
1

Monte-Carlo Tree Search in Lines of Action
Mark H.M. Winands, Yngvi Björnsson, and Jahn-Takeshi Saito

Abstract—The success of Monte-Carlo Tree Search (MCTS)
in many games whereαβ-search has failed, naturally raises
the question whether Monte-Carlo simulations will eventually
also outperform traditional game-tree search in game domains
whereαβ-based search is now successful. The forte ofαβ-search
are highly-tactical deterministic game domains with a small to
moderate branching factor, where efficient yet knowledge-rich
evaluation functions can be applied effectively.

In here we describe a MCTS-based program for playing the
game Lines of Action (LOA), which is a highly-tactical slow-
progression game exhibiting many of the properties difficult for
MCTS. The program uses an improved MCTS variant that allows
it to both prove the game-theoretical value of nodes in a search
tree and to focus its simulations better using domain knowledge.
This results in simulations superior in both handling tactics and
ensuring game progression. Using the improved MCTS variant,
our program is able to outperform even the world’s strongest
αβ-based LOA program. This is an important milestone for
MCTS because the traditional game-tree search approach has
been considered to be the better suited for playing LOA.

Index Terms—Monte-Carlo Tree Search, Game-Tree Solver,
Lines of Action.

I. I NTRODUCTION

For decadesαβ search has been the standard approach used
by programs for playing two-person zero-sum games such as
chess and checkers (and many others). Over the years many
search enhancements have been proposed for this framework
that further enhance its effectiveness. This traditional game-
tree-search approach has, however, been less successful for
other types of games, in particular where a large branching
factor prevents a deep lookahead or the complexity of game
state evaluations hinders the construction of an effectiveeval-
uation function. Go is an example of a game that has so far
eluded this approach.

In recent years a new paradigm for game-tree search has
emerged, so-called Monte-Carlo Tree Search (MCTS) [1],
[2]. In the context of game playing, Monte-Carlo simulations
were first used as a mechanism for dynamically evaluating
the merits of leaf nodes of a traditionalαβ-based search [3],
[4], [5], but under the new paradigm MCTS has evolved into a
full-fledged best-first search procedure that replaces traditional
αβ-based search altogether. Many non-deterministic games
lend themselves well to a simulation-based approach (e.g.
Scrabble [6] and Skat [7]), in part because of their chance
element. In the past few years MCTS has also substantially
advanced the state-of-the-art in several deterministic game

Mark Winands and Jahn-Takeshi Saito are with the Games and
AI Group, Department of Knowledge Engineering, Faculty of Hu-
manities and Sciences, Maastricht University, The Netherlands. (e-mail:
{m.winands,j.saito}@maastrichtuniversity.nl)

Yngvi Björnsson is with the School of Computer Science, Reykjavı́k
University, Reykjavı́k, Iceland (e-mail yngvi@ru.is).

domains whereαβ-based search has had difficulties, in partic-
ular computer Go, but other domains include General Game
Playing [8], Phantom Go [9], Hex [10], and Amazons [11].
These are, however, all examples of game domains where
either a large branching factor or a complex static state
evaluation do restrainαβ search in one way or another.

This remarkable success of MCTS naturally raises the ques-
tion as to whether simulation-based programs can also com-
pete successfully against traditional game-tree search programs
in domains where the latter have been successfully employed
and achieved master-level status, that is, deterministic games
with a moderate branching factor and knowledge-rich eval-
uation functions. Clearly some games are more challenging
for simulation-based approaches than others. For example,
the progression property has been identified as an important
success factor for MCTS [12], that is, ideally each move
should bring the game closer towards its natural conclusion
(e.g. by gradually filling up the board by adding pieces or
blocking squares). Without this property there is a risk of the
simulations leading mostly to futile results. Also, games with
many tactical lines of play that can end the game abruptly
(e.g. checkmate in chess) typically lend themselves betterto
minimax-based backup rules than simulation averaging. It is
thus clear that chess-like games, which are both highly tactical
and where pieces can be shuffled (endlessly) back and forth
without much progress, present a challenge for MCTS.

In this article we describe a MCTS program for playing
the game Lines of Action (LOA) [13]. It uses an improved
MCTS variant that outperforms the world’s bestαβ-based
LOA program. This is an important milestone for MCTS,
because up until now the traditional game-tree search approach
has been considered to be better suited for LOA, which
is a highly-tactical slow-progression game featuring botha
moderate branching factor and good state evaluators (the best
LOA programs use highly sophisticated evaluation functions).
The previously best game-playing programs for this game,
MIA [14], B ING [15], YL [16], and MONA [16], are allαβ
based.

To achieve this success MCTS had to be enhanced in several
ways. The enhancements occurred in steps over the last couple
of years. First, to be able to more effectively handle highly-
tactical lines of play leading to untimely wins or losses, MCTS
was augmented such that it can prove the game-theoretical
value of nodes in a search tree, where applicable [17]. Sec-
ondly, to avoid aimlessly moving pieces back and forth, the
program uses simulation strategies that have been enrichedin
various ways with useful domain knowledge. The informed
strategies result in simulations that are both more focused
and can vary in length depending on the progress made [18].
Finally, by carrying useful tree information around as the game
advances and by fine-tuning various search-control parameters

2

further performance gains are achieved. Collectively these
enhancements result in a MCTS variant that outperformsαβ.

The article is organized as follows. In the next section we
explain the rules of LOA and the role it plays in artificial-
intelligence game research. In Section III we discuss MCTS
and its implementation in our LOA program. In Sections IV
and V we introduce our game-theoretical MCTS variant and
the improved simulation strategies, respectively. We empir-
ically evaluate the MCTS-based LOA program in Section
VI and match it against itsαβ-based counterpart. Finally,
in Section VII we conclude and give an outlook on future
research.

II. L INES OFACTION

Lines of Action (LOA) is a two-person zero-sum game with
perfect information; it is a chess-like game (i.e. with pieces
that move and can be captured) played on an 8×8 board, albeit
with a connection-based goal. LOA was invented by Claude
Soucie around 1960. Sid Sackson [13] described the game in
his first edition ofA Gamut of Games.

A. The Rules

LOA is played on an 8×8 board by two sides, Black and
White. Each side has twelve (checker) pieces at its disposal.
Game play is specified by the following rules:1

1) The black pieces are placed in two rows along the top
and bottom of the board, while the white pieces are
placed in two files at the left and right edge of the board
(see Fig. 1(a)).

2) The players alternately move a piece, starting with
Black.

3) A move takes place in a straight line, exactly as many
squares as there are pieces of either color anywhere
along the line of movement (see Fig. 1(b)).

4) A player may jump over its own pieces.
5) A player may not jump over the opponent’s pieces, but

can capture them by landing on them.
6) The goal of a player is to be the first to create a

configuration on the board in which all own pieces are
connected in one unit. Connected pieces are on squares
that are adjacent, either orthogonally or diagonally (e.g.,
see Fig. 1(c)). A single piece is a connected unit.

7) In the case of simultaneous connection, the game is
drawn.

8) A player that cannot move must pass.
9) If a position with the same player to move occurs for

the third time, the game is drawn.

In Fig. 1(b) the possible moves of the black piece ond3
(using the same coordinate system as in chess) are shown
by arrows. The piece cannot move tof1 because its path is
blocked by an opposing piece. The move toh7 is not allowed
because the square is occupied by a black piece.

1These are the rules used at the Computer Olympiads and at the MSO
World Championships. In some books, magazines or tournaments, there may
be a slight variation on rules 2, 7, 8, and 9.

B. Characteristics

The game has an average branching factor of approximately
29 and an average game length of around 44 ply [14]. The
game-tree complexity is estimated to be about1064 and the
state space complexity1023 [19].

The game is thus comparable to Othello with respect to
complexity [20]. Given the current state-of-the-art computer
techniques LOA is not solvable by brute-force methods any
time soon. A scaled-down6×6 version was solved by Winands
in 2008 [21].

Since most terminal positions have still more than 10 pieces
remaining on the board [22], endgame databases are not effec-
tively applicable in LOA (a 10 piece database would require
approximately 10 terabytes to store). Apart from endgame
databases not being applicable, the same search techniquesand
enhancements commonly found in chess-playing programs are
generally effective in LOA, such as transposition table [23],
[24], killer moves [25], adaptive null-move [26], [27], and
multi-cut [28], [29].

C. The Role of LOA in AI Game Research

Around 1975 LOA received its first credentials as an AI
research topic. Then the first LOA program was written by
an unknown author at the Stanford AI laboratory [30]. In the
1980s and 1990s “hobby” programmers wrote several LOA
programs, however, all were easily beaten by humans [30]. At
the end of the nineties LOA again received increased interest
from the games research community.

On the one hand, researchers recognized LOA as a good test
domain for their algorithms. For example, Eppstein mentioned
evaluation of connectivity of LOA positions as a possible
application for his dynamic planar graph techniques [31].
Kocsis successfully applied his time allocation learning algo-
rithms and his new Neural MoveMap move ordering method
in LOA [32][33]. Moreover, Björnsson used LOA as an
alternative domain (to chess) to verify the merits of his multi-
cut pruning method [34]. Donkers used LOA to test opponent-
model search [35]. Sakutaet al. investigated the application
of the killer-tree heuristic and theλ-search method to the
endgame of LOA [36]. Hashimotoet al. chose LOA as a
test domain for their automatic realization-probability search
method [37].

One the other hand, researchers concentrated on building
strong LOA programs based on both existing and new ideas.
For instance, the four programs MIA (Maastricht In Action)
[14], BING [15], YL [16], and MONA [16] are example of
strong LOA programs. Since 2000 LOA has been played
seven times at the Computer Olympiad, a multi-games event
in which all of the participants are computer programs. The
strongest LOA programs are considerably stronger than the
best human players [38].

III. M ONTE-CARLO TREE SEARCH

Monte-Carlo Tree Search (MCTS) [1], [2] is a best-first
search method that does not require a positional evaluation
function. It is based on a randomized exploration of the search
space. Using the results of previous explorations, the algorithm

3

Fig. 1. (a) The initial position. (b) Example of possible moves. (c) A terminal position.

gradually builds up a game tree in memory, and successively
becomes better at accurately estimating the values of the most
promising moves.

MCTS consists of four strategic steps, repeated as long as
there is time left [39]. The steps, outlined in Fig. 2, are as
follows. (1) In theselection stepthe tree is traversed from the
root node until we reach a nodeE, where we select a position
that is not added to the tree yet. (2) Next, during theplay-out
stepmoves are played in self-play until the end of the game is
reached. The resultR of this “simulated” game is+1 in case of
a win for Black (the first player in LOA), 0 in case of a draw,
and−1 in case of a win for White. (3) Subsequently, in the
expansion stepchildren ofE are added to the tree. (4) Finally,
in the backpropagation step, R is propagated back along the
path fromE to the root node, addingR to an incrementally
computed result average for each action along the way. When
time is up, the action played by the program is the child of
the root with the highest such average value.

A. The four strategic steps

The four strategic steps of MCTS are discussed in detail
below. We will clarify how each of these steps is used in our
Monte-Carlo LOA program (MC-LOA).

1) Selection:Selection picks a child to be searched based
on previous information. It controls the balance between
exploitation and exploration. On the one hand, the task often
consists of selecting the move that leads to the best resultsso
far (exploitation). On the other hand, the less promising moves
still must be tried, due to the uncertainty of the evaluation
(exploration).

We use the UCT (Upper Confidence Bounds applied to
Trees) strategy [2], enhanced with Progressive Bias (PB) [39].
PB is a technique to embed domain-knowledge bias into the
UCT formula. It is e.g. successfully applied in the Go program
MANGO. UCT with PB works as follows. LetI be the set of
nodes immediately reachable from the current nodep. The
selection strategy selects the childk of nodep that satisfies
Formula 1:

k ∈ argmaxi∈I

(

vi +

√

C × lnnp

ni

+
W × Pmc

li + 1

)

, (1)

wherevi is the value of the nodei, ni is the visit count of
i, and np is the visit count ofp. C is a coefficient, which
can be tuned experimentally.W×Pmc

li+1 is the PB part of the
formula. W is a constant, which is set manually (hereW =
10). Pmc is the transition probabilityof a move categorymc
[40]. Instead of dividing the PB part by the visit countni

as done originally [39], it is here divided by the number of
lossesli. In this approach, nodes that do not perform well are
not biased too long, whereas nodes that continue to have a
high score, continue to be biased. To ensure that we do not
divide by 0, a 1 is added in the denominator. Nijssen and
Winands [41] tested this approach in the games Focus and
Chinese Checkers, showing that PB divided by the number of
losses outperformed the default PB in the two-player variants
with a winning score of 65% and 58%, respectively. A slight
improvement was measured for our MC-LOA program as well.

For each move category (e.g., capture, blocking) the proba-
bility that a move belonging to that category will be played is
determined. The probability is called thetransition probability.
This statistic is obtained from game records of matches played
by expert players. The transition probability for a move
categorymc is calculated as follows:

Pmc =
nplayed(mc)

navailable(mc)
, (2)

wherenplayed(mc) is the number of game positions in which a
move belonging to categorymc was played, andnavailable(mc)

is the number of positions in which moves belonging to
categorymc were available.

The move categories of our MC-LOA program are similar
to the ones used in the Realization-Probability Search of the
program MIA [42]. They are used in the following way. First,
we classify moves as captures or non-captures. Next, moves
are further sub-classified based on the origin and destination
squares. The board is divided into five different regions: the
corners, the8× 8 outer rim (except corners), the6× 6 inner
rim, the4× 4 inner rim, and the central2× 2 board. Finally,

4

Repeated X times

Selection Play out Expansion Backpropagation

The selection strategy is

applied recursively until an

One node is added

to the tree

One simulated

game is played

The result of this game

is backpropagated inapplied recursively until an

unknown position is reached

to the treegame is played is backpropagated in

the tree

Fig. 2. Outline of Monte-Carlo Tree Search (adapted from Chaslot et al. [39]).

moves are further classified based on the number of squares
traveled away from or towards the center-of-mass. In total 277
move categories can occur according to this classification.

The aforementioned selection strategy is only applied in
nodes with visit count higher than a certain thresholdT
(here 5) [1]. If the node has been visited fewer times than
this threshold, the next move is selected according to the
simulation strategydiscussed in the next strategic step.

2) Play-out: The play-out step begins when we enter a
position that is not a part of the tree yet. Moves are selected
in self-play until the end of the game. This task might consist
of playing plain random moves or – better – pseudo-random
moves chosen according to asimulation strategy. Good simu-
lation strategies have the potential to improve the level ofplay
significantly [43]. The main idea is to play interesting moves
according to heuristic knowledge. In our MC-LOA program,
the move categories together with their transition probabilities,
as discussed in the selection step, are used to select the moves
pseudo-randomly during the play-out.

A simulation requires that the number of moves per game
is limited. When considering the game of LOA, the simulated
game is stopped after 200 moves and scored as a draw. The
game is also stopped when heuristic knowledge indicates that
the game is effectively over. When an evaluation function
returns a position assessment that exceeds a certain threshold
(i.e., 700 points), which heuristically indicates a decisive
advantage, the game is scored as a win. If the evaluation
function returns a value that is below a mirror threshold (i.e., -
700 points), the game is scored as a loss. For efficiency reasons
the evaluation function is called only every 3 plies, determined
by trial and error [17].

The idea of early terminations based on an evaluation score
is not new. The Amazons program INVADERMC [11] also
does so. The difference is that in INVADERMC the simulation

stops after a fixed length (and subsequently is scored based on
the value of the evaluation function), whereas in our approach
the simulation may terminate at any time.

3) Expansion:Expansion is the strategic task that decides
whether nodes will be added to the tree. Here, we apply a
simple rule: one node is added per simulated game [1]. The
added leaf nodeL corresponds to the first position encountered
during the traversal that was not already stored.

4) Backpropagation:Backpropagation is the procedure that
propagates theresultof a simulated gamek back from the leaf
nodeL, through the previously traversed node, all the way up
to the root. The result is scored positively(Rk = +1) if the
game is won, and negatively(Rk = −1) if the game is lost.
Draws lead to a resultRk = 0. A backpropagation strategy
is applied to thevaluevL of a node. Here, it is computed by
taking the average of the results of all simulated games made
through this node [1], i.e.,vL = (

∑

k Rk)/nL.

B. Parallelization

The parallel version of our MC-LOA program uses the
so-called “single-run” parallelization [44], also calledroot
parallelization [45]. It consists of building multiple MCTS
trees in parallel, with one thread per tree. These threads donot
share information with each other. When the available time is
up, all the root children of the separate MCTS trees are merged
with their corresponding clones. For each group of clones, the
scores of all games played are added. Based on this grand total,
the best move is selected. This parallelization method only
requires a minimal amount of communication between threads,
so the parallelization is easy, even on a cluster. For a small
number of threads, root parallelization performs remarkably
well in comparison to other parallelization methods [44], [45].
However, root parallelization does not scale well for a larger

5

Fig. 3. White to move.

number of threads. An alternative is to usetree parallelization
[45], which had good results in Computer Go [46], [47]. This
method uses one shared tree from which several simulated
games are played simultaneously [45].

IV. M ONTE-CARLO TREE SEARCH SOLVER

Although MCTS is unable toprove the game-theoretical
value, in the long run MCTS equipped with the UCT formula
is able toconvergeto the game-theoretical value. For example,
in endgame positions in fixed termination games like Go or
Amazons, MCTS is often able to find the optimal move rela-
tively fast [48], [49]. But in a tactical game like LOA, where
the main line towards the winning position is typically narrow
with many non-progressing alternatives, MCTS may often lead
to an erroneous outcome because the nodes’ values in the tree
do not converge fast enough to their game-theoretical value.
For example, if we let MCTS analyze the position in Fig. 3 for
5 seconds, it selectsc7xc4as the best move, winning 67.2%
of the simulations. However, this move is a forced 8-ply loss,
while f8-f7 (scoring 48.2%) is a 7-ply win. Only when we let
MCTS search for 60 seconds or longer, it selects the correct
move. For a reference, we remark that in this position it takes
αβ less than a second to select the best move and prove the
win.

We thus designed a new MCTS variant called MCTS-Solver,
which is able to prove the game-theoretical value of a position.
The backpropagation and selection steps were modified for this
variant, as well as the procedure for choosing the final move
to play.

A. Backpropagation

The play-out step returns the values{1, 0, −1} for simu-
lations ending in a win, draw, or loss, respectively. In regular
MCTS the same is true for terminal positions occurring in the
search tree (built by the MCTS expansion step). In the MCTS-
Solver, terminal win and loss positions occurring in the tree
are handled differently.2 The win and loss terminal positions

2Draws are generally more problematic to prove than wins and losses,
however, because draws happen only in exceptional cases in LOA we took
the decision not to handle them for efficiency reasons.

are instead assigns∞ or−∞, respectively. A special provision
is then taken when backing such proven values up the tree.
There are three cases to consider as shown in Fig. 4 (we use
the negamax formulation, alternating signs between levels).
First, when a simulation backs up a proven loss (−∞) from
a child c to a parentp, the parent nodep becomes, and is
labelled as, a proven win (∞), that is, the position is won for
the player atp because the move played leads to a win (left
backup diagram in the figure). When backing up a proven
win (∞) from c to p, one must, however, also look at the
other children ofp to determinep’s value. In the second case,
when all child nodes ofp are also a proven win (∞), then
the value ofp becomes a proven loss (-∞), because all moves
lead to a position lost forp (middle backup diagram in the
figure). However, the third case occurs if there exists at least
one child with a value different value from a proven win. Then
we cannot labelp as a proven loss. Insteadp gets updates as if
a simulation win (instead of a proven win) were being backed
up from nodec (right backup diagram in the figure;v andu
indicate non-proven values). Non-proven values are backedup
as in regular MCTS.

B. Selection

As seen in the previous subsection, a node can have a
proven game-theoretical value of∞ or −∞. The question
arises how these game-theoretical values affect the selection
strategy. When entering a node with such a proven value, that
value can simply be returned without any selection taking
place. A more interesting case is when the node itself has
a non-proven value but some of its children have.

Assume that one or more moves of nodep are proven to
lead to the loss for the player to move inp. It is tempting
to discard them in the selection step based on the argument
that one would never pick them. However, this can lead to
overestimating the value of nodep, especially when moves
are pseudo-randomly selected by the simulation strategy. For
example, in Fig. 5 we have three one-ply subtrees. Leaf nodes
B and C are proven to be a loss (for player to move inA),
indicated by−∞; the numbers below the other leaves are
the expectedpay-off values (also from the perspective of the
player to move inA). Assume that we select the moves with the
same likelihood (as could happen when a simulation strategy
is applied). If we would prune the loss nodes, we would prefer
nodeA aboveE. The average ofA would be 0.4 and 0.37 for
E. It is easy to see thatA is overestimated becauseE has more
good moves.

Conversely, if we do not prune proven loss nodes, we run
the risk of underestimation. Especially, when we have a strong
preference for certain moves (because of a bias) or we would
like to explore our options (because of the UCT formula),
we could underestimate positions. Assume that we have a
strong preference for the first move in the subtrees of Fig.
5. We would prefer nodeI aboveA. It is easy to see thatA is
underestimated becauseI has no good moves at all.

Based on trials and error, the most effective selection is
performed in the following way. In case Formula (1) is applied,
moves leading to a loss for the player will never be selected.

6

+ - u

pp p

cc

? - ? + + + v + +

c

Fig. 4. Backup of proven values.

For nodes that instead select moves according to a simulation
strategy, that is nodes having the visit count below the pre-set
threshold, moves leading to a losscan be selected.

One additional improvement is to perform a 1-ply lookahead
at leaf nodes (i.e., where the visit count equals one) [17]. We
check whether they lead to a direct win for the player to move.
If there is such a move, we can skip the play-out, label the
node as a win, and start the backpropagation step. If it were not
for such a lookahead, it could take many simulations before a
child leading to a mate-in-one is selected and the node proven.

C. Final Move Selection

For standard MCTS several ways exist to select the move
finally played by the program in the actual game. Often, it
is the child with the highest visit count, or with the highest
value, or a combination of the two. In practice, is does not
matter too much which of the approaches is used given that a
sufficient amount of simulations for each root move has been
played. However, for MCTS-Solver it does somewhat matter.
Because of the backpropagation of game-theoretical values,
the score of a move can suddenly drop or rise. Therefore, we
have chosen a method calledSecure child[39]. It is the child
that maximizes the quantityv + A√

n
, whereA is a parameter

(here, set to 1),v is the node’s value, andn is the node’s visit
count. For example, if two moves have the same value, we
would prefer the one explored less often. The rational has todo
with the derivative of their value: because of the imbalancein
the number of simulations, either the value of the move more
explored must have been dropping, or the value of the one
less explored increasing; in both cases the one less explored
is to be favored.

Finally, when a win can be proven for the root node, the
search is stopped and the winning move is played. For the
position in Fig. 3, MCTS-Solver is able to select the best
move and prove the win for the position depicted in less than
a second, or in the same time frame asαβ. As noted earlier,
it takes standard MCTS over a minute to pick the winning
move.

D. Pseudo Code for MCTS-Solver

A C-like pseudo code of MCTS-Solver is provided in Fig.
6. The algorithm is constructed similar to negamax in the con-
text of minimax search.select(Node N) is the selection

function as discussed in Subsection IV-B, which returns the
best child of the nodeN . The procedureaddToTree(Node
node) adds one more node to the tree;playOut(Node
N) is the function which plays a simulated game from the
node N , and returns the resultR ∈ {1, 0,−1} of this
game;computeAverage(Integer R) is the procedure
that updates the value of the node depending on the result
R of the last simulated game;getChildren(Node N)
generates the children of nodeN .

V. I MPROVED SIMULATION STRATEGIES

In both the selection and the play-out steps move categories
together with their associated transition probabilities are used
to bias the move selection. In this section we introduce four
simulation strategies for further biasing and enhancing the
simulation roll-outs. They areEvaluation Cut-Off, Corrective,
Greedy, andMixed.

A. Evaluation Cut-Off

The Evaluation Cut-Off strategy stops a simulated game
before a terminal state is reached if, according to a heuristic
knowledge, the game is judged to be effectively over. In
general, once a LOA position gets very lopsided, an evaluation
function can return a quite trustworthy score, more so than
even elaborate simulation strategies. The game can thus be
(relatively) safely terminated both earlier and with a more
accurate score than if continuing the simulation (which might
e.g. fail to deliver the win). This is somewhat analogous to
the ”mercy-rule” in computer Go [50]. We use the MIA 4.5
evaluation function [51] for this purpose. When the evaluation
function gives a value that exceeds a certain threshold, the
game is scored as a win. Conversely, if the evaluation function
gives a value that is below the negated threshold, the game is
scored as a loss.

Our initial MCTS-based LOA program described in [17],
used a threshold value of 1000 points, chosen conservatively as
(by observation) such a high value, with only a few exceptions,
represents an eventual win. Such a conservative choice of a
threshold is not necessarily optimal. It might be a better choice
to use a more aggressive cut-off threshold even though being
occasionally wrong. The added number of simulations because
of even earlier terminations of lopsided positions might more
than offset the errors introduced by the occasional erroneous

7

A

B C D

E

F G H

I

J K L

- - 0.4 0.3 0.4 0.4 -0.1 -0.1 -0.1

Fig. 5. Monte-Carlo Subtrees.

Integer MCTSSolver(Node N){

if(playerToMoveWins(N))
return INFINITY

else (playerToMoveLoses(N))
return -INFINITY

bestChild = select(N)
N.visitCount++

if(bestChild.value != -INFINITY
AND bestChild.value != INFINITY)
if(bestChild.visitCount == 0){

R = -playOut(bestChild)
addToTree(bestChild)
goto DONE

}
else
R = -MCTSSolver(bestChild)

else
R = bestChild.value

if(R == INFINITY){
N.value = -INFINITY
return R

}
else

if(R == -INFINITY){

foreach(child in getChildren(N))
if(child.value != R){

R = -1
goto DONE

}

N.value = INFINITY
return R

}

DONE:
N.computeAverage(R)
return R

}

Fig. 6. Pseudo code for MCTS-Solver

termination decisions. In our improved evaluation cut-offstrat-
egy we determine this tradeoff empirically (see experimental
section), leading to a substantially more aggressive threshold
settings, i.e., 700 points. As before, the termination strategy
is applied only in the play-out step. For efficiency reasons
the evaluation function is called only every 3 plies, starting at
the second ply (thus at 2, 5, 8, 11 etc.). Differences in odd
vs. even ply evaluations observed in some LOA programs are
not too important here, because they are typically relatively
small compared to the large threshold value, as well as they
are (partially) offset in the evaluation function of our LOA
program by having a side-to-move bonus [14].

B. Corrective

One known disadvantage of simulation strategies is that
they may draw and play a move which immediately ruins
a perfectly healthy position. Embedding domain knowledge,
e.g. by the use of Progressive Bias, somewhat alleviates the
problem.

In theCorrectivestrategy we use the evaluation function to
further bias the move selection towards minimizing the riskof
choosing an obviously bad move. This is done in the following
way. First, we evaluate the position for which we are choosing
a move. Next, we generate the moves and scan them to get
their weights. If the move leads to a successor which has a
lower evaluation score than its parent, we set the weight of a
move to a preset minimum value (close to zero). If a move
leads to a win, it will be immediately played. The pseudo
code for this strategy is given in Fig. 7. The effectiveness of
the algorithm will be partially determined by how efficiently
game positions and moves are evaluated. For a reference, in
our MCTS LOA program, using this strategy, evaluating posi-
tions consumes around 30% of the program’s total execution
time (somewhat more than the combined make/undo move
operations), whereas determining a weight for a move category
takes around 5% of the total execution time.

C. Greedy

In the Greedy strategy the evaluation function is more
directly applied for selecting moves: the move leading to the
position with the highest evaluation score is selected. However,
because evaluating every move is time consuming, we evaluate
only moves that have a good potential for being the best. For

8

correctiveStrategy(board){

defaultValue = evaluate(board);
moveList = generateMoves();
scoreSum = 0;

foreach(Move m in moveList){
value = evaluate(board, m);
if (value > bound)

return m;
else if (value <= defaultValue)

m.score = Epsilon;
else

m.score = m.getMCWeight(board);
scoreSum += m.score;

}

scoreSum *= random();
foreach(Move m in moveList){

scoreSum -= m.score;
if(scoreSum <= 0)

return m;
}

}

Fig. 7. Pseudo code for the Corrective strategy

this strategy it means that only thek-best moves according
to their transition probabilities are fully evaluated. As in the
Evaluation Cut-Off strategy, when a move leads to a position
with an evaluation over a preset threshold, the play-out is
stopped and scored as a win. Finally, the remaining moves,
which are not heuristically evaluated, are checked for a mate.
The pseudo code for the Greedy strategy is given in Fig. 8.

D. Mixed

A potential weakness of the Greedy strategy is that despite
a small random factor in the evaluation function, it is too
deterministic. TheMixed strategy combines the Corrective
strategy and the Greedy strategy. The Corrective strategy is
used in the selection step, i.e., at tree nodes where a simulation
strategy is needed (i.e.,n < T), as well as in the first position
entered in the play-out step. For the remainder of the play-
out the Greedy strategy is applied. Finding the right balance
between exploitation and exploration, however, remains one of
the main challenges in simulation-based search. Whereas the
mixed strategy proposed here does a good job in our test-
domain, more work is still needed for the approach to be
applied to other game domains in a principled way.

VI. EXPERIMENTS

In this section we evaluate the performance of the improved
MCTS LOA player, both via self-play and against the world’s
strongestαβ-based LOA program, MIA 4.5 (as well as some
of its earlier ancestors).

We will refer to the MCTS player as MC-LOA. It
can be instantiated using the various combinations of
enhancements introduced in earlier sections. We use a

Greedy(Board b){

moveList = generateMoves();
assignAndSort(moveList);
counter = 0;

foreach(Move m in moveList){
if(counter < k){

value = evaluate(board, m);
if(value > bound){

return m;
}
if(value > max){

best = m;
max = value;

}
}
else {

if(evaluateWin(board, m)) {
return m;

}
}
counter++;

}
return best;

}

Fig. 8. Pseudo code for the Greedy strategy

three-tuple (solver , threshold , strategy) to represent the
parameter setting used in each particular player in-
stance, wheresolver ∈ {on, off }, threshold ∈ [0 ,∞], and
strategy ∈ {default , corrective, greedy,mixed}. For exam-
ple, in the following experiments the most common in-
stantiation, referring to the best setting we found, is MC-
LOA(on,700 ,mixed), that is, the solver is enabled, the simula-
tion cut-off threshold is set to 700, and the mixed simulation
strategy is used.

To determine the relative playing strength of two programs
we play a match between them consisting of many games (to
establish a statistical significance). In the following experi-
ments each match data point represents the result of 1,000
games (unless otherwise specified), with both colors played
equally. A standardized set of 100 three-ply starting positions
[16] is used, with a small random factor in the evaluation
function preventing games from being repeated. The thinking
time is 5 seconds per move (unless otherwise specified). All
experiments were performed on an AMD Opteron 2.2 GHz
computer.

In the next subsection we briefly describe MIA 4.5. Then,
in turn, we empirically evaluate the simulation strategies, the
solver, and then additional tuning enhancements.

A. MIA (Maastricht In Action)

MIA is a world-class LOA program, which won the LOA
tournament at the eighth (2003), ninth (2004), and eleventh
(2006) Computer Olympiad. Over its lifespan of 10 years it has
gradually been improved and has for years now been generally
accepted as the best LOA-playing entity in the world. All our

9

TABLE I
THREE DIFFERENT OPPONENTS PLAYING AGAINSTMC-LOA(on,t,default) (WIN %)

Threshold (t) 0 100 200 400 600 700 800 1000 1200 1400 ∞
MC-LOA(on,∞,def) 15.1± 2.2 14.9± 2.2 15.6± 2.2 11.8± 2.0 11.2± 1.9 9.9± 1.9 8.7± 1.7 5.7± 1.4 4.7± 1.3 2.2± 0.9 -
MIA III 24.6± 2.7 24.6± 2.7 22.8± 2.6 23.2± 2.6 21.8± 2.6 25.4 ± 2.7 24.8± 2.7 33.5± 2.9 39.8± 3.0 51.1± 3.1 99.8± 0.3

MIA 4.5 79.4± 2.6 79.5± 2.6 77.6± 2.6 76.9± 2.6 72.0± 2.7 71.7± 2.8 75.4± 2.7 78.1± 2.6 83.5± 2.3 86.8± 2.1 99.9± 0.2

Avg. Game Len. 2.00 2.67 3.56 5.85 8.45 9.83 11.17 13.94 16.65 19.18 53.70
Games per Sec. 10074 9242 8422 6618 5260 4659 4211 3507 2995 2611 2060

experiments were performed using the latest version of the
program, called MIA 4.5. The program is written in Java.3

MIA performs an αβ depth-first iterative-deepening
search in the Enhanced-Realization-Probability-Search (ERPS)
framework [42]. Atwo-deeptransposition table [23] is applied
to prune a subtree or to narrow theαβ window. At all
interior nodes that are more than 2 plies away from the leaves,
it generates all moves to perform Enhanced Transposition
Cutoffs (ETC) [24]. Next, a null-move [26] is performed adap-
tively [27]. Then, an enhanced multi-cut is performed [28],
[29]. For move ordering, the move stored in the transposition
table (if applicable) is always tried first, followed by two killer
moves [25]. These are the last two moves that were best, or at
least caused a cutoff, at the given depth. Thereafter follow: (1)
capture moves going to the inner area (the central4×4 board)
and (2) capture moves going to the middle area (the6×6 rim).
All the remaining moves are ordered decreasingly according
to the relative history heuristic [52]. At the leaf nodes of
the regular search, a quiescence search is performed to get
more accurate evaluations. For additional details on the search
engine and the evaluation function used in MIA, we refer to
the Ph.D. thesisInformed Search in Complex Games[14].

ERPS is applied in MIA in the following way. First, moves
are classified as captures or non-captures. Next, moves are
further sub-classified based on the origin and destination of
the move’s from and to squares. The board is divided into
five different regions: the corners, the8× 8 outer rim (except
corners), the6 × 6 inner rim, the4 × 4 inner rim and the
central2×2 board. Finally, moves are further classified based
on the number of squares traveled away from or towards the
center-of-mass. In total 277 move categories can occur in the
game according to this classification.

B. Evaluation Cut-Off Threshold

The first set of experiments was designed to determine
a good cut-off threshold for the Evaluation Cut-Off strat-
egy. MC-LOA(on,t,default) with different cut-off threshold
values fort was matched against three other programs: MC-
LOA(on,∞,default) (essentially never terminating simulations
early), MIA 4.5, and finally, to get a more variety of opponents,
an older version of MIA called MIA III, which uses a some-
what less sophisticated evaluation function. In this experiment,
the thinking time was set to 1 second per move.

The results are given in Table I, showing the winning
percentage of the players against MC-LOA(on,t,default) using
various thresholds. The best threshold settingt against each of

3A Java program executable and test sets can be found at: http://www.
personeel.unimaas.nl/m-winands/loa/.

TABLE II
ROUND-ROBIN TOURNAMENT RESULTS MATCHING DIFFERENT

SIMULATION STRATEGIES, MC-LOA(on,700 ,e) (WIN %)

Strategy Default Corrective Greedy Mixed
Default - 44.25± 3.1 59.80 ± 3.0 32.55 ± 2.9

Corrective 55.75± 3.1 - 67.40 ± 2.9 36.20 ± 3.0

Greedy 40.20± 3.0 32.60± 2.9 - 16.70 ± 2.3
Mixed 67.45± 2.9 63.80± 3.0 83.30 ± 2.3 -

the players is the one that minimizes their winning percentage
(shown in bold). Based on this we chose a thresholdt = 700
for our default player, as a compromise between the three
different optimal thresholds, with more weight put on the
thresholds performing well against theαβ-based opponents. It
is worth to note that the valuet = 700 performs significantly
better against these opponents than the value oft = 1000 used
by the MCTS-based LOA program described in [17].

Several other things of interest can be read from the table.
First, it can clearly be seen how important a termination
threshold is for MCTS-based LOA programs, as a player
without one, as the first line shows, stands a little chance.
Second, it is interesting to contrast how well the two MIA
versions perform. The MC-LOA(on,t,default) program handily
beats MIA III when using appropriate cut-off thresholds, but
is not able to match the strong MIA 4.5 program. The MIA
4.5 evaluation function is apparently much stronger than (the
already strong) older one, and showcases the importance of
a good evaluation function in the game of LOA. Finally, the
last two rows of the table give us some insights into how
the threshold value affects the average simulation length and
number of simulations per time unit, respectively.

C. Simulation Strategies

In the second set of experiments we quantify the per-
formance of theCorrective, Greedy, and Mixed simulation
strategies introduced in Sect. V, as well as that of a default
strategy (where the three aforementioned strategies are all
disabled). All the strategies, including the default one, use
the threshold setting oft = 700 determined in the previous
subsection. For this experiment, the thinking time was set to
1 second per move.

The result of a round-robin tournament is given in Table II.
Somewhat surprisingly, the heavily evaluation-function based
Greedy strategy is the weakest of the four, including the
default one. The Corrective strategy is better than both the
default and the Greedy strategy. But, the Mixed strategy, the
combination of Corrective and Greedy, outperforms all the
others convincingly. This shows that the evaluation function

10

can be directly used for selecting moves as done by Greedy,
but not at the start of a simulation. The first moves should
rather be highly randomized.

D. Solver

Having determined the most promising settings for the sim-
ulation strategies, we now evaluate the solver’s effectiveness
in combination with these strategies. The tactical performance
of MC-LOA(on,700 ,mixed) was contrasted to that of the highly
sophisticated variable-depthαβ search of MIA 4.5 (default),
as well as to a non-variable-depth search (classic). The classic
variant, unlike the default one, does not use ERPS, null-
move search nor multi-cut. We measure the effort it takes the
programs to solve selected endgame positions in terms of both
nodes and CPU time. For MC-LOA, all children at a leaf node
evaluated for the termination condition during the search are
counted (see subsection IV-B). For theαβ variants, nodes at
depthi are counted only during the first iteration that the level
is reached. This is how node counting was done in analogous
comparisons for other games in [53]. The maximum number
of nodes the programs are allowed to search on each problem
is 10,000,000. The test-set consists of 488 forced-win LOA
positions.4

In Table III the results are presented. From the second and
third columns we see that MC-LOA(on,700 ,mixed) outperforms
classic αβ both in terms of positions solved and nodes
expanded (although not CPU time). The defaultαβ variant,
however, outperforms both the others by a large margin in
terms of all measures. The node expansions and CPU times are
reported only for the subset of positions all three algorithms
were able to solve (257 positions) to allow a fairer comparison.
Note that it serves no purpose to experiment with MC-LOA
without the solver code enabled on the test set, as such a
variant is unable to prove any terminal values.

TABLE III
SOLVING PERFORMANCE OFMC-LOA(on,700 ,mixed) VS. αβ ON 488

FORCED WIN ENGAME POSITIONS.

Program 488 positions 257 positions
solved Nodes Time (ms.)

MC-LOA(on,700 ,mixed) 319 315,900,579 1,373,393
Classicαβ 288 407,975,053 809,866
Default αβ 454 81,349,671 122,640

We can, however, investigate how turning the solver off
affects the program’s overall playing strength. We do so both
for self-play and against MIA 4.5. The results are shown in
Table IV. Not only does the MC-LOA program with the solver
enabled beat the one with it disabled with almost 54% winning
rate, but it also fares much better against MIA 4.5 (scoring
close to 47% as opposed to just over 39%). This shows that
the ability to prove game-theoretical values of game positions
is important in a tactical game like LOA.

4The test set is available at www.personeel.unimaas.nl/m-winands/loa/
tscg2002a.zip.

TABLE IV
TOURNAMENT RESULTSMC-LOA(s,700 ,mixed) (WIN %). EACH DATA

POINT IS BASED ON A2000-GAME MATCH .

Strategy off on MIA 4.5
MC-LOA(off ,700 ,mixed) - 46.05± 2.2 39.38± 2.1

MC-LOA(on,700 ,mixed) 53.95 ± 2.2 - 46.93± 2.2

MIA 4.5 60.62 ± 2.1 53.07± 2.2 -

E. Parallelization and Tuning Enhancements

The MC-LOA program using the best derived set of param-
eters, i.e., MC-LOA(on,700 ,mixed), is performing close to the
level of the world-classαβ-based program MIA 4.5, although
coming up a little short (47%).

One nice benefit of MCTS is that it can be parallelized
quite easily compared toαβ search. We have a multi-threaded
version of our MC-LOA program. For curiosity we matched
two- and four-threaded versions of our MC-LOA program
against (a single-threaded) MIA 4.5.

TABLE V
PARALLEL MC-LOA(on,700 ,mixed) VS. MIA 4.5 (WIN %)

Matched Programs win %
1 × MC-LOA(on,700 ,mixed) vs. MIA 4.5 46.93± 3.1

2 × MC-LOA(on,700 ,mixed) vs. MIA 4.5 56.35± 3.1

4 × MC-LOA(on,700 ,mixed) vs. MIA 4.5 60.25± 3.0

The results are shown in in Table V. We see that the multi-
threaded version of MC-LOA handily outperforms the single-
threaded MIA 4.5. Unfortunately, there does not exist a multi-
threaded version of MIA 4.5 to compare with, as this does not
represent a fair comparison. However, to get some idea how
a multi-threaded MIA 4.5 might perform we reran the match
against the two-threaded MC-LOA, but this time giving MIA
4.5 50% more deliberation time (simulating a search efficiency
increase of 50% if MIA were to be given two processors).
A 1,000 game match resulted in a 52% winning percentage
for MC-LOA. Although this type of experiment can give us
some insights as of how a multi-threaded MIA 4.5 might
perform, nonetheless, based on the experiment’s ad-hoc nature
we do not feel comfortable drawing firm conjectures about
the performance of a hypothetical multi-threaded MIA 4.5
program.

One advantage MIA 4.5 has over its MCTS-based counter-
part is having been around for many more years, thus being far
more carefully tuned based on years of tournament experience.

To somewhat offset this advantage we took some extra
time to further tune our MC-LOA player. By doing the
tuning independently afterwards, after having run all the other
experiments, we can better demonstrate the potentials sucha
tuning phase has for improving playing strength. We refer to
the more carefully tuned player as MC-LOA-T. Two minor
changes were incorporated: (1) between moves, we recycle
the relevant part of the MCTS tree [54]; and, (2) instead of
dividing the Progressive Bias part byli + 1 (Formula 1) we
divide it by

√
li + 1, effectively making the Progressive Bias

more relevant.
The result of playing MC-LOA-T against MIA 4.5 is given

in Table VI (for a comparison we repeat the result of MC-LOA

11

TABLE VI
TUNING MC-LOA(on,700 ,mixed). 2,000-GAME MATCH RESULTS

win %
MC-LOA(on,700 ,mixed) vs. MIA 4.5 46.93 ± 2.2

MC-LOA-T(on,700 ,mixed) vs. MIA 4.5 52.38 ± 2.2

vs MIA 4.5). By relatively little tuning effort we were able to
elevate the program’s score against MIA 4.5 by more than
five percentage points. Now, instead of being slightly behind,
the better tuned variant outperforms MIA 4.5 and, although
the winning margin is small, it is nonetheless statistically
significant using a confidence margin of 95%.

This is an important milestone for MCTS because the
traditional game-tree search approach has been consideredto
be the better suited for playing LOA. We are in the early stages
of tuning our MC-LOA player, and with added experience we
believe that there are still more strength improvements to be
had.

VII. C ONCLUSION AND FUTURE RESEARCH

In this article we described MC-LOA, a MCTS-based pro-
gram for playing the game of LOA. The program uses a highly
effective MCTS variant that has been imbued with numerous
enhancements.

First, the simulations were augmented such that game-
theoretical win and loss values could be proved when encoun-
tered in the search tree. This required modifications to the
backpropagation and selection steps of MCTS, as well as the
procedure for picking the final move to play. Secondly, the pro-
gram uses simulation strategies enriched with useful domain
knowledge in various new ways. Modifications were made
to both the selection and the play-out steps. The informed
strategies resulted in simulations that were more focused.In
particular, a mixed strategy of exploring more early on and
playing more greedily later on in a simulation seemed to
work best. Finally, by carrying useful tree information around
as the game advances and by fine-tuning various search-
control parameters further performance gains were possible.
Collectively these enhancements resulted in a MCTS variant
that outperforms even the world’s bestαβ-based LOA player.

This success is remarkable, because not only is the game of
LOA highly tactical, but also slowly progressing. Both these
characteristics have traditionally been considered particularly
problematic for MCTS-based players. This work thus repre-
sents an important milestone for MCTS.

As for future research directions we plan to further work on
enhancing the new simulation strategies, e.g., by combining
them in more elaborate ways. Of interest too is to use
the MCTS andαβ algorithms in combination in the LOA
program, as the latter is still superior in endgame play. Also
of a general interest, although not practical in LOA, is to
improve the ability of MCTS to prove ties. Finally, we are
still in early stages of tuning our MC-LOA player, and with
added experience (e.g., from tournament play against other
strong LOA programs) we believe that there are still further
strength improvements possible.

ACKNOWLEDGMENTS

The authors thank Guillaume Chaslot for giving valuable
advice on MCTS. Part of this work is done in the framework
of the NWO Go for Go project, grant number 612.066.409, and
by a grant from The Icelandic Centre for Research (RANNIS).

REFERENCES

[1] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” inComputers and Games (CG 2006), ser. Lecture Notes
in Computer Science (LNCS), H. J. van den Herik, P. Ciancarini, and
H. H. L. M. Donkers, Eds., vol. 4630. Springer-Verlag, Heidelberg,
Germany, 2007, pp. 72–83.

[2] L. Kocsis and C. Szepesvári, “Bandit Based Monte-CarloPlanning,”
in Machine Learning: ECML 2006, ser. Lecture Notes in Artificial
Intelligence, J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, Eds., vol.
4212, 2006, pp. 282–293.

[3] B. Abramson, “Expected-outcome: A general model of static evalua-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 12, no. 2, pp. 182–193, 1990.

[4] B. Bouzy and B. Helmstetter, “Monte-Carlo Go Developments,” in
Advances in Computer Games 10: Many Games, Many Challenges, H. J.
van den Herik, H. Iida, and E. A. Heinz, Eds. Kluwer Academic
Publishers, Boston, MA, USA, 2003, pp. 159–174.

[5] B. Brügmann, “Monte Carlo Go,” Physics Department, Syracuse Uni-
versity, Tech. Rep., 1993.

[6] B. Sheppard, “World-championship-caliber Scrabble,”Artificial Intelli-
gence, vol. 134, no. 1–2, pp. 241–275, 2002.

[7] M. Buro, J. R. Long, T. Furtak, and N. R. Sturtevant, “Improving
state evaluation, inference, and search in trick-based card games,” in
IJCAI 2009, Proceedings of the 21st International Joint Conference on
Artificial Intelligence, C. Boutilier, Ed., Pasadena, CA, USA, 2009, pp.
1407–1413.

[8] H. Finnsson and Y. Björnsson, “Simulation-based approach to General
Game Playing,” inProceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, AAAI 2008, D. Fox and C. Gomes, Eds. AAAI
Press, 2008, pp. 259–264.

[9] T. Cazenave and J. Borsboom, “Golois Wins Phantom Go Tournament,”
ICGA Journal, vol. 30, no. 3, pp. 165–166, 2007.

[10] T. Cazenave and A. Saffidine, “Utilisation de la recherche arborescente
Monte-Carlo au Hex,”Revue d’Intelligence Artificielle, vol. 23, no. 2–3,
pp. 183–202, 2009, in French.

[11] R. Lorentz, “Amazons discover Monte-Carlo,” inComputers and Games
(CG 2008), ser. Lecture Notes in Computer Science (LNCS), H. J.
van den Herik, X. Xu, Z. Ma, and M. H. M. Winands, Eds., vol. 5131,
2008, pp. 13–24.

[12] H. Finnsson and Y. Björnsson, “Simulation control in General Game
Playing agents,” inGIGA’09 The IJCAI Workshop on General Game
Playing, July 2009.

[13] S. Sackson,A Gamut of Games. Random House, New York, NY, USA,
1969.

[14] M. H. M. Winands, “Informed search in complex games,” Ph.D. disser-
tation, Maastricht University, Maastricht, The Netherlands, 2004.

[15] B. Helmstetter and T. Cazenave, “Architecture d’un programme de Lines
of Action,” in Intelligence Artificielle et Jeux, T. Cazenave, Ed. Hermes
Science, 2006, pp. 117–126, in French.

[16] D. Billings and Y. Björnsson, “Search and knowledge inLines of
Action,” in Advances in Computer Games 10: Many Games, Many
Challenges, H. J. van den Herik, H. Iida, and E. A. Heinz, Eds. Kluwer
Academic Publishers, Boston, MA, USA, 2003, pp. 231–248.

[17] M. H. M. Winands, Y. Björnsson, and J.-T. Saito, “Monte-Carlo Tree
Search Solver,” inComputers and Games (CG 2008), ser. Lecture Notes
in Computer Science (LNCS), H. J. van den Herik, X. Xu, Z. Ma, and
M. H. M. Winands, Eds., vol. 5131. Springer, 2008, pp. 25–36.

[18] M. H. M. Winands and Y. Björnsson, “Evaluation function based Monte-
Carlo LOA,” in Advances in Computer Games Conference (ACG 2009),
ser. Lecture Notes in Computer Science (LNCS), H. J. van den Herik
and P. Spronck, Eds., vol. 6048. Springer, 2010, pp. 33–44.

[19] M. H. M. Winands, J. W. H. M. Uiterwijk, and H. J. van den Herik,
“The quad heuristic in Lines of Action,”ICGA Journal, vol. 24, no. 1,
pp. 3–15, 2001.

[20] L. V. Allis, H. J. van den Herik, and I. S. Herschberg, “Which games
will survive?” in Heuristic Programming in Artificial Intelligence 2: the
Second Computer Olympiad, D. N. L. Levy and D. F. Beal, Eds. Ellis
Horwood, Chichester, England, 1991, pp. 232–243.

12

[21] M. H. M. Winands, “6 × 6 LOA is Solved,” ICGA Journal, vol. 31,
no. 3, pp. 234–238, 2008.

[22] ——, “Analysis and implementation of Lines of Action,” Master’s thesis,
Maastricht University, Maastricht, The Netherlands, 2000.

[23] D. M. Breuker, J. W. H. M. Uiterwijk, and H. J. van den Herik,
“Replacement schemes and two-level tables,”ICCA Journal, vol. 19,
no. 3, pp. 175–180, 1996.

[24] J. Schaeffer and A. Plaat, “New advances in alpha-beta searching,” in
Proceedings of the 1996 ACM 24th Annual Conference on Computer
Science. ACM Press, New York, NY, USA, 1996, pp. 124–130.

[25] S. Akl and M. Newborn, “The principal continuation and the killer
heuristic,” in1977 ACM Annual Conference Proceedings. ACM Press,
New York, NY, USA, 1977, pp. 466–473.

[26] C. Donninger, “Null move and deep search: Selective-search heuristics
for obtuse chess programs,”ICCA Journal, vol. 16, no. 3, pp. 137–143,
1993.

[27] E. A. Heinz, “Adaptive null-move pruning,”ICCA Journal, vol. 22, no. 3,
pp. 123–132, 1999.

[28] Y. Björnsson and T. A. Marsland, “Risk managament in game-tree
pruning,” Information Sciences, vol. 122, no. 1, pp. 23–41, 2001.

[29] M. H. M. Winands, H. J. van den Herik, J. W. H. M. Uiterwijk,
and E. C. D. van der Werf, “Enhanced forward pruning,”Information
Sciences, vol. 175, no. 4, pp. 315–329, 2005.

[30] D. Dyer, “Lines of Action homepage,” 2000. [Online]. Available:
http://www.andromeda.com/people/ddyer/loa/loa.html

[31] D. Eppstein, “Dynamic Connectivity in Digital Images,” Information
Processing Letters, vol. 62, no. 3, pp. 121–126, May 1997.

[32] L. Kocsis, J. W. H. M. Uiterwijk, and H. J. van den Herik, “Learning
time allocation using neural networks,” inComputers and Games (CG
2000), ser. Lecture Notes in Computer Science (LNCS), T. A. Marsland
and I. Frank, Eds., vol. 2063. Berlin, Germany: Springer-Verlag, 2001,
pp. 170–185.

[33] L. Kocsis, J. Uiterwijk, and H. van den Herik, “Move ordering using
neural networks,” inEngineering of Intelligent Systems, ser. Lecture
Notes in Artificial Intelligence (LNCS), L. Montosori, J. V´ancza, and
M. Ali, Eds. Springer-Verlag, Berlin, Germany, 2001, vol. 2070, pp.
45–50.

[34] Y. Björnsson, “Selective depth-first game-tree search,” Ph.D. disserta-
tion, University of Alberta, Edmonton, Canada, 2002.

[35] H. H. L. M. Donkers, J. W. H. M. Uiterwijk, and H. J. van denHerik,
“Admissibility in opponent-model search,”Information Sciences, vol.
154, no. 3-4, pp. 119–140, 2003.

[36] M. Sakuta, T. Hashimoto, J. Nagashima, J. W. H. M. Uiterwijk, and
H. Iida, “Application of the killer-tree heuristic and the lamba-search
method to Lines of Action,”Information Sciences, vol. 154, no. 3–4,
pp. 141–155, 2003.

[37] T. Hashimoto, J. Nagashima, M. Sakuta, J. W. H. M. Uiterwijk, and
H. Iida, “Automatic realization-probability search,” 2003, internal report,
Dept. of Computer Science, University of Shizuoka, Hamamatsu, Japan.

[38] “Lines of Action Wikipage.” [Online]. Available: http://en.wikipedia.
org/wiki/Lines of Action

[39] G. M. J.-B. Chaslot, M. H. M. Winands, J. W. H. M. Uiterwijk, H. J.
van den Herik, and B. Bouzy, “Progressive strategies for Monte-Carlo
Tree Search,”New Mathematics and Natural Computation, vol. 4, no. 3,
pp. 343–357, 2008.

[40] Y. Tsuruoka, D. Yokoyama, and T. Chikayama, “Game-treesearch
algorithm based on realization probability,”ICGA Journal, vol. 25, no. 3,
pp. 132–144, 2002.

[41] J. A. M. Nijssen and M. H. M. Winands, “Enhancements for multi-
player Monte-Carlo Tree Search,” inComputers and Games (CG 2010),
H. J. van den Herik, H. Iida, and A. Plaat, Eds., 2010.

[42] M. H. M. Winands and Y. Björnsson, “Enhanced realization probability
search,”New Mathematics and Natural Computation, vol. 4, no. 3, pp.
329–342, 2008.

[43] S. Gelly and D. Silver, “Combining online and offline knowledge in
UCT,” in Proceedings of the International Conference on Machine
Learning (ICML), Z. Ghahramani, Ed. ACM, 2007, pp. 273–280.

[44] T. Cazenave and N. Jouandeau, “On the parallelization of UCT.” in
Proceedings of the Computer Games Workshop 2007 (CGW 2007), H. J.
van den Herik, J. W. H. M. Uiterwijk, M. H. M. Winands, and M. P.D.
Schadd, Eds. Universiteit Maastricht, Maastricht, The Netherlands,
2007, pp. 93–101.

[45] G. M. J.-B. Chaslot, M. H. M. Winands, and H. J. van den Herik,
“Parallel Monte-Carlo Tree Search,” inComputers and Games (CG
2008), ser. Lecture Notes in Computer Science (LNCS), H. J. van den
Herik, X. Xu, Z. Ma, and M. H. M. Winands, Eds., vol. 5131, 2008,
pp. 60–71.

[46] S. Gelly, J.-B. Hoock, A. Rimmel, O. Teytaud, and Y. Kalemkarian,
“The parallelization of Monte-Carlo planning - parallelization of MC-
planning,” in Proceedings of the Fifth International Conference on
Informatics in Control, Automation and Robotics, Intelligent Control
Systems and Optimization (ICINCO 2008), J. Filipe, J. Andrade-Cetto,
and J.-L. Ferrier, Eds. INSTICC Press, 2008, pp. 244–249.

[47] M. Enzenberger and M. Müller, “A lock-free multithreaded Monte-Carlo
Tree Search algorithm,” inAdvances in Computer Games (ACG 2009),
ser. Lecture Notes in Computer Science (LNCS), H. J. van den Herik
and P. H. M. Spronck, Eds., vol. 6048. Berlin Heidelberg, Germany:
Springer-Verlag, 2010, pp. 14–20.

[48] P. Zhang and K. Chen, “Monte-Carlo Go tactic search,” inProceedings
of the 10th Joint Conference on Information Sciences (JCIS 2007),
P. Wanget al., Eds. World Scientific Publishing Co. Pte. Ltd., 2007,
pp. 662–670.

[49] J. Kloetzer, H. Iida, and B. Bouzy, “A comparative studyof solvers in
Amazons endgames,” inComputational Intelligence and Games (CIG
2008). IEEE, 2008, pp. 378–384.

[50] B. Bouzy, “Old-fashioned computer Go vs Monte-Carlo Go,” in IEEE
Symposium on Computational Intelligence in Games (CIG-07), 2007,
invited tutorial.

[51] M. H. M. Winands and H. J. van den Herik, “MIA: A world champion
LOA program,” in The 11th Game Programming Workshop in Japan
(GPW 2006), 2006, pp. 84–91.

[52] M. H. M. Winands, E. C. D. van der Werf, H. J. van den Herik,and
J. W. H. M. Uiterwijk, “The relative history heuristic,” inComputers
and Games (CG 2004), ser. Lecture Notes in Computer Science (LNCS),
H. J. van den Herik, Y. Björnsson, and N. S. Netanyahu, Eds.,vol. 3846.
Berlin, Germany: Springer-Verlag, 2006, pp. 262–272.

[53] L. V. Allis, “Searching for solutions in games and artificial intelligence,”
Ph.D. dissertation, Rijksuniversiteit Limburg, Maastricht, The Nether-
lands, 1994.

[54] J. Steinhauer, “Monte-Carlo TwixT,” Master’s thesis,Maastricht Univer-
sity, Maastricht, The Netherlands, 2010.

Mark Winands received the Ph.D. degree in Ar-
tificial Intelligence from the Department of Com-
puter Science, Maastricht University, Maastricht,
The Netherlands, in 2004. Currently, he is an As-
sistant Professor at the Department of Knowledge
Engineering, Maastricht University. His research in-
terests include heuristic search, machine learning
and games. Dr. Winands regularly serves on pro-
gram committees of major AI and computer games
conferences. Since January 2009, he is a member of
the editorial board of the ICGA Journal.

Yngvi Bj örnsson is an associate professor at the
School of Computer Science, Reykjavı́k University
and a director (and co-founder) of the CADIA
research lab. He received a Ph.D in computer sci-
ence from the Department of Computing Science,
University of Alberta, Canada, in 2002. His re-
search interests are in heuristic search methods and
search-control learning, and the application of such
techniques for solving large-scale problems in a
wide range of problem domains, including computer
games and industrial process optimization.

Jahn-Takeshi Saito received a Master’s degree in
Computational Linguistics and Artificial Intelligence
from University of Osnabrück, Osnabrück, Germany,
in 2005. He has been working as a Ph.D. student at
the Department of Knowledge Engineering, Maas-
tricht University, Maastricht, The Netherlands, since
2005. His research is on Proof-Number Search and
Monte-Carlo methods applied to board games.

