Monte-Carlo Tree Search in Lines of Action

Mark H.M. Winands, Yngvi Bjornsson, and Jahn-Takeshi&ait

Abstract—The success of Monte-Carlo Tree Search (MCTS) domains wherev3-based search has had difficulties, in partic-
in many games whereaj-search has failed, naturally raises ylar computer Go, but other domains include General Game
the question whether Monte-Carlo simulations will eventudly Playing [8], Phantom Go [9], Hex [10], and Amazons [11].

also outperform traditional game-tree search in game domais Th h I | f d . h
where af-based search is now successful. The forte ef3-search ese are, however, all examples ol game domains where

are highly-tactical deterministic game domains with a smdito  €ither a large branching factor or a complex static state

moderate branching factor, where efficient yet knowledgedich evaluation do restrains search in one way or another.

evaluation functions can be applied effectively. This remarkable success of MCTS naturally raises the ques-
In here we describe a MCTS-based program for playing the tion as to whether simulation-based programs can also com-

game Lines of Action (LOA), which is a highly-tactical slow- . L :
progression game exhibiting many of the properties difficul for pete successfully against traditional game-tree seangrams

MCTS. The program uses an improved MCTS variant that allows 1N domai_ns where the latter have been _SUCCGSSfU_”Y employed
it to both prove the game-theoretical value of nodes in a seah and achieved master-level status, that is, deterministioas

tree and to focus its simulations better using domain knowlége. with a moderate branching factor and knowledge-rich eval-

This results in simulations superior in both handling tactics and ;5tion functions. Clearly some games are more challenging

ensuring game progression. Using the improved MCTS variant . .
our program is able to outperform even the world’s strongest for simulation-based approaches than others. For example,

af-based LOA program. This is an important milestone for the progression property has been idgnti_ﬁed as an important
MCTS because the traditional game-tree search approach has success factor for MCTS [12], that is, ideally each move

been considered to be the better suited for playing LOA. should bring the game closer towards its natural conclusion
Index Terms—Monte-Carlo Tree Search, Game-Tree Solver, (€.0. by gradually filing up the board by adding pieces or
Lines of Action. blocking squares). Without this property there is a riskhaf t

simulations leading mostly to futile results. Also, gametw
many tactical lines of play that can end the game abruptly
|. INTRODUCTION (e.g. checkmate in chess) typically lend themselves béiter

For decades 3 search has been the standard approach ugBifiimax-based backup rules than simulation averagings It i
by programs for playing two-person zero-sum games suchthys clear thgt chess-like games, which are both highlycct
chess and checkers (and many others). Over the years m%g where pieces can be shuffled (endlessly) back and forth
search enhancements have been proposed for this framewfRout much progress, present a challenge for MCTS.
that further enhance its effectiveness. This traditiorehg- !N this article we describe a MCTS program for playing
tree-search approach has, however, been less successfuf¥p 9ame Lines of Action (LOA) [13]. It uses an improved
other types of games, in particular where a large branchiffif-TS variant that outperforms the world's best-based

factor prevents a deep lookahead or the complexity of garh@” Program. This is an important milestone for MCTS,
state evaluations hinders the construction of an effeeas- 2€cause up until now the traditional game-tree search appro

uation function. Go is an example of a game that has so S Peen considered to be better suited for LOA, which
eluded this approach. is a highly-tactical slow-progression game featuring bath

In recent years a new paradigm for game-tree search ggerate branchinghfa;:]'ltor an(rj]_g(_)od sctiate elvalgat?crs (tbte be
emerged, so-called Monte-Carlo Tree Search (MCTS) [1 h proglramls use '9 ysopl |§t|cate eva uatf|on I}]J.HG)OH
[2]. In the context of game playing, Monte-Carlo simulagon e previously best game-playing programs for this game,

were first used as a mechanism for dynamically evaluatirﬁgﬁ‘egl‘l]’ BING [15], YL [16], and MoNa [16], are allaj

the merits of leaf nodes of a traditiona3-based search [3],

[4], [5], but under the new paradigm MCTS has evolved into a To achieve this success MCTS had to be enhanced in several
full-fledged best-first search procedure that replace#imadl ways. The enhancements occurred in steps over the lastecoupl

af-based search altogether. Many non-deterministic ga gyears. First, to be able to more effectively handle highly

lend themselves well to a simulation-based approach (ei%;:t'cal lines of play leading to untimely wins or losses, M&C

Scrabble [6] and Skat [7]), in part because of their chan is augmented such that it can prove the game-theoretical

element. In the past few years MCTS has also substantia\ﬂzIue of nod(_es in a search tr(_ee, where applicable [17]. Sec-
advanced the state-of-the-art in several deterministimexgja0 dly, to avoid aimlessly moving pieces back and forth, the

program uses simulation strategies that have been enriohed
Mark Winands and Jahn-Takeshi Saito are with the Games aN@/1OUS Wways with useful domain knOW|edge' The informed
Al Group, Department of Knowledge Engineering, Faculty ofu-H Strategies result in simulations that are both more focused
manities and Sciences, Maastricht University, The Netneld. (e-mail: gnd can vary in Iength depending on the progress made [18].
{m.winands,j.saitp@maastrichtuniversity.nl) . . . .
Yngvi Bjormsson is with the School of Computer Science, Kayik Finally, by carrying useful tree information around as thaeng
University, Reykjavik, Iceland (e-mail yngvi@ru.is). advances and by fine-tuning various search-control paegmet



further performance gains are achieved. Collectively éheB. Characteristics

enhancements result in a MCTS variant that outperfatifis  The game has an average branching factor of approximately
The article is organized as follows. In the next section wgg gnd an average game length of around 44 ply [14]. The
explain the I‘u|eS Of LOA a.nd the I‘Ole |t p|ayS in artiﬁcial'game_tree Complexity is estimated to be abmﬁ4 and the
intelligence game research. In Section Il we discuss MCTgate space complexity023 [19].
and its implementation in our LOA program. In Sections IV The game is thus comparable to Othello with respect to
and V we introduce our game-theoretical MCTS variant af‘t!bmplexity [20]. Given the current state-of-the-art conpu
the improved simulation strategies, respectively. We emptechniques LOA is not solvable by brute-force methods any
ically evaluate the MCTS-based LOA program in Sectiofime soon. A scaled-dowdix 6 version was solved by Winands
VI and match it against itsy3-based counterpart. Finally,in 2008 [21].
in Section VII we conclude and give an outlook on future since most terminal positions have still more than 10 pieces
research. remaining on the board [22], endgame databases are not effec
tively applicable in LOA (a 10 piece database would require
Il. LINES OFACTION approximately 10 terabytes to store). Apart from endgame
databases not being applicable, the same search techaiogies
Lines of Action (LOA) is a two-person zero-sum game Witianhancements commonly found in chess-playing programs are
perfect information; it is a chess-like game (i.e. with BEC generally effective in LOA, such as transposition table][23

that move and can be captured) played on a8 8oard, albeit [24], killer moves [25], adaptive null-move [26], [27], and
with a connection-based goal. LOA was invented by Clauggylti-cut [28], [29].

Soucie around 1960. Sid Sackson [13] described the game in

his first edition ofA Gamut of Games C. The Role of LOA in Al Game Research

Around 1975 LOA received its first credentials as an Al
A. The Rules research topic. Then the first LOA program was written by

LOA is played on an 88 board by two sides, Black and@n unknown author at the Stanford Al laboratory [30]. In the

White. Each side has twelve (checker) pieces at its dispoélai?Sos and 1990s “hobby” programmers wrote several LOA
Game play is specified by the following rules: programs, however, all were easily beaten by humans [30]. At

) , the end of the nineties LOA again received increased irteres
1) The black pieces are placed in two rows along the 9 m the games research community.
and bottom of the board, while the white pieces aré 5, yhe one hand, researchers recognized LOA as a good test
placed in two files at the left and right edge of the boarg, ain for their algorithms. For example, Eppstein meribn
(see Fig. 1(a)). _ , _evaluation of connectivity of LOA positions as a possible
2) The players alternately move a piece, starting WILE‘pplication for his dynamic planar graph techniques [31].
Black. i , , Kocsis successfully applied his time allocation learnifgpa
3) A move takes place in a straight line, exactly as mamnynms and his new Neural MoveMap move ordering method
squares as there are pieces of either color anywheie) 5a [32]33]. Moreover, Bjornsson used LOA as an
along the line of movement (see Fig. 1(b)). alternative domain (to chess) to verify the merits of his tinul
4) A player may jump over Its own pieces. o cut pruning method [34]. Donkers used LOA to test opponent-
5) A player may not jump over the opponent's pieces, bHﬁodel search [35]. Sakutet al. investigated the application
can capture them by Iaqdlng on them._ of the killer-tree heuristic and tha-search method to the
6) The goal of a player is to be the first to create gnygame of LOA [36]. Hashimotet al. chose LOA as a
configuration on the board in which all own pieces arg,qt"4omain for their automatic realization-probabiligagch
connected in one unit. Connected pieces are on squates o [37].
that are adjacent, gither 9”“090”3”3’ or diagonal_ly (e.9. One the other hand, researchers concentrated on building
see Fig. 1(c)). A single piece is a connected unit.  gon4 | OA programs based on both existing and new ideas.
7) In the case of simultaneous connection, the game g5, jnstance, the four programs MIA (Maastricht In Action)
drawn. [14], BING [15], YL [16], and MoNA [16] are example of
8) A player_ Fhat c_annot move must pass. strong LOA programs. Since 2000 LOA has been played
9 Ifa ppsmpn with the same player to move occurs foéeven times at the Computer Olympiad, a multi-games event
the third time, the game is drawn. in which all of the participants are computer programs. The
In Fig. 1(b) the possible moves of the black pieced® strongest LOA programs are considerably stronger than the
(using the same coordinate system as in chess) are sh@#gt human players [38].
by arrows. The piece cannot move ftb because its path is
blocked by an opposing piece. The movehiis not allowed 1. M ONTE-CARLO TREE SEARCH

because the square is occupied by a black piece. Monte-Carlo Tree Search (MCTS) [1], [2] is a best-first
N _ search method that does not require a positional evaluation
These are the rules used at the Computer Olympiads and at 8@ M]c . ltis b d d ized | . f thecte
World Championships. In some books, magazines or tourngntrere may unction. t IS based on a ran Om'ze exp Or"_mon ort _e ar
be a slight variation on rules 2, 7, 8, and 9. space. Using the results of previous explorations, therilfgn



7

(0)©)
@®
[©)

(5

Fig. 1. (a) The initial position. (b) Example of possible mev(c) A terminal position.

000000
000000

@0

gradually builds up a game tree in memory, and successively

becomes better at accurately estimating the values of ttg mo
. C xInn, W X P
promising moves. k € argmazxicr | v; + — 1 , (D
MCTS consists of four strategic steps, repeated as long as ‘ ‘

there is time left [39]. The steps, outlined in Fig. 2, are agherev; is the value of the node n, is the visit count of
follows. (1) In theselection steghe tree is traversed from thei, andn,, is the visit count ofp. C' is a coefficient, which
root node until we reach a nod& where we select a positioncan be tuned experimentally: 2= is the PB part of the
that is not added to the tree yet. (2) Next, during pheey-out formula. W is a constant, which is set manually (héié =
stepmoves are played in self-play until the end of the game i9). P,,. is thetransition probabilityof a move categorync
reached. The resuR of this “simulated” game is-1 in case of [40]. Instead of dividing the PB part by the visit count
a win for Black (the first player in LOA), 0 in case of a drawas done originally [39], it is here divided by the number of
and —1 in case of a win for White. (3) Subsequently, in théosses;. In this approach, nodes that do not perform well are
expansion stephildren of E are added to the tree. (4) Finally,not biased too long, whereas nodes that continue to have a
in the backpropagation stepR is propagated back along thehigh score, continue to be biased. To ensure that we do not
path fromE to the root node, addin@ to an incrementally divide by O, a 1 is added in the denominator. Nijssen and
computed result average for each action along the way. Whéfinands [41] tested this approach in the games Focus and
time is up, the action played by the program is the child ¢thinese Checkers, showing that PB divided by the number of
the root with the highest such average value. losses outperformed the default PB in the two-player vésian
with a winning score of 65% and 58%, respectively. A slight
improvement was measured for our MC-LOA program as well.
) For each move category (e.g., capture, blocking) the proba-
A. The four strategic steps bility that a move belonging to that category will be played i

. . . determined. The probability is called thransition probability
The four s_trateg.|c steps of MCTS are dlscqssed n deteflﬁis statistic is obtained from game records of matchesgulay
below. We will clarify how each of these steps is used in oy

y expert players. The transition probability for a move
Monte-Carlo LOA program (MC-LOA). categorymc is calculated as follows:
1) Selection:Selection picks a child to be searched based

on previous information. It controls the balance between Pe = _Mplayed(me) , 2)
exploitation and exploration. On the one hand, the tasknofte Navailable(mc)

consists of selecting the move that leads to the best feﬂm“&/\/herenplwed(mc) is the number of game positions in which a
far (exploitation). On the other hand, the less promising®so move beldnging to categoryc was played, andq,qirabie(me)

still must be tried, due to the uncertainty of the evaluatiolg the number of positions in which moves belonging to
(exploration). categoryme were available.

We use the UCT Wpper Confidence Bounds applied to The move categories of our MC-LOA program are similar
Trees) strategy [2], enhanced with Progressive Bias (PB). [3% the ones used in the Realization-Probability Search ef th
PB is a technique to embed domain-knowledge bias into theogram MIA [42]. They are used in the following way. First,
UCT formula. It is e.g. successfully applied in the Go pragrawe classify moves as captures or non-captures. Next, moves
MANGoO. UCT with PB works as follows. Lel be the set of are further sub-classified based on the origin and destimati
nodes immediately reachable from the current npddhe squares. The board is divided into five different regions: th
selection strategy selects the chitdof nodep that satisfies corners, the8 x 8 outer rim (except corners), thiex 6 inner
Formula 1: rim, the4 x 4 inner rim, and the centra x 2 board. Finally,



Repeated X times

Selection Play-out Expansion Backpropagation

The selection strategy is One simulated One node is added The result of this game
applied recursively until an game is played to the tree is backpropagated in
unknown position is reached the tree

Fig. 2. Outline of Monte-Carlo Tree Search (adapted fromsGitat al. [39]).

moves are further classified based on the number of squasexps after a fixed length (and subsequently is scored based o
traveled away from or towards the center-of-mass. In tofdl 2the value of the evaluation function), whereas in our apghoa
move categories can occur according to this classification. the simulation may terminate at any time.

The aforementioned selection strategy is only applied in3) Expansion:Expansion is the strategic task that decides
nodes with visit count higher than a certain thresh@d whether nodes will be added to the tree. Here, we apply a
(here 5) [1]. If the node has been visited fewer times thaimple rule: one node is added per simulated game [1]. The
this threshold, the next move is selected according to thdded leaf nodé corresponds to the first position encountered
simulation strategydiscussed in the next strategic step. during the traversal that was not already stored.

2) Play-out: The play-out step begins when we enter a 4) BackpropagationBackpropagation is the procedure that
position that is not a part of the tree yet. Moves are selectprbpagates theesultof a simulated gamé back from the leaf
in self-play until the end of the game. This task might cansisodeL, through the previously traversed node, all the way up
of playing plain random moves or — better — pseudo-randam the root. The result is scored positiveliz, = +1) if the
moves chosen according tosanulation strategyGood simu- game is won, and negatively?, = —1) if the game is lost.
lation strategies have the potential to improve the levedlay Draws lead to a resul?, = 0. A backpropagation strategy
significantly [43]. The main idea is to play interesting msveis applied to thevaluev;, of a node. Here, it is computed by
according to heuristic knowledge. In our MC-LOA programiaking the average of the results of all simulated games made
the move categories together with their transition prolitas, through this node [1], i.exr, = (3, Ry.)/nr.
as discussed in the selection step, are used to select thessmov
pseudo-randomly during the play-out. .

A simulation requires that the number of moves per gane Parallelization
is limited. When considering the game of LOA, the simulated The parallel version of our MC-LOA program uses the
game is stopped after 200 moves and scored as a draw. Sbecalled “single-run” parallelization [44], also calledot
game is also stopped when heuristic knowledge indicatds tparallelization [45]. It consists of building multiple MCTS
the game is effectively over. When an evaluation functiomees in parallel, with one thread per tree. These thread®tio
returns a position assessment that exceeds a certain dldesbhare information with each other. When the available time i
(i.e., 700 points), which heuristically indicates a deasi up, all the root children of the separate MCTS trees are nderge
advantage, the game is scored as a win. If the evaluatiwith their corresponding clones. For each group of clorfes, t
function returns a value that is below a mirror thresholel.{i  scores of all games played are added. Based on this grahd tota
700 points), the game is scored as a loss. For efficiencymsasthe best move is selected. This parallelization method only
the evaluation function is called only every 3 plies, detieed requires a minimal amount of communication between threads
by trial and error [17]. so the parallelization is easy, even on a cluster. For a small

The idea of early terminations based on an evaluation scanember of threads, root parallelization performs remalkab
is not new. The Amazons programiMADERMC [11] also well in comparison to other parallelization methods [44B][
does so. The difference is that IRMADERMC the simulation However, root parallelization does not scale well for a dairg



are instead assigne or —oo, respectively. A special provision

is then taken when backing such proven values up the tree.
There are three cases to consider as shown in Fig. 4 (we use
the negamax formulation, alternating signs between lgvels
First, when a simulation backs up a proven lossx{) from

©
(©)
C)©)
@

a child ¢ to a parentp, the parent node becomes, and is
labelled as, a proven winx), that is, the position is won for

the player atp because the move played leads to a win (left

backup diagram in the figure). When backing up a proven

win (oc0) from ¢ to p, one must, however, also look at the
other children ofy to determinep’s value. In the second case,
when all child nodes op are also a proven winof), then
the value ofp becomes a proven lossx(), because all moves
lead to a position lost fop (middle backup diagram in the
figure). However, the third case occurs if there exists adtlea
one child with a value different value from a proven win. Then

number of threads. An alternative is to usee parallelization W€ cannotlabeb as a proven loss. Insteadgets updates as if

[45], which had good results in Computer Go [46], [47]. Thi& simulation win (instead of a proven win) were being backed

method uses one shared tree from which several simulaté(g,from nodec (right backup diagram in the figure; andu
games are played simultaneously [45]. indicate non-proven values). Non-proven values are baoked

as in regular MCTS.

Fig. 3. White to move.

IV. MONTE-CARLO TREE SEARCH SOLVER

Although MCTS is unable tgrove the game-theoretical B- Selection

value, in the long run MCTS equipped with the UCT formula As seen in the previous subsection, a node can have a
is able toconvergeo the game-theoretical value. For exampleggroven game-theoretical value ob or —co. The question
in endgame positions in fixed termination games like Go @rises how these game-theoretical values affect the mmiect
Amazons, MCTS is often able to find the optimal move relsstrategy. When entering a node with such a proven value, that
tively fast [48], [49]. But in a tactical game like LOA, wherevalue can simply be returned without any selection taking
the main line towards the winning position is typically rewr place. A more interesting case is when the node itself has
with many non-progressing alternatives, MCTS may ofted le@ non-proven value but some of its children have.
to an erroneous outcome because the nodes’ values in the tredssume that one or more moves of ngdare proven to
do not converge fast enough to their game-theoretical vallead to the loss for the player to move jn It is tempting
For example, if we let MCTS analyze the position in Fig. 3 foto discard them in the selection step based on the argument
5 seconds, it selects/xc4 as the best move, winning 67.2%that one would never pick them. However, this can lead to
of the simulations. However, this move is a forced 8-ply Jossverestimating the value of node especially when moves
while f8-f7 (scoring 48.2%) is a 7-ply win. Only when we letare pseudo-randomly selected by the simulation strategy. F
MCTS search for 60 seconds or longer, it selects the correstample, in Fig. 5 we have three one-ply subtrees. Leaf nodes
move. For a reference, we remark that in this position itsak® and C are proven to be a loss (for player to moveAj
af less than a second to select the best move and prove itidicated by —oo; the numbers below the other leaves are
win. the expectedpay-off values (also from the perspective of the
We thus designed a new MCTS variant called MCTS-Solveglayer to move irA). Assume that we select the moves with the
which is able to prove the game-theoretical value of a pmsiti same likelihood (as could happen when a simulation strategy
The backpropagation and selection steps were modifiedifor tts applied). If we would prune the loss nodes, we would prefer
variant, as well as the procedure for choosing the final monedeA aboveE. The average oA would be 0.4 and 0.37 for
to play. E. It is easy to see tha is overestimated becaukehas more
good moves.
Conversely, if we do not prune proven loss nodes, we run
the risk of underestimation. Especially, when we have agtro
The play-out step returns the valugs, 0, —1} for simu- preference for certain moves (because of a bias) or we would
lations ending in a win, draw, or loss, respectively. In tegu |ike to explore our options (because of the UCT formula),
MCTS the same is true for terminal positions occurring in thge could underestimate positions. Assume that we have a
search tree (built by the MCTS expansion step). In the MCTStrong preference for the first move in the subtrees of Fig.
Solver, terminal win and loss positions occurring in theetres \wve would prefer nodé aboveA. It is easy to see thak is
are handled differentl§. The win and loss terminal positionsynderestimated becaukdas no good moves at all.
) _ _ Based on trials and error, the most effective selection is
Draws are generally more problematic to prove than wins azdels,

however, because draws happen only in exceptional case®Mve took performed ”_1 the foIIowmg way. In case qumUIa (1) is arlﬂ)Jie
the decision not to handle them for efficiency reasons. moves leading to a loss for the player will never be selected.

A. Backpropagation



+ 00 =00 u

ot dob dor

Fig. 4. Backup of proven values.

For nodes that instead select moves according to a simulatfanction as discussed in Subsection IV-B, which returns the
strategy, that is nodes having the visit count below thesgte- best child of the nodév. The proceduraddToTr ee( Node
threshold, moves leading to a losan be selected. node) adds one more node to the trga; ayQut ( Node

One additional improvement is to perform a 1-ply lookahead) is the function which plays a simulated game from the
at leaf nodes (i.e., where the visit count equals one) [14. Wlode N, and returns the resulR € {1,0,—1} of this
check whether they lead to a direct win for the player to movgame;conput eAver age( | nt eger R) is the procedure
If there is such a move, we can skip the play-out, label thkat updates the value of the node depending on the result
node as a win, and start the backpropagation step. If it wetre iR of the last simulated gameget Chi | dr en( Node N)
for such a lookahead, it could take many simulations beforeganerates the children of nodé.
child leading to a mate-in-one is selected and the node prove

V. IMPROVED SIMULATION STRATEGIES

C. Final Move Selection In both the selection and the play-out steps move categories
For standard MCTS several ways exist to select the mot@gether with their associated transition probabilities ased

finally played by the program in the actual game. Often, 0 bias the move selection. In this section we introduce four

is the child with the highest visit count, or with the highessimulation strategies for further biasing and enhancing th

value, or a combination of the two. In practice, is does nstmulation roll-outs. They ar&valuation Cut-Off Corrective

matter too much which of the approaches is used given thaGseedy and Mixed

sufficient amount of simulations for each root move has been

played. However, for MCTS-Solver it does somewhat mattex. Evaluation Cut-Off

Because of the backpropagation of game-_theoretical valuestne Evaluation Cut-Off strategy stops a simulated game
the score of a move can suddenly drop or rise. Therefore, Werore 4 terminal state is reached if, according to a heurist
have chqsgn a method ce}IIS@cure chllc{39].llt is the child knowledge, the game is judged to be effectively over. In
that maximizes the quantity + = whereA is a parameter general, once a LOA position gets very lopsided, an evanati
(here, set to 1)y is the node’s value, and is the node’s Visit fnction can return a quite trustworthy score, more so than

count. For example, if two moves have the same value, WGen elaborate simulation strategies. The game can thus be
would prefer the one explored less often. The rational haeto (relatively) safely terminated both earlier and with a more

with the derivative of their value: because of the imbalaince accyrate score than if continuing the simulation (which hig

the number of simulations, either the value of the move MOLEy. fail to deliver the win). This is somewhat analogous to

explored must have been dropping, or the value of the opg "mercy-rule” in computer Go [50]. We use the MIA 4.5

less explored increasing; in both cases the one less erplogGa|yation function [51] for this purpose. When the evabrat

IS tq be favored. . function gives a value that exceeds a certain threshold, the
Finally, when a win can be proven for the root node, thgme is scored as a win. Conversely, if the evaluation fancti

search is stopped and the winning move is played. For figes a value that is below the negated threshold, the game is
position in Fig. 3, MCTS-Solver is able to select the be§tcored as a loss.

move and prove the win for the position depicted in less thang,r initial MCTS-based LOA program described in [17],

a second, or in the same time frameca& As noted earlier, \;seq 4 threshold value of 1000 points, chosen conseryatisel

it takes standard MCTS over a minute to pick the winningyy ghservation) such a high value, with only a few excegtjon
MOve. represents an eventual win. Such a conservative choice of a

threshold is not necessarily optimal. It might be a bett@icd
D. Pseudo Code for MCTS-Solver to use a more aggressive cut-off threshold even though being
A C-like pseudo code of MCTS-Solver is provided in Figoccasionally wrong. The added number of simulations becaus

6. The algorithm is constructed similar to negamax in the-coof even earlier terminations of lopsided positions mightreno
text of minimax searchsel ect (Node N) is the selection than offset the errors introduced by the occasional ernesieo



-0 =% 04

Fig. 5. Monte-Carlo Subtrees.

nt eger MCTSSol ver (Node N){

i f(player ToMoveW ns(N))
return INFINITY

el se (pl ayer ToMoveLoses(N))
return -1 NFINTY

best Child = sel ect(N)
N. vi si t Count ++

i f(bestChild.value '= -INFINITY
AND best Chi |l d. val ue != I NFI NI TY)
i f(bestChild.visitCount == 0){
R = -playQut (best Chil d)
addToTr ee( best Chi |l d)
got o DONE
}
el se
R = - MCTSSol ver ( best Chi | d)
el se
R = best Chi |l d. val ue

if(R==1INFINITY){
N.value = -INFINITY
return R
}
el se
if(R==-INFINTY){

foreach(child in getChildren(N))

if(child.value '= R{
R=-1
got o DONE

}

N.value = INFINITY
return R

}

DONE:
N. comput eAver age(R)
return R

}

Fig. 6. Pseudo code for MCTS-Solver

5o do b

0.4 -0.1 -0.1  -0.1

termination decisions. In our improved evaluation cutsbifat-

egy we determine this tradeoff empirically (see experirakent
section), leading to a substantially more aggressive tiolds
settings, i.e., 700 points. As before, the terminationtsta

is applied only in the play-out step. For efficiency reasons
the evaluation function is called only every 3 plies, staytat

the second ply (thus at 2, 5, 8, 11 etc.). Differences in odd
vs. even ply evaluations observed in some LOA programs are
not too important here, because they are typically relbtive
small compared to the large threshold value, as well as they
are (partially) offset in the evaluation function of our LOA
program by having a side-to-move bonus [14].

B. Corrective

One known disadvantage of simulation strategies is that
they may draw and play a move which immediately ruins
a perfectly healthy position. Embedding domain knowledge,
e.g. by the use of Progressive Bias, somewhat alleviates the
problem.

In the Correctivestrategy we use the evaluation function to
further bias the move selection towards minimizing the agk
choosing an obviously bad move. This is done in the following
way. First, we evaluate the position for which we are chogsin
a move. Next, we generate the moves and scan them to get
their weights. If the move leads to a successor which has a
lower evaluation score than its parent, we set the weight of a
move to a preset minimum value (close to zero). If a move
leads to a win, it will be immediately played. The pseudo
code for this strategy is given in Fig. 7. The effectiveneks o
the algorithm will be partially determined by how efficigntl
game positions and moves are evaluated. For a reference, in
our MCTS LOA program, using this strategy, evaluating posi-
tions consumes around 30% of the program’s total execution
time (somewhat more than the combined make/undo move
operations), whereas determining a weight for a move cagego
takes around 5% of the total execution time.

C. Greedy

In the Greedy strategy the evaluation function is more
directly applied for selecting moves: the move leading ® th
position with the highest evaluation score is selected. él@n
because evaluating every move is time consuming, we eealuat
only moves that have a good potential for being the best. For



correctiveStrategy(board){

def aul t Val ue = eval uat e( board);
nmoveli st = gener at eMoves();
scoreSum = 0;

foreach(Move min novelist){
val ue = eval uate(board, nj;
if (value > bound)
return m
else i f (value <= defaul tVal ue)
m score = Epsilon;
el se
m score = m get MCWei ght (board) ;
scoreSum += m scor e€;

}

scoreSum *= randon();
foreach(Move min novelist){

scoreSum -= m score€;
i f(scoreSum <= 0)
return m

Fig. 7. Pseudo code for the Corrective strategy

G eedy(Board b){

noveli st = generat eMoves();
assi gnAndSort (nmoveli st) ;
counter = O;

foreach(Move min novelist){
if(counter < K){
val ue = eval uate(board, nj;
i f(value > bound){
return m

i f(value > max)({
best = m
max = val ue;

}

el se {
i f(evaluateWn(board, m) {
return m
}
}

count er ++;

return best;

}

Fig. 8. Pseudo code for the Greedy strategy

this strategy it means that only thebest moves according three-tuple (solver, threshold, strategy) to represent the
to their transition probabilities are fully evaluated. Asthe parameter setting used in each particular player in-
Evaluation Cut-Off strategy, when a move leads to a positi@@ance. wheresolver € {on, off }, threshold € [0, ], and
with an evaluation over a preset threshold, the play-out ig;cqy < {default, corrective, greedy, mized}. For exam-
stopped and scored as a win. Finally, the remaining movege in the following experiments the most common in-
which are not heuristically evaluated, are checked for &matantiation, referring to the best setting we found, is MC-
The pseudo code for the Greedy strategy is given in Fig. 8, OA ,,, 759 mizea), that is, the solver is enabled, the simula-

D. Mixed

tion cut-off threshold is set to 700, and the mixed simulatio
strategy is used.

A potential weakness of the Greedy strategy is that despiteTo determine the relative playing strength of two programs
a small random factor in the evaluation function, it is towe play a match between them consisting of many games (to
deterministic. TheMixed strategy combines the Correctiveestablish a statistical significance). In the following esip
strategy and the Greedy strategy. The Corrective strategyments each match data point represents the result of 1,000
used in the selection step, i.e., at tree nodes where a giorulagames (unless otherwise specified), with both colors played
strategy is needed (i.en, < T'), as well as in the first position equally. A standardized set of 100 three-ply starting jarsst
entered in the play-out step. For the remainder of the play6] is used, with a small random factor in the evaluation
out the Greedy strategy is applied. Finding the right batanfunction preventing games from being repeated. The thinkin
between exploitation and exploration, however, remairesafn time is 5 seconds per move (unless otherwise specified). All
the main challenges in simulation-based search. Whereas @fperiments were performed on an AMD Opteron 2.2 GHz
mixed strategy proposed here does a good job in our tesgmputer.
domain, more work is still needed for the approach to be In the next subsection we briefly describe MIA 4.5. Then,

applied to other game domains in a principled way.

VI. EXPERIMENTS

In this section we evaluate the performance of the improveAd
MCTS LOA player, both via self-play and against the world’s™

in turn, we empirically evaluate the simulation strategtbe
solver, and then additional tuning enhancements.

MIA (Maastricht In Action)

strongestyS-based LOA program, MIA 4.5 (as well as some MIA is a world-class LOA program, which won the LOA

of its earlier ancestors).

tournament at the eighth (2003), ninth (2004), and eleventh

We will refer to the MCTS player as MC-LOA. It (2006) Computer Olympiad. Over its lifespan of 10 years & ha
can be instantiated using the various combinations gfadually been improved and has for years now been generally
enhancements introduced in earlier sections. We useaecepted as the best LOA-playing entity in the world. All our



TABLE |
THREE DIFFERENT OPPONENTS PLAYING AGAINSMC-LOA (4, ¢, defautt) (WIN %)

Threshold (t) 0 100 200 400 600 700 800 1000 1200 1400 00
MC_LOA(un,oo,def) 15.1+2.2 1494+22 156+2.2 11.84+20 11.2+19 99+£19 87+1.7 57+£14 47+13 224+09 -
MIA Il 24.6+27 246 £2.7 2284+26 23.2+£26 21.8£2.6 254127 248+27 335+29 39.84+3.0 51.1£3.1 99.8+0.3
MIA 4.5 79.4+26 79.5+26 77.6+26 76.9+26 72.0+£27 71.7+28 7544+2.7 781426 83.5+23 86.8+2.1 99.94+0.2
Avg. Game Len. 2.00 2.67 3.56 5.85 8.45 9.83 11.17 13.94 16.65 19.18 53.70
Games per Sec. 10074 9242 8422 6618 5260 4659 4211 3507 2995 11 26 2060
. . . TABLE Il
experiments were performed using the latest version of the RroynD-rROBIN TOURNAMENT RESULTS MATCHING DIFFERENT
program, called MIA 4.5. The program is written in Java. SIMULATION STRATEGIES, MC-LOA (,, 700,¢) (WIN %)

MIA performs an «of depth-first iterative-deepening
search in the Enhanced-Realization-Probability-Sed&BiPS)

o g ) Strategy Default Corrective Greedy Mixed
framework [42]. Atwo-deeptransposition table [23] is applied Default - 4425 €31 59.80E£3.0 32.55E29
to prune a subtree or to narrow the3 window. At all COff%Ctlve ig-;g i g(l) 49,604 2.0 67.40 £2.9 i’ggg i gg
. . . reedy . . . . - . .
interior nodes that are more than 2 plies away from the Ieavesixed 6745 +£29 6380 L30 83.30 % 2.3 i

it generates all moves to perform Enhanced Transposition
Cutoffs (ETC) [24]. Next, a null-move [26] is performed adap
tively [27]. Then, an enhanced multi-cut is performed [28 _ S o
[29]. For move ordering, the move stored in the transpcn;itii\he players is the one that minimizes their winning peragata
table (if applicable) is always tried first, followed by twilgr ~ (Shown in bold). Based on this we chose a threslicid700
moves [25]. These are the last two moves that were best, of¢J; OUr default player, as a compromise between the three
least caused a cutoff, at the given depth. Thereafter folfay different optimal thresholds, with more weight put on the
capture moves going to the inner area (the certrall board) _thresholds performing well against thef-based oppqqents. It
and (2) capture moves going to the middle area ¢thé rim). 'S worth tq note that the value= 700 performs significantly
All the remaining moves are ordered decreasingly accordif§ter 2gainst these opponents than the value-01000 used
to the relative history heuristic [52]. At the leaf nodes ofY the MCTS-based LOA program described in [17].
the regular search, a quiescence search is performed to Fgeﬁev_eral other things of interest can be read from th_e ta_ble.
more accurate evaluations. For additional details on thecke FIrSt it can clearly be seen how important a termination
engine and the evaluation function used in MIA, we refer fireshold is for MCTS-based LOA programs, as a player
the Ph.D. thesisnformed Search in Complex Gamgg]. without one, as the f|rst line shows, stands a little chance.
ERPS is applied in MIA in the following way. First, movesSecc_)nd, it is interesting to contrast how well the two .MIA
are classified as captures or non-captures. Next, moves \@Esions perform. The MC-LOR,, ¢ defauir) Program handily
further sub-classified based on the origin and destinatfon REatS MIA Ill when using appropriate cut-off thresholdst bu

the move’s from and to squares. The board is divided inp N0t able to maich the strong MIA 4.5 program. The MIA
five different regions: the comers, thex 8 outer rim (except 4:° evaluation function is apparently much stronger thae (t
corners), the6 x 6 inner rim, the4 x 4 inner rim and the already strong) older one, and showcases the importance of

central2 x 2 board. Finally, moves are further classified based 900d evaluation function in the game of LOA. Finally, the

on the number of squares traveled away from or towards tigst WO rows of the table give us some insights into how

center-of-mass. In total 277 move categories can occuren € threshold value affects the average simulation length a
game according to this classification. number of simulations per time unit, respectively.

B. Evaluation Cut-Off Threshold c. Sm;ulanon Sctjrateglesf y th
) . . . In the second set of experiments we quantify the per-
a ng dﬂflit-?)ift t?]fre(?s);]%?gn;srmtshewaESvaﬁS;?onnedCltjct)-(;jf(fetiiglt?&mance of theCorrective Greedy and Mixed simulation
9 : : strategies introduced in Sect. V, as well as that of a default
egy. MC-LOA,, ¢, defautry With different cut-off threshold

values fort was matched against three other programs: Mcgtrategy (where the three aforementioned strategies &re al

iall A imulati isabled). All the strategies, including the default onee u
LOA (o100, defauir) (€SSENtially never terminating simulationgy, %y oo, 01q setting of = 700 determined in the previous
early), MIA 4.5, and finally, to get a more variety of opporgnt ; : . L
; . subsection. For this experiment, the thinking time was get t
an older version of MIA called MIA Ill, which uses a some-

what less sophisticated evaluation function. In this eixpent 1 second per move.
€SS Sop ' ' The result of a round-robin tournament is given in Table II.
the thinking time was set to 1 second per move.

The results are given in Table 1. showing the WmninSomewhat surprisingly, the heavily evaluation-functi@séd
9 . ! 9 ) %reedy strategy is the weakest of the four, including the
percentage of the players against MC-LQA, defquir) USING

. ! A default one. The Corrective strategy is better than both the
various thresholds. The best threshold settiagainst each of default and the Greedy strategy. But, the Mixed strategy, th

SA Java program executable and test sets can be found at/vnitpz. Combination. Of_ CorreCt.ive and Greedy’ OUtperfo_rmS all t_he
personeel.unimaas.nl/m-winands/loa/. others convincingly. This shows that the evaluation fuocti



10

. . TABLE IV
can be directly used for selecting moves as done by GreedysoyrnaMENT RESULTSMC-LOA 700, mized) (WIN %). EACH DATA

but not at the start of a simulation. The first moves should POINT IS BASED ON A2000-GAME MATCH.
rather be highly randomized.

Strategy off on MIA 4.5
MC-LOA (o7, 700  mized) - 46.05 £ 2.2 39.38E2.1
MC-LOA (01,700, mizedy ~ 53-95 % 2.2 - 46.93 4+ 2.2
MIA 4.5 60.62 +2.1 53.07+2.2

D. Solver

Having determined the most promising settings for the sim-
ulation strategies, we now evaluate the solver’s effeo®s £ parallelization and Tuning Enhancements

in combination with these strategies. The tactical perforoe . .
Of MC-LOA (41, 700 mized) WaS contrasted to that of the highly The MC-LOA program using the best derived set of param-

-~ . eters, i.e., MC-LOA,,, 700, mized), 1S performing close to the
sophisticated variable-depth3 search of MIA 4.5 (default), » 107 )
as well as to a non-variable-depth search (classic). Thesicla level of the world-class5-based program MIA 4.5, although

1 1 0,
variant, unlike the default one, does not use ERPS, nufi°™'n9 upa litle short (479%).

move search nor multi-cut. We measure the effort it takes the.one nice benefit of MCTS is that it can be parallehzed
ite easily compared tag search. We have a multi-threaded

programs to solve selected endgame positions in terms bf bat!

nodes and CPU time. For MC-LOA, all children at a leaf nod\éerSIOn of our MC-LOA program. For curiosity we matched

evaluated for the termination condition during the seanh awo- and four-threaded versions of our MC-LOA program

counted (see subsection 1V-B). For thg variants, nodes at against (a single-threaded) MIA 4.5.

depthi are counted only during the first iteration that the level TABLE V
is reached. This is how node counting was done in analogous  PARALLEL MC-LOA (., 700, mized) VS- MIA 4.5 (WIN %)
comparisons for other games in [53]. The maximum number Matched Programs win %

of nodes the programs are allowed to search on each problem ~ 1 x MC-LOA(,,, 700, mized) VS- MIA45  46.93 £ 3.1

is 10,000,000. The test-set consists of 488 forced-win LOA 2 x MC-LOA (51 700, mived) VS- MIA 4.5 56.35 £ 3.1
positions? 4 X MC-LOA (1, 700, mizea) VS MIA 45 60.25 + 3.0

In Table IIl the results are presented. From the second and

third columns we see that MC-LQ#A\, 700, mizea) OUtperforms  The results are shown in in Table V. We see that the multi-
classic af both in terms of positions solved and nodethreaded version of MC-LOA handily outperforms the single-
expanded (although not CPU time). The defauft variant, threaded MIA 4.5. Unfortunately, there does not exist a imult
however, outperforms both the others by a large margin ihreaded version of MIA 4.5 to compare with, as this does not
terms of all measures. The node expansions and CPU timesramesent a fair comparison. However, to get some idea how
reported only for the subset of positions all three algongh a multi-threaded MIA 4.5 might perform we reran the match
were able to solve (257 positions) to allow a fairer commaris against the two-threaded MC-LOA, but this time giving MIA
Note that it serves no purpose to experiment with MC-LOA.5 50% more deliberation time (simulating a search effigyen
without the solver code enabled on the test set, as suclinerease of 50% if MIA were to be given two processors).

variant is unable to prove any terminal values. A 1,000 game match resulted in a 52% winning percentage
for MC-LOA. Although this type of experiment can give us
TABLE Il some insights as of how a multi-threaded MIA 4.5 might

SOLVING PERFORMANCE OFMC-LOA (,,,, 700, miced) VS o3 ON 488

perform, nonetheless, based on the experiment’s ad-haoenat
FORCED WIN ENGAME POSITIONS

we do not feel comfortable drawing firm conjectures about

Program 488 positions 257 positions the performance of a hypothetical multi-threaded MIA 4.5
# solved Nodes  Time (ms.)

MC-LOA 319 35900579 1373303 P odam-

Classicag’"’m’mm‘” 288 407 975 053 s0o86s  One advantage MIA 4.5 has over its MCTS-based counter-

Default a3 454 81,349,671 122,640 partis having been around for many more years, thus being far

more carefully tuned based on years of tournament experienc
To somewhat offset this advantage we took some extra
We can, however, investigate how turning the solver offme to further tune our MC-LOA player. By doing the
affects the program’s overall playing strength. We do sdibotuning independently afterwards, after having run all ttreeo
for self-play and against MIA 4.5. The results are shown iexperiments, we can better demonstrate the potentials auch
Table IV. Not only does the MC-LOA program with the solvetuning phase has for improving playing strength. We refer to
enabled beat the one with it disabled with almost 54% winnirtge more carefully tuned player as MC-LOA-T. Two minor
rate, but it also fares much better against MIA 4.5 (scoringhanges were incorporated: (1) between moves, we recycle
close to 47% as opposed to just over 39%). This shows thhé relevant part of the MCTS tree [54]; and, (2) instead of
the ability to prove game-theoretical values of game pars#ti dividing the Progressive Bias part By-+ 1 (Formula 1) we
is important in a tactical game like LOA. divide it by v/1; + 1, effectively making the Progressive Bias
more relevant.

The test set is available at www.personeel.unimaas.niinawds/loa/ The result of playing MC'LOA'T against MIA 4.5 is given
tscg2002a.zip. in Table VI (for a comparison we repeat the result of MC-LOA



TABLE VI
TUNING MC-LOA (4,1, 700 ,mized)- 2,000 6AME MATCH RESULTS
win %
MC-LOA (on, 700, mized) VS- MIA 4.5 46.93 £2.2

MC-LOA-T (4, 700.mized) VS- MIA 4.5 52.38 +2.2

vs MIA 4.5). By relatively little tuning effort we were ablet
elevate the program’s score against MIA 4.5 by more thaH!
five percentage points. Now, instead of being slightly béhin
the better tuned variant outperforms MIA 4.5 and, although
the winning margin is small, it is nonetheless statisticall 2l

significant using a confidence margin of 95%.

This is an important milestone for MCTS because the
traditional game-tree search approach has been consitiere
be the better suited for playing LOA. We are in the early stage
of tuning our MC-LOA player, and with added experience we
believe that there are still more strength improvementseto b4l

had.

VII. CONCLUSION AND FUTURE RESEARCH

In this article we described MC-LOA, a MCTS-based pro-
gram for playing the game of LOA. The program uses a highI)V]
effective MCTS variant that has been imbued with numerous

enhancements.

First, the simulations were augmented such that games
theoretical win and loss values could be proved when encoun-
tered in the search tree. This required modifications to the
backpropagation and selection steps of MCTS, as well as t
procedure for picking the final move to play. Secondly, the pr
gram uses simulation strategies enriched with useful domaiol
knowledge in various new ways. Modifications were made
to both the selection and the play-out steps. The informed)
strategies resulted in simulations that were more foculsed.
particular, a mixed strategy of exploring more early on and
playing more greedily later on in a simulation seemed {g2]

work best. Finally, by carrying useful tree information anal

as the game advances and by fine-tuning various searﬁgl-
control parameters further performance gains were p@ssibl
Collectively these enhancements resulted in a MCTS varidit]
that outperforms even the world’s besf-based LOA player. 15
This success is remarkable, because not only is the game o
LOA highly tactical, but also slowly progressing. Both thes

characteristics have traditionally been considered @aetly

problematic for MCTS-based players. This work thus repre-

sents an important milestone for MCTS.

As for future research directions we plan to further work oHn
enhancing the new simulation strategies, e.g., by comginin
them in more elaborate ways. Of interest too is to use
the MCTS andag algorithms in combination in the LOA
program, as the latter is still superior in endgame playoAls
of a general interest, although not practical in LOA, is t
improve the ability of MCTS to prove ties. Finally, we ar
still in early stages of tuning our MC-LOA player, and with
added experience (e.g., from tournament play against otlréf
strong LOA programs) we believe that there are still further

strength improvements possible.

11

ACKNOWLEDGMENTS

The authors thank Guillaume Chaslot for giving valuable
advice on MCTS. Part of this work is done in the framework
of the NWO Go for Go project, grant number 612.066.409, and
by a grant from The Icelandic Centre for Research (RANNIS).

REFERENCES

R. Coulom, “Efficient selectivity and backup operatorsNlonte-Carlo
tree search,” inComputers and Games (CG 2008gr. Lecture Notes
in Computer Science (LNCS), H. J. van den Herik, P. Ciangaand
H. H. L. M. Donkers, Eds., vol. 4630. Springer-Verlag, Héixdeg,
Germany, 2007, pp. 72-83.

L. Kocsis and C. Szepesvari, “Bandit Based Monte-CaPlanning,”

in Machine Learning: ECML 20Q6ser. Lecture Notes in Artificial
Intelligence, J. Fiurnkranz, T. Scheffer, and M. Spiliojpor) Eds., vol.
4212, 2006, pp. 282-293.

B. Abramson, “Expected-outcome: A general model ofistavalua-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelicg
vol. 12, no. 2, pp. 182-193, 1990.

B. Bouzy and B. Helmstetter, “Monte-Carlo Go Developrgh in
Advances in Computer Games 10: Many Games, Many ChalleHgds
van den Herik, H. lida, and E. A. Heinz, Eds. Kluwer Academic
Publishers, Boston, MA, USA, 2003, pp. 159-174.

B. Brigmann, “Monte Carlo Go,” Physics Department, &use Uni-
versity, Tech. Rep., 1993.

B. Sheppard, “World-championship-caliber Scrabblartificial Intelli-
gence vol. 134, no. 1-2, pp. 241-275, 2002.

M. Buro, J. R. Long, T. Furtak, and N. R. Sturtevant, “lraping
state evaluation, inference, and search in trick-based games,” in
IJCAI 2009, Proceedings of the 21st International Joint f2oence on
Artificial Intelligence C. Boutilier, Ed., Pasadena, CA, USA, 2009, pp.
1407-1413.

H. Finnsson and Y. Bjdrnsson, “Simulation-based apploto General
Game Playing,” inrProceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, AAAI 2008D. Fox and C. Gomes, Eds. AAAI
Press, 2008, pp. 259-264.

T. Cazenave and J. Borsboom, “Golois Wins Phantom Go ffament,”
ICGA Journa] vol. 30, no. 3, pp. 165-166, 2007.

T. Cazenave and A. Saffidine, “Utilisation de la reclerarborescente
Monte-Carlo au Hex,Revue d’Intelligence Artificiellevol. 23, no. 2-3,
pp. 183-202, 2009, in French.

R. Lorentz, “Amazons discover Monte-Carlo,” @omputers and Games
(CG 2008) ser. Lecture Notes in Computer Science (LNCS), H. J.
van den Herik, X. Xu, Z. Ma, and M. H. M. Winands, Eds., vol. 813
2008, pp. 13-24.

H. Finnsson and Y. Bjornsson, “Simulation control irefi@ral Game
Playing agents,” inGIGA’09 The IJCAI Workshop on General Game
Playing July 2009.

S. SacksonA Gamut of Games Random House, New York, NY, USA,
1969.

M. H. M. Winands, “Informed search in complex games,”.[Phdisser-
tation, Maastricht University, Maastricht, The Nethedan2004.

B. Helmstetter and T. Cazenave, “Architecture d’'ungresnme de Lines
of Action,” in Intelligence Atrtificielle et JeyxT. Cazenave, Ed. Hermes
Science, 2006, pp. 117-126, in French.

] D. Billings and Y. Bjornsson, “Search and knowledge limes of

Action,” in Advances in Computer Games 10: Many Games, Many
ChallengesH. J. van den Herik, H. lida, and E. A. Heinz, Eds. Kluwer
Academic Publishers, Boston, MA, USA, 2003, pp. 231-248.

M. H. M. Winands, Y. Bjornsson, and J.-T. Saito, “Mor@arlo Tree
Search Solver,” irlComputers and Games (CG 2008gr. Lecture Notes

in Computer Science (LNCS), H. J. van den Herik, X. Xu, Z. Mad a
M. H. M. Winands, Eds., vol. 5131. Springer, 2008, pp. 25-36.

M. H. M. Winands and Y. Bjornsson, “Evaluation funatibased Monte-
Carlo LOA,” in Advances in Computer Games Conference (ACG 2009)
ser. Lecture Notes in Computer Science (LNCS), H. J. van denkH
and P. Spronck, Eds., vol. 6048. Springer, 2010, pp. 33-44.

M. H. M. Winands, J. W. H. M. Uiterwijk, and H. J. van den tie
“The quad heuristic in Lines of ActionJCGA Journal vol. 24, no. 1,
pp. 3-15, 2001.

L. V. Allis, H. J. van den Herik, and I. S. Herschberg, “Wwh games
will survive?” in Heuristic Programming in Artificial Intelligence 2: the
Second Computer Olympia®. N. L. Levy and D. F. Beal, Eds. Ellis
Horwood, Chichester, England, 1991, pp. 232-243.



[21]
[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]
(31]

(32

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

M. H. M. Winands, 6 x 6 LOA is Solved,” ICGA Journal vol. 31, [46]
no. 3, pp. 234-238, 2008.

——, “Analysis and implementation of Lines of Action,” &ter’s thesis,
Maastricht University, Maastricht, The Netherlands, 2000

D. M. Breuker, J. W. H. M. Uiterwijk, and H. J. van den Heri
“Replacement schemes and two-level tabld€CA Journa) vol. 19,

no. 3, pp. 175-180, 1996. [47]

J. Schaeffer and A. Plaat, “New advances in alpha-betacking,” in
Proceedings of the 1996 ACM 24th Annual Conference on Canput
Science ACM Press, New York, NY, USA, 1996, pp. 124-130.

S. Akl and M. Newborn, “The principal continuation anbet killer
heuristic,” in1977 ACM Annual Conference ProceedingdCM Press,
New York, NY, USA, 1977, pp. 466-473.

C. Donninger, “Null move and deep search: Selectirde heuristics
for obtuse chess programd$CCA Journal vol. 16, no. 3, pp. 137-143,
1993.

E. A. Heinz, “Adaptive null-move pruning/CCA Journal vol. 22, no. 3,
pp. 123-132, 1999.

Y. Bjornsson and T. A. Marsland, “Risk managament irmgatree
pruning,” Information Sciencesvol. 122, no. 1, pp. 23-41, 2001.

M. H. M. Winands, H. J. van den Herik, J. W. H. M. Uiterwjjk

(48]

[49]

[50]

and E. C. D. van der Werf, “Enhanced forward pruninmformation [51]
Sciencesvol. 175, no. 4, pp. 315-329, 2005.

D. Dyer, “Lines of Action homepage,” 2000. [Online]. alable:
http://www.andromeda.com/people/ddyer/loa/loa.html [52]

D. Eppstein, “Dynamic Connectivity in Digital Imageésinformation
Processing Lettersvol. 62, no. 3, pp. 121-126, May 1997.

L. Kocsis, J. W. H. M. Uiterwijk, and H. J. van den Herik_éarning

time allocation using neural networks,” lomputers and Games (CG
2000) ser. Lecture Notes in Computer Science (LNCS), T. A. Masla [53]
and I. Frank, Eds., vol. 2063. Berlin, Germany: Springerad 2001,
pp. 170-185.

L. Kocsis, J. Uiterwijk, and H. van den Herik, “Move omigy using
neural networks,” inEngineering of Intelligent Systemser. Lecture
Notes in Atrtificial Intelligence (LNCS), L. Montosori, J.afcza, and
M. Ali, Eds. Springer-Verlag, Berlin, Germany, 2001, voD7D, pp.
45-50.

Y. Bjornsson, “Selective depth-first game-tree skdr®h.D. disserta-
tion, University of Alberta, Edmonton, Canada, 2002.

H. H. L. M. Donkers, J. W. H. M. Uiterwijk, and H. J. van déterik,
“Admissibility in opponent-model searchfhformation Sciencesvol.
154, no. 3-4, pp. 119-140, 2003.

M. Sakuta, T. Hashimoto, J. Nagashima, J. W. H. M. Uiigewand
H. lida, “Application of the killer-tree heuristic and tharhba-search
method to Lines of Action,’Information Sciencesvol. 154, no. 3-4,
pp. 141-155, 2003.

T. Hashimoto, J. Nagashima, M. Sakuta, J. W. H. M. Uiigewand
H. lida, “Automatic realization-probability search,” 2BQnternal report,
Dept. of Computer Science, University of Shizuoka, Hamamalapan.
“Lines of Action Wikipage.” [Online]. Available: httg/en.wikipedia.
org/wiki/Lines_of_Action

G. M. J.-B. Chaslot, M. H. M. Winands, J. W. H. M. UiterkjjH. J.
van den Herik, and B. Bouzy, “Progressive strategies for tédarlo
Tree Search,New Mathematics and Natural Computatiamol. 4, no. 3,
pp. 343-357, 2008.

Y. Tsuruoka, D. Yokoyama, and T. Chikayama, “Game-temarch
algorithm based on realization probability)CGA Journa) vol. 25, no. 3,
pp. 132-144, 2002.

J. A. M. Nijssen and M. H. M. Winands, “Enhancements foultin
player Monte-Carlo Tree Search,” @omputers and Games (CG 2010)
H. J. van den Herik, H. lida, and A. Plaat, Eds., 2010.

M. H. M. Winands and Y. Bjornsson, “Enhanced realiaatiprobability
search,"New Mathematics and Natural Computatjorol. 4, no. 3, pp.
329-342, 2008.

S. Gelly and D. Silver, “Combining online and offline kmiedge in
UCT,” in Proceedings of the International Conference on Machine
Learning (ICML) Z. Ghahramani, Ed. ACM, 2007, pp. 273-280.

T. Cazenave and N. Jouandeau, “On the parallelizatibdJ@T.” in
Proceedings of the Computer Games Workshop 2007 (CGW ,2803)
van den Herik, J. W. H. M. Uiterwijk, M. H. M. Winands, and M. B.
Schadd, Eds. Universiteit Maastricht, Maastricht, Thehsgands,
2007, pp. 93-101.

G. M. J.-B. Chaslot, M. H. M. Winands, and H. J. van den ikler
“Parallel Monte-Carlo Tree Search,” i@omputers and Games (CG
2008) ser. Lecture Notes in Computer Science (LNCS), H. J. van d
Herik, X. Xu, Z. Ma, and M. H. M. Winands, Eds., vol. 5131, 2008
pp. 60-71.

[54]

12

S. Gelly, J.-B. Hoock, A. Rimmel, O. Teytaud, and Y. Kalearian,
“The parallelization of Monte-Carlo planning - parallgition of MC-
planning,” in Proceedings of the Fifth International Conference on
Informatics in Control, Automation and Robotics, Intediig Control
Systems and Optimization (ICINCO 2008) Filipe, J. Andrade-Cetto,
and J.-L. Ferrier, Eds. INSTICC Press, 2008, pp. 244-249.

M. Enzenberger and M. Miller, “A lock-free multithrded Monte-Carlo
Tree Search algorithm,” i\dvances in Computer Games (ACG 20Q09)
ser. Lecture Notes in Computer Science (LNCS), H. J. van denkH
and P. H. M. Spronck, Eds., vol. 6048. Berlin Heidelberg, reamy:
Springer-Verlag, 2010, pp. 14-20.

P. Zhang and K. Chen, “Monte-Carlo Go tactic search,Pimceedings
of the 10th Joint Conference on Information Sciences (JAS7R
P. Wanget al, Eds. World Scientific Publishing Co. Pte. Ltd., 2007,
pp. 662—670.

J. Kloetzer, H. lida, and B. Bouzy, “A comparative studfysolvers in
Amazons endgames,” ifomputational Intelligence and Games (CIG
2008) |EEE, 2008, pp. 378-384.

B. Bouzy, “Old-fashioned computer Go vs Monte-Carlo,Ga |IEEE
Symposium on Computational Intelligence in Games (CIG-20D7,
invited tutorial.

M. H. M. Winands and H. J. van den Herik, “MIA: A world chaiion
LOA program,” in The 11th Game Programming Workshop in Japan
(GPW 2006) 2006, pp. 84-91.

M. H. M. Winands, E. C. D. van der Werf, H. J. van den Herfdnd

J. W. H. M. Uiterwijk, “The relative history heuristic,” it€Computers
and Games (CG 20043er. Lecture Notes in Computer Science (LNCS),
H. J. van den Herik, Y. Bjornsson, and N. S. Netanyahu, Ba$. 3846.
Berlin, Germany: Springer-Verlag, 2006, pp. 262-272.

L. V. Allis, “Searching for solutions in games and adiéil intelligence,”
Ph.D. dissertation, Rijksuniversiteit Limburg, MaagtticThe Nether-
lands, 1994.

J. Steinhauer, “Monte-Carlo TwixT,” Master’s thesidaastricht Univer-
sity, Maastricht, The Netherlands, 2010.

Mark Winands received the Ph.D. degree in Ar-
tificial Intelligence from the Department of Com-
puter Science, Maastricht University, Maastricht,
The Netherlands, in 2004. Currently, he is an As-
sistant Professor at the Department of Knowledge
Engineering, Maastricht University. His research in-
terests include heuristic search, machine learning
and games. Dr. Winands regularly serves on pro-
gram committees of major Al and computer games
conferences. Since January 2009, he is a member of
the editorial board of the ICGA Journal.

Yngvi Bjornsson is an associate professor at the
School of Computer Science, Reykjavik University
and a director (and co-founder) of the CADIA
research lab. He received a Ph.D in computer sci-
ence from the Department of Computing Science,
University of Alberta, Canada, in 2002. His re-
search interests are in heuristic search methods and
search-control learning, and the application of such
techniques for solving large-scale problems in a
wide range of problem domains, including computer
games and industrial process optimization.

Jahn-Takeshi Saitoreceived a Master's degree in
Computational Linguistics and Atrtificial Intelligence
from University of Osnabriick, Osnabriick, Germany,
in 2005. He has been working as a Ph.D. student at
the Department of Knowledge Engineering, Maas-
tricht University, Maastricht, The Netherlands, since
2005. His research is on Proof-Number Search and
Monte-Carlo methods applied to board games.



