the balance between exploration and exploitation. Optimizing these parameters
manually may be a hard and time-consuming task. Although it is possible
to make educated guesses for some parameters, for other parameters it is not
possible. Specially hidden dependencies between the parameters complicate the
tuning process. Here, a learning method can be used to find the best values for
these parameters (Beal and Smith, 2000; Sutton and Barto, 1998).

The Cross-Entropy Method (CEM) (Rubinstein, 2003) has successfully tuned
parameters of an MCTS program in the past (Chaslot et al., 2008a). CEM is
an evolutionary optimization method, related to Estimation-of-Distribution Al-
gorithms (EDAs) (Mühlenbein, 1997). CEM is a population-based learning
algorithm, where members of the population are sampled from a parameter-
ized probability distribution (e.g., Gaussian, Binomial, Bernoulli, etc.). This
probability distribution represents the range of possible solutions.

CEM converges to a solution by iteratively changing the parameters of the
probability distribution (e.g., µ and σ for a Gaussian distribution). An iteration
consists of three main steps. First, a set S of vectors x ∈ X is drawn from the
probability distribution, where X is some parameter space. These parameter
vectors are called samples. In the second step, each sample is evaluated and
gets assigned a fitness value. A fixed number of samples within S having the
highest fitness are called the elite samples. In the third step, the elite samples
are used to update the parameters of the probability distribution.
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Generally, CEM aims to find the optimal solution x∗ for a learning task
described in the following form

x∗ ← argmax
x

f(x), (2)

where x∗ is a vector containing all parameters of the (approximately) optimal
solution. f is a fitness function that determines the performance of a sample x
(for SameGame this is the average number of points scored on a set of positions).
The main difference of CEM to traditional methods is that CEM does not
maintain a single candidate solution, but maintains a distribution of possible
solutions.

There exist two methods for generating samples from the probability distri-
bution, (1) random guessing and (2) distribution focusing (Rubinstein, 2003).
Random guessing straightforwardly creates samples from the distribution and
selects the best sample as an estimate for the optimum. If the probability distri-
bution peaked close to the global optimum, random guessing may obtain a good
estimate. If the distribution is rather uniform, the random guessing is unreli-
able. After drawing a moderate number of samples from a distribution, it may
be impossible to give an acceptable approximation of x∗, but it may be possible
to obtain a better sampling distribution. To modify the distribution during
sampling to form a peak around the currently best samples is called distribution
focusing. Distribution focusing is the central idea of CEM (Rubinstein, 2003).

When starting CEM, an initial probability distribution is required. Chaslot
et al. (2008a) used a Gaussian distribution and proposed that for each parame-
ter, the mean µ of the corresponding distribution is equal to the average of the
lower and upper bound of that parameter.7 The standard deviation σ is set to
half the difference between the lower and upper bound (Chaslot et al., 2008a).

6. Experiments and Results

Subsection 6.1 tests the quality of the two simulation strategies TabuRandom
and TabuColorRandom. Thereafter, the results of manual parameter tuning are
presented in Subsection 6.2. Subsequently, Subsection 6.3 gives the performance
of the randomized restarts on a set of 250 positions. In Subsection 6.4, it
is investigated whether it is better to exhaust all available time at the initial
position or to distribute the time uniformly for every move. Subsection 6.5
investigates which final move selection strategy produces the best results. Next,
in Subsection 6.6 the parameter tuning by CEM is shown. Finally, Subsection
6.7 compares SP-MCTS to other approaches. All experiments use parameter
values W = 0.02, T = 10 and ε = 0.003, unless stated otherwise.

7The lower and upper bound of a variable are either domain dependant or based on
intuition.
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Table 1: Effectiveness of the simulation strategies.

Random TabuRandom TabuColorRandom

Average Score 2,069 2,737 3,038

StdDev 322 445 479

6.1. Simulation Strategy

In order to test the effectiveness of the two simulation strategies, we used a
test set of 250 randomly generated positions.8 We applied SP-MCTS without
randomized restarts for each position until 10 million nodes were reached in
memory. These runs typically take 5 to 6 minutes per position. The best score
found during the search is the final score for the position. The constants C and
D were set to 0.5 and 10,000, respectively. For the final move selection, the
topscore strategy is used, for which the experiments are given in Subsection 6.5.
The results are shown in Table 1.

Table 1 shows that the TabuRandom strategy has a significantly better av-
erage score (i.e., 700 points) than plain random. Using the TabuColorRandom
strategy the average score is increased by another 300 points. We observe that
a low standard deviation is achieved for the random strategy. In this case, it
implies that all positions score almost equally low. The proposed TabuCol-
orRandom strategy has also been successfully applied in Nested Monte-Carlo
Search (Cazenave, 2009) and HGSTS (Edelkamp et al., 2010).

6.2. Manual Parameter Tuning

This subsection presents the parameter tuning in SP-MCTS. Three different
settings were used for the pair of constants (C; D) of Formula 1, in order to
investigate which balance between exploitation and exploration gives the best
results. These constants were tested with three different time controls on the test
set of 250 positions, expressed by a maximum number of nodes. The short time
control refers to a run with a maximum of 105 nodes in memory. At the medium
time control, 106 nodes are allowed in memory, and for a long time control 5×106

nodes are allowed. We have chosen to use nodes in memory as measurement to
keep the results hardware-independent. Based on preliminary manual tuning,
we have selected three parameter pairs for further investigation. The parameter
pair (0.1; 32) represents exploitation, (1; 20,000) performs exploration, and
(0.5; 10,000) is a balance between the other two.

Table 2 shows the performances of the SP-MCTS approach for the three
time controls. The short time control corresponds to approximately 20 seconds
per position. In this table the term Average Depth is the average depth of a
node and Average Deepest Node is the average depth of the deepest leaf node

8The test set can be found at http://www.personeel.unimaas.nl/maarten-
schadd/TestSet.txt
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added to the tree, measured as the distance to the root node. The best results
are achieved by exploitation. The average score is 2,552. With this setting the
search is able to build trees that have on average the deepest leaf node at ply
63, implying that a substantial part of the chosen line of play is inside the SP-
MCTS tree. Also, we observe that the other two settings are not generating a
deep tree.

Table 2: Results of SP-MCTS for different settings.

Exploitation Balanced Exploration
105 nodes (∼20 seconds) (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,552 2,388 2,197
Standard Deviation 572 501 450

Average Depth 25 7 3
Average Deepest Node 63 19 8

106 nodes (∼200 seconds) (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,674 2,858 2,579
Standard Deviation 607 560 492

Average Depth 36 14 6
Average Deepest Node 71 37 15

5× 106 nodes (∼1,000 seconds) (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,806 3,008 2,901
Standard Deviation 576 524 518

Average Depth 40 18 9
Average Deepest Node 69 59 20

For the medium time control, the best results were achieved by using the
balanced setting. It scores 2,858 points. Moreover, Table 2 shows that the
average score of the balanced setting increases most compared to the short time
control, viz. 470. The balanced setting is able to build substantially deeper
trees than at the short time control (37 vs. 19). An interesting observation can
be made by comparing the score of the exploration setting for the medium time
control to the exploitation score for the short time control. Even with 10 times
the amount of time, exploration is not able to achieve a significantly higher score
than exploitation.

The results for the long experiment are that the balanced setting again
achieves the highest score with 3,008 points. The deepest node for this setting
is on average at ply 59. However, the exploitation setting only scores 200 points
fewer than the balanced setting and 100 points fewer than exploration.

From the results presented we may draw two conclusions. First, it is impor-
tant to have a deep search tree. Second, exploiting local maxima can be more
advantageous than searching for the global maximum when the search only has
a small amount of time.
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6.3. Randomized Restarts

This subsection presents the performance tests of the randomized restarts on
the set of 250 positions. We remark that the experiments are time constrained.
Each experiment could only use 5×105 nodes in total and the restarts distributed
these nodes uniformly among the number of searches. It means that a single
search can take all 5× 105 nodes, but that two searches can only use 2.5× 105

nodes each. We used the exploitation setting (0.1; 32) for this experiment. The
results are depicted in Figure 2.
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Figure 2: The average score for different settings of randomized restarts.

Figure 2 indicates that already with two searches instead of one, a significant
performance increase of 140 points is achieved. Furthermore, the maximum
average score of the randomized restarts is at ten searches, which uses 5 × 104

nodes for each search. Here, the average score is 2,970 points. This result is
almost as good as the best score found in Table 2, but with the difference that
the randomized restarts together used one tenth of the number of nodes. After
10 restarts the performance decreases because the generated trees are not deep
enough.

6.4. Time Control

This subsection investigates whether it is better to exhaust all available
time at the initial position or to distribute the time uniformly for every move.
Table 3 shows the average score on 250 random positions with five different
time settings. This experiment uses the exploitation settings for the C and D
parameters. When SP-MCTS is applied for every move, this time is divided
by the average game length (64.4). It means that depending on the number of
moves, the total search time varies. These time settings are exact in the case
that SP-MCTS is applied per game.
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Table 3: Average score on 250 positions using different time control settings.

Time in seconds ∼5 ∼10 ∼20 ∼30 ∼60

SP-MCTS per game 2,223 2,342 2,493 2,555 2,750
SP-MCTS per move 2,588 2,644 2,742 2,822 2,880

Table 3 shows that distributing the time uniformly for every move is the
better approach. For every time setting a higher score is achieved when searching
per move. The difference in score is largest for 5 seconds, and smallest for 60
seconds. It is an open question whether for longer time settings it may be
beneficial to exhaust all time at the initial position.

6.5. Final Move Selection

In the previous experiments we used the topscore for the final move selection.
To verify the correctness of this choice, we investigate in this subsection the
effectiveness of the three final move selection strategies (1) highest average, (2)
highest number of play-outs and (3) topscore. To measure the effectiveness of
these strategies, we apply SP-MCTS per move, using 10 seconds per position
and the exploitation setting. Table 4 shows the average score on the test set of
250 positions.

Table 4: Final move selection strategies.

Highest Average Highest Number of Play-outs TopScore

Average Score 784 1,458 2,644

Using the average score for the final move selection produced rather disap-
pointing results (784 points). Especially at the beginning of the game, play-outs
are unlikely to achieve high scores or clear the board. This produces too much
noise within the average score. Using the highest number of play-outs for the
final move selection results in 1,458 points on average and is significantly better
than using the average strategy. Using the topscore produced by far the best
results (2,644 points). Even if a play-out achieves a high score only once, the
score of this play-out gives a lower bound for the final score. To achieve this
score, only the moves of this play-out have to be followed. We will use the
topscore strategy for the final move selection in all remaining experiments.

6.6. CEM Parameter Tuning

In the next series of experiments we tune SP-MCTS with CEM. The follow-
ing settings for CEM were used. The sample size is equal to 100, the number
of elite samples is equal to 10. Each sample plays 30 games with 1 minute
thinking time for each game. The 30 initial positions are randomly generated at
the start of each iteration. The fitness of a sample is the average of the scores
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of these games. The parameters tuned by CEM are presented in Table 5. C,
D, T , W and ε were described in Subsection 4.1. The CEM-tuned parameters
differ significantly from the manually tuned ones. The only exception is param-
eter T , which is the number of visits before a node is expanded. CEM found
values 11 and 13 which are in the same range as the manually tuned value of
10. The CEM-tuned parameters are more explorative than the manually tuned
parameters.

Table 5: Parameter tuning by CEM.

Parameter Manual CEM per game CEM per move

C 0.1 5.96 4.31
D 32 67.98 96.67
T 10 13 11
W 0.02 0.49 0.28
ε 0.003 0.00007 0.000079

To determine the performance of the parameters found by CEM an indepen-
dent test set of 250 randomly created positions was used. Five different time
settings were investigated. Table 6 shows the results of the CEM experiments.

Table 6: Performance of CEM tuning.

Time in seconds ∼5 ∼10 ∼20 ∼30 ∼60

Per Game
Manually tuning 2,223 2,342 2,493 2,555 2,750

CEM tuned 2,405 2,493 2,598 2,734 2,804

Per Move
Manually tuning 2,588 2,644 2,742 2,822 2,880

CEM tuned 2,652 2,749 2,856 2,876 2,913

Table 6 shows that both time controls and for every time setting CEM is
able to improve the score. This demonstrates the difficulty of finding parameters
manually in a high-dimensional parameter space.

6.7. Comparison on the Standardized Test Set

Using two hours per position, we tested IDA* and three different versions of
SP-MCTS, subsequently called SP-MCTS(1), SP-MCTS(2), and SP-MCTS(3),
on the standardized test set. IDA* applies the evaluation function described in
Section 3. SP-MCTS(1) builds one large tree at the start and uses the exploita-
tion setting (0.1; 32) and randomized restarts, which applied 1,000 runs using
100,000 nodes for each search thread. SP-MCTS(2) uses the same parameters as

9This parameter was not tuned again because it was obvious that the optimal weight is
close to or equal to zero.
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SP-MCTS(1), but distributes its time for every move. SP-MCTS(3) distributes
its time per move and uses the parameters found by CEM.

Table 7 compares IDA* and the SP-MCTS variants with the other ap-
proaches, which were described in Subsection 2.3. The table shows that IDA*
does not perform well for SameGame. It plays at human beginner level. Next,
SP-MCTS(1) outperformed DBS on 11 of the 20 positions and was able to
achieve a total score of 73,998. This was the highest score on the test set at
that point of time (Schadd et al., 2008b). SP-MCTS(2) scored 76,352 points,
2,354 more than SP-MCTS(1). This shows that it is important to distribute
search time for every move. SP-MCTS(3) achieved 78,012 points, the third
strongest method at this point of time. All SP-MCTS versions are able to
clear the board for all 20 positions.10 This confirms that a deep search tree is
important for SameGame as shown in Subsection 6.2.

The two highest scoring programs (1) spurious ai and (2) HGSTS achieved
more points than SP-MCTS. We want to give the following remarks on these
impressive scores. (1) spurious ai is memory intensive and it is unknown what
time settings were used for achieving this score. (2) HGSTS utilized the graphics
processing unit (GPU), was optimized for every position in the standardized test
set, and applied our TabuColorRandom strategy. Moreover, the scores of HGTS
were not independently verified to be correct.

7. Conclusions and Future Research

In this article we proposed a new MCTS variant called Single-Player Monte-
Carlo Tree Search (SP-MCTS). We adapted MCTS by two modifications re-
sulting in SP-MCTS. The modifications are (1) in the selection strategy and (2)
in the backpropagation strategy. Below we provide five observations and one
conclusion.

First, we observed that our TabuColorRandom strategy significantly in-
creased the score of SP-MCTS in SameGame. Compared to the pure random
play-outs, an increase of 50% in the average score is achieved. The proposed
TabuColorRandom strategy has also been successfully applied in Nested Monte-
Carlo Search (Cazenave, 2009) and HGSTS (Edelkamp et al., 2010). Second,
we observed that exploiting works better than exploring at short time controls.
At longer time controls a balanced setting achieves the highest score, and the
exploration setting works better than the exploitation setting. However, ex-
ploiting the local maxima still leads to comparable high scores. Third, with
respect to the randomized restarts, we observed that for SameGame combining
a large number of small searches can be more beneficial than performing one
large search. Fourth, it is better to distribute search time equally over the con-
secutive positions than to invest all search time at the initial position. Fifth,
CEM is able to find better parameter values than manually tuned parameter

10The best variations can be found at the following address:
http://www.personeel.unimaas.nl/maarten-schadd/SameGame/Solutions.html
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Table 7: Comparing the scores on the standardized test set.

# IDA* DBS SP-MCTS(1) SP-MCTS(2) MC-RWS

1 548 2,061 2,557 2,969 2,633
2 1,042 3,513 3,749 3,777 3,755
3 841 3,151 3,085 3,425 3,167
4 1,355 3,653 3,641 3,651 3,795
5 1,012 3,093 3,653 3,867 3,943
6 843 4,101 3,971 4,115 4,179
7 1,250 2,507 2,797 2,957 2,971
8 1,246 3,819 3,715 3,805 3,935
9 1,887 4,649 4,603 4,735 4,707

10 668 3,199 3,213 3,255 3,239
11 1,073 2,911 3,047 3,013 3,327
12 602 2,979 3,131 3,239 3,281
13 667 3,209 3,097 3,159 3,379
14 749 2,685 2,859 2,923 2,697
15 745 3,259 3,183 3,295 3,399
16 1,647 4,765 4,879 4,913 4,935
17 1,248 4,447 4,609 4,687 4,737
18 2,586 5,099 4,853 4,883 5,133
19 1,437 4,865 4,503 4,685 4,903
20 872 4,851 4,853 4,999 4,649

Sum 22,354 72,816 73,998 76,352 76,764

# Nested MC SP-MCTS(3) spurious ai HGSTS

1 3,121 2,919 3,269 2,561
2 3,813 3,797 3,969 4,995
3 3,085 3,243 3,623 2,858
4 3,697 3,687 3,847 4,051
5 4,055 4,067 4,337 4,633
6 4,459 4,269 4,721 5,003
7 2,949 2,949 3,185 2,717
8 3,999 4,043 4,443 4,622
9 4,695 4,769 4,977 6,086

10 3,223 3,245 3,811 3,628
11 3,147 3,259 3,487 2,796
12 3,201 3,245 3,851 3,710
13 3,197 3,211 3,437 3,271
14 2,799 2,937 3,211 2,432
15 3,677 3,343 3,933 3,877
16 4,979 5,117 5,481 6,074
17 4,919 4,959 5,003 5,166
18 5,201 5,151 5,463 6,044
19 4,883 4,803 5,319 5,019
20 4,835 4,999 5,047 5,175

Sum 77,934 78,012 84,414 84,718
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values. The parameters found by CEM resemble a balanced setting. They were
tuned for applying SP-MCTS for every move, causing that deep trees are less
important.

The main conclusion is that we have shown that MCTS is applicable to
a one-player deterministic perfect-information game. Our variant, SP-MCTS,
is able to achieve good results in SameGame. Thus, SP-MCTS is a worthy
alternative for puzzles where a good admissible estimator cannot be found.

There are three directions of future research for SP-MCTS. The first direc-
tion is to test several enhancements in SP-MCTS. We mention two of them.
(1) The selection strategy can be enhanced with RAVE (Gelly and Silver, 2007)
or progressive widening (Chaslot et al., 2008b; Coulom, 2007). (2) This article
demonstrated that combining small searches can achieve better scores than one
large search. However, there is no information shared between the searches. This
can be achieved by using a transposition table, which is not cleared at the end
of a small search. The second direction is to apply SP-MCTS to other domains.
For instance, we could test SP-MCTS in puzzles such as Morpion Solitaire and
Sudoku (Cazenave, 2009) and Single-Player General Game Playing (Méhat and
Cazenave, 2010). Other classes of one-player games, with non-determinism or
imperfect information, could be used as test domain for SP-MCTS as well. The
third direction of future research is to apply SP-MCTS to optimization and
planning problems outside the domain of games (e.g., web service decomposi-
tion (Okutan and Cicekli, 2010))
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