
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 1

Decaying Simulation Strategies
Mandy J.W. Tak, Mark H.M. Winands, Member, IEEE, and Yngvi Björnsson

Abstract—The aim of General Game Playing (GGP) is to create
programs capable of playing a wide range of different games at an
expert level, given only the rules of the game. The most successful
GGP programs currently employ simulation-based Monte Carlo
Tree Search (MCTS). The performance of MCTS depends heavily
on the simulation strategy used. In this article, we investigate
the application of a decay factor for two domain-independent
simulation strategies: N-Gram Selection Technique (NST) and
Move-Average Sampling Technique (MAST). Three decay factor
methods, called Move Decay, Batch Decay and Simulation De-
cay are applied. Furthermore, a combination of Move Decay
and Simulation Decay is also tested. The decay variants are
implemented in the GGP program CADIAPLAYER. Four types
of games are used: turn-taking, simultaneous-move, one-player
and multi-player. Except for one-player games, experiments show
that decaying can significantly improve the performance of both
NST and MAST simulation strategies.

Index Terms—General Game Playing, Monte Carlo Tree
Search (MCTS), N-Grams, Decay.

I. INTRODUCTION

Past research in Artificial Intelligence (AI) has focused on
developing programs that can play one game at a high level.
These programs generally rely on human-expert knowledge
embedded into the programs by the software developers. In
General Game Playing (GGP) the aim is to create programs
that can learn to play a wide variety of games at an expert
level. As there is no human intervention allowed, one of the
main challenges in GGP is to construct programs capable
of discovering and applying relevant game knowledge dur-
ing play. Furthermore, it is no longer possible to determine
beforehand which search techniques and enhancements are
best suited for the game at hand. To address these challenges
most successful GGP programs incorporate a wide range of
AI techniques, such as knowledge representation, knowledge
discovery, machine learning, heuristic search and online opti-
mization.

The first successful GGP programs, such as CLUNEPLAYER
[1] and FLUXPLAYER [2], [3], were based on minimax search
with an automatically learned evaluation function. CLUNE-
PLAYER and FLUXPLAYER won the International GGP com-
petition in 2005 and 2006, respectively. However, ever since,
GGP programs incorporating MCTS-based approaches have
proved more successful in the competition. In 2007, 2008,
and 2012 CADIAPLAYER [4], [5] won; in 2009 and 2010
ARY [6]; and in 2011 and 2013 TURBO TURTLE developed
by Sam Schreiber. All three programs are based on MCTS, an

Mandy Tak and Mark Winands are members of the Games and AI Group,
Department of Knowledge Engineering, Faculty of Humanities and Sciences,
Maastricht University, Maastricht, The Netherlands; E-mail: {mandy.tak,
m.winands}@maastrichtuniversity.nl

Yngvi Björnsson is with the School of Computer Science, Reykjavı́k
University, Reykjavı́k, Iceland; E-mail: yngvi@ru.is

approach particularly well suited for GGP because no game-
specific knowledge is required besides the basic rules of the
game.

The performance of MCTS depends heavily on the simula-
tion strategy employed in the play-out phase [7]. As there is
no game dependent knowledge available in GGP, generic sim-
ulation strategies need to be developed. Tak et al. [8] proposed
a simulation strategy based on N-Grams, called the N-Gram
Selection Technique (NST). The new NST strategy was shown
to outperform on average the more established Move-Average
Sampling Technique (MAST) [9], which was employed by
CADIAPLAYER when winning the 2008 International GGP
competition.

The information gathered by NST and MAST is kept
between successive searches. On the one hand, this reuse
of information may bolster the simulation strategy as it is
immediately known what the strong moves are in the play-out.
On the other hand, this information can become outdated as
moves that are strong in one phase of the game become weak
in a later phase. In this article we investigate the application
of a decay factor for NST and MAST statistics. The idea of
decaying statistics was already applied in Discounted UCT
[10]. In that study, decaying proved of limited use, mainly
because the UCT statistics were associated with single game
positions that do not get outdated (in turn-taking deterministic
perfect-information games). However, schemes such as NST
and MAST, which generalize statistics across a large set of
game positions, may benefit from decaying as the quality
of the generalization may change over time with the game
situation.

The article is structured as follows. First, Section II gives
the necessary background information about MCTS. Next,
the simulation strategies NST and MAST are explained in
Section III. The different decay factor methods are discussed
in Section IV. Subsequently, Sections V and VI deal with
the experimental setup and results. Finally, Section VII gives
conclusions and an outlook to future research.

II. MONTE CARLO TREE SEARCH

CADIAPLAYER [4], [5] uses Monte Carlo Tree Search
(MCTS) [11], [12] to determine which moves to play. The
advantage of MCTS over minimax-based approaches is that no
evaluation function is required. This makes it especially suited
for GGP, in which it is difficult to come up with an accurate
evaluation function. MCTS is a best-first search technique
that gradually builds up a tree in memory. Each node in the
tree corresponds to a state in the game. The edges of a node
represent the legal moves in the corresponding state. Moves
are evaluated based on the average return of simulated games.

MCTS consists of four strategic steps [13], outlined in
Fig. 1. (1) The selection step determines how to traverse the

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 2

Repeated X times

Selection Play out Expansion Backpropagation

The selection strategy is

applied recursively until an

One node is added

to the tree

One simulated

game is played

The result of this game

is backpropagated inapplied recursively until an

unknown position is reached

to the treegame is played is backpropagated in

the tree

Fig. 1. Four strategic steps in Monte Carlo Tree Search

tree from the root node to a leaf node L. It should balance
the exploitation of successful moves with the exploration
of new moves. (2) In the play-out step, a random game is
simulated from leaf node L until the end of the game. Usually
a simulation strategy is employed to improve the play-out [7].
(3) In the expansion step, one or more children of L are added.
(4) In the back-propagation step, the reward R obtained is
back-propagated through the tree from L to the root node.

Below we describe how these four strategic steps are
implemented in CADIAPLAYER:

1) In the selection step the Upper Confidence Bounds
applied to Trees (UCT) algorithm [11], which employs
the UCB1 [14] formula, is applied to determine which
moves to select in the tree. At each node s move a∗

selected is given by Formula 1.

a∗ ← argmax
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(1)

where N(s) is the visit count of s and N(s, a) is the
number of times move a is selected in node s. The
first term, Q(s, a) is the average return when move a
is played in state s. The second term increases when
state s is visited and siblings of a are selected. If
a state s is visited frequently then even moves with
a relatively low Q(s, a) could be selected again at
some point, because their second term has risen high
enough. Thus, the first term supports the exploitation
of successful moves while the second term establishes
the exploration of infrequently visited moves. The C
parameter influences the balance between exploration
and exploitation. Increasing C leads to more exploration.
If A(s), the set of legal moves in state s, contains moves
that are never visited before, then another selection
mechanism is utilized, because these moves do not have
an estimated value yet. If there is exactly one move that
is not visited before, then this one is selected by default.
If there are multiple moves that are not visited before,

then the same simulation strategies as used in the play-
out step are used to determine which move to select. In
all other cases Formula 1 is applied.

2) During the play-out step a complete game is simulated.
The most basic approach is to play uniformly random
moves. However, the play-outs can be improved signifi-
cantly by playing non-uniform random moves biased by
a simulation strategy [7]. The simulation strategies used
in this article are described in Section III.

3) In the expansion step nodes are added to the tree.
In CADIAPLAYER, only one node per simulation is
added [12]. This node corresponds to the first position
encountered outside the tree. Adding only one node after
a simulation prevents excessive memory usage, which
could occur when the simulations are fast.

4) In the back-propagation step the reward obtained in the
play-out is propagated backwards through all the nodes
on the path from the leaf node L to the root node. The
Q(s, a) values of all state-move pairs on this path are
updated with the reward that was just obtained. In GGP,
the reward lies in the range [0, 100].

More details about the implementation of CADIAPLAYER
can be found in Finnsson [5].

III. SIMULATION STRATEGIES

This section explains the simulation strategies employed in
the experiments. Subsection III-A explains the Move-Average
Sampling Technique used by CADIAPLAYER when it won the
AAAI 2008 GGP competition. Subsection III-B explains the
N-Gram Selection Technique (NST).

A. Move-Average Sampling Technique

The Move-Average Sampling Technique (MAST) [5], [9] is
based on the principle that moves good in one state are likely
to be good in other states as well. The history heuristic [15],
which is used to order moves in αβ search [16], is based on
the same principle. For each move a, a global average Qh(a) is
kept in memory, which is the average of the returned rewards

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 3

of the play-outs in which move a occurred. These values are
used to bias the selection of moves, primarily in the play-out
phase but also for tie-breaking of unexplored moves in the
selection phase. The moves are selected using a softmax-based
Gibbs measure [17]:

P (s, a) =
eQh(a)/τ∑

b∈A(s) e
Qh(b)/τ

(2)

where P (s, a) is the probability that move a will be selected
in state or node s. Moves with a higher Qh(a) value are more
likely to be selected. How greedy the selection is can be tuned
with the τ parameter. In order to encourage exploration of non-
visited moves, the initial Qh(a) value is set to the maximum
possible score of 100.

B. N-Gram Selection Technique

The N-Gram Selection Technique (NST) was introduced by
Tak et al. [8]. NST keeps track of move sequences as opposed
to single moves as in MAST. Tak et al. [8] showed that NST
often outperforms MAST in GGP.

A method similar to NST has been applied successfully in
Havannah [18], [19] and Tron [20]. Another method similar
to NST is called NAST (N-Gram-Average-Sampling), which
is applied in Dou Di Zhu, Hearts, and Lord of the Rings:
The Confrontation [21]. Furthermore, NST also bears some
resemblance to the simulation strategy introduced by Rimmel
and Teytaud [22], which is based on a tiling of the space of
Monte Carlo simulations.

NST is based on N-Gram models, which were invented by
Shannon [23]. An N-Gram model is a statistical model to
predict the next word based on the previous N-1 words. N-
Grams are often employed in statistical language processing
[24]. N-Grams have also been applied in various research on
computer games, including predicting the next move of the
opponent [25], [26], extracting opening moves [27], ordering
moves [28], [29], and detecting forced moves [30].

The N-Grams in NST consist of consecutive move se-
quences z of length 1, 2, and 3. Similar to MAST, the average
of the returned rewards of the play-outs is accumulated.
However, the average reward for a sequence z, here called
R(z), is also kept for longer move sequences as opposed to
only single moves.

The N-Grams are formed as follows. After each simulation,
starting at the root of the tree, for each player all move
sequences of length 1, 2, and 3 that appeared in the simulated
game are extracted. The averages of these sequences are
updated with the obtained reward from the simulation. It is
not checked whether the same move sequence occurred more
than once in the simulation. Thus, if there are m occurrences
of the same move sequence, then the average of this sequence
is updated m times. For each player the extracted move
sequences are stored separately.

The move sequences consist of moves from both the current
player and the opponent(s). The role numbers 0, 1, 2, · · · , n−
1, which are assigned to the players at the beginning of a game
with n players, are employed in order to determine the move
of which opponent to include in the sequences. Suppose that

the current player has role number i and there are n players,
then the sequences are constructed as follows. A sequence
of length 1 consists of just one move of the current player. A
sequence of length 2 starts with a move of the player with role
(i+ n− 1) mod n and ends with a move of the current player.
A sequence of length 3 starts with a move of the player with
role (i+ n− 2) mod n, followed by a move of the player with
role (i+ n− 1) mod n and ends with a move made by the
current player. The moves in these sequences are consecutive
moves.

Fig. 2. Extracted N-Grams from play-out

Fig. 2 gives an example of a play-out. At each step, both
players have to choose a move, because all games in GGP are
by default simultaneous-move games. The example given here
concerns a turn-taking, two-player game, which means that at
each step one of the players can only play the noop move.
The example shows that these noop moves are included in the
sequences, because NST handles them as regular moves. This
does not cause any problem, because these move sequences
will only be used during move selection when the player is not
really on turn and has the only option of choosing the noop

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 4

move. Therefore, the move sequences containing noop moves
do not influence the decision process during the play-out.

If the game is truly simultaneous, then at each step all
players choose an actual move instead of some players having
to choose the noop move like in turn-taking games. As
explained above, NST includes only one move per step in
its sequences. This means that for an n-player simultaneous
game, moves of n−1 players are ignored at each step. Another
possibility would have been to include the moves of all players
at each step, but that would result in too specific sequences.
The disadvantage of such specific sequences is that fewer
statistical samples can be gathered about them, because they
occur much more rarely.

In the play-out, and at the nodes of the MCTS tree
containing unvisited legal moves, the N-Grams are used to
determine which move to select. For each legal move, the
player determines which sequence of length 1, which sequence
of length 2 and which sequence of length 3 would occur
when that move is played. The sequence of length 1 is just
the move itself. The sequence of length 2 is the move itself
appended to the last move played by the player with role
(i+ n− 1) mod n. The sequence of length 3 is the move itself
appended to the previous last move played by the player with
role (i+ n− 2) mod n and the last move played by the player
with role (i+ n− 1) mod n. Thus, in total three sequences
could occur. The player then calculates a score T (a) for a
move by taking the unweighted average of the R(z) values
stored for these sequences. In this calculation, the R(z) values
for the move sequences of length 2 and length 3 are only taken
into account if they are visited at least k times.

If a move has been played at least once, but the sequences
of length 2 and length 3 occurred fewer than k times, then the
R(z) value of the move sequence of length 1 (which is the
move itself) will be returned. The k parameter thus prevents
move sequences with only a few visits from being considered.

If a move has never been played before, then no move
sequences exist and the calculation outlined above is not
possible. In that case, the score is set to the maximum possible
value of 100 to bias the selection towards unexplored moves.

In this manner, a score T (a) is assigned to each legal move a
in a given state. These scores are then used with ϵ-greedy [31],
[32] to determine which move to select. With a probability
of 1 − ϵ the move with the highest T (a) value is selected,
otherwise a legal move is chosen uniformly at random.

IV. DECAY FACTOR

The information gathered by NST and MAST is kept
between successive searches. On the one hand, this reuse
of information may bolster the simulation strategy as it is
immediately known what the strong moves are in the play-
out. This is especially important in GGP as the number of
simulations to gather information is quite low. On the other
hand, this information can become outdated as moves that are
strong in one phase of the game are weak in another phase.
Moreover, statistics can be mostly gathered for a particular
part of the search tree that subsequently is not reached as
the opponent moves differently from what was anticipated.

Line of play

After an actual

turn in the game,

statistics gathered

for this part of the

tree may no longer be

relevant.

Fig. 3. Why a decay factor can be useful

Therefore we propose to introduce a decay factor. Applying
a decay factor can be done in different ways. For NST in
particular, we investigate the following three methods.

For the first two decay methods, all move sequences are
multiplied with a decay factor γ ∈ [0, 1]. In Move Decay,
the decay takes place after an actual move is made in the
game. Batch Decay takes place after a fixed number of
simulations. Both methods can be represented by Equation
3. In this equation, Z is a set containing all stored N-Grams,
z represents an N-Gram, and V (z) represents the visit count
of N-Gram z.

∀z ∈ Z, V (z)← γ · V (z) (3)

In the third method, called Simulation Decay, the decay
factor ω is applied after each simulation. The decay is only
applied to the N-Grams that were played in the simulation. If
an N-Gram occurred multiple times in a simulation, that N-
Gram will be decayed multiple times. This method is shown
below, in which H ⊆ Z represents all the N-Grams that
occurred in the simulation.

for i = 1 to |H| do
V (i)← ω · V (i)

end for
We suspect the first method to work best, because after

an agent and the opponent(s) actually make their moves, the
game state changes and the R(z) values are probably no
longer relevant in the new game state. Figure 3 sketches this
phenomenon. Simulations performed in the left part of the tree
have updated the R(z) values, while after the actual moves
are played this part of the tree is probably not used any more.
Therefore, the R(z) values were updated based on simulations
that do not reflect the actual progress of the game.

We remark that Stankiewicz [18] introduced the first method
and showed that for NST a decay factor between 0 and 0.25
performs best in Havannah. A decay factor of 0 means that the
results are reset before each move. NST with a decay factor
of 0 resembles in many ways the Last-Good-Reply Policy
(LGRP) [33], [34]. In LGRP the most recent successful replies
are stored in memory and a reply is removed from memory

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 5

when it is no longer successful. Note that the three proposed
decay methods can be equally well applied to MAST.

A somewhat different approach to decaying UCT values,
called Discounted UCT, was evaluated by Hashimoto et al.
[10] in the games Othello, Havannah, and Go. The decaying
method did, however, not improve performance.

V. EXPERIMENTAL SETUP

The N-Gram adjustments are implemented in CADI-
APLAYER in order to investigate the effectiveness for GGP.
This program is called CPNST. The program using MAST
instead of NST is called CPMAST. In Subsection V-A an
overview is given on the games used in the experiments. In
Subsection V-B the setup of the experiments is described.

A. Games

The games and their characteristics are shown in Table
I. For a brief description of the games, see Appendix A.
These games were chosen because they are used in several
previous CADIAPLAYER experiments [4], [5], [9], [35]–[38].
Pawn Whopping and Frogs and Toads were used during the
German Open in GGP of 2011 [39]. Furthermore, this se-
lection contains different types of games. Namely, one-player
games, two-player games, multi-player games, constant-sum
games and general-sum games. All games can be found on
the Dresden GGP Server [40].

TABLE I
GAMES USED IN THE EXPERIMENTS

Game Players Simul- Constant-
taneous Sum

Sudoku simple 1 n/a n/a
StatespaceLarge 1 n/a n/a

Queens 1 n/a n/a
Pancakes88 1 n/a n/a
MaxKnights 1 n/a n/a

Frogs and Toads 1 n/a n/a
Zhadu 2 No Yes

GridGame2 2 No No
3DTicTacToe 2 No Yes

TTCC4 2 No No
Connect5 2 No Yes
Checkers 2 No Yes

Breakthrough 2 No Yes
Knightthrough 2 No Yes

Othello 2 No Yes
Skirmish 2 No No
Merrills 2 No Yes

Quad 2 No Yes
Sheep and Wolf 2 No Yes

Farmers 3 No No
TTCC4 3P 3 No No

Chinese Checkers 3P 3 No No
Battle 2 Yes No

Chinook 2 Yes No
Runners 2 Yes No

Pawn Whopping 2 Yes Yes

B. Setup

In all experiments two variants of CADIAPLAYER are
matched against each other. For NST, ϵ is set to 0.2, because

it turned out to work best in [8]. The k parameter is set to
7, because it then makes sure that the N-Grams of length 2
and 3 are not applied when they have been rarely visited.
For determining an appropriate value for k, we experimented
with different values of k using a smaller test-suit where k=7
edged out other settings. However, it seems as the agent’s
performance is not that sensitive to the exact value of k (as
long as it is not set unreasonably high). For example, our
trials with k ∈ {0, 7, 14} resulted in a typical performance
difference within ± 4% on individual games and a comparable
overall average performance. We would thus not expect much
different results, even if other (reasonable) values of k were
to be chosen.

The τ parameter of the Gibbs measure used in CADI-
APLAYER was left unchanged to its preset value of 10.

In GGP, the time setting is defined by a startclock and
a playclock. The startclock is the time between the GGP
programs receive the rules and the game starts. The playclock
is the time per move. In the experiments, two different time
settings are used. Usually a startclock of 60s and a playclock
of 30s is employed, but in the experiments where CPNST plays
against CPMAST the startclock is set to 70s and the playclock
is set to 40s.

Different time settings are used, because on the one hand,
we want to have a high number of simulations per move, but
on the other hand, it takes much computation time.

In all experiments, the programs switch roles such that no
one has any advantage. For the two-player games, there are
two possible configurations. For the three-player games, there
are eight possible configurations, where two of them consist of
three times the same player. Therefore, only six configurations
are employed in the experiments [32]. All experiments, except
the one-player experiments, are performed on a computer
consisting of 64 AMD Opteron 6174 2.2 Ghz cores, called
gogeneral. The one-player experiments are performed on a
computer consisting of 48 AMD Opteron 6274 2.2 Ghz cores,
called go4nature01.

VI. EXPERIMENTAL RESULTS

In the experiments, it is examined how the different decay
factor methods perform. In the first set of experiments, Move
Decay is tested on CPNST and CPMAST. After tuning the
parameters, the best version of CPMAST is matched against
the best version of CPNST. Furthermore, the Move Decay is
also tested on one-player games. In all experiments that follow,
only CPNST is employed, because of computational constraints.
In the second and the third sets of experiments Batch Decay
and Simulation Decay are tested, respectively. In the last set
of experiments, Simulation Decay is mixed with Move Decay.

The table of the one-player games shows the average score
over at least 300 games with a 95% confidence interval.
All other tables show the win rate averaged over at least
300 games, and a 95% confidence interval. The win rate is
calculated as follows. For the two-player games, each game
won gives a score of 1 point and each game that ends in a
draw results in a score of 1

2 point. The win rate is the sum
of these points divided by the total number of games played.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 6

TABLE II
WIN % OF CPNST USING MOVE DECAY WITH DIFFERENT VALUES OF γ AGAINST CPNST WITHOUT DECAY, STARTCLOCK=60S, PLAYCLOCK=30S, ON

GOGENERAL

Game γ = 0 γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8

Zhadu 26.6 (±3.75) 32.4 (±4.05) 36.5 (±3.80) 47.0 (±3.67) 47.4 (±4.97)
GridGame2 49.4 (±5.38) 49.9 (±3.43) 50.5 (±4.11) 49.8 (±3.43) 49.3 (±4.58)

3DTicTacToe 66.5 (±4.97) 69.0 (±3.53) 66.2 (±4.29) 61.8 (±4.82) 58.2 (±4.85)
TTCC4 27.5 (±4.75) 44.4 (±5.04) 47.9 (±4.51) 52.5 (±5.63) 51.7 (±4.33)

Connect5 61.1 (±4.72) 69.1 (±4.19) 65.7 (±4.02) 66.2 (±3.69) 59.4 (±4.99)
Checkers 45.6 (±4.76) 54.0 (±4.72) 63.3 (±4.41) 60.8 (±5.38) 62.6 (±5.46)

Breakthrough 37.3 (±5.22) 41.9 (±4.36) 45.5 (±4.25) 44.6 (±5.18) 53.6 (±5.62)
Knightthrough 46.4 (±5.62) 38.1 (±4.95) 43.6 (±4.64) 44.1 (±5.58) 54.6 (±5.60)

Othello 36.1 (±5.29) 44.4 (±4.17) 45.2 (±4.02) 49.1 (±5.46) 48.1 (±5.58)
Skirmish 51.0 (±5.28) 49.1 (±5.28) 53.2 (±4.85) 55.1 (±4.40) 52.2 (±4.48)
Merrills 58.3 (±4.32) 58.6 (±5.05) 58.3 (±3.89) 60.7 (±5.02) 55.6 (±5.22)

Quad 61.5 (±3.87) 68.7 (±3.63) 67.2 (±3.37) 65.3 (±3.11) 60.4 (±4.25)
Sheep and Wolf 44.3 (±4.11) 44.0 (±3.41) 47.2 (±4.08) 49.0 (±3.46) 52.2 ±5.47)

Farmers 44.9 (±4.11) 52.7 (±2.62) 53.0 (±3.13) 50.3 (±2.62) 50.3 (±4.10)
TTCC4 3P 53.2 (±5.65) 56.2 (±4.31) 54.6 (±3.96) 54.5 (±3.59) 56.2 (±5.61)

Chinese Checkers 3P 41.4 (±5.09) 50.7 (±4.24) 53.2 (±4.67) 51.3 (±4.29) 51.0 (±5.66)
Battle 56.6 (±5.32) 65.6 (±4.46) 63.8 (±4.15) 64.5 (±5.03) 59.3 (±5.15)

Chinook 45.7 (±5.30) 55.0 (±4.75) 57.3 (±4.36) 56.9 (±5.31) 54.4 (±5.36)
Runners 55.8 (±4.73) 53.4 (±4.66) 49.7 (±4.66) 49.5 (±4.67) 52.1 (±3.98)

Pawn Whopping 47.2 (±2.72) 50.2 (±2.72) 51.5 (±2.71) 50.0 (±2.71) 50.3 (±2.30)

For the three-player games, a similar calculation is performed
except that draws are counted differently. If all three players
obtained the same reward, then the draw is counted as 1

3 point.
If two players obtained the same, highest reward, the draw is
counted as 1

2 point for the corresponding players.

A. Move Decay

1) Move Decay in NST: Table II shows the win rate of
CPNST with decay versus CPNST without decay. Note that no
decay means that γ = 1. The results show that decay may
improve the program. Furthermore, the results demonstrate
that simply resetting the NST statistics at each move (which
means γ = 0) can decrease the performance significantly
in some games (i.e., Zhadu, TTCC4, Breakthrough, Othello
and Chinese Checkers 3P). The best results were obtained for
γ = 0.4 and γ = 0.6. For picking the best value there are
two criteria of interest: the best overall average performance
and robustness. For the latter we used the metric: the number
of games showing statistically significant improvement minus
the number of games showing statistically significant deterio-
ration. When overall performance and robustness do not agree
on a best setting some objectivity may be called for. However,
in this case this was unnecessary as the chosen settings were
the best according to both metrics (for NST γ = 0.6 was
a clear winner on both metrics, but for MAST there was a
close call between γ = 0.4 and γ = 0.6, both having the
same robustness but the former edging out on overall average
performance, 57.6% vs. 56.8%).

In order to validate the results, the CPNST with γ = 0.6
is matched against CPMAST with γ = 1. The reason for
choosing γ = 0.6 for CPNST rather than the seemingly equally
performing γ = 0.4, is because that parameter setting seems to
be slightly more robust, that is, it hardly ever performs worse
against the non-decaying program. Furthermore, the average
over all games is highest for γ = 0.6, namely 54.1% As

TABLE III
WIN % OF CPNST USING MOVE DECAY WITH γ ∈ {1, 0.6} AGAINST

CPMAST WITHOUT DECAY, STARTCLOCK=70S, PLAYCLOCK=40S, ON
GOGENERAL

Game γ = 1 γ = 0.6

Zhadu 74.9 (±4.51) 75.5 (±4.39)
GridGame2 52.3 (±3.79) 52.8 (±4.52)

3DTicTacToe 73.3 (±3.87) 80.4 (±3.59)
TTCC4 85.4 (±2.18) 84.4 (±1.69)

Connect5 70.4 (±3.57) 78.9 (±3.79)
Checkers 68.9 (±5.14) 80.0 (±4.38)

Breakthrough 63.7 (±3.69) 72.3 (±2.82)
Knightthrough 47.7 (±5.29) 50.0 (±5.30)

Othello 67.4 (±4.54) 67.0 (±4.55)
Skirmish 69.6 (±5.01) 70.1 (±5.03)
Merrills 44.6 (±2.81) 50.9 (±2.82)

Quad 79.1 (±2.96) 92.3 (±2.30)
Sheep and Wolf 61.1 (±3.94) 61.3 (±4.73)

Farmers 72.2 (±2.64) 73.1 (±3.11)
TTCC4 3P 53.2 (±3.66) 58.1 (±2.43)

Chinese Checkers 3P 57.6 (±4.87) 55.1 (±5.32)
Battle 19.2 (±4.01) 29.8 (±4.69)

Chinook 73.7 (±2.88) 79.4 (±1.96)
Runners 35.7 (±4.62) 36.7 (±4.60)

Pawn Whopping 52.2 (±2.80) 51.3 (±2.80)

a reference experiment, CPNST with γ = 1 played against
CPMAST with γ = 1. The results of the validation are given in
Table III. Win rates in bold indicate that they are the highest
win rates of their rows. This result shows that in nine games
the performance of the program with a decay factor of γ = 0.6
is significantly better than the program without a decay factor
(i.e., 3DTicTacToe, Connect5, Checkers, Breakthrough, Mer-
rills, Quad, TTCC4 3P, Battle, and Chinook). In the other
games, the performance is approximately equal. We suspect
that games in which the quality of a move highly depends
on the game state and current phase of the game, can be
improved by using a decay factor. Games without this property
may profit less from a decay factor. This line of reasoning is
supported by the results. Namely in Othello the decay factor

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 7

TABLE IV
WIN % OF CPMAST USING MOVE DECAY WITH DIFFERENT VALUES OF γ AGAINST CPMAST WITHOUT DECAY, STARTCLOCK=60S, PLAYCLOCK=30S, ON

GOGENERAL

Game γ = 0 γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8

Zhadu 52.8 (±3.73) 51.2 (±4.44) 58.9 (±3.71) 54.2 (±3.78) 53.4 (±2.66)
GridGame2 50.0 (±3.56) 50.0 (±4.01) 50.0 (±3.28) 49.9 (±3.26) 50.0 (±2.84)

3DTicTacToe 88.0 (±1.95) 92.4 (±2.00) 91.3 (±1.80) 87.7 (±2.10) 77.3 (±2.35)
TTCC4 48.3 (±3.65) 50.4 (±4.54) 52.7 (±3.81) 52.0 (±3.81) 50.6 (±2.75)

Connect5 77.6 (±3.04) 76.4 (±3.81) 76.3 (±3.16) 68.8 (±3.44) 61.7 (±3.19)
Checkers 59.1 (±4.43) 67.4 (±4.58) 67.4 (±4.28) 65.0 (±4.45) 62.7 (±4.07)

Breakthrough 53.2 (±5.03) 53.0 (±4.11) 56.7 (±4.67) 58.0 (±4.91) 55.4 (±3.53)
Knightthrough 53.2 (±3.92) 54.3 (±3.22) 53.4 (±4.25) 52.2 (±4.21) 52.2 (±2.79)

Othello 43.4 (±5.13) 44.9 (±4.22) 47.9 (±5.56) 46.2 (±5.11) 46.3 (±3.64)
Skirmish 49.6 (±4.08) 48.6 (±5.22) 49.4 (±4.39) 51.6 (±4.40) 48.7 (±2.89)
Merrills 53.5 (±3.71) 54.7 (±3.98) 50.6 (±5.24) 52.1 (±5.23) 51.1 (±3.69)

Quad 72.2 (±2.86) 77.8 (±3.17) 76.6 (±2.72) 73.9 (±2.80) 65.1 (±2.13)
Sheep and Wolf 50.0 (±3.92) 51.2 (±4.40) 51.1 (±3.58) 49.2 (±3.59) 50.4 (±3.15)

Farmers 48.3 (±2.90) 54.3 (±3.25) 53.6 (±2.66) 53.9 (±4.95) 50.5 (±2.33)
TTCC4 3P 51.9 (±3.37) 49.6 (±4.37) 53.8 (±3.64) 54.0 (±3.64) 51.9 (±3.19)

Chinese Checkers 3P 52.9 (±4.06) 53.1 (±5.20) 48.0 (±4.39) 51.8 (±4.36) 49.7 (±2.86)
Battle 50.5 (±3.57) 50.2 (±2.93) 49.4 (±3.84) 52.6 (±3.82) 48.1 (±3.34)

Chinook 53.1 (±3.70) 62.0 (±4.64) 63.5 (±3.86) 60.2 (±3.95) 60.1 (±2.76)
Runners 51.8 (±4.42) 53.8 (±5.03) 51.6 (±4.11) 52.5 (±4.08) 50.3 (±3.55)

Pawn Whopping 49.9 (±2.78) 50.1 (±3.13) 50.6 (±2.56) 49.5 (±4.78) 49.2 (±2.24)

did not improve the results. In this game there are certain
moves that are always good independent of the game state,
like placing a stone in the corner.

Also, as reported previously by Tak et al. [8], we see that
NST is mostly superior to MAST as a general move-selection
strategy, with the notable exceptions of the simultaneous-
move games Battle and Runners. Both these games could be
classified as greedy as opposed to strategic, that is, the same
greedy action is often the best independent of the current state
and the recent move history (for example, in Runners the
furthest advancing action is the best one to take in all game
states); such situations are best-case scenarios for MAST.

2) Move Decay in MAST: As shown in the previous sub-
section, positive results are obtained with decay after an actual
move in the game. Therefore, we tested whether Move Decay
also works for other simulation strategies, CPMAST in this
case. CPMAST with Move Decay was matched against CPMAST
without decay. The results are shown in Table IV. Again,
we see that a decay factor may improve the program. In
contrast with NST, simply resetting the statistics each move
(which means γ = 0) has approximately the same or better
performance than no decay. The result shows that in six
games the performance of the program with a decay factor
of γ = 0.4 is significantly better than the program without a
decay factor (i.e., Zhadu, 3DTicTacToe, Connect5, Checkers,
Quad and Chinook). The performance stays approximately the
same in the other games. Furthermore, we notice that there is
an overlap with NST in the games where decaying is effective
(3DTicTacToe, Connect5, Checkers and Quad). This can be
explained by the fact that the N-Grams of length 1 are in
essence the same as MAST, which means that NST will behave
similar to MAST when these techniques are changed in the
same way (e.g., with a decay factor).

In order to validate the results in a non-selfplay experiment,
the CPMAST with γ = 0.4 was matched against CPNST with
γ = 1. CPMAST with γ = 0.4 is used, because that appears
to be the optimal value. It has the highest win rate over all

the games, namely 57.6%. As a reference experiment, CPMAST
with γ = 1 played against CPNST. The results of the validation
are given in Table V. It shows again that the same four games
profit from a decay factor, namely 3DTicTacToe, Connect5,
Checkers, and Quad.

TABLE V
WIN % OF CPMAST USING MOVE DECAY AND γ ∈ {1, 0.4} AGAINST
CPNST WITHOUT DECAY, STARTCLOCK=70S, PLAYCLOCK=40S, ON

GOGENERAL

Game γ = 1 γ = 0.4

Zhadu 20.3 (±3.81) 24.1 (±4.18)
GridGame2 47.2 (±5.16) 47.7 (±4.10)

3DTicTacToe 28.2 (±4.00) 69.8 (±4.00)
TTCC4 16.7 (±3.67) 17.2 (±3.05)

Connect5 26.7 (±4.21) 59.6 (±4.23)
Checkers 27.5 (±4.84) 47.0 (±5.50)

Breakthrough 31.8 (±4.76) 25.4 (±4.34)
Knightthrough 49.4 (±5.28) 51.3 (±4.53)

Othello 34.9 (±4.67) 28.4 (±4.42)
Skirmish 27.8 (±4.94) 33.8 (±5.25)
Merrills 48.2 (±4.66) 54.3 (±5.31)

Quad 27.5 (±3.80) 61.1 (±3.46)
Sheep and Wolf 36.3 (±4.43) 34.9 (±4.31)

Farmers 33.2 (±3.79) 33.9 (±3.02)
TTCC4 3P 42.5 (±4.54) 47.3 (±4.49)

Chinese Checkers 3P 36.7 (±5.20) 41.8 (±5.32)
Battle 76.9 (±4.02) 79.0 (±3.25)

Chinook 27.8 (±3.47) 36.3 (±3.39)
Runners 67.5 (±4.82) 63.6 (±4.88)

Pawn Whopping 46.5 (±3.77) 47.7 (±3.01)

3) Move Decay in One-Player Games: The reasoning
behind a decay factor is that during a game, the learned
information can become outdated when the opponent selects
a branch the current player did not investigate thoroughly. In
one-player games this problem does not occur, therefore we
expect decay not to be beneficial in one-player games. Table
VI shows indeed that there is hardly any improvement by using
a decay factor. As it can be easily detected how many players
a game has, there is no problem, because when it detects that
it is a one-player game it can switch off the decay method.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 8

TABLE VI
AVERAGE SCORES OF CPMAST USING MOVE DECAY WITH γ ∈ {0.4, 1.0} AND CPNST USING MOVE DECAY WITH γ ∈ {0.6, 1.0}, STARTCLOCK=70S,

PLAYCLOCK=40S, ON GO4NATURE01

Game CPMAST CPMAST CPNST CPNST
γ = 0.4 γ = 1.0 γ = 0.6 γ = 1.0

Sudoku simple 38.0 (±0.81) 38.4 (±0.85) 65.5 (±1.20) 62.5 (±1.15)
StatespaceLarge 30.9 (±0.62) 30.3 (±0.53) 29.3 (±0.36) 30.0 (±0.45)

Queens 82.4 (±0.65) 81.5 (±0.67) 86.7 (±0.59) 85.9 (±0.57)
Pancakes88 61.1 (±0.78) 61.0 (±0.80) 55.7 (±0.79) 55.5 (±0.82)
MaxKnights 65.4 (±1.89) 65.9 (±1.98) 67.5 (±1.84) 70.5 (±1.95)

Frogs and Toads 53.8 (±0.66) 54.2 (±0.65) 66.6 (±0.40) 62.9 (±0.38)

4) Move Decay in NST versus Move Decay in MAST: In
[8] it is shown that NST outperforms MAST. The aim of this
experiment is to find out whether this relation still holds when
Move Decay is used. In this experiment, NST with Move
Decay is matched against MAST with Move Decay. Both
programs are using their optimal parameter settings found in
the previous experiments. Table VII shows the results. In 11
games, NST is clearly significantly better than MAST. Only
in 4 games, 3DTicTacToe, Knightthrough, Battle and Runners,
MAST performs significantly better than NST. These results
are in line with the earlier obtained results. For instance, Tables
III and V show that for 3DTicTacToe CPMAST profits much
more from the decay factor than CPNST does. Namely, the
win rate for CPMAST rises from 28.2% to 69.8% when decay
is enabled, while the win rate for CPNST only goes up from
73.3% to 80.4%. TABLE VII
WIN % OF CPNST USING MOVE DECAY WITH γ = 0.6 AGAINST CPMAST

USING MOVE DECAY WITH γ = 0.4, STARTCLOCK=70S,
PLAYCLOCK=40S, ON GOGENERAL

Game
Zhadu 70.3 (±5.17)

GridGame2 52.7 (±2.01)
3DTicTacToe 38.1 (±5.04)

TTCC4 80.9 (±3.67)
Connect5 52.6 (±2.48)
Checkers 65.6 (±3.20)

Breakthrough 73.9 (±4.89)
Knightthrough 44.1 (±2.44)

Othello 65.8 (±5.03)
Skirmish 73.4 (±4.71)
Merrills 51.5 (±2.83)

Quad 52.9 (±2.04)
Sheep and Wolf 63.0 (±5.09)

Farmers 66.0 (±4.19)
TTCC4 3P 56.8 (±3.01)

Chinese Checkers 3P 56.7 (±3.35)
Battle 27.2 (±4.13)

Chinook 70.0 (±4.50)
Runners 34.5 (±4.69)

Pawn Whopping 50.7 (±2.14)

B. Batch Decay

In this experiment, the aim is to find out whether besides
Move Decay, Batch Decay also performs well. Batch Decay
has two parameters, namely a decay factor λ and batch size
B. First, the best λ is found by running experiments with
λ ∈ {0.6, 0.7, 0.8, 0.9} and B ∈ {25, 50, 100} for the three
games Quad, Connect5 and Chinook. The results are shown in
Table VIII. It shows that for Chinook, a λ of 0.9 is clearly the
optimal value. Only for this value of λ, the win rate becomes
more than 50% for B = 50 and B = 100. Therefore, we

select a λ of 0.9 for the rest of the experiments, because for
both Quad and Connect5 the win rates for the three different
batch sizes are always above 50%.

TABLE VIII
WIN % OF CPNST USING BATCH DECAY WITH BATCH SIZE B AND DECAY

FACTOR λ AGAINST CPNST WITHOUT DECAY, STARTCLOCK=60S,
PLAYCLOCK=30S, ON GOGENERAL

Connect5
B λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9
25 54.1 (±5.09) 60.4 (±5.01) 59.4 (±4.86) 64.0 (±4.81)
50 60.5 (±4.04) 60.8 (±4.06) 64.7 (±3.97) 66.6 (±3.92)

100 65.0 (±4.77) 62.0 (±3.64) 60.9 (±5.00) 59.2 (±4.97)

Quad
B λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9
25 65.4 (±4.98) 66.5 (±4.93) 63.4 (±5.03) 68.1 (±4.82)
50 68.7 (±4.80) 67.4 (±4.83) 65.8 (±4.85) 60.2 (±5.04)

100 64.6 (±4.92) 65.0 (±4.93) 60.4 (±4.94) 58.3 (±5.00)

Chinook
B λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9
25 31.7 (±5.04) 33.9 (±5.11) 40.3 (±5.29) 39.3 (±5.29)
50 40.1 (±4.34) 42.8 (±4.38) 43.6 (±4.36) 53.3 (±4.43)

100 45.7 (±5.39) 49.1 (±4.10) 54.3 (±5.44) 54.5 (±5.42)

In the second experiment, the aim is to find out how the
Batch Decay performs in the games for which the Move Decay
performed well. The results are shown in Table IX. The best
results are obtained for n = 50. For this particular value, the
Batch Decay always improved the playing strength, except for
Chinook were there was no positive or negative effect on the
playing strength.

In the third experiment, all games (except the one-player
games) are employed and CPNST using Batch Decay with
batch size 50 and decay factor 0.9 plays against CPNST without
decay. The results of this experiment are shown in Table X. It
appears that for 3DTicTacToe and Farmers the Batch Decay is
a little bit better than the results shown for CPNST in Table II
at γ = 0.6. However, for most of the games Move Decay is at
least as good as the Batch Decay. Furthermore, Move Decay
is much better than the Batch Decay in Zhadu, TTCC4, and
Breakthrough. Therefore, Batch Decay does not seem to be
a good alternative to Move Decay. Furthermore, Move Decay
might be preferred, because it has only one parameter to tune
instead of two.

C. Simulation Decay

The goal of this experiment is to find out whether Simulation
Decay can be an alternative to Move Decay. It has only one
parameter ω. This parameter is tuned over the three games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 9

TABLE IX
WIN % OF CPNST USING BATCH DECAY WITH BATCH SIZE B AND DECAY FACTOR λ = 0.9 AGAINST CPNST WITHOUT DECAY, STARTCLOCK=60S,

PLAYCLOCK=30S, ON GOGENERAL

Game B = 25 B = 50 B = 100 B = 150 B = 200

3DTicTacToe 68.3 (±3.55) 71.1 (±3.49) 68.5 (±3.57) 67.5 (±3.55) 66.4 (±3.81)
Connect5 64.0 (±4.81) 66.6 (±3.92) 59.2 (±4.97) 60.9 (±3.76) 58.2 (±4.06)
Checkers 60.9 (±5.16) 61.3 (±5.10) 61.1 (±5.17) 58.1 (±5.20) 51.9 (±5.31)
Merrills 57.8 (±5.19) 56.5 (±5.15) 54.0 (±5.22) 53.7 (±5.29) 53.2 (±5.26)

Quad 68.1 (±4.82) 60.2 (±5.04) 58.3 (±5.00) 56.6 (±3.30) 52.9 (±3.55)
Battle 63.6 (±3.88) 62.0 (±3.91) 60.4 (±3.95) 57.9 (±3.98) 57.8 (±4.25)

Chinook 39.3 (±5.29) 53.3 (±4.43) 54.5 (±5.42) 56.4 (±4.06) 57.9 (±4.02)

TABLE XI
WIN % OF CPNST USING SIMULATION DECAY WITH DECAY FACTOR ω AGAINST CPNST WITHOUT DECAY, STARTCLOCK=60S, PLAYCLOCK=30S, ON

GOGENERAL

Game ω = 0.85 ω = 0.90 ω = 0.94 ω = 0.97 ω = 0.99
Connect5 38.6 (±5.03) 53.2 (±4.96) 64.5 (±5.33) 58.4 (±4.90) 59.2 (±5.08)

Quad 58.0 (±5.00) 64.6 (±4.16) 66.3 (±4.71) 64.0 (±4.18) 60.1 (±4.87)
Chinook 36.5 (±5.19) 52.4 (±5.36) 56.6 (±5.36) 50.9 (±5.38) 56.6 (±5.36)

TABLE X
WIN % OF CPNST USING BATCH DECAY WITH BATCH SIZE B = 50 AND

DECAY FACTOR λ = 0.9 AGAINST CPNST WITHOUT DECAY,
STARTCLOCK=60S, PLAYCLOCK=30S, ON GOGENERAL

Game
Zhadu 32.6 (±3.32)

GridGame2 48.9 (±3.42)
3DTicTacToe 71.1 (±3.49)

TTCC4 31.2 (±3.68)
Connect5 66.6 (±3.92)
Checkers 61.3 (±5.10)

Breakthrough 31.9 (±5.01)
Knightthrough 42.8 (±4.17)

Othello 47.4 (±5.45)
Skirmish 52.6 (±3.97)
Merrills 56.5 (±5.15)

Quad 60.2 (±5.04)
Sheep and Wolf 42.7 (±3.39)

Farmers 57.7 (±3.90)
TTCC4 3P 54.9 (±3.58)

Chinese Checkers 3P 49.6 (±4.26)
Battle 62.0 (±3.91)

Chinook 53.3 (±4.43)
Runners 55.3 (±4.03)

Pawn Whopping 50.4 (±4.96)

Connect5, Quad, and Chinook. The results are shown in
Table XI. According to this Table, ω = 0.94 performs best.
In the next experiment, CPNST with Simulation Decay with
ω = 0.94 is matched against CPNST without decay. Comparing
the results shown in Table XII with the results of Move Decay
in Table II at γ = 0.6 it is clear that in most games the
Move Decay is at least as good as the Simulation Decay.
There are a few exceptions. The Move Decay seems to be
better than Simulation Decay in Zhadu, TTCC4, and Chinese
Checkers 3P while the Simulation Decay appears to be better
in Breakthrough, Knightthrough, and Farmers. However, the
overall win rate is comparable with that of the Move Decay
with γ = 0.6, because both overall win rates are around 54%.

D. Simulation Decay Mixed with Move Decay

The aim of the last experiment is to investigate whether
combining two decay methods may further improve the pro-
gram. We choose to mix Simulation Decay with Move Decay.

TABLE XII
WIN % OF CPNST USING SIMULATION DECAY WITH DECAY FACTOR
ω = 0.94 AGAINST CPNST WITHOUT DECAY, STARTCLOCK=60S,

PLAYCLOCK=30S, ON GOGENERAL

Game
Zhadu 39.1 (±3.64)

GridGame2 49.0 (±3.45)
3DTicTacToe 65.0 (±3.60)

TTCC4 39.6 (±4.13)
Connect5 64.5 (±5.33)
Checkers 56.0 (±4.46)

Breakthrough 59.6 (±4.09)
Knightthrough 52.3 (±4.28)

Othello 47.8 (±3.85)
Skirmish 54.3 (±3.11)
Merrills 59.0 (±5.04)

Quad 66.3 (±4.71)
Sheep and Wolf 53.9 (±2.82)

Farmers 60.4 (±2.58)
TTCC4 3P 57.0 (±3.60)

Chinese Checkers 3P 43.6 (±4.23)
Battle 53.3 (±3.97)

Chinook 56.6 (±5.36)
Runners 54.4 (±3.04)

Pawn Whopping 52.7 (±2.51)

The reason to mix these two is that with Simulation Decay
there were improvements in playing strength in some games
for which no improvement was observed with Move Decay
and the other way around. For example, in Breakthrough,
Knightthrough and Farmers the Simulation Decay seems to
perform better than the Move Decay. However, in Zhadu and
TTCC4 the Move Decay appears to be better. We have tested
two different settings. In the first setting, CPNST with Move
Decay and γ = 0.6 and a Simulation Decay with ω = 0.94
plays against CPNST without decay. These settings were the
optimal settings when used separately and therefore when they
are combined there might be too much decay. Therefore, we
also test a second setting where γ = 0.8 and ω = 0.97.

The results are shown in Table XIII. As expected, the
parameters γ = 0.8 and ω = 0.97 perform better than the
settings that where optimal for Move Decay and Simulation
Decay alone. Nevertheless, mixing the two strategies did
not really improve the playing strength, because the overall

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 10

average is around 54% which is comparable with that of Move
Decay with γ = 0.6.

TABLE XIII
WIN % OF CPNST USING SIMULATION DECAY AND MOVE DECAY WITH
DECAY FACTORS γ ∈ {0.6, 0.8} AND ω ∈ {0.94, 0.97} AGAINST CPNST

WITHOUT DECAY, STARTCLOCK=60S, PLAYCLOCK=30S, ON GOGENERAL

Game γ = 0.6, ω = 0.94 γ = 0.8, ω = 0.97

Zhadu 26.7 (±2.39) 39.3 (±3.21)
GridGame2 49.3 (±2.65) 49.3 (±3.07)

3DTicTacToe 63.3 (±2.73) 68.0 (±3.14)
TTCC4 29.8 (±2.77) 41.8 (±3.74)

Connect5 54.9 (±2.84) 64.2 (±3.19)
Checkers 49.8 (±4.80) 55.8 (±5.58)

Breakthrough 45.7 (±4.41) 52.0 (±5.28)
Knightthrough 48.0 (±3.27) 48.8 (±3.79)

Othello 40.2 (±4.13) 45.9 (±4.87)
Skirmish 51.4 (±3.40) 54.0 (±3.95)
Merrills 54.9 (±3.94) 58.2 (±4.52)

Quad 63.1 (±2.44) 64.4 (±2.77)
Sheep and Wolf 47.7 (±2.63) 54.1 (±3.18)

Farmers 59.7 (±1.98) 61.8 (±2.28)
TTCC4 3P 55.8 (±2.76) 55.6 (±3.21)

Chinese Checkers 3P 41.2 (±3.22) 52.3 (±3.79)
Battle 62.1 (±2.95) 60.3 (±3.43)

Chinook 48.8 (±3.09) 55.9 (±3.56)
Runners 52.5 (±3.33) 49.5 (±3.83)

Pawn Whopping 50.7 (±2.19) 50.9 (±2.23)

VII. CONCLUSIONS AND FUTURE WORK

In this article, we experimented with applying a decay factor
to simulation strategies in the domain of GGP. We tested three
variants of decaying, namely Move Decay, Batch Decay and
Simulation Decay. Furthermore, we also experimented with
combining Move Decay with Simulation Decay. Move Decay
decays after each move, Batch Decay decays after a fixed
number of simulations and Simulation Decay decays after each
simulation, but then only the N-Grams/moves that occurred
within the simulation. While all decaying variants offer gen-
uine improvements in playing strength in some games, the
Move Decay and Simulation Decay appear superior.

Move Decay was implemented in two well-established
methods for simulation-biasing in GGP: NST and MAST.
CADIAPLAYER, the GGP champion in 2012, was used in the
experiments. For both simulation strategies, decaying showed
significant performance gains. Moreover, with decaying factors
tuned to appropriately balance remembering and forgetting (γ
in the range 0.4−0.6), the improvements were robust across a
large set of disparate games. One of the recurring challenges
in developing new algorithmic techniques and enhancements
for GGP is to demonstrate such robustness.

Decaying seems to work especially well in games where
the selection of a best action is strongly influenced by local
context, e.g., the current game position and recent history. By
decaying the search statistics in such games, one still gets the
generalization benefits of schemes such as NST and MAST,
but with less risk of overgeneralizing.

Our results also confirm previous work suggesting that
NST seems overall somewhat superior to MAST as a general
move-selection strategy in simulation-based GGP, using both
a larger test-suite of games and by running more extensive
experiments than before. The only notable exceptions were the

simultaneous-move games Battle and Runners, but both these
games are somewhat greedy as opposed to strategic, that is,
the same greedy action is often the best independent of the
current state and the recent move history. Such situations are
best-case scenarios for MAST.

For future research, it would be interesting to investigate
methods for setting in real-time the most appropriate decay
factor and/or decay method for the game at hand. In this
paper, for Move Decay we chose to find a single decay factor
that works reasonably well across many games, however, our
experiments show that no single decay factor or decay method
is the best for all the games in our test-suite. Therefore, deter-
mining the decay method and its parameters online can give
substantial improvement. Also of interest is to investigate how
a decay factor can be applied to the UCT values. Related work
is the Discounted UCT, but there was no performance increase
measured in Othello, Havannah, and Go [10]. Furthermore, our
decaying methods are heuristics and it would be interesting to
investigate whether they can be combined in a way such that
they minimize the mean squared error. Also, although we used
a constant decaying factor for this work it might be worthwhile
to have it more dynamic, e.g. by being a function of the
visit count. Moreover, tuning the parameters when mixing
decay strategies could possibly also lead to significantly better
results.

ACKNOWLEDGEMENTS

This work is funded by the Netherlands Organisation for
Scientific Research (NWO) in the framework of the project
GoGeneral, grant number 612.001.121. Moreover, the authors
would like to thank Marc Lanctot for proofreading the article
and the anonymous reviewers for their helpful comments.

APPENDIX

Below an overview is given of the games used in the
experiments. Note that most of the classic games enlisted
below are usually a variant of its original counterpart. The
most common adjustments are a smaller board size and a
bound on the number of steps. The following one-player games
are used:

• Sudoku simple is played on a grid of 9×9 cells. This
grid is further divided into 9, 3×3 blocks of 9 cells. The
aim is to put all numbers from 1 till 9 in the cells of
each column, row and block. The player gets 3 points for
each correctly filled row, column or block. An additional
19 points is given when the player fills the entire grid
correctly.

• StatespaceLarge is a game where the player controls a
robot by choosing from 4 different directions. The game
ends after 14 steps. The score for the player, which ranges
from 7 till 100, depends on the directions chosen per step.

• Queens is an instance of the n-queens puzzle, where in
this case n = 10. The goal is to put 10 queens on a
10×10 checkerboard in such a way that these queens
do not attack each other. After placing the 10 queens,
a score is calculated such that there are higher scores
when fewer queens are attacking each other. A score of

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 11

100 is obtained when there is no queen attacking any
other queen.

• Pancakes88 is a sorting game where 8 pancakes have
to be put in order. Each move, the player chooses the
pancake to flip which will change the order of the
pancakes. If the player is able to put the pancakes in
order, the score will range from 40 till 100 depending
on how many steps it took to rearrange the pancakes. 0
points are scored when after 40 steps the pancakes are
still not in the correct order.

• MaxKnights is a bit similar to Queens. It is played on
a 8×8 chessboard and each turn the player has to put a
chess knight on the board. As soon as one of the knights
attacks another knight the game is over. The score for the
player depends on the number of knights that are put on
the board.

• Frogs and Toads is played on two 4×4 boards which are
diagonally placed along each other and share the middle
cell of this diagonal. In the initial position, the board on
the lower right is filled with 15 frogs and the board on the
upper left is filled with 15 toads. The cell that is shared by
both boards is empty. The goal of the game is to inverse
the initial position. To achieve this, the player can move
a frog or a toad to an empty adjacent cell (horizontal or
vertical) or it may jump (horizontally or vertically) over
another frog or toad into an empty cell. After 116 steps
the game ends and points will be given based on how
many of the frogs and toads are placed correctly.

The following two-player, turn-taking games are used:

• Zhadu is a strategy game consisting of a placement phase
and a movement phase. The first piece that is captured,
determines what other piece need to be captured in order
to win.

• In GridGame2 each player has to find a book, a candle
and a bell. A score between 0 and 100 is given, based on
how many items were found.

• 3DTicTacToe is a variant on Tic-Tac-Toe. It is played on
a 4×4×4 cube and the goal is to align four pieces in a
straight line.

• TTCC4 stands for: TicTacChessCheckersFour. Each
player has a pawn, a checkers piece and a knight. The
aim of each player is to form a line of three with its own
pieces.

• Connect5 is played on an 8×8 board and the player
on turn has to place a piece in an empty square. The
aim is to place five consecutive pieces of the own color
horizontally, vertically or diagonally, like Five-in-a-Row.

• Checkers is played on an 8×8 board and the aim is to
capture the pieces of the opponent.

• Breakthrough is played on an 8×8 board. Each player
starts on one side of the board and the goal is to move
one of their pieces to the other side of the board.

• Knightthrough is almost the same as Breakthrough, but
is played with chess knights.

• Othello is played on an 8×8 board. Each turn a player
places a piece of its own color on the board. This will
change the color of some of the pieces of the opponent.

The aim is to have the most pieces of the own color on
the board at the end of the game.

• Skirmish is played on an 8×8 board with different kind of
pieces, namely: bishops, pawns, knights and rooks. The
aim is to capture as many pieces from the opponent as
possible, without losing too many pieces either.

• Merrills is also known as Nine Men’s Morris. Both
players start with nine pieces each. In order to win, pieces
of the opponent need to be captured. The objective is to
form a horizontal or vertical line of three pieces, called
a mill, because pieces in a mill cannot be captured. The
game ends when one player has only two pieces left.

• Quad is played on a 7×7 board. Each player has ‘quad’
pieces and ‘white’ pieces. The purpose of the ‘white’
pieces is to form blockades. The player that forms a
square consisting of four ‘quad’ pieces wins the game.

• Sheep and Wolf is an asymmetric game played on an
8×8 board. One player controls the Sheep and the other
player controls the Wolf. The game ends when none of
the players can move or when the Wolf is behind the
Sheep. In this case, if the Wolf is not able to move the
Sheep wins. Otherwise, the Wolf wins.

The following three-player, turn-taking games are used:
• Farmers is a trading game. In the beginning of the game,

each player gets the same amount of money. They can
use the money to buy cotton, cloth, wheat and flour. It
is also possible to buy a farm or factory and then the
player can produce its own products. The player that has
the most money at the end of the game wins.

• TTCC4 3P is the same as TTCC4, but then with one extra
player.

• Chinese Checkers 3P is played on a star shaped board.
Each player starts with three pieces positioned in one
corner. The aim is to move all these three pieces to the
empty corner at the opposite side of the board. This
is a variant of the original Chinese Checkers, because
according to the standard rules each player has ten pieces
instead of three.

The following two-player, simultaneous-move games are used:
• Battle is played on an 8×8 board. Each player has 20

disks. These disks can move one square or capture an
opponent square next to them. Instead of a move, the
player can choose to defend a square occupied by their
piece. If an attacker attacks such a defended square, the
attacker will be captured. The goal is to be the first player
to capture 10 opponent disks.

• Chinook is a variant of Breakthrough where two inde-
pendent games are played simultaneously. One game on
the white squares and another one on the black squares.
Black and White move their pieces simultaneously like
Checkers pawns. As in Breakthrough, the first player that
reaches the opposite side of the board wins the game.

• In Runners each turn both players decide how many steps
they want to move forward or backward. The aim is to
reach the goal location before the opponent does.

• Pawn Whopping is similar to Breakthrough, but with
slightly different movement and is simultaneous.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 12

These games were chosen because they are used in several
previous CADIAPLAYER experiments [4], [5], [9], [35]–[38].
Pawn Whopping was used during the German Open in GGP
of 2011 [39]. Furthermore, this selection contains different
types of games: one-player games, two-player games, multi-
player games, constant-sum games and general-sum games
(e.g., GridGame2, Skirmish, Battle, Chinook, Farmers and
Chinese Checkers 3P belong to the latter).

REFERENCES

[1] J. Clune, “Heuristic Evaluation Functions for General Game Playing,”
in Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence. Menlo Park, California: The AAAI Press, 2007, pp. 1134–
1139.

[2] S. Schiffel and M. Thielscher, “Automatic Construction of a Heuristic
Search Function for General Game Playing,” in Seventh IJCAI Inter-
national Workshop on Nonmontonic Reasoning, Action and Change
(NRAC07), 2007.

[3] ——, “Fluxplayer: A Successful General Game Player,” in Proceedings
of the Twenty-Second AAAI Conference on Artificial Intelligence. Menlo
Park, California: The AAAI Press, 2007, pp. 1191–1196.

[4] Y. Björnsson and H. Finnsson, “CadiaPlayer: A Simulation-Based Gen-
eral Game Player,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 1, no. 1, pp. 4–15, 2009.

[5] H. Finnsson, “Simulation-Based General Game Playing,” Ph.D. disser-
tation, School of Computer Science, Reykjavı́k University, Reykjavı́k,
Iceland, 2012.

[6] J. Méhat and T. Cazenave, “Ary, a General Game Playing Program,” in
XIIIth Board Games Studies Colloquium, Paris, France, 2010.

[7] S. Gelly and D. Silver, “Combining Online and Offline Knowledge in
UCT,” in Proceedings of the 24th International Conference on Machine
Learning, ser. ICML ’07, Z. Ghahramani, Ed. New York, New York:
ACM, 2007, pp. 273–280.

[8] M. J. W. Tak, M. H. M. Winands, and Y. Björnsson, “N-Grams and
the Last-Good-Reply Policy Applied in General Game Playing,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 4,
no. 2, pp. 73–83, 2012.

[9] H. Finnsson and Y. Björnsson, “Simulation-Based Approach to General
Game Playing,” in Proceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence, D. Fox and C. Gomes, Eds. Menlo Park,
California: AAAI Press, 2008, pp. 259–264.

[10] J. Hashimoto, A. Kishimoto, K. Yoshizoe, and K. Ikeda, “Accelerated
UCT and Its Application to Two-Player Games,” in Advances in Com-
puter Games (ACG 13), ser. LNCS, H. J. van den Herik and A. Plaat,
Eds., vol. 7168. Berlin-Heidelberg, Germany: Springer-Verlag, 2012,
pp. 1–12.

[11] L. Kocsis and C. Szepesvári, “Bandit Based Monte-Carlo Planning,” in
Proceedings of the EMCL 2006, ser. LNCS, J. Fürnkranz, T. Scheffer,
and M. Spiliopoulou, Eds., vol. 4212. Berlin-Heidelberg, Germany:
Springer-Verlag, 2006, pp. 282–293.

[12] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search,” in Computers and Games (CG 2006), ser. LNCS, H. J.
van den Herik, P. Ciancarini, and H. H. L. M. Donkers, Eds., vol. 4630.
Berlin-Heidelberg, Germany: Springer-Verlag, 2007, pp. 72–83.

[13] G. M. J. B. Chaslot, M. H. M. Winands, J. W. H. M. Uiterwijk, H. J.
van den Herik, and B. Bouzy, “Progressive Strategies for Monte-Carlo
Tree Search,” New Mathematics and Natural Computation, vol. 4, no. 3,
pp. 343–357, 2008.

[14] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-Time Analysis of the
Multi-Armed Bandit Problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, May 2002.

[15] J. Schaeffer, “The History Heuristic,” ICCA Journal, vol. 6, no. 3, pp.
16–19, 1983.

[16] D. E. Knuth and R. W. Moore, “An Analysis of Alpha-Beta Pruning,”
Artificial Intelligence, vol. 6, no. 4, pp. 293 – 326, 1975.

[17] G. Casella and E. I. George, “Explaining the Gibbs Sampler,” The
American Statistician, vol. 46, no. 3, pp. 167–174, 1992.

[18] J. A. Stankiewicz, “Knowledge-Based Monte-Carlo Tree Search in
Havannah,” Master’s thesis, Department of Knowledge Engineering,
Maastricht University, Maastricht, The Netherlands, 2011.

[19] J. A. Stankiewicz, M. H. M. Winands, and J. W. H. M. Uiterwijk,
“Monte-Carlo Tree Search Enhancements for Havannah,” in Advances
in Computer Games (ACG 13), ser. LNCS, H. J. van den Herik and
A. Plaat, Eds., vol. 7168. Berlin-Heidelberg, Germany: Springer-Verlag,
2012, pp. 60–71.

[20] C. J. R. H. Laschet, “Selection and Play-out Enhancements in MCTS
for Tron,” Bachelor’s Thesis, Department of Knowledge Engineering,
Maastricht University, Maastricht, The Netherlands, 2012.

[21] E. J. Powley, D. Whitehouse, and P. I. Cowling, “Bandits All the Way
Down: UCB1 as a Simulation Policy in Monte Carlo Tree Search,” in
Computational Intelligence in Games (CIG), 2013 IEEE Conference on,
2013, pp. 81–88.

[22] A. Rimmel and F. Teytaud, “Multiple Overlapping Tiles for Con-
textual Monte Carlo Tree Search,” in Applications of Evolutionary
Computation, ser. LNCS, C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner,
A. Ekárt, A. Esparcia-Alcazar, C.-K. Goh, J. Merelo, F. Neri, M. Preuß,
J. Togelius, and G. Yannakakis, Eds., vol. 6024. Berlin-Heidelberg,
Germany: Springer-Verlag, 2010, pp. 201–210.

[23] C. E. Shannon, “Prediction and Entropy of Printed English,” The Bell
System Technical Journal, vol. 30, no. 1, pp. 50–64, 1951.

[24] C. D. Manning and H. Schütze, Foundations of Statistical Natural
Language Processing. USA: The MIT Press, 1999.

[25] F. D. Laramée, “Using N-Gram Statistical Models to Predict Player
Behavior,” in AI Programming Wisdom, S. Rabin, Ed. Charles River
Media, 2002, vol. 1, ch. 11, pp. 596–601.

[26] I. Millington, Artificial Intelligence for Games, 1st ed. Morgan
Kaufmann, 2006, ch. 7, pp. 580–591.

[27] T. Nakamura, “Acquisition of Move Sequence Patterns from Game
Record Database Using N-gram Statistics,” in Proceedings of the 4th
Game Programming Workshop in Japan, 1997, pp. 96–105.

[28] T. Kimura, T. Ugajin, and Y. Kotani, “Bigram Realization Probability for
Game Tree Search,” in 2011 International Conference on Technologies
and Applications of Artificial Intelligence (TAAI), 2011, pp. 260–265.

[29] J. Hashimoto, “A Study on Game-Independent Heuristics in Game-
Tree Search,” Ph.D. dissertation, School of Information Science, Japan
Advanced Institute of Science and Technology, Kanazawa, Japan, 2011.

[30] T. Otsuki, “Extraction of ‘Forced Move’ from N-Gram Statistics,” in
Proceedings of the 10th Game Programming Workshop in Japan, 2005,
pp. 89–96.

[31] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion, ser. Adaptive Computation and Machine Learning. Cambridge,
Massachusetts: The MIT Press, 1998.

[32] N. R. Sturtevant, “An Analysis of UCT in Multi-player Games,” ICGA
Journal, vol. 31, no. 4, pp. 195–208, 2008.

[33] P. D. Drake, “The Last-Good-Reply Policy for Monte-Carlo Go,” ICGA
Journal, vol. 32, no. 4, pp. 221–227, 2009.

[34] H. Baier and P. D. Drake, “The Power of Forgetting: Improving the
Last-Good-Reply Policy in Monte Carlo Go,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 2, no. 4, pp. 303
–309, 2010.

[35] H. Finnsson, “CADIA-Player: A General Game Playing Agent,” Mas-
ter’s thesis, School of Computer Science, Reykjavı́k University, Reyk-
javı́k, Iceland, 2007.

[36] H. Finnsson and Y. Björnsson, “Simulation Control in General Game
Playing Agents,” in The IJCAI Workshop on General Game Playing
(GIGA’09), Pasadena, California, 2009, pp. 21–26.

[37] ——, “Learning Simulation Control in General Game-Playing Agents,”
in Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, M. Fox and D. Poole, Eds. Menlo Park, California: AAAI
Press, 2010, pp. 954–959.

[38] ——, “CadiaPlayer: Search Control Techniques,” KI Journal, vol. 25,
no. 1, pp. 9–16, 2011.

[39] P. Kissmann and T. Federholzner, “German Open in GGP 2011,” http:
//www.tzi.de/∼kissmann/ggp/go-ggp/classical/games/.

[40] M. Günther and S. Schiffel, “The Dresden GGP Server,” 2012.
[Online]. Available: http://130.208.241.192/ggpserver/

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 13

Mandy Tak received a M.Sc. degree in Operations
Research from Maastricht University, Maastricht,
The Netherlands, in January 2012. Currently, she is
a Ph.D. student at the Department of Knowledge
Engineering, Maastricht University. Her Ph.D. re-
search concerns on-line learning of search control
in General Game Playing.

Mark Winands received a Ph.D. degree in Artificial
Intelligence from the Department of Computer Sci-
ence, Maastricht University, Maastricht, The Nether-
lands, in 2004. Currently, he is an Assistant Profes-
sor at the Department of Knowledge Engineering,
Maastricht University. His research interests include
heuristic search, machine learning and games. Dr.
Winands serves as a section editor of the ICGA Jour-
nal and as an associate editor of IEEE Transactions
on Computational Intelligence and AI in Games.

Yngvi Björnsson is an associate professor at the
School of Computer Science, Reykjavı́k University
and a director (and co-founder) of the CADIA
research lab. He received a Ph.D in computer sci-
ence from the Department of Computing Science,
University of Alberta, Canada, in 2002. His re-
search interests are in heuristic search methods and
search-control learning, and the application of such
techniques for solving large-scale problems in a
wide range of problem domains, including computer
games and industrial process optimization.

