
PDS-PN: A New Proof-Number Search
Algorithm

Application to Lines of Action

Mark H.M. Winands, Jos W.H.M. Uiterwijk, and H. Jaap van den Herik

Department of Computer Science, Institute for Knowledge and Agent Technology,
Universiteit Maastricht, P.O. Box 616
6200 MD Maastricht, The Netherlands

{m.winands, uiterwijk, herik}@cs.unimaas.nl

Abstract. The paper introduces a new proof-number (PN) search algo-
rithm, called PDS-PN. It is a two-level search, which performs at the first
level a depth-first Proof-number and Disproof-number Search (PDS), and
at the second level a best-first PN search. First, we thoroughly investi-
gate four established algorithms in the domain of LOA endgame posi-
tions: PN, PN2, PDS and αβ search. It turns out that PN2 and PDS are
best in solving hard problems when measured by the number of solutions
and the solution time. However, each of those two has a practical disad-
vantage: PN2 is restricted by the working memory, and PDS is relatively
slow in searching. Then we formulate our new algorithm by selectively
using the power of each one, viz. the two-level nature and the depth-first
traversal respectively. Experiments reveal that PDS-PN is competitive
with PDS in terms of speed and with PN2 since it is not restricted in
working memory.

1 Introduction

Most modern game-playing computer programs successfully use αβ search with
enhancements for online game-playing [10]. However, the enriched αβ search
is sometimes not sufficient to play well in the endgame. In some games, such
as chess, this problem is solved by the use of endgame databases [15]. Due to
memory constraints this is only feasible for endgames with a relatively small
state-space complexity although nowadays the size may be considerable. An
alternative approach is the use of a specialised binary (win or non-win) search
method, such as proof-number (PN) search [3]. In some domains PN search
outperforms αβ search in proving the game-theoretic value of endgame positions.
PN search or a variant thereof has been applied successfully to the endgame of
Awari [3], chess [6], checkers [18] and Shogi [19]. In this paper we investigate
several PN algorithms in the domain of Lines of Action (LOA). It turns out
that the algorithms are restricted by working memory or by searching speed. To
remove both restrictions we introduce a new PN algorithm, called PDS-PN.

The remainder of this paper is organised as follows. Section 2 explains the
rules of LOA. Section 3 describes PN, PN2, PDS; and examines their solution

2 Mark Winands et al.

power and solution time, in relation to that of αβ. In section 4 we explain the
working of PDS-PN. Subsequently, the results of the experiments with PDS-
PN are given in section 5. Finally, in section 6 we present our conclusions and
propose topics for further research.

2 Lines of Action

Lines of Action (LOA) [16] is a two-person zero-sum chess-like connection game
with perfect information. It is played on an 8× 8 board by two sides, Black and
White. Each side has twelve pieces at its disposal. The black pieces are placed in
two rows along the top and bottom of the board (see figure 1a), while the white
pieces are placed in two files at the left and right edge of the board. The players
alternately move a piece, starting with Black. A move takes place in a straight
line, exactly as many squares as there are pieces of either colour anywhere along
the line of movement (see figure 1b). A player may jump over its own pieces.
A player may not jump over the opponent’s pieces, but can capture them by
landing on them. The goal of a player is to be the first to create a configuration
on the board in which all own pieces are connected in one unit (see figure 1c). In
the case of simultaneous connection, the game is drawn. The connections within
the unit may be either orthogonal or diagonal. If a player cannot move, this
player has to pass. If a position with the same player to move occurs for the
third time, the game is drawn.

Fig. 1. (a) The initial position of LOA. (b) An example of possible moves in a LOA
game. (c) A terminal LOA position.

An interesting property of the game is that most terminal positions still
have more than ten pieces remaining on the board [20], which makes the game
not suitable for endgame databases. Although reasonable effort has been un-
dertaken to construct adequate evaluation functions for LOA [22], experiments
still suggest that these are not very good predictions in the case of forced wins.
Therefore, LOA seems an appropriate test domain for PN search algorithms.

PDS-PN: A New Proof-Number Search Algorithm 3

3 Three Proof-Number Search Algorithms

In this section we give a short description of PN search, PN2 search and PDS.
We end with a comparison between PN, PN2, PDS and αβ.

3.1 Proof-Number Search

Proof-number (PN) search is a best-first search algorithm especially suited for
finding the game-theoretical value in game trees [2]. Its aim is to prove the true
value of the root of a tree. A tree can have three values: true, false or unknown.
In the case of a forced win, the tree is proved and its value is true. In the case of
a forced loss or draw, the tree is disproved and its value is false. Otherwise the
value of the tree is unknown. In contrast to other best-first algorithms PN search
does not need a domain-dependent heuristic evaluation function to determine the
most-promising node to be expanded next [3]. In PN search this node is usually
called most-proving node. PN search selects the most-proving node using two
criteria: (1) the shape of the search tree (the number of children of every internal
node) and (2) the values of the leaves. These two criteria enable PN search to
treat game trees with a non-uniform branching factor efficiently.

1
a

b c

ih lk

ed gf

2

1
2

0
!

!

0

0
!

!

0

!

0

1
1

1
1

1
2

1
1

draw ??

loss ?

j

?

1
1

win

1
a

b c

ih lk

ed gf

2

1
2

0
!

!

0

0
!

!

0

!

0

1
1

1
1

1
2

1
1

draw ??

loss ?

j

?

1
1

win

Fig. 2. An AND/OR tree with proof and disproof numbers.

Below we explain PN search on the basis of the AND/OR tree depicted in
figure 2, in which a square denotes an OR node, and a circle denotes an AND

4 Mark Winands et al.

node. The numbers to the right of a node denote the proof number (upper) and
disproof number (lower). A proof number represents the minimum number of leaf
nodes which have to be proved in order to prove the node. Analogously, a disproof
number represents the minimum number of leaves which have to be disproved
in order to disprove the node. Because the goal of the tree is to prove a forced
win, winning nodes are regarded as proved. Therefore, they have proof number
0 and disproof number ∞ (e.g., node i). Lost or drawn nodes are regarded as
disproved (e.g., nodes f and k). They have proof number∞ and disproof number
0. Unknown leaf nodes have a proof and disproof number of unity (e.g., nodes g,
h, j and l). The proof number of an internal AND node is equal to the sum of
its childrens’ proof numbers, since to prove an AND node all the children have
to be proved. The disproof number of an AND node is equal to the minimum of
its childrens’ disproof numbers. The disproof number of an internal OR node is
equal to the sum of its childrens’ disproof numbers, since to disprove an OR node
all the children have to be disproved. Its proof number is equal to the minimum
of its childrens’ proof numbers. The procedure of selecting the most-proving node
to expand is the following. We start at the root. Then, at each OR node the child
with the lowest proof number is selected as successor, and at each AND node the
child with the lowest disproof number is selected as successor. Finally, when a
leaf node is reached, it is expanded and its children are evaluated. This is called
immediate evaluation. The selection of the most-proving node (j) in figure 2 is
given by the bold path.

In the naive implementation, proof and disproof numbers are each initialised
to unity in the unknown leaves. In other implementations, the proof number and
disproof number are set to 1 and n for an OR node (and the reverse for an AND
node), where n is the number of legal moves. In LOA this initialisation leads to
a speed-up by a factor of 6 in time [21].

A disadvantage of PN search is that the whole search tree has to be stored
in memory. When the memory is full, the search process has to be terminated
prematurely. A partial solution is to delete proved or disproved subtrees [2].
In the next subsections we discuss two variants of PN search that handle the
memory problem more adequately.

3.2 PN2 Search

PN2 is first described in [2], as an algorithm to reduce memory requirements in
PN search. It is elaborated upon in [5]. Its implementation and testing for chess
positions is extensively described in [7]. PN2 consists of two levels of PN search.
The first level consists of a PN search (pn1), which calls a PN search at the
second level (pn2) for an evaluation of the most-proving node of the pn1-search
tree. This pn2 search is bound by a maximum number of nodes that can be
stored in memory. The number is a fraction of the size of the pn1-search tree.
The fraction f(x) is given by the logistic growth function [4], x being the size of
the first-level search:

PDS-PN: A New Proof-Number Search Algorithm 5

f(x) =
1

1 + e
a−x

b

(1)

with parameters a and b, both strictly positive. The number of nodes y in a pn2-
search tree is restricted to the minimum of this fraction function or the number
of nodes which can still be stored. The formula to compute y is:

y = min(x× f(x), N − x) (2)

with N the maximum number of nodes to be stored in memory.
The pn2 search is stopped when the number of nodes stored in memory

exceeds y or the subtree is (dis)proved. After completion of the pn2 search,
the children of the root of the pn2-search tree are preserved, but subtrees are
removed from memory. The children of the most-proving node (the root of the
pn2-search tree) are not immediately evaluated by a second-level search, only
when they are selected as most-proving node. This is called delayed evaluation.
We would like to remark that for pn2-search trees immediate evaluation is used.

As we have seen in subsection 3.1, proved or disproved subtrees can be
deleted. If we do not delete proved or disproved subtrees in the pn2 search
the number of nodes searched is the same as y, otherwise we can continue the
search longer. Preliminary results have shown that deleting proved or disproved
subtrees in the pn2 search causes a significant reduction in the number of nodes
investigated [21].

3.3 Proof-number and Disproof-number Search

In 1995, Seo formulated a depth-first iterative-deepening version of PN search,
later called PN* [19]. Nagai [12, 13] proposed a depth-first search algorithm,
called Proof-number and Disproof-number Search (PDS), which is a straight ex-
tension of PN*. Instead of using only proof numbers such as in PN*, PDS uses
disproof numbers too. PDS uses a method called multiple-iterative deepening.
Instead of iterating only in the root node such as in the ordinary iterative deep-
ening, it iterates in all nodes. To keep iterative deepening effective, the method
is enhanced by storing the expanded nodes in a TwoBig transposition table [8].
PDS uses two thresholds in searching, one for the proof numbers and one for
the disproof numbers. Once the thresholds are assigned to a node, the subtree
rooted at that node is continued to be searched as long as either the proof or
disproof number is below the assigned thresholds. Each OR (AND) node as-
signs the thresholds to its children with minimum proof (disproof) number. If
the threshold of the (dis)proof number is incremented in the next iteration, the
search continues mainly using the (dis)proof number to find a (dis)proof. If the
proof number is smaller than the disproof number, it means that it seems to have
a proof solution and the threshold of the proof number is incremented. Other-
wise, it seems to be a disproof solution and the threshold of the disproof number
is incremented. When PDS does not (dis)prove the root given the thresholds,

6 Mark Winands et al.

it increases one of the threshold values and continues searching. Finally, we re-
mark that we check whether nodes are terminal when they are expanded. This
is called delayed evaluation. The expanded nodes are stored in a transposition
table. The proof and disproof number of a node are set to unity when not found
in the transposition table.

PDS is a depth-first search algorithm but behaves like a best-first search
algorithm. It is asymptotically equivalent to PN search regarding the selection
of the most-proving node. In passing, we would like to remark that PDS by using
transposition tables suffers from the graph-history-interaction problem (cf. [9]).
Especially the GHI evaluation problem can occur in LOA too. For instance,
draws can be agreed upon due to the three-fold-repetition rule. Thus, dependent
on its history a node can be a draw or can have a different value. In the current
PDS algorithm this problem is ignored.

3.4 Comparison

In this subsection we compare PN, PN2, PDS and αβ search with each other. All
experiments have been performed in the framework of the tournament program
MIA (Maastricht In Action)1. The program has been written in Java and can
easily be ported to all platforms supporting Java. MIA performs an αβ depth-
first iterative-deepening search, and uses a TwoDeep transposition table [8],
neural-network move ordering [11] and killer moves [1].

For the αβ depth-first iterative-deepening searches nodes at depth i are
counted only during the first iteration that the level is reached. This is how
the comparison is done in [2]. For PN, PN2 and PDS search all nodes evaluated
for the termination condition during the search are counted. For PDS this node
count is equal to the number of expanded nodes (function calls of the recursive
PDS algorithm), for PN and PN2 this node count is equal to the number of
nodes generated. The maximum number of nodes searched is 50,000,000. The
limit corresponds roughly to tournament conditions. The maximum number of
nodes stored in memory is 1,000,000. The parameters (a,b) of the growth func-
tion used in PN2 are set at (1800K, 240K) according to the suggestions in [7].

PN, PN2, PDS and αβ are tested on a set of 488 forced-win LOA positions2.
In the second column of table 1 we see that 470 positions were solved by the PN2

search, 473 positions by PDS, only 356 positions by PN, and 383 positions by
αβ. In the third and fourth column the number of nodes and the time consumed
are given for the subset of 314 positions, which all four algorithms could solve.
If we have a look at the third column, we see that PN search builds the smallest
search trees and αβ by far the largest. PDS and PN2 build larger trees than PN
but can solve significantly more positions. This suggests that both algorithms
are better suited for harder problems. PN2 investigates 1.2 times more nodes
than PDS, but PN2 is six times faster than PDS for this subset.

1 MIA can be played at the website: http://www.cs.unimaas.nl/m.winands/loa/.
2 The test set can be found at http://www.cs.unimaas.nl/m.winands/loa/tscg2002a.zip.

PDS-PN: A New Proof-Number Search Algorithm 7

Table 1. Comparing the search algorithms on 488 test positions.

Algorithm # of positions solved 314 positions
(out of 488) Total nodes Total time (ms.)

αβ 383 1,711,578,143 22,172,320

PN 356 89,863,783 830,367

PDS 473 118,316,534 6,937,581

PN2 470 139,254,823 1,117,707

For a better insight into the relation between PN2 and PDS we did another
comparison. In table 2 we compare PN2 and PDS on the subset of 463 positions,
which both algorithms could solve. Now, PN2 searches 2.6 times more nodes
than PDS. The reason for the decrease of performance is that for hard problems
the pn2-search tree becomes as large as the pn1-search tree. Therefore, the pn2-
search tree is causing more overhead. However, if we have a look at the CPU
time we see that PN2 is still three times faster than PDS. The reason is that
PDS has a relatively large time overhead because of the delayed evaluation (see
subsection 3.3). Consequently, the number of nodes generated is higher than the
number of nodes expanded. In our experiments, we observed that PDS generated
nodes 7 to 8 times slower than PN. Such a figure for the overhead is in agreement
with experiments performed in Othello and Tsume-Shogi [17]. We remark that
difference between our LOA results and Nagai’s [13] Othello results are mainly
caused by domain-dependent heuristics used for the initialisation of the proof
and disproof numbers.

Table 2. Comparing PDS and PN2 on 463 test positions.

Algorithm Total nodes Total time (ms.)

PDS 562,436,874 34,379,131

PN2 1,462,026,073 11,387,661

From the experiments we draw three conclusions. First, PN-search algorithms
clearly outperform αβ in solving endgame positions in LOA. Second, the memory
problems make the plain PN search a weaker solver for the harder problems.
Third, PDS and PN2 are able to solve significantly more problems than PN and
αβ. Finally, we note that PN2 is restricted by its working memory, and that
PDS is considerably slower than PN2.

4 PDS-PN

In the previous section we have seen that an advantage of PN2 over PDS is
that it is faster. The advantage of PDS over PN2 is that its tree is constructed

8 Mark Winands et al.

as a depth-first tree, which is not restricted by the available working memory.
To combine the advantages of both algorithms we propose an algorithm, called
PDS-PN, which does not suffer from memory problems and has potentially the
speed of PN2. PDS-PN is a two-level search as is PN2. At the first level a PDS
search is performed. When a node has to be expanded, which is not stored in the
transposition table, a PN search is started instead of the recursive call of the PDS
algorithm. The pn2 search is stopped as soon as (1) the subtree is (dis)proved
or (2) the number of the stored nodes exceeds the number obtained by formula
2, where x equals the number of non-empty positions in the transposition table.
After completion of the pn2-search tree, only the root of the pn2-search tree is
stored in the transposition table. The PDS-PN algorithm has two advantages.
First, the pn1-search is a depth-first search, which implies that PDS-PN is not
restricted by memory. Second, in PDS-PN the pn1-search tree is growing slower
in size than in PN2. It implies that the focus is on fast PN. Hence, PDS-PN
should in principle be faster than PDS. The pseudo code of PDS-PN is given in
the appendix.

5 Experiments

In this section we test PDS-PN with different parameters a and b for the growth
function. Next, we evaluate the algorithms PDS-PN and PN2 in solving prob-
lems under restricted memory conditions. Finally, we compare PDS-PN with
optimised parameters against PN2. We remark that in PDS-PN at the first-level
the nodes are counted as in PDS and at the second-level as in PN.

5.1 Parameter Tuning

In the following series of experiments we measured the solving ability with differ-
ent parameters a and b. Parameter a takes values of 150K, 450K, 750K, 1050K
and 1350K, and for each value of a parameter b takes values of 60K, 120K, 180K,
240K, 300K and 360K. The results are given in table 3. For each a holds that the
number of solved positions grows with increasing b, when the parameter b is still
small. If b is sufficiently large, increasing it will not enlarge the number of solved
positions. In the process of parameter tuning we found that PDS-PN solves the
most positions with (450K, 300K). However, the difference with parameters con-
figurations (150K, 180K), (150K, 240K), (150K, 300K), (150K, 360K), (450K,
360K) and (1350K, 300K) is not significant. On the basis of these results we
deemed that it is not necessary to perform experiments with a larger a.

5.2 Memory Results

From the experiments in subsection 3.4 it is clear that PN2 will not be able to
solve really hard problems since it will run out of working memory. To support
this statement experimentally, we tested the solving ability of PN2 and PDS
with restricted working memory. In these experiments we started with a memory

PDS-PN: A New Proof-Number Search Algorithm 9

Table 3. Number of solved positions for different a and b.

a b # of solved positions

150,000 60,000 460

150,000 120,000 458

150,000 180,000 466

150,000 240,000 466

150,000 300,000 465

150,000 360,000 466

450,000 60,000 445

450,000 120,000 463

450,000 180,000 460

450,000 240,000 461

450,000 300,000 467

450,000 360,000 464

750,000 60,000 432

750,000 120,000 449

750,000 180,000 461

a b # of solved positions

750,000 240,000 463

750,000 300,000 460

750,000 360,000 461

1,050,000 60,000 421

1,050,000 120,000 448

1,050,000 180,000 451

1,050,000 240,000 459

1,050,000 300,000 459

1,050,000 360,000 460

1,350,000 60,000 421

1,350,000 120,000 433

1,350,000 180,000 447

1,350,000 240,000 454

1,350,000 300,000 465

1,350,000 360,000 459

capacity sufficient to store 1,000,000 nodes, subsequently we divided the memory
capacity by two at each next step. The parameters a and b were also divided
by two. The relation between memory and number of solved positions for both
algorithms is given in figure 3. We see that the solving performance rapidly
decreases for PN2. The performance of PDS-PN remains stable for a long time.
Only when PDS-PN is restricted to fewer than 10,000 nodes, it begins to solve
fewer positions. This experiment suggests that PDS-PN is preferable above PN2

for the really hard problems, because it is not suffering from memory constraints.

5.3 Comparison with PN2

In this subsection we compare PDS-PN (450K, 300K) with PN2. Table 4 shows
that PDS-PN was able to solve 467 positions and PN2 470. The overlap of both
sets yields a subset of 461 positions. In the third and fourth column we see
that for this subset PDS-PN searches 1.4 times more nodes than PN2. Simple
calculation shows that PDS-PN is generating nodes with the same speed as PN2.
Because PDS is three times slower than PN2, we may conclude that PDS-PN
outperforms PDS in speed.

Table 4. Comparing PDS-PN and PN2 on 488 test positions.

Algorithm # of positions solved 461 positions
(out of 488) Total nodes Total time (ms.)

PDS-PN 467 1,879,690,850 15,887,380

PN2 470 1,302,157,677 11,339,920

10 Mark Winands et al.

0

50

100

150

200

250

300

350

400

450

500

1,00010,000100,0001,000,000

Nodes in Memory

S
o

lv
ed

 P
o

si
ti

o
n

s

PDS-PN

PN 2

Fig. 3. Results with restricted memory.

In section 5.2 it is suggested that PDS-PN outperforms PN2 on really hard
problems. For support of this statement, PDS-PN and PN2 are tested on a
different set of 286 really hard LOA positions3. The conditions were the same as
in previous experiments except that maximum number of nodes searched is set
at 500,000,000. In table 5 we see that PDS-PN solves 276 positions and PN2 265.
We therefore conclude that, for harder problems, PDS-PN is a better endgame
solver than PN2.

Table 5. Comparing PDS-PN and PN2 on 286 really hard test positions.

Algorithm # of positions solved 255 positions
(out of 286) Total nodes Total time (ms.)

PDS-PN 276 16,685,733,992 84,303,478

PN2 265 10,061,461,685 57,343,198

6 Conclusions and Future Research

Below we offer four conclusions and one suggestion for future research. First, we
have seen that PN-search algorithms outperform αβ in solving endgame positions
in LOA. Second, the memory problems make the plain PN search a weaker solver
3 The test set can be found at http://www.cs.unimaas.nl/m.winands/loa/tscg2002b.zip.

PDS-PN: A New Proof-Number Search Algorithm 11

for the harder problems. Third, PDS and PN2 are able to solve significantly more
problems than PN and αβ. However, we remark that PN2 is still restricted by
working memory, and that PDS is three times slower than PN2 (table 2) because
of the delayed evaluation. Fourth, the PDS-PN algorithm is almost as fast as
PN2 when the parameters for its growth function are chosen properly. PDS-PN
performs quite well under harsh memory conditions. Hence, we conclude that
PDS-PN is an appropriate endgame solver, especially for hard problems and for
environments with very limited memory such as hand-held computer platforms.

We believe that an adequate challenge is testing the PDS-PN in other games,
e.g., the game of Tsume-Shogi since that game is notoriously known for its
difficult endgames. Recently, some of the hard problems including solutions over
a few hundred ply are solved by PN* [19] and PDS [14]. It would be interesting
to test PDS-PN on these problems.

Acknowledgements

The authors would like to thank the members of the Maastricht Search & Games
Group for their useful remarks.

References

1. S.G. Akl and M.M. Newborn. The principal continuation and the killer heuristic.
In 1977 ACM Annual Conference Proceedings, pages 466–473. ACM, Seattle, 1977.

2. L.V. Allis. Searching for Solutions in Games and Artificial Intelligence. Ph.D.
Thesis, University of Limburg, Maastricht, The Netherlands, 1994.

3. L.V. Allis, M. van der Meulen, and H.J. van den Herik. Proof-number search.
Artificial Intelligence, 66(1):91–123, 1994.

4. D.D. Berkey. Calculus. Saunders College Publishing, New York, NY, USA, 1988.

5. D.M. Breuker. Memory versus Search in Games. Ph.D. Thesis, Universiteit Maas-
tricht, Maastricht, The Netherlands, 1998.

6. D.M. Breuker, L.V. Allis, and H.J. van den Herik. How to mate: Applying proof-
number search. In H.J. van den Herik, I.S. Herschberg, and J.W.H.M. Uiterwijk,
editors, Advances in Computer Chess 7, pages 251–272. University of Limburg,
Maastricht, The Netherlands, 1994.

7. D.M. Breuker, J.W.H.M. Uiterwijk, and H.J. van den Herik. The PN2-search al-
gorithm. In H.J. van den Herik and B. Monien, editors, Advances in Computer
Games 9, pages 115–132. IKAT, Universiteit Maastricht, Maastricht, The Nether-
lands, 2001.

8. D.M. Breuker, J.W.H.M. Uiterwijk, and H.J. van den Herik. Replacement schemes
and two-level tables. ICCA Journal, 19(3):175–180, 1996.

9. D.M. Breuker, H.J. van den Herik, J.W.H.M. Uiterwijk, and L.V. Allis. A solution
to the GHI problem for best-first search. Theoretical Computer Science, 252(1-
2):121–149, 2001.

10. M. Campbell, A.J. Hoane Jr., and F. h. Hsu. Deep Blue. Artificial Intelligence,
134(1-2):57–83, 2002.

12 Mark Winands et al.

11. L. Kocsis, J.W.H.M. Uiterwijk, and H.J. van den Herik. Move ordering using
neural networks. In L. Montosori, J. Váncza, and M. Ali, editors, Engineering of
Intelligent Systems, Lecture Notes in Artificial Intelligence, Vol. 2070, pages 45–50.
Springer-Verlag, Berlin, 2001.

12. A. Nagai. A new AND/OR tree search algorithm using proof number and disproof
number. In Proceedings of Complex Games Lab Workshop, pages 40–45. ETL,
Tsukuba, Japan, 1998.

13. A. Nagai. A New Depth-First-Search Algorithm for AND/OR Trees. M.Sc. Thesis,
The University of Tokyo, Tokyo, Japan, 1999.

14. A. Nagai. Df-pn Algorithm for Searching AND/OR Trees and Its Applications.
Ph.D. Thesis, The University of Tokyo, Tokyo, Japan, 2002.

15. E.V. Nalimov, G.McC. Haworth, and E.A. Heinz. Space-efficient indexing of chess
endgame tables. ICGA Journal, 23(3):148–162, 2000.

16. S. Sackson. A Gamut of Games. Random House, New York, NY, USA, 1969.
17. M. Sakuta and H. Iida. The performance of PN*, PDS and PN search on 6×6

Othello and Tsume-Shogi. In H.J. van den Herik and B. Monien, editors, Advances
in Computer Games 9, pages 203–222. Universiteit Maastricht, Maastricht, The
Netherlands, 2001.

18. J. Schaeffer and R. Lake. Solving the game of checkers. In R. J. Nowakowski, editor,
Games of No Chance, pages 119–133. Cambridge University Press, Cambridge, UK,
1996.

19. M. Seo, H. Iida, and J.W.H.M. Uiterwijk. The PN*-search algorithm: Application
to Tsume-Shogi. Artificial Intelligence, 129(1-2):253–277, 2001.

20. M.H.M. Winands. Analysis and Implementation of Lines of Action. M.Sc. Thesis,
Universiteit Maastricht, Maastricht, The Netherlands, 2000.

21. M.H.M. Winands and J.W.H.M. Uiterwijk. PN, PN2 and PN* in Lines of Action.
In J.W.H.M. Uiterwijk, editor, The CMG Sixth Computer Olympiad Computer-
Games Workshop Proceedings. Technical Reports in Computer Science CS 01-04,
Universiteit Maastricht, Maastricht, The Netherlands, 2001.

22. M.H.M. Winands, J.W.H.M. Uiterwijk, and H.J. van den Herik. The quad heuristic
in Lines of Action. ICGA Journal, 24(1):3–15, 2001.

Appendix

Below the pseudo code of PDS-PN is given. For ease of comparison we use similar
pseudocode as given in [12] for the PDS algorithm. The proof number at an OR
node and the disproof number at an AND node are equivalent. Analogously,
the disproof number at an OR node and the proof number at an AND node
are similar. As they are dual to each other, an algorithm similar to negamax in
the context of minimax searching can be constructed. This algorithm is called
NegaPDS. In the following, proofSum(n) is a function that computes the sum of
the proof numbers of all the children. The function disproofMin(n) computes
the minimum of all the children. The procedures putInTT() and lookUpTT()
store and retrieve information of the transposition table. isTerminal(n) checks
whether a node is a win, a loss or a draw. The function generateChildren(n)
generates the children of the node. By default, the proof number and disproof
number of a node are set to unity. The procedure findChildrenInTT(n) checks
whether the children are already stored in the transposition table. If a hit occurs

PDS-PN: A New Proof-Number Search Algorithm 13

for a child, its proof number and disproof number are set to the values found
in the transposition table. The procedure PN() is just the plain PN search.
The algorithm is described in [2] and [5]. The function computeMaxNodes()
computes the number of nodes which may be stored for the PN search, according
to equation 2.

//iterative deepening at root r
procedure NegaPDS(r){

r.proof = 1;
r.disproof = 1;

while(true){
MID(r);
// terminate when the root is proved or disproved
if(r.proof = 0 || r.disproof = 0)

break;

if(r.proof <= r.disproof)
r.proof++;

else
r.disproof++;

}
}

//explore node n
procedure MID(n){

//Look up in the transposition table
lookUpTT(n,&proof,&disproof)
if(proof = 0 || disproof = 0
|| (proof >= n.proof && disproof >= n.disproof)){
n.proof = proof; n.disproof = disproof;
return;

}

//Terminal node
if(isTerminal(n)){
if((n.value = true && n.type = AND_NODE) ||
(n.value = false && n.type = OR_NODE)){

n.proof = INFINITY; n.disproof = 0;
}
else{

n.proof = 0; n.disproof = INFINITY;
}

14 Mark Winands et al.

putInTT(n);
return;

}

generateChildren();
//avoid cycles
putInTT(n);

//Multiple iterative deepening
while(true){
//Check whether the children are already stored in the TT.
//If a hit occurs for a child, its proof number and disproof number
//are set to the values found in the TT.
findChildrenInTT(n);

//Terminate searching when both proof and disproof number
//exceed their thresholds
if(proofSum(n) = 0 || disproofMin(n) = 0 || (n.proof <=
disproofMin(n) && n.disproof <= proofSum(n))){

n.proof = disproofMin(n);
n.disproof = proofSum(n);
putInTT(n);
return;

}

proof = max(proof,disproofMin(n));
n_child = selectChild(n,proof);

if(n.disproof > proofSum(n) && (proof_child <= disproof_child
|| n.proof <= disproofMin(n)))
n_child.proof++;

else
n_child.disproof++;

//This is the PDS-PN part
/////////////////////////////////
if(!lookUpTT(n_child)){

PN(n_child,computeMaxNodes());
putInTT(n_child);

}
else
/////////////////////////////////

MID(n_child);
}

}

PDS-PN: A New Proof-Number Search Algorithm 15

//Select among children
selectChild(n,proof){

min_proof = INFINITY;
min_disproof = INFINITY;
for(each child n_child){
disproof_child = n_child.disproof;
if(disproof_child != 0)

disproof_child = max(disproof_child,proof);

//Select the child with the lowest disproof_child (if there are
//plural children among them select the child with the lowest
//n_child.proof)
if(disproof_child < min_disproof || (disproof_child = min_disproof
&& n_child.proof < min_proof)){

n_best = n_child;
min_proof = n_child.proof;
min_disproof = disproof_child;

}
}
return n_best;

}

