Addressing NP-Complete Puzzles with Monte-Carlo
Methods!

Maarten P.D. Schadd

and Mark H.M. Winands

H. Jaap van den Herik and Huib Aldewereld”

Abstract.

NP-complete problems are a challenging task for researchers, who
investigate tractable versions and attempt to generalise the meth-
ods used for solving them. Over the years a large set of successful
standard methods have been developed. We mention A* and IDA*
which have proven to be reasonably successful in solving a set of
NP-complete problems, particularly single-agent games (puzzles).
However, sometimes these methods do not work well. The intrigu-
ing question then is whether there are new methods that will help us
out.

In this paper we investigate whether Monte-Carlo Tree-Search
(MCTS) is an interesting alternative. We propose a new MCTS vari-
ant, called Single-Player Monte-Carlo Tree-Search (SP-MCTS). Our
domain of research is the puzzle SameGame. It turned out that our
SP-MCTS program gained the highest scores so far on the standard-
ised test set. So, SP-MCTS can be considered as a new method for
addressing NP-complete puzzles successfully.

1 INTRODUCTION

Creating and improving solvers for tractable versions of NP-
complete problems is a challenging task in the field of Artificial In-
telligence research. As Cook [9] proved: all problems in the class of
NP-complete problems are translatable to one another [16]. This im-
plies that a solution procedure for one problem also holds for other
problems. Otherwise stated: if an effective method is found to solve a
particular instance of a problem, many other problems may be solved
as well using the same method.

Games are often NP-complete problems. The rules for games are
well-defined and it is easy to compare different methods. For our in-
vestigations we have chosen a one-person perfect-information game
(a puzzle®) called SameGame. In Section 2 we will prove that this
puzzle is NP-complete.

The traditional methods for solving puzzles, such as the 15x15
puzzle and Sokoban, are A* [15] or IDA* [19]. Other problems, such
as the Travelling Salesman Problem (TSP) [3] require different meth-
ods (e.g., Simulated Annealing [12] or Neural Networks [23]). These
methods have been shown to solve the puzzles mentioned above rea-
sonably well. An example of a practical and successful use of these
methods are pathfinders which are, for example, used inside an in-
creasing number of cars. A drawback of the methods is that they need

1 This contribution is a revised version of an article under submission to CG
2008.

2 Maastricht University, Maastricht, The Netherlands, email:
{maarten.schadd, m.winands, herik, h.aldewereld } @micc.unimaas.nl

3 Although arbitrary, we will call these one-player games with perfect infor-
mation for the sake of brevity puzzles.

an admissible heuristic evaluation function. The construction of such
a function may be difficult.

An alternative to these methods can be found in Monte-Carlo Tree
Search (MCTS) [7, 10, 18] because it does not need an admissible
heuristic. Especially in the game of Go, which has a large search
space [5], MCTS methods have proven to be successful [7, 10]. In
this paper we will investigate how MCTS addresses NP-complete
puzzles. For this purpose, we introduce a new MCTS variant called
SP-MCTS.

The course of the paper is as follows. In Section 2 we present the
background and rules of SameGame. Also, we prove that SameGame
is NP-complete. In Section 3 we discuss why classical methods are
not suitable for SameGame. Then we introduce our SP-MCTS ap-
proach in Section 4. Experiments and results are given in Section 5.
Section 6 shows our conclusions and indicates future research.

2 SAMEGAME

We start by presenting some background information on SameGame
in Subsection 2.1. Subsequently we explain the rules in Subsection
2.2. Finally, we prove that SameGame is NP-complete in Subsection
2.3.

2.1 Background

SameGame is a puzzle invented by Kuniaki Moribe under the name
Chain Shot! in 1985. It was distributed for Fujitsu FM-8/7 series in a
monthly personal computer magazine called Gekkan ASCII [20]. The
puzzle was afterwards re-created by Eiji Fukumoto under the name
of SameGame in 1992. So far, the best program for SameGame has
been developed by Billings [24].

2.2 Rules

SameGame is played on a rectangular vertically-placed 15x 15 board
initially filled with blocks of 5 colours at random. A move consists
of removing a group of (at least two) orthogonally adjacent blocks
of the same colour. The blocks on top of the removed group will fall
down. As soon as empty columns occur, the columns to the right are
shifted to the left. For each removed group points are rewarded. The
amount of points is dependent on the number of blocks removed and
can be computed by the formula (n — 2)?, where n is the size of the
removed group.

We show two example moves in Figure 1. When the ‘B’ group in
the third column of position 1(a) is played, it will be removed from
the game and the ‘C’ block on top will fall down, resulting in position

1(b). Because of this move, it is now possible to remove a large group
of ‘C’ blocks (n=5). Owing to an empty column the two columns at
the right side of the board are shifted to the left, resulting in position
1(c).* The first move is worth 0 points; the second move is worth 9
points.

A B € D E A B C D E

(a) Playing ‘B’ in the cen-
tre column

(b) Playing ‘C’ in the cen-
tre column

A B C D E
(c) Resulting position

Figure 1. Example SameGame moves.

The game is over if either the player (1) has removed all blocks
or (2) is left with a position where no adjacent blocks have the same
colour. In the first case, 1,000 bonus points are rewarded. In the sec-
ond case, points will be deducted. The formula for deduction is sim-
ilar to the formula for rewarding points but is now iteratively applied
for each colour left on the board. During deduction it is assumed that
all blocks of the same colour are connected.

There are variations that differ in board size and the number of
colours, but the 15x 15 variant with 5 colours is the accepted stan-
dard. If a variant differs in scoring function, it is named differently
(e.g., Jawbreaker, Clickomania) [2, 21].

2.3 Complexity of SameGame

The complexity of a game indicates a measure of hardness of solv-
ing the game. Two important measurements for the complexity of a
game are the game-tree complexity and the state-space complexity
[1]. The game-tree complexity is an estimation of the number of leaf
nodes that the complete search tree would contain to solve the ini-
tial position. The state-space complexity indicates the total number
of possible states.

For SameGame these complexities are as follows. The game-tree
complexity can be approximated by simulation. For SameGame, the
game-tree complexity for a random initial position is 108 in average.
The state-space complexity is computed rather straightforwardly. It

4 Shifting the columns at the left side to the right would not have made a
difference in points. For consistency, we will always shift columns to the
left.

is possible to calculate the number of combinations for one column
by C = > _ c" where r is the height of the column and c is the
number of colours. To compute the state-space complexity we take
C* where k is the number of columns. For SameGame we have 10'5°
states. This is not the exact number because a small percentage of the
positions are symmetrical.

Furthermore, the hardness of a game can be described by deciding
to which complexity class it belongs [16]. The similar game Clicko-
mania was proven to be NP-complete by [2]. However, the complex-
ity of SameGame can be different. The more points are rewarded for
removing large groups, the more the characteristics of the game dif-
fer from Clickomania. In Clickomania the only goal is to remove as
many blocks as possible, whereas in SameGame points are rewarded
for removing large groups as well. In the following, we prove that
SameGame independently from its evaluation function belongs to the
class of NP-complete problems, such as the 3-SAT problem [9].

Theorem 1 SameGame is NP-complete

For a proof that it is NP-complete, it is sufficient to reduce
SameGame to a simpler problem. We reduce SameGame to Click-
omania, which has been proven to be NP-complete with 5 colours
and 2 Columns [2]. A SameGame instance with 2 columns is eas-
ier to solve than the standard SameGame instance with 15 columns.
Instead of proving that finding the optimal path is NP-complete, we
prove that checking whether a solution s is optimal is already NP-
complete. A solution is a path from the initial position to a terminal
position. Either s (1) has removed all blocks from the game or (2)
has finished with blocks remaining on the board. Even in the second
case a search has to be performed to investigate whether a solution
exists that clears the board and improves the score. If we prove that
searching all solutions which clear the board is NP-complete, then
SameGame is NP-complete as well.

Clickomania is a variant of SameGame where no points are re-
warded and the only objective is to clear the board. Finding one so-
Iution to this problem is easier than finding every solution. Therefore,
it is proven that SameGame is a harder problem than Clickomania;
SameGame is NP-complete, too.

3 CLASSICAL METHODS: A* AND IDA*

The classical approach to puzzles involves methods such as A* [15]
and IDA* [19]. A* is a best-first search where all nodes have to be
stored in a list. The list is sorted by an admissible evaluation function.
At each iteration the first element is removed from the list and its
children are added to the sorted list. This process is continued until
the goal state arrives at the start of the list.

IDA* is an iterative deepening variant of A* search. It uses a
depth-first approach in such a way that there is no need to store the
complete tree in memory. The search will continue depth-first until
the cost of arriving at a leaf node and the value of the evaluation
function pass a certain threshold. When the search returns without a
result, the threshold is increased.

Both methods are heavily dependent on the quality of the evalua-
tion function. Even if the function is an admissible under-estimator,
it still has to give an accurate estimation. Well-known puzzles where
this approach works well are the Eight Puzzle with its larger relatives
[19, 22] and Sokoban [17]. Here a good under-estimator is the well-
known Manhattan Distance. The main task in this field of research
is to improve the evaluation function, e.g., with pattern databases
[11,13].

These classical methods fail for SameGame because it is not easy
to make an admissible under-estimator that still gives an accurate es-
timation. An attempt to make such an evaluation function is by just
rewarding points to the groups on the board without actually playing
amove. However, if an optimal solution to a SameGame problem has
to be found, we may argue that an “over-estimator” of the position
is needed. An admissible over-estimator can be created by assuming
that all blocks of the same colour are connected and would be able
to be removed at once. This function can be improved by checking
whether there is a colour with only one block remaining on the board.
If this is the case, the 1,000 bonus points at the end can be deducted.
However, such an evaluation function is far from the real score on a
position and does not give good results with A* and IDA*. Tests have
shown that using A* and IDA* with the proposed “over-estimator”
resemble a simple breadth-first search. The problem is that after ex-
panding a node, the heuristic value of a child is significantly lower
than the value of its parent, unless a move removes all blocks with
one colour from the board.

Since no good evaluation function has been found yet, SameGame
presents a new challenge for the puzzle research. In the next section
we will discuss our SP-MCTS method.

4 MONTE-CARLO TREE SEARCH

This section first gives a description of SP-MCTS in Subsection 4.1.
Thereafter we will explain the Meta-Search extension in Subsection
4.2.

4.1 SP-MCTS

MCTS is a best-first search method, which does not require a po-
sitional evaluation function. MCTS builds a search tree employing
Monte-Carlo evaluations at the leaf nodes. Each node in the tree rep-
resents an actual board position and typically stores the average score
found in the corresponding subtree and the number of visits. MCTS
constitutes a family of tree-search algorithms applicable to the do-
main of board games [7, 10, 18].

In general, MCTS consists of four steps, repeated until time has
run out [8]. (1) A selection strategy is used for traversing the tree
from the root to a leaf. (2) A simulation strategy is used to finish
the game starting from the leaf node of the search tree. (3) The ex-
pansion strategy is used to determine how many and which children
are stored as promising leaf nodes in the tree. (4) Finally, the result
of the MC evaluation is propagated backwards to the root using a
back-propagation strategy.

Based on MCTS, we propose an adapted version for puzzles:

Single-Player Monte-Carlo Tree Search (SP-MCTS). Below, we will
discuss the four corresponding phases and point out differences be-
tween SP-MCTS and MCTS.
Selection Strategy Selection is the strategic task that selects one
of the children of a given node. It controls the balance between
exploitation and exploration. Exploitation is the task to focus on
the move that led to the best results so far. Exploration deals with the
less promising moves that still may have to be explored, due to the
uncertainty of their evaluation so far. In MCTS at each node starting
from the root a child has to be selected until a leaf node is reached.
Several algorithms have been designed for this setup [7, 10].

Kocsis and Szepesvari [18] proposed the selection strategy UCT
(Upper Confidence bounds applied to Trees). For SP-MCTS, we use
a modified UCT version. At the selection of node N with children

N;, the strategy chooses the move, which maximises the following
formula.

— Int(N) S22 —t(N;)-X +D
X + C"/it(Ni) + \/ TN G))

The first two terms constitute the original UCT formula. It uses
the number of times ¢ (V) that node N was visited and the number
of times ¢ (IV;) that child N; was visited to give an upper confidence
bound for the average game value X . For puzzles, we added a third
term, which represents the deviation [10, 6]. This term makes sure
that nodes, which have been rarely explored, are not under-estimated.
> x? is the sum of the squared results achieved in this node so far.
The third term can be tuned by the constant D. Coulom [10] chooses
a move according to the selection strategy only if ¢ (N;) reached a
certain threshold (here 10). Before that happens, the simulation strat-
egy is used, which will be explained later. Below we describe two
differences between puzzles and two-player games, which may af-
fect the selection strategy.

First, the essential difference between the two is the range of val-
ues. In two-player games, the results of a game can be summarised by
loss, draw, and win. They can be expressed as numbers from the set
{—1, 0, 1}. The average score of a node will always stay in [—1,1].
In a puzzle, a certain score can be achieved that is outside this inter-
val. In SameGame there are positions, which can be finished with a
value above 4,000 points. If the maximum score for a position would
be known, then it is possible to scale this value back into the men-
tioned interval. However, the maximum score of a position might not
be known. Thus, much higher values for the constants C' and D have
to be chosen than is usual in two-player games.

A second difference for puzzles is that there is no uncertainty on
the opponent’s play. This means that solely the line of play has to be
optimised regarding the top score and not the average of a subtree.
Simulation Strategy Starting from a leaf node, random moves are
played until the end of the game. In order to improve the quality of
the games, the moves are chosen pseudo-randomly based on heuristic
knowledge.

In SameGame, we have designed two static simulation strategies.
We named these strategies “TabuRandom” and “TabuColourRan-
dom”. Both strategies aim at making large groups of one colour. In
SameGame, making large groups of blocks is advantageous.

“TabuRandom” chooses a random colour at the start of a simula-
tion. It is not allowed to play this colour during the random simu-
lations unless there are no other moves possible. With this strategy
large groups of the chosen colour will be formed automatically.

The new aspect in the “TabuColourRandom™ with respect to the
previous strategy is that the chosen colour is the colour most fre-
quently occurring at the start of the simulation. This may increase
the probability of having large groups during the random simulation.
Expansion Strategy The expansion strategy decides which nodes
are added to the tree. Coulom [10] proposed to expand one child per
simulation. With his strategy, the expanded node corresponds to the
first encountered position that was not present in the tree. This is also
the strategy we used for SameGame.

Back-Propagation Strategy During the back-propagation phase, the
result of the simulation at the leaf node is propagated backwards to
the root. Several back-propagation strategies have been proposed in
the literature [7, 10]. The best results that we have obtained was by
using the plain average of the simulations. Therefore, we update (1)
the average score of a node. Additional to this, we also update (2) the

sum of the squared results because of the third term in the selection
strategy (see Formula 1), and (3) the best score achieved so far for
computational reasons.

The four phases are iterated until the time runs out.” When this
happens, a final move selection is used to determine, which move
should be played. In two-player games (with an analogous run-out-
of-time procedure) the best move according to this strategy will be
played by the player to move and the opponent then has time to cal-
culate his response. But in puzzles this can be done differently. In
puzzles it is not needed to wait for an unknown reply of an opponent.
Because of this, it is possible to perform one large search from the
initial position and then play all moves at once. With this approach
all moves at the start are under consideration until the time for SP-
MCTS runs out.

4.2 Meta-Search

A Meta-Search is a search method that does not perform a search on
its own but uses other search processes to arrive at an answer. For
instance, Gomes et al. [14] proposed a form of iterative deepening
to handle heavy-tailed scheduling tasks. The problem was that the
search was lost in a large subtree, which would take a large amount
of time to perform, while there are shallow answers in other parts of
the tree. The possibility exists that by restarting the search a different
part of the tree was searched with an easy answer.

We discovered that it is important to generate deep trees in
SameGame (see Section 5.2). However, by exploiting the most-
promising lines of play, the SP-MCTS can be caught in local max-
ima. So, we extended SP-MCTS with a straightforward form of
Meta-Search to overcome this problem. After a certain amount of
time, SP-MCTS just restarts the search with a different random seed.
The best path returned at the end of the Meta-Search is the path with
the highest score found in the searches. Section 5.3 shows that this
form of Meta-Search is able to increase the average score signifi-
cantly.

5 EXPERIMENTS AND RESULTS

Subsection 5.1 shows tests of the quality of the two simulation strate-
gies TabuRandom and TabuColourRandom. Thereafter, the results of
the parameter tuning are presented in Subsection 5.2. Next, in Sub-
section 5.3 the performance of the Meta-Search on a set of 250 posi-
tions is shown. Finally, Subsection 5.4 compares SP-MCTS to IDA*
and Depth-Budgeted Search (used in the program by Billings [4]).

5.1 Simulation Strategy

In order to test the effectiveness of the two simulation strategies we
used a test set of 250 randomly generated positions.® We applied SP-
MCTS without the Meta-Search extension for each position until 10
million nodes were reached in memory. These runs typically take 5
to 6 minutes per position. The best score found during the search is
the final score for the position. The constants C' and D were set to
0.5 and 10,000, respectively. The results are shown in Table 1.
Table 1 shows that the TabuRandom strategy has a significant
better average score (i.e., 700 points) than plain random. Using
the TabuColourRandom strategy the average score is increased by

5 In general, there is no time limitation for puzzles. However, a time limit is
necessary to make testing possible.

6 The test set can be found online at
http://www.cs.unimaas.nl/maarten.schadd/SameGame/TestSet.txt

Table 1. Effectiveness of the simulation strategies

Average Score StDev
Random 2,069 322
TabuRandom 2,737 445
TabuColourRandom 3,038 479

another 300 points. We observe that a low standard deviation is
achieved for the random strategy. In this case, it implies that all posi-
tions score almost equally low.

5.2 SP-MCTS Parameter Tuning

This subsection presents the parameter tuning in SP-MCTS. Three
different settings were used for the pair of constants (C'; D) of For-
mula 1, in order to investigate which balance between exploitation
and exploration gives the best results. These constants were tested
with three different time controls on the test set of 250 positions, ex-
pressed by a maximum number of nodes. The three numbers are 10°,
10% and 5 x 10°. The short time control refers to a run with a maxi-
mum of 10° nodes in memory. In the medium time control, 10° nodes
are allowed in memory, and in long time control 5 x 10° nodes are
allowed. We have chosen to use nodes in memory as measurement
to keep the results hardware-independent. The parameter pair (0.1;
32) represents exploitation, (1;20,000) performs exploration, and
(0.5; 10,000) is a balance between the other two.

Table 2 shows the performance of the SP-MCTS approach for the
three time controls. The short time control corresponds to approx-
imately 20 seconds per position. The best results are achieved by
exploitation. The score is 2,552. With this setting the search is able
to build trees that have on average the deepest leaf node at ply 63,
implying that a substantial part of the chosen line of play is inside
the SP-MCTS tree. Also, we see that the other two settings are not
generating a deep tree.

In the medium time control, the best results were achieved by us-
ing the balanced setting. It scores 2,858 points. Moreover, Table 2
showed that the average score of the balanced setting increased most
compared to the short time control, viz. 470. The balanced setting
is now able to build substantially deeper trees than in the short time
control (37 vs. 19). An interesting observation can be made by com-
paring the score of the exploration setting in the medium time control
to the exploitation score in the short time control. Even with 10 times
the amount of time, exploring is not able to achieve a significantly
higher score than exploiting.

The results for the long experiment are that the balanced setting
again achieves the highest score with 3,008 points. Now its deepest
node on average is at ply 59. However, the exploitation setting only
scores 200 points fewer than the balanced setting and 100 fewer than
exploration.

From the results presented we may draw two conclusions. First we
may conclude that it is important to have a deep search tree. Second,
exploiting local maxima can be more advantageous than searching
for the global maxima when the search only has a small amount of
time.

Table 2. Results of SP-MCTS for different settings

Exploitation Balanced || Exploration
10° nodes (0.1; 32) || (0.5;10,000) (1; 20,000)
Average Score 2,552 2,388 2,197
Standard Deviation 572 501 450
Average Depth 25 7 3
Average Deepest Node 63 19 8

| 10° nodes [(0.1;32)] (0.5:10,000)]| (1;20,000) |
Average Score 2,674 2,858 2,579
Standard Deviation 607 560 492
Average Depth 36 14 6
Average Deepest Node 71 37 15

[5x10°nodes [(0.1;332) [(0.5;10,000) [T (1;20,000) |
Average Score 2,806 3,008 2,901
Standard Deviation 576 524 518
Average Depth 40 18 9
Average Deepest Node 69 59 20

5.3 Meta-Search

This section presents the performance tests of the Meta-Search ex-
tension of SP-MCTS on the set of 250 positions. We remark that the
experiments are time constrained. Each experiment could only use
5 x 10° nodes in total and the Meta-Search distributed these nodes
fairly among the number of runs. It means that a single run can take
all 5 x 10° nodes, but that two runs would only use 250,000 nodes
each. We used the exploitation setting (0.1; 32) for this experiment.
The results are depicted in Figure 2.

Figure 2 indicates that already with two runs instead of one, a sig-
nificant performance increase of 140 points is achieved. Furthermore,
the maximum average score of the Meta-Search is at ten runs, which
uses 50,000 nodes for each run. Here, the average score is 2,970
points. This result is almost as good as the best score found in Ta-
ble 2, but with the difference that the Meta-Search used one tenth
of the number of nodes. After ten runs the performance decreases
because the generated trees are not deep enough.

Average Score

2550 I L I L
1 2 4] 16 32 64 128

Number of Runs

Figure 2. The average score for different settings of the Meta-Search

5.4 Comparison

The best SameGame program so far has been written by Billings
[4]. This program performs a non-documented method called Depth-
Budgeted Search (DBS). When the search reaches a depth where its
budget has been spent, a greedy simulation is performed. On a stan-
dardised test set of 20 positions’ his program achieved a total score
of 72,816 points with 2 to 3 hours computing time per position. Us-
ing the same time control, we tested SP-MCTS on this set. We used
again the exploitation setting (0.1; 32) and the Meta-Search exten-
sion, which applied 1,000 runs using 100,000 nodes for each search
process. For assessment, we tested IDA* using the evaluation func-
tion described in Section 3. Table 3 compares IDA*, DBS, and SP-
MCTS with each other.

Table 3. Comparing the scores on the standardised test set

[Positionnr. | IDA* [DBS | SP-MCTS |
1 548 2,061 2,557
2 1,042 3,513 3,749
3 841 3,151 3,085
4 1,355 3,653 3,641
5 1,012 3,093 3,653
6 843 4,101 3,971
7 1,250 2,507 2,797
8 1,246 3,819 3,715
9 1,887 4,649 4,603

10 668 3,199 3,213
11 1,073 2911 3,047
12 602 2,979 3,131
13 667 3,209 3,097
14 749 2,685 2,859
15 745 3,259 3,183
16 1,647 4,765 4,879
17 1,284 4,447 4,609
18 2,586 5,099 4,853
19 1,437 4,865 4,503
20 872 4,851 4,853
Total: || 22,354 | 72,816 73,998

7 The positions can be found at the following address: http:/www.js-
games.de/eng/games/samegame.

SP-MCTS outperformed DBS on 11 of the 20 positions and was
able to achieve a total score of 73,998. Furthermore, Table 3 shows
that IDA* does not perform well for this puzzle. It plays at the human
beginner level. The best variants discovered by SP-MCTS can be
found on our website.® There we see that SP-MCTS is able to clear
the board for all of the 20 positions. This confirms that a deep search
tree is important for SameGame as was seen in Subsection 5.2.

By combining the scores of DBS and SP-MCTS we computed that
at least 75,152 points can be achieved for this set.

6 CONCLUSIONS AND FUTURE RESEARCH

In this paper we have shown how MCTS addresses NP-complete
puzzles. As a representative puzzle, we have chosen the game
SameGame and have proven that it is NP-complete. We proposed
a new MCTS variant called Single-Player Monte-Carlo Tree Search
(SP-MCTS) as an alternative to more classical approaches that solve
(NP-complete) puzzles, such as A* and IDA*. We adapted MCTS by
two modifications resulting in SP-MCTS. The modifications are (1)
the selection strategy and (2) the back-propagation strategy. Below
we provide three observations and subsequently two conclusions.

6.1 Conclusions

First, we observed that our TabuColourRandom strategy (i.e., reserv-
ing the most frequent occurring colour to be played last) significantly
increased the score of the random simulations in SameGame. Com-
pared to the pure random simulations, an increase of 50% in the av-
erage score is achieved.

Next, we observed that it is important to build deep SP-MCTS
trees. Exploiting works better than exploring at short time controls.
At longer time controls the balanced setting achieves the highest
score, and the exploration setting works better than the exploitation
setting. However, exploiting the local maxima still leads to compara-
ble high scores.

Third, with respect to the extended SP-MCTS endowed with a
straightforward Meta-Search, we observed that for SameGame com-
bining a large number of small searches can be more beneficial than
doing one large search.

From the results of SP-MCTS with parameters (0.1; 32) and with
Meta-Search set on a time control of around 2 hours we may con-
clude that SP-MCTS produced the highest score found so far for the
standardised test set. It was able to achieve 73,998 points, breaking
Billings’ record by 1,182 points. So, our program with SP-MCTS
may be considered at this moment the world’s best SameGame pro-
gram.

A second conclusion is that we have shown that SP-MCTS is ap-
plicable to a one-person perfect-information game. SP-MCTS is able
to achieve good results on the NP-complete game of SameGame.
This means that SP-MCTS is a worthy alternative for puzzles where
a good admissible estimator cannot be found. Even more, SP-MCTS
proves to be an interesting solution to solving similar tractable in-
stances of NP-complete problems.

6.2 Future Research

In the future, more enhanced methods will be tested on SameGame.
We mention three of them. First, knowledge can be included in the

8 The best variations can be found at the following address:
http://www.cs.unimaas.nl/maarten.schadd/SameGame/Solutions.html

selection mechanism. A method to achieve this is called Progres-
sive Unpruning [8]. Second, this paper demonstrated that combining
small searches can achieve better scores than one large search. How-
ever, there is no information shared between the searches. This can
be achieved by using a transposition table, which is not cleared at
the end of a small search. Third, the Meta-Search can be parallelised
asynchronously to take advantage of multi-processor architectures.

Furthermore, to test our theories about the successfulness of SP-
MCTS in solving other NP-Complete problems, we would like to
investigate how well this method performs on, for instance, (3-) SAT
problems.

ACKNOWLEDGEMENTS

This work is funded by the Dutch Organisation for Scientific Re-
search (NWO) in the framework of the project TACTICS, grant num-
ber 612.000.525.

REFERENCES

[1] L. V. Allis. Searching for Solutions in Games and Artificial Intelli-
gence. PhD thesis, Rijksuniversiteit Limburg, Maastricht, The Nether-
lands, 1994.

[2] T.C. Biedl, E. D. Demaine, M. L. Demaine, R. Fleischer, L. Jacobsen,
and I. Munro. The Complexity of Clickomania. In R. J. Nowakowski,
editor, More Games of No Chance, Proc. MSRI Workshop on Combina-
torial Games, pages 389-404, MSRI Publ., Berkeley, CA, Cambridge
University Press, Cambridge, 2002.

[3] N.L.Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory 1736-1936.
Clarendon Press, Oxford, UK, 1976.

[4] D. Billings. Personal Communication, University of Alberta, Canada,
2007.

[5] B. Bouzy and T. Cazanave. Computer Go: An Al-Oriented Survey.
Artificial Intelligence, 132(1):39—-103, 2001.

[6] G.M.]J.B. Chaslot, S. De Jong, J-T. Saito, and J. W. H. M. Uiterwijk.
Monte-Carlo Tree Search in Production Management Problems. In P. Y.
Schobbens, W. Vanhoof, and G. Schwanen, editors, Proceedings of the
18th BeNeLux Conference on Artificial Intelligence, pages 91-98, Na-
mur, Belgium, 2006.

[71 G. M. J. B. Chaslot, J-T. Saito, B. Bouzy, J. W. H. M. Uiterwijk, and
H. J. van den Herik. Monte-Carlo Strategies for Computer Go. In
P. Y. Schobbens, W. Vanhoof, and G. Schwanen, editors, Proceedings
of the 18th BeNeLux Conference on Artificial Intelligence, pages 83-91,
Namur, Belgium, 2006.

[8] G. M. J. B. Chaslot, M. H. M. Winands, J. W. H. M. Uiterwijk, H. J.
van den Herik, and B. Bouzy. Progressive strategies for Monte-Carlo
Tree Search. In P. Wang et al., editors, Proceedings of the 10th
Joint Conference on Information Sciences (JCIS 2007), pages 655-661.
World Scientific Publishing Co. Pte. Ltd., 2007.

[9] S. A. Cook. The complexity of theorem-proving procedures. In STOC
"71: Proceedings of the third annual ACM symposium on Theory of
computing, pages 151-158, New York, NY, USA, 1971. ACM Press.

[10] R. Coulom. Efficient selectivity and backup operators in Monte-Carlo
tree search. In H. J. van den Herik, P. Ciancarini, and H. H. L. M.
Donkers, editors, Proceedings of the 5th International Conference on
Computer and Games, volume 4630 of Lecture Notes in Computer
Science (LNCS), pages 72-83. Springer-Verlag, Heidelberg, Germany,
2007.

[11] J. C. Culberson and Jonathan Schaeffer. Pattern databases. Computa-
tional Intelligence, 14(3):318-334, 1998.

[12] R. W. Eglese. Simulated annealing: A tool for operational research.
European Journal of Operational Research, 46(3):271-281, 1990.

[13] A. Felner, U. Zahavi, Jonathan Schaeffer, and R. C. Holte. Dual
Lookups in Pattern Databases. In IJCAI, pages 103—-108, Edinburgh,
Scotland, UK, 2005.

[14] C.P. Gomes, B. Selman, K. McAloon, and C. Tretkoff. Randomization
in Backtrack Search: Exploiting Heavy-Tailed Profiles for Solving Hard
Scheduling Problems. In AIPS, pages 208213, Pittsburg, PA, 1998.

[15] P.E.Hart, N. J. Nielson, and B. Raphael. A formal basis for the heuris-
tic determination of minimum cost paths. [EEE Transactions on Sys-
tems Science and Cybernatics, SSC-4(2):100-107, 1968.

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

D. S. Johnson. A catalog of complexity classes. In Handbook of The-
oretical Computer Science, Volume A: Algorithms and Complexity (A),
pages 67-161. 1990.

A. Junghanns. Pushing the Limits: New Developments in Single Agent
Search. PhD thesis, University of Alberta, Alberta, Canada, 1999.

L. Kocsis and C. Szepesvari. Bandit based Monte-Carlo Planning. In
J. Fiirnkranz, T. Scheffer, and M. Spiliopoulou, editors, Proceedings
of the EMCL 2006, volume 4212 of Lecture Notes in Computer Sci-
ence (LNCS), pages 282-293, Berlin, 2006. Springer-Verlag, Heidel-
berg, Germany.

R. E. Korf. Depth-first iterative deepening: An optimal admissable tree
search. Artificial Intelligence, 27(1):97-109, 1985.

K. Moribe. Chain shot! Gekkan ASCII, (November issue), 1985. (In
Japanese).

PDA Game Guide.com. Pocket PC Jawbreaker Game.
The Ultimate Guide to PDA Games, Retrieved 7.1.2008.
http://www.pdagameguide.com/jawbreaker-game.html.

A. Sadikov and I. Bratko. Solving 20 X 20 Puzzles. In H. J. van den
Herik, J. W. H. M. Uiterwijk, M. H. M. Winands, and M. P. D. Schadd,
editors, Proceedings of the Computer Games Workshop 2007 (CGW
2007), pages 157-164, Universiteit Maastricht, Maastricht, The Nether-
lands, 2007.

J. J. Schneider and S. Kirkpatrick. Stochastic Optimization, Chapter
Application of Neural Networks to TSP, pages 405—413. Springer-
Verlag, Berlin Heidelberg, Germany, 2006.

University of Alberta GAMES Group. = GAMES Group News
(Archives), 2002. http://www.cs.ualberta.ca/ games/archives.html.

