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ABSTRACT 
 

 
The endgame of Lines of Action (LOA) is problematic because (1) LOA evaluation functions 
are not good predictors in the case of forced wins and (2) the state-space complexity of the 
LOA endgame is too large to use endgame databases. Because of the frequency of forced 
moves and the mobility component in the LOA endgame the utility of proof-number (PN) 
search is investigated in this paper. Also the PN variants PN2 and PN* are tested and compared 
with each other. In the case of PN2 small enhancements (caching second-level subtrees, 
deleting (dis)proved subtrees in the second-level search, and quitting second-level search) are 
investigated. Finally, it is discussed how to combine PN search with an alpha-beta search by 
using transposition tables. 
 

1. INTRODUCTION 
 
Most modern game-playing computer programs successfully use an α-β search with 
enhancements for online game-playing. Unfortunately, the α-β search per se sometimes is not 
sufficient to play well in the endgame. In some games, such as chess, this problem can be 
solved by the use of endgame databases (Van den Herik and Herschberg, 1985) in the αβ 
search. One of the drawbacks of this method is that it is only feasible, due to memory 
constraints, for endgames with a relatively small state-space complexity. An alternative 
approach is the use of a specialised binary (win or non-win) search method, like proof-number 
(PN) search (Allis et al,. 1994). In some games PN search outperforms α-β search in proving 
the game-theoretic value of endgame positions. PN search has been applied successfully to 
the endgame of Awari (Allis et al., 1994), chess (Breuker et al., 1994a), checkers (Schaeffer 
and Lake, 1996) and Tsumi-Shogi (Seo et al., 2001). In this paper we look at several PN 
algorithms, which are tested in the domain of Lines of Action (LOA).  
 
The article is organised as follows. Section 2 explains the rules of LOA, and Section 3 
describes PN, PN2 and PN* with their (possible) enhancements. The experimental set-up is 
explained and the results of the experiments are presented in Section 4. Section 5 contains the 
conclusions and some suggestions for future research. 
 
2. LINES OF ACTION 
 
Lines of Action (LOA) is a two-person zero-sum game with perfect information; it is a chess-
like game with a connection-based goal played on an 8×8 board. LOA is invented by Claude 
Soucie around 1960. Sid Sackson (1969) described it in his first edition of A Gamut of Games. 
LOA has an average game length of 38 plies and an average branching factor of 30 (Winands, 
2000). An interesting property of the game is that most terminal positions still have more than 
10 pieces remaining on the board, which makes the game not suitable for endgame databases. 
Although reasonable effort has been undertaken to construct adequate evaluation functions for 
LOA (Winands et al., 2001a), experiments still suggest that these are not very good predictors 



in the case of forced wins. Therefore, LOA seems an appropriate test domain for PN 
algorithms. 

2.1. Rules of LOA 
 
LOA is played on an 8×8 board by two sides, Black and White. Below the rules appearing in 
the second edition of A Gamut of Games (Sackson, 1982) are formulated in eight points. 
 
1. The black pieces are placed in two rows along the top and bottom of the board, while the 

white pieces are placed in two files at the left and right side of the board. The initial 
position of the game is shown in Diagram 1. 

2. The players alternately move, starting with Black. 
3. A player to move must move one of its pieces. A move takes place in a straight line, 

exactly as many squares as there are pieces of either colour anywhere along the line of 
movement. (These are the Lines of Action.) 

4. A player may jump over its own pieces. 
5. A player may not jump over the opponent’s pieces, but can capture them by landing on 

them. 
6. The goal of a player is to turn all own pieces on the board into one connected unit. The 

first player to do so is the winner. The connections within the group may be either 
orthogonal or diagonal. For example, in Diagram 2 Black has won because the black 
pieces form one connected unit.  

7. If one player’s pieces are reduced by captures to a single piece, the game is a win for this 
player. 

8. If a move simultaneously creates a single connected unit for both players, the game is a 
win1. 

 

Diagram 1: The initial position. Diagram 2: A terminal position. Diagram 3: Movement of pieces. 

Since some situations are not covered by the original rules, ad hoc rules are introduced. For 
instance: (1) repetition of positions is considered as a draw, and (2) if a player cannot move, 
this player loses.2 
 
In the article we use the standard chess notation. The possible moves of the black piece on d3 
in Diagram 3 are indicated by arrows. The piece cannot move to f1 because its path is blocked 
by an opposing piece. The move to h7 is not allowed because the square is occupied by a 
black piece. 

                                                 
1 In the first edition of A Gamut of Games (1969) simultaneous connection is described as a draw. 
2 The use of this rule is disputable, some LOA players allow the opponent to pass in such positions. 



3. DESCRIPTION OF THE SEVERAL PROOF-NUMBER SEARCH 
ALGORITHMS.  

 
In this section we give a short description of the PN-, PN2- and PN*-search algorithms. Some 
possible enhancements are discussed. 

3.1. Proof-number search 
 
Proof-number (PN) search is a best-first search algorithm especially suited for finding the 
game-theoretical value in game trees (Allis, 1994). Its aim is to prove the true value of the 
root of the tree. A tree can have three values: true, false or unknown. In the case of a forced 
win, the tree is proved and its value is true. In the case of a forced loss or draw, the tree is 
disproved and its value is false. Otherwise the value of the tree is unknown. In contrast to 
other best-first algorithms PN search does not need a domain-dependent heuristic evaluation 
function in order to determine the most-promising node (to be expanded next) (Breuker et al., 
1994a). PN search selects the most-promising node using two criteria: (1) the shape of the 
search tree (the number of children of every internal node) and (2) the values of the leaves. 
These two criteria enable PN search to treat efficiently game trees with a non-uniform 
branching factor. A disadvantage of PN search is that the whole search tree has to be stored in 
memory. When the memory is full, the search process has to be terminated prematurely or 
countermeasures have to be taken (Allis, 1994; Breuker, 1998). 
 
In the naïve implementation, proof and disproof numbers are each initialised to unity at the 
unknown leaves. In other implementations, to distinguish between leaves, before expansion, 
we set the proof number and disproof number to 1 and n for a MAX3 node (and the reverse for 
a MIN node), where n is the number of legal moves. This means that we actually are using a 
mobility component, which is reported to be promisingly in LOA (Billings and Björnsson, 
2000). For the rest of the paper we will call initialisation by the number of moves mobility. 
Notice, that we have an overhead of counting the number of nodes. Therefore we have pre-
computed for each possible line configuration the number of moves for each side. This idea 
originates from Björnsson (2000).  
 
In (Winands et al., 2001b) a method of combining PN search with α-β search is presented in 
real-time applications. Nodes once proved by PN search are stored in a transposition table 
(TT), which is used in the α-β search. A proved-node transposition table (TT) is implemented 
as a hash table. The well-known Zobrist-hashing method is used. Each entry in the 
transposition table has a length of 64 bits. These bits are reserved for the hash key to 
distinguish among different positions having the same hash index. When two positions have 
the same hash index, the last examined position is preferred over early ones (replacement 
scheme New, see (Breuker et al., 1994b)). The usual schemes Big or Deep are not used, 
because the number of nodes of a subtree or the depth of a subtree are not appropriate 
measures for replacement in case of PN search. A position is stored if and only if it is a 
proved interior node. At present, disproved nodes are not stored because it is not known 
whether the game-theoretic value of the node is a loss or a draw. If it is known that draws are 
impossible in a game (such as Hex), then it is possible to store also the disproved nodes in a 
separate table. The PN-TT can be also used in the PN search, which performance is tested in 
Section 4. We want to determine what the possible benefit is of storing only proved positions 
in a transposition table. 

                                                 
3 In this article MAX and MIN node can be read as OR and AND node, respectively.  



3.2. PN2 search 
 
PN2 is first described by Allis (1994), as a technique to reduce memory requirements in the 
PN search. Its implementation and testing for chess positions was performed by Breuker et al. 
(2001). PN2 consists of two levels of PN search. The first level consists of a PN-search (pn1), 
which calls as evaluation of a node a PN search at the second level (pn2). This pn2 search is 
bound by a maximum number N of nodes stored in the memory. This number N is a fraction 
of the size of the pn1-search tree and given by the function f(x), x being the number of nodes 
of the first-level search: 
 

bxae
xf /)(1

1)( −+
=  

 
with parameters a and b, both strictly positive. The parameters (a,b) are set at (1800K, 240K). 
The pn2 search is stopped when the numbers of nodes exceeds N or the subtree is (dis)proved. 
After completion of the pn2-search tree, the children of the root of the pn2-search tree are 
preserved, but subtrees are removed from memory. 
 
We remark that several enhancements to PN2 search have been suggested. One example of 
such an enhancement suggested by Schaeffer involves storing the deleted pn2-search trees in a 
cache, instead of deleting them. Another way is to cache pn2 search trees until a certain bound 
is reached (e.g. 10% of N in our implementation). Then the trees are randomly deleted until it 
is possible again to cache trees. This is tested in Subsection 4.2.  
 
A disadvantage is that pn2 search only stops when the root is (dis)proved or N is reached. A 
suggestion is to quit the pn2 search earlier, when it will not likely to be proved. We have 
implemented a simple mechanism, called Quitting. If the root of the pn2 search is a MAX 
(OR) node, we quit the pn2 when the proof number is two times the disproof number. The 
danger exist that we quit too early in the root position when there are very few moves. 
Therefore, proof and disproof number have to exceed a threshold (in our implementation 
100).  
 
As we have seen in subsection 3.1, proved or disproved subtrees can be deleted. If we do not 
delete subtrees in the pn2 search the number of nodes searched is the same as N, otherwise we 
can continue the search longer. The question is whether this is also beneficial to do in the pn2 
search? If there are many (dis)proved trees the pn2 search will continue much longer. More 
effort is taken in trees where there are many (dis)proved nodes than in trees where there are 
few. It is likely that almost (dis)proved subtrees will be (dis)proved now and therefore there 
will be less regeneration. But almost disproved subtrees are unlikely to be visited twice and to 
be regenerated, because the goal is to prove the root. Thus, the extra effort taken to disprove 
the subtree can be wasted. 
 

3.3. PN* search 
 
PN and eventually also PN2 suffer from memory disadvantages. This problem is tackled by 
PN* search (Seo et al., 2001). PN* transforms the PN-search algorithm into an iterative- 
deepening depth-first approach. For a description of this algorithm see (Seo et al., 2001). PN* 
is enhanced with methods as recursive iterative deepening and dynamic evaluation and 
successor ordering. The last one is not implemented at the moment. 



 
4. EXPERIMENTS AND RESULTS 
 
In this section we will compare PN, PN2, PN* and α-β with each other. For PN and PN2 some 
enhancements are tested. 
 

4.1. Experimental details 
 
All experiments have been performed in the framework of the tournament program MIA 
(Maastricht In Action). MIA can be played at the website: 
http://www.cs.unimaas.nl/m.winands/loa/. It has been written in Java and runs on every well-
known operating system. MIA performs an α-β depth-first iterative-deepening search. The 
program uses a two-deep transposition table (Breuker et al., 1996), the history heuristic 
(Schaeffer, 1983) and killer moves (Akl and Newborn, 1977). For all experiments described 
in this paper, the null move is not used because of possible negative effects of zugzwang in 
LOA (Winands, 2000).  
 
For PN and PN2 search all leaf nodes evaluated during the search are counted, while for the 
α-β depth-first iterative-deepening searches nodes at depth i are counted only during depth i. 
This is the way of comparison as done in Allis (1994). For PN* all expanded nodes are 
counted. The maximum number of nodes searched is 50,000,000. This limit corresponds 
roughly to tournament conditions. The maximum number of nodes stored in the memory is 
900,000. PN, PN2, PN* and αβ are tested on a set of 116 LOA win positions. 
 

4.2. PN and PN2 
In table 1 we have compared PN search with several enhancements. From the 116 positions, 
85 positions were solved by the PN search using mobility, 53 positions by using only TT, and 
only 44 positions when nothing was used. The TT improved the PN search with 20% when 
nothing was used. In the last column of table 1 we see that TT only improves the search with 
10%, when mobility is used. If we compare PN+TT with PN+TT+Mobility, 31 additional 
positions are solved. In the set of 53 positions that both could solve, the one using mobility 
was 5 times faster.  
 
 # of pos. solved 

(out of 116) 
Total Nodes 

(44 positions) 
Total Nodes 

(53 positions) 
Total Nodes 

(85 positions) 
PN 44 16,266,638 - - 
PN+TT 53 13,363,676 24,357,832 - 
PN+Mobility 85 2,171,628 5,423,500 23,102,938
PN+TT+Mobility 85 2,133,311 5,053,630 21,443,322

Table 1: Mobility and Transposition Table in PN. 

In table 2 we have compared PN2 search with several enhancements. From the 116 positions, 
109 positions were solved by the PN2 search using TT+ Mobility, 107 positions by using only 
mobility, 91 positions by only using TT and 89 positions when nothing was used. The TT 
improved the PN search with 20% when nothing was used. In the last column of table 2 we 
see that TT only improves the search with 3%, when mobility is used. If we compare PN+TT 
with PN+TT+Mobility, 18 additional positions are solved more. In the set of 91 positions that 
both could solve, the one using mobility was 6 times faster. 



 
 # of pos. 

solved (out of 
116) 

Total Nodes 
(89 positions) 

Total Nodes 
(91 positions) 

Total Nodes 
(107 positions) 

PN2 89 334,650,398 - - 
PN2+TT 91 273,503,443 345,986,639 - 
PN2+Mobility 107 44,351,259 57,271,268 387,248,435
PN2+TT+Mobility 109 41,461,089 56,809,635 376,022,338

Table 2: Mobility and Transposition Table in PN2. 

In general we can conclude that mobility speeds up the PN and PN2 with a factor 5 to 6. The 
extra time spent on this is only 20%. Thanks to mobility PN search can solve many more 
positions, because the memory constraint is violated less. Storing proved positions is a clear 
improvement in PN search, but is less so in PN2.  
 

4.3. PN2 Enhancements 
 
In table 3 we have compared several possible PN2 enhancements with each other. In the first 
row the results of the plain PN2-search algorithm is given. The second row gives the result of 
deleting (dis)proved nodes at the pn2 search. In the third row the results are given when 
deleted search trees are cached. In the fourth row the results are given when probably-
unsolvable trees are left prematurely. In the second column we can see that deleting 
(dis)proved trees improves the search with 10% and solves one position more. In the third 
column we can see that the caching and quitting enhancements do not speed up the search 
significantly. Probably, the reason caching is not successful is that when pn2 trees are going to 
be regenerated, the tree is not available in the cache anymore.  
 

 # of pos. solved 
(out of 116) 

Total Nodes 
(108 positions) 

Total Nodes 
(109 positions) 

PN2  108 463,076,682 - 
PN2 + Delete 109 416,168,419 464,606,624 
PN2  + Delete + Cached 109 - 463,060,849 
PN2  + Delete + Quitting 109 - 463,342,848 

Table 3: PN2 enhancements. 

 

4.4. The search algorithms compared 
 
In table 4 we have compared PN, PN2, PN* and α-β with each other. From the 116 positions, 
109 positions were solved by the PN2 search, 88 positions by only using PN*, 85 positions by 
using PN, and 70 positions by α-β. If we have a look at the second column, we see that α-β is 
40 times slower than PN or PN2. Even the not-tuned PN* is almost 10 times faster than α-β. 
The third column suggests that PN* is 6 times slower than PN2, but for the harder positions 
showed in the fifth column, the disadvantage is maybe less. But this set of 86 positions is too 
unbalanced. PN and PN2 are compared in the fourth column. PN2 is 1.3 times slower than PN 
search.  
 



All Without α-β Without α-β 
and PN* 

Without α-β 
and PN 

 # of pos. 
solved (out 
of 116) Total Nodes 

(68 pos.) 
Total Nodes 

(76 pos.) 
Total Nodes 

(85 pos.) 
Total Nodes 

(86 pos.) 
α-β 70 487,494,281 - - - 
PN* 88 52,219,919 128,478,302 - 298,464,775 
PN 85 10,739,340 16,062,379 21,443,322 - 
PN2 109 14,865,337 21,820,252 27,955,501 182,668,261 

Table 4: Comparing the search algorithms. 

 
In general we can say that PN, PN* or PN2 search are good mate provers in LOA. For 
instance, the position showed in Diagram 1 is a win in 21 ply. PN can solve this position 
investigating 484,453 nodes, whereas α-β is not able to solve this position within 50,000,000 
nodes. PN solves fewer positions than PN2 or PN* due to memory constraint. We would like 
to remark that PN* is not able to solve 9 positions, which are solved by PN. But PN* solves 2 
positions, which PN2 cannot prove (e.g., Diagram 5). Finally, because of the constraint of 
maximum nodes searched was set to 50,000,000 PN2 did not run in memory problems. 
Therefore, this experiment shows not the real advantage of PN* over PN2. 
 

Diagram 4: Black to move and to win in 21 plies. 
MONA vs. YL, Game 4.4 

Diagram 5: White to move and win in 13 plies. Fifth 
Annual E-mail Tournament, Thordsen vs. MONA, after 

14. c3:e3.4 

 
5. CONCLUSIONS 
 
In this paper we have seen that PN, PN*, PN2 search are quite good proving LOA positions. 
Even a poor implemented PN* outperforms α-β in LOA positions. It is a subject of future 
research to enhance PN* with a good successor ordering. Mobility improves the PN search, 
whereas the benefits of a transposition table are less. Deleting (dis)proved nodes in pn2 
improves the PN2 search. The ideas of Caching and Quitting have not paid off yet.  
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