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Abstract. Monte-Carlo Tree Search is a best-first search technique
based on simulations to sample the state space of a decision-making
problem. In games, positions are evaluated based on estimates ob-
tained from rewards of numerous randomized play-outs. Generally,
rewards from play-outs are discrete values representing the outcome
of the game (loss, draw, or win), e.g., r ∈ {−1, 0, 1}, which are
backpropagated from expanded leaf nodes to the root node. How-
ever, a play-out may provide additional information. In this paper,
we introduce new measures for assessing the a posteriori quality of
a simulation. We show that altering the rewards of play-outs based
on their assessed quality improves results in six distinct two-player
games and in the General Game Playing agent CADIAPLAYER. We
propose two specific enhancements, the Relative Bonus and Qual-
itative Bonus. Both are used as control variates, a variance reduc-
tion method for statistical simulation. Relative Bonus is based on the
number of moves made during a simulation and Qualitative Bonus re-
lies on a domain-dependent assessment of the game’s terminal state.
We show that the proposed enhancements, both separate and com-
bined, lead to significant performance increases in the domains dis-
cussed.

1 INTRODUCTION

Monte-Carlo Tree Search (MCTS) [7, 12] is a simulation-based
best-first search technique for decision-making problems. Recently,
MCTS has shown to improve performance in various domains, such
as the two-player games Go [17], Lines of Action [25], and Hex [1].
Moreover, MCTS has seen successes in other domains such as real-
time strategy games [5], arcade games such as Ms Pac-Man [14] and
the Physical Traveling Salesman [15], but also in real-life domains
such as optimization, scheduling, and security [5].

Standard MCTS runs simulated play-outs until a terminal state is
reached. The returned reward signal represents the outcome of the
game’s final position (win, draw, or loss), but any other informa-
tion about the play-out is disregarded. Several techniques for de-
termining the quality of simulations have been previously proposed.
Early cut-offs terminates a play-out and returns a heuristic value of
the state [24]. Evaluating the final score of a game, e.g., using the
number of points achieved, and combining it with the outcome has
shown to improve results in points-based games [19]. However, for
some domains, a heuristic evaluation may not be available or too
time-consuming. Additionally, many games do not have point-based
scores and only have the distinct possible outcomes, win, draw, or
loss.
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In this paper, two techniques are proposed for determining the
quality of a simulation based on properties of play-outs. The first,
Relative Bonus, assesses the quality of a simulation based on its
length. The second, Qualitative Bonus, formulates a quality assess-
ment of the terminal state. Adjusting results in a specific way using
these values leads to increased performance in six distinct two-player
games. Moreover, we determine the advantage of using the Relative
Bonus in the General Game Playing agent CADIAPLAYER [4], win-
ner of the International GGP Competition in 2007, 2008, and 2012.

The paper is structured as follows. First, the general MCTS frame-
work is discussed in Section 2. Next, two different techniques for as-
sessing the quality of play-outs are detailed in Section 3. Section 4
explains how rewards can be altered using the quality measures from
the previous section. This is followed by pseudo-code outlining the
proposed algorithm in Section 5. Finally, the performance of the pro-
posed enhancements is determined in Section 6, accompanied by a
discussion and conclusion in Section 7.

2 MONTE-CARLO TREE SEARCH
Monte-Carlo Tree Search (MCTS) is a simulation-based search
method [7, 12]. MCTS grows a search tree incrementally over time,
by expanding a leaf node of the tree every simulation. Values of the
rewards stored at nodes, when averaged over the results of numerous
simulations, represent an estimate of the win probability of simula-
tions that pass through the node. Each simulation consist of two parts,
1) the selection step, where moves are selected and played inside
the tree according to the selection policy, and 2) the play-out step,
where moves are played according to a simulation strategy, outside
the tree. At the end of each play-out a terminal state is reached and
the result r, usually expressed numerically in some discrete range,
e.g., r ∈ {−1, 0, 1} representing a loss, draw or win, respectively, is
backpropagated along the tree from the expanded leaf to the root.

In its basic form, MCTS does not require an evaluation function.
Nonetheless, in most domains it is beneficial to add some domain
knowledge to the play-out policy. MCTS can be terminated at any
time, for instance when some computational limit is reached, to se-
lect a move to return. The move to make is selected by choosing ei-
ther the child of the root with the highest number of visits, the highest
average reward, or a combination [6].

During the selection step, a policy is required to explore the tree
to decide on promising options. The UCT [12] is derived from the
UCB1 policy [2] for maximizing the rewards of a multi-armed ban-
dit. In UCT, each node is treated as a bandit problem whose arms
are the moves that lead to different child nodes. UCT balances the
exploitation of rewarding nodes whilst allowing exploration of less
often visited nodes. Consider a node p with children I(p), then the
policy determining which child i to select is defined as:



i∗ = argmaxi∈I(p)

{
vi + C

√
lnnp
ni

}
, (1)

where vi is the score of the child i based on the average result of
simulations that visited it, np and ni are the visit counts of the current
node and its child, respectively. C is the exploration constant to tune.

3 ASSESSING SIMULATION QUALITY
In this section, we discuss two quality assessments of the terminal
state of a simulation. First, in Subsection 3.1 the length of a simula-
tion is discussed as a measure of its quality. Second, in Subsection
3.2 a quality assessment of the terminal state of a match is consid-
ered. In the next section we establish how these quantities can be
used to enhance the rewards of MCTS simulations.

3.1 Simulation Length
The first assessment of a simulation’s quality is the length of the sim-
ulated game played. Consider a single MCTS simulation as depicted
in Figure 1, then we can define two separate distances:

1. The number of moves made from the root S to the leaf N, dSN ,
2. The number of moves required to reach T, the simulation’s termi-

nal state, from N during play-out dNT .

The length of the simulation is defined as the sum of these distances:

d = dSN + dNT , (2)

i.e., the total number of moves made before reaching the terminal
state of the simulation T from S. A play-out policy chooses moves
at each state uniformly random, is rule-based, reactive, or combined
with a source of expert or heuristic information such as an ε-greedy
policy [20, 21]. Alternative methods have been proposed, such as
using low-level αβ searches [24], and methods that learn a strat-
egy online, such as the Last-Good-Reply policy [3], Move-average
Sampling Technique (MAST) [10], or N-Grams [22]. However, any
play-out policy balances computational effort required to select high-
quality moves, with the number of simulations performed in the al-
lowed search time. Therefore, moves sampled from the play-out pol-
icy are far from optimal. Consequently, each move made in the play-
out ultimately increases the uncertainty of the result obtained. Hence,
the length of the simulation can be regarded as an indicator of the cer-
tainty in the accuracy of its result. The depth of the leaf is included
in d for two reasons, 1) to prevent biasing play-out results based on
d, as it ensures the search is not merely biased to deeper subtrees, in-
stead preferring the most robust decision regardless of search depth,
and 2) as shown in Section 4, a single mean can be used to relate the
observed values of d to their central tendency.

The main benefit of using simulation length as a quality measure
is that it is domain independent. Unless the number of moves in the
game is fixed, the length of a simulation can be informative in deter-
mining its quality. In addition, simulation length has also previously
been used to enhance the performance of MCTS [8, 11, 18]. Also, the
simulation length was used as a way to terminate wasteful play-outs
in general Game Playing [9].

3.2 Terminal State Quality
The second measure of a simulation’s quality is a quality assessment
of its specific terminal state reached. Rather than evaluating interme-
diary states, we are interested in determining the quality of terminal

Figure 1. A single MCTS simulation [9].

states directly in order to augment the information used by MCTS.
In some domains MCTS’ performance is improved by using either a
static, or an early cut-off of the simulations and evaluating this po-
sition. However, a heuristic evaluation may not be available or too
time-consuming. In this paper, we consider any available informa-
tion that can help describe the quality of a terminal state, such as
how convincing of a win it was based on in-game scores.

As before, consider a single MCTS simulation as depicted in Fig-
ure 1. When a terminal state is reached, a quality assessment function
is called to evaluate the position with respect to the winning player.
This measure q, should reflect the quality of a terminal state. For
instance, in a game with material such as Breakthrough, Chess or
Checkers, an evaluation can be based on scoring the remaining mate-
rial of the winning player. For a racing game such as Chinese Check-
ers, the inverse of the number of pieces the opponent has in his target
base can be considered. As such, the quality is based on the a poste-
riori evaluation of the terminal state. Having witnessed the states and
actions performed from S to T, the score is based on an assessment
of T given the progression S . . . N . . . T (see Figure 1).

Score-based bonuses have previously been shown to enhance the
performance of MCTS in Go [8, 26], Mancala [16], and Blokus-
Duo [19]. As detailed in the next section, our approach differs from
previous work because the bonuses are normalized based on their
deviation from the mean, whereas previous works add an absolute
bonus to the results of play-outs. Control variates are introduced to
show how these bonuses are related to variance reduction in MCTS.
Previous work focused on reducing variance introduced by chance
events in the games Pig, Can’t Stop, and Dominion [23]. Here, each
bonus is a control variate with respect to the reward value returned
by the play-out policy.

4 QUALITY-BASED SIMULATION REWARDS
This section discusses the foundation for altering MCTS simulation
rewards. In the proposed framework, MCTS simulations return a tu-
ple of four reward values, 〈r, τ, q, dNT 〉 representing the outcome
r ∈ {−1, 0, 1}, the winning player τ , the quality assessment of the
terminal state q ∈ (0, 1), and the distance from the expanded node N
to the terminal state T, dNT , respectively. The distance d ∈ (0,m),
bounded above by the theoretical maximum duration of the game m,
is then computed as shown in Equation 2. Apart from q, these values
are available with minimal extra computational effort.

In Subsection 4.1, we describe control variates and explain how
they are used as a basis of the proposed quality measures discussed in
the previous section. In Subsections 4.2 and 4.3, Relative Bonus (RB)
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and Qualitative Bonus (QB) are defined, respectively. In Subsection
4.4, a method for determining an approximate value for a, a constant
used in the proposed methods, is introduced.

4.1 Control Variates
Variance reduction methods in mathematical simulation are used to
improve estimates by reducing the variance in a simulation’s output
[13]. Recently, variance reduction techniques have been proposed
for MCTS by Veness et al. [23]. They applied, among others, con-
trol variates to UCT in different stochastic games to improve results
by the reducing variance of the estimators. However, their applica-
tions were focused on reducing the variance that occurred from the
stochastic events in the domain. Furthermore, their control variates
are recursively defined over sequences of states and actions. In this
paper, we focus on a simpler application of reducing the variance in
the reward signal due to randomized play-outs.

Control variates take advantage of a correlation between two ran-
dom variables X and Y , to improve estimators of X given that the
mean E (Y ) is known. This is achieved by adding the deviation of Y
from its mean, scaled by a constant a, toX . We define a new random
variable,

Z = X + a (Y − E (Y )) , (3)

Y is called a control variate because its deviation from E (Y ) is used
to control the observed value X . Given that a non-zero correlation
between X and Y exists, one can show that there is a value a∗ =
−Cov (X,Y ) /Var (Y ) that minimizes Var (Z).

We define X as the simulation outcome, i.e., Xi = r, and
define Y as one of the quality measures discussed in Section 3,
Yi = d or Yi = q. Then, assuming that X and Y are correlated,
i.e., Corr (X,Y ) 6= 0, we can compute an estimate of a∗ from obser-
vations such that variance in the reward is reduced. In common prac-
tical domains, no fixed values for E (Y ), Cov (X,Y ), or Var (Y ) are
known and appropriate estimators for these quantities are required.

4.2 Relative Bonus
In this subsection, the Relative Bonus (RB) is introduced as an en-
hancement for the rewards generated by MCTS simulations. RB is
based on the simulation length discussed in Subsection 3.1 and used
as a control variate as defined in the previous subsection.

Note that d depends on the domain, the progress of the game, and
the play-out policy. As such, the range of d varies accordingly. There-
fore, d is standardized by defining it as a t-statistic, as an offset from
its central tendency. A sample mean can be approximated online, by
maintaining an average D̄τ for each player (indexed by τ ), over the
distribution of observed d values Dτ . After each simulation, D̄τ is
updated with the observed d, then σ̂τD is the sample standard devia-
tion of the distribution Dτ . Using these statistics, we define a stan-
dardized value λr as follows:

λr =
D̄τ − d
σ̂τD

(4)

Note that λr is a function of d but to simplify the notation we
omit the dependency. Also, λr is both normalized with the sample
standard deviation and is relative to D̄τ . It is both independent of
the progress of the game, and normalized with respect to the current
variance in the length of simulations. When the number of samples is
large, E (λr) ≈ 0 due to standardization and so λr can be added to r
as a control variate with E (Y ) = 0 in Equation 3. Note that, values
of λr are higher for shorter simulations.

Using an estimated mean may cause the search to be biased,
i.e., moving into the direction of shorter games. Although there is no
immediate solution to this problem, we propose to reset D̄τ and σ̂τD
between moves. Moreover, rewards of the first 5% of the expected
number of simulations are not altered during search, and D̄τ and σ̂τD
are updated during this time without altered selection.

Since the distribution of Dτ is not known, λr can still take on
unrestricted values, particularly if the distribution of Dτ is skewed,
or has heavy tails on either side. Moreover, its relationship with the
desired reward is not necessarily linear. As such, in order to both
bound and shape the values of the bonus it is passed to a sigmoid
function centered around 0 on both axes whose range is [−1, 1],

b(λ) = −1 +
2

1 + e−kλ
(5)

Here, k is a constant to be determined by experimentation, it both
slopes and bounds the bonus to be added to r. This type of function
is commonly used to smooth reward values of evaluation functions.
In [19], r was replaced by a sigmoid representing the final score.

Finally, the modified reward with the relative bonus is,

rb = r + sgn(r) · a · b(λr) (6)

This value is backpropagated from the expanded leaf to the root node.
The range of rb is [−1−a, 1+a], i.e., the bonus rb is centered around
the possible values of r. a is either an empirically determined value,
or computed off- or on-line as described in Subsection 4.4.

4.3 Qualitative Bonus
The Qualitative Bonus (QB) follows the same procedure as RB. Sim-
ilar to RB, the average Q̄τ and standard deviation σ̂τQ of observed q
values is maintained for each player τ . The value of q is determined
by an assessment of the quality of the match’s terminal state. Assum-
ing that higher values of q represent a higher quality terminal state
for the winning player τ , λq is defined as:

λq =
q − Q̄τ

σ̂τQ
(7)

Finally the bonus b(λq) is computed using Equation 5 with an opti-
mized k constant, and summed with the result of the simulation r,

rq = r + sgn(r) · a · b(λq) (8)

4.4 Estimating a

In gameplay, X is a nominal variable, i.e., loss, draw, or win, and in
our case, Y is a discrete scalar. Therefore the method of determin-
ing a∗ is not straightforward. Moreover, since the quantities required
to compute a∗, either online during search, or offline, are unknown
for complex domains, a∗ can be an approximation at best. Efforts to
determine a value for a∗ based on the intuitive definition of X and
Y , shown in Subsection 4.1 did not result in practical values. Among
others, determining the biserial covariance between X and Y was
tried. However, due to the small covariance measured, the resulting
range of a∗ was too small to make any impact on performance.

Nonetheless, a usable value for a, a′ can be computed and used
online by using an alternative definition of a∗. As before, let Y be
either one of the proposed quality measured, i.e., Yi = d or Yi = q,
and let ρ be the search player running MCTS. Now separate Y in
another distinct random variable Y w such that
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Y wi =

Yi if w wins the play-out,

0 otherwise
(9)

Using this definition we can determine the sample covariance,
Ĉov (Y w, Y ) in terms of Y values only. This ensures there are no
numerical differences between the quantities. Next, we can compute

a′ =
∣∣∣Ĉov (Y w, Y ) / V̂ar (Y )

∣∣∣ , (10)

and use it, as the value for a in Equations 6 and 8.
Because the choice of Y w is arbitrary, since every game is won by

either one of the players, the actual value of a′ is treated as a magni-
tude, and its sign is not used. This works because the assumption is
made that 1) shorter games are preferred over long ones (Equation 4)
and, 2) higher q values indicate better play-out quality (Equation 7).

5 PSEUDO-CODE
Enhancing MCTS with RB and/or QB is explained in Algorithm 1,
which summarizes a single iteration of MCTS. Note that negamax
backups are used in this set-up, and therefore r is relative to the
player to move at the start of the play-out. Although we use the
MCTS-Solver [25], details of its implementation are omitted in the
pseudo-code. Whenever update is used in the algorithm, it refers to
updating the average reward for a node, or the sample mean and stan-
dard deviation for D̄τ and Q̄τ .

During selection, starting from the root, the depth of the current
node is updated on line 4. Whenever an expandable node is reached,
its children are added to the tree and a play-out is initiated from one
of them. A play-out returns a tuple of results, on line 6 four different
values are returned: 1) the result of the play-out r ∈ {−1, 0, 1}, 2)
the winning player τ , 3) the assessed quality of the play-out’s ter-
minal state q ∈ (0, 1), and 4) the number of moves made during
play-out diT defined in Subsection 3.1. On line 9 the relative bonus
is applied to r, using the difference with the winning player’s current

1 MCTS(node p, node depth dSp):
2 if isLeaf(p) then Expand(p)
3 Select a child i according to Eq. 1
4 dSi ← dSp + 1
5 if ni = 0 then
6 〈r, τ, q, diT 〉 ← PLAYOUT(i)
7 d← dSi + diT
8 if enabled(br) and σ̂τD > 0 then
9 r ← r + sgn(r) · a · BONUS(D̄τ − d, σ̂τD)

10 update D̄τ and σ̂τD with d
11 if enabled(bq) and σ̂τQ > 0 then
12 r ← r + sgn(r) · a · BONUS(q − Q̄τ , σ̂τQ)
13 update Q̄τ and σ̂τQ with q
14 update node i with r
15 else
16 r ← -MCTS(i, dSi)
17 update node p with r
18 return r
19 BONUS(offset from mean δ, sample std. dev. σ̂):
20 λ← δ/σ̂
21 b← −1 + 2/(1+e−kλ)
22 return b

Algorithm 1: Pseudo-code of quality-based MCTS (Section 4).

mean D̄τ − d. After which the current mean and standard deviation
are updated on line 10. QB is applied similarly on line 12 using the
assessed quality of the play-out q. Positive deviations of q from its
mean imply better results. The BONUS function on line 17, computes
the normalized λ (line 20) and, successively the bonus b (line 21) us-
ing the sigmoid function, as defined in Subsections 4.2 and 4.3. The
constant a on lines 9 and 12 can be either fixed, or computed online
as shown in Subsection 4.4.

6 EXPERIMENTS
To determine the performance impact of RB and QB, experiments
were run on six distinct two-player games. Moreover, RB is evaluated
in the General Game Playing (GGP) agent CADIAPLAYER [4], win-
ner of the International GGP competition in 2007, 2008, and 2012.

6.1 Experimental Setup
The proposed enhancements are validated in six distinct two-player
games, which are implemented to use a single MCTS engine.

• Amazons is played on a 10×10 chessboard. Players each have
four Amazons that move as queens in chess. Moves consist of two
parts, movement, and shooting an arrow to block a square on the
board. The last player to move wins the game.

• Breakthrough is played on an 8×8 board. Players start with 16
pawns. The goal is to move one of them to the opponent’s side.

• Cannon is a chess-like game, where the goal is to checkmate your
opponent’s immobile town. Players each have one town that is
placed at the start of the game, and 15 soldiers. Soldiers can move,
and capture single squares forward or retreat two squares if next to
an opponent’s soldier. Three soldiers in a row form a cannon that
can shoot up to three squares in the direction of the line formed.

• Checkers (English) is played on an 8×8 board. The player without
pieces remaining, or who cannot move, loses the game.

• Chinese Checkers is played on a star-shaped board. Each player
starts with six pieces placed in one of the star’s points, and the aim
is to move all six pieces to the opposite side of the board. This is
a variation of the original Chinese Checkers which is played on a
larger board with 10 pieces per player.

• Pentalath is a connection game played on a hexagonal board. The
goal is to place 5 pieces in a row. Pieces can be captured by fully
surrounding an opponent’s set of pieces.

The following quality assessments are used for each game. Ama-
zons: the combined number of moves available for the winning
player. Breakthrough and Cannon: the total piece difference between
the winning and losing player. Checkers: the total number of pieces
in play for the winning player. Chinese Checkers: the inverse number
of the losing player’s pieces that reached the home-base. Pentalath:
the inverse of the longest row of the losing player, given that this row
can be extended to a length of 5. For each game a fixed normalizer
brings the values of q within the [0, 1] range.

Appropriate play-out policies are used to select moves to make
during play-out for all games except Checkers, in which moves are
selected uniformly random. These policies are implemented to en-
sure that neither obvious mistakes nor flawed play is observed. All
results are reported with these play-out policies enabled. The poli-
cies select over a non-uniform move distribution based on the prop-
erties of the moves. For Breakthrough, Cannon, and Chinese Check-
ers decisive moves are always played when available. Moreover, for
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Amazons, Breakthrough, and Pentalath MAST [10] with ε-greedy se-
lection is applied. MCTS with these play-out policies enabled wins
between 57%-99% of games against MCTS with random play-outs.

GGP experiments are performed using the CADIAPLAYER code
base. In GGP, no domain knowledge is available in advance, and
rules of the games are interpreted online resulting in a low num-
ber of simulations. Moreover, play-out policies are learned online,
using N-Grams [22]. The Relative Bonus enhancement is tested in
the following two-player sequential games: Zhadu, TTCC4, Skir-
mish, SheepWolf, Quad, Merrils, Knightthrough, Connect5, Check-
ers, Breakthrough, 3DTicTacToe, and Chinese Checkers. We show
results for two simultaneous move games: Battle and Chinook.

Experiments were run on a 2.2Ghz AMD Opteron CPU running
64-bit Linux 2.6.18. For each game, the constant k used by the
sigmoid function was determined by experimenting with values be-
tween 0 and 10, with varying increments. The C constant, used by
UCT (Equation 1) was optimized for each game without any en-
hancements enabled and was not re-optimized for the experiments.

6.2 Results

For each result, the winning percentage is reported for the player with
the enhancement enabled, along with a 95% confidence interval. For
each experiment, the players’ seats were swapped such that 50% of
the games are played as the first player, and 50% as the second, to
ensure no first-player or second-player bias.

Table 1. Relative Bonus enabled using different search times, 5000 games

Search time 1 second 5 seconds

Game k a′ a = 0.25 a′ a = 0.25

Amazons 2.2 54.7 ± 1.4 55.7 ± 1.4 54.8 ± 1.4 54.7 ± 1.4
Breakthrough 8.0 50.0 ± 1.4 51.0 ± 1.4 47.6 ± 1.4 51.6 ± 1.4

Cannon 3.0 62.8 ± 1.3 60.6 ± 1.3 58.8 ± 1.4 58.1 ± 1.4
Checkers 2.8 52.1 ± 0.8 52.7 ± 0.8 48.9 ± 0.7 50.7 ± 0.6

Chin. Checkers 1.2 56.8 ± 1.4 53.2 ± 1.4 54.9 ± 1.4 52.5 ± 1.4
Pentalath 1.0 51.4 ± 1.4 50.3 ± 1.4 49.3 ± 1.4 49.5 ± 1.4

Results for relative bonus are shown in Table 1. Depending on the
search time, significant increases in performance are shown for five
of the six games. The value of k used for each game is reported in the
second column. We used a fixed value of a = 0.25 in addition to the
online definition of a′ from Equation 10. We see that the online a′

leads to increased performance over a fixed value for five games. In-
terestingly, a fixed value tends to lead to more consistent results over
the five games. In Breakthrough, because the play-out policy does
not contain heuristics for defensive positioning, the play-outs favor
quick wins and excludes defensive moves, leading to bad approxi-
mations of the actual game’s length. Chinese Checkers, Cannon, and
Amazons achieve the most increase in performance using RB. The
difference between a simulation’s length, and the length of the actual
matches played differ the most in these games. As such RB improves
the estimates of the simulations’ lengths over the course of the match
by favoring the shorter ones. These gains are significant at both one
second and five seconds of search time. Pentalath is a game with a
restricted length. As such, the additional information provided by the
length of games is limited.

For GGP, results are presented in Table 2, for all data points at
least 950 games were played. A single value for a was used for GGP
because a significant number of simulations are required to compute

Table 2. Relative Bonus in GGP, CADIAPLAYER, a = 0.25
30 sec. startclock, 15 sec. playclock

k = 2 k = 1.4

Game a = 0.25 a = 0.25

Zhadu 54.3 ± 1.9 53.3 ± 1.9
TTCC4 55.3 ± 2.0 53.3 ± 2.0

Skirmish 51.9 ± 2.2 50.7 ± 2.2
SheepWolf 51.7 ± 1.8 52.3 ± 1.9

Quad 44.7 ± 1.7 44.7 ± 1.7
Merrills 51.9 ± 2.6 48.9 ± 2.6

Knightthrough 49.9 ± 2.1 49.2 ± 2.1
Connect5 54.0 ± 1.8 54.4 ± 1.8
Checkers 54.4 ± 3.0 52.1 ± 3.2

Breakthrough 51.3 ± 2.9 51.0 ± 2.9
3DTicTacToe 55.0 ± 1.6 54.5 ± 1.6

Chin. Checkers 56.3 ± 1.8 56.0 ± 1.8

Battle 50.0 ± 2.0 49.2 ± 2.0
Chinook 48.5 ± 2.0 49.0 ± 2.0

an accurate a′ online. Moreover, since values for k cannot be opti-
mized beforehand, we present the results for two different k values.
Although k has an influence on the performance of RB, it is robust
with respect to suboptimal values, and an approximation can be used
as is made clear by the results in Table 2. Note that the results for
Chinese Checkers, Checkers, and Breakthrough are similar to those
in Table 1, demonstrating the robustness of the enhancement across
implementations. In Quad, the variance in the game length is small,
which could mean that the overhead imposed by RB is detrimental.

Table 3. Qualitative Bonus using different search times, 5000 games

Search time 1 second 5 seconds

Game k a′ a = 0.25 a′ a = 0.25

Amazons 1.6 64.5 ± 1.3 58.0 ± 1.4 63.0 ± 1.3 57.7 ± 1.4
Breakthrough 2.0 74.8 ± 1.2 71.9 ± 1.2 76.3 ± 1.2 78.6 ± 1.1

Cannon 4.0 65.9 ± 1.3 63.0 ± 1.3 54.7 ± 1.4 57.4 ± 1.4
Checkers 2.0 53.8 ± 0.8 52.7 ± 0.7 51.9 ± 0.6 52.3 ± 0.6

Chin. Checkers 2.8 65.7 ± 1.3 60.1 ± 1.4 61.4 ± 1.3 58.9 ± 1.4
Pentalath 1.6 46.6 ± 1.4 50.5 ± 1.4 48.7 ± 1.4 50.1 ± 1.4

Results for QB are shown in Table 3. A significant increase in
performance is presented for five of the six games. The quality as-
sessment in Pentalath is relatively expensive, and the benefit of QB
may be diminished by the extra computational effort required. All
other games use simple assessments of their terminal states, which
do not require much computational effort. Breakthrough and Cannon
show the highest overall performance increase, the piece difference
is a valuable indicator for the overall quality of the play-outs in these
games. As is the case with RB, the results are invariant with respect
to the allowed search time.

Note that, while the gains are higher for QB, RB does not require
any domain knowledge. An immediate question is whether the two
methods are complementary. Results with both methods enabled are
shown in Table 4. Comparing to Tables 1 and 3, in 14 of the 24 cases
the gain for the combination is statistically significantly higher than
each bonus on its own.

Finally, we verified whether replacing the actual reward r by q
completely would also have led to a performance increase. The last
column of Table 4 reveals a significant performance decrease in five
of the six games.

5



Table 4. Qualitative Bonus and Relative Bonus combined using different
search times, 5000 games. Reward = terminal quality, 500 games

Search time 1 second 5 seconds 1 second

Game a′ a = 0.25 a′ a = 0.25 r = q

Amazons 65.9 ± 1.3 61.9 ± 1.4 62.0 ± 1.4 60.9 ± 1.4 23.7 ± 3.7
Breakthrough 77.9 ± 1.2 72.9 ± 1.2 78.6 ± 1.1 78.6 ± 1.1 35.4 ± 4.2

Cannon 72.5 ± 1.2 69.3 ± 1.3 61.1 ± 1.4 62.3 ± 1.3 45.4 ± 4.4
Checkers 53.6 ± 0.8 54.1 ± 0.8 51.7 ± 0.7 53.5 ± 0.7 29.4 ± 4.0

Chin. Checkers 69.9 ± 1.3 63.1 ± 1.3 64.6 ± 1.3 70.0 ± 1.4 48.5 ± 4.4
Pentalath 50.7 ± 1.4 51.2 ± 1.4 51.9 ± 1.4 51.4 ± 1.4 27.0 ± 3.9

7 CONCLUSION AND FUTURE RESEARCH

In this paper, we show that the performance of MCTS is improved by
treating the rewards of simulations as a combination of the win/loss
state, with a quality measure. The enhancements are implemented
using control variates, a well-known variance reduction technique.
We show performance can be improved when there is a non-zero
correlation between the reward-signal and the quality measure. This
was true for both bonuses in most of the game domains we used.

The Relative Bonus (RB) treats the length of a simulation as a
measure of its quality. The benefit of this method is that it is domain-
independent. It seems to perform best in games where there is high
variance in play-out lengths, favoring the shorter ones. In General
Game Playing, RB improved empirical performance in 7 of the 12
sequential games, and only significantly decreased performance in
one of the cases. The Qualitative Bonus (QB) improved results in all
(non-GGP) domains, though its implementation requires additional
knowledge. Nonetheless, even simple quality assessments of termi-
nal states, such as a piece count, improve results considerably. This
type of knowledge could be generated online in a GGP context.

For some domains this is not feasible or practical for play-outs to
reach a natural terminal state. Therefore, we propose combining early
and static cut-offs of play-outs as future research. Although a static
cut-off may not be compatible with RB, we expect both to improve
performance in combination with QB. Moreover, combining RB and
QB with the reward signal may be improved by computing the a′

from the covariance matrix as is standard when combining control
variates. Finally, we believe that the proposed enhancements could
improve estimates of online learning methods for play-out policies
such as N-Grams or MAST.
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