
Playout Search for Monte-Carlo Tree Search in
Multi-Player Games

J. (Pim) A.M. Nijssen and Mark H.M. Winands

Games and AI Group, Department of Knowledge Engineering,
Faculty of Humanities and Sciences,

Maastricht University, Maastricht, The Netherlands
{pim.nijssen,m.winands}@maastrichtuniversity.nl

Abstract. Monte-Carlo Tree Search (MCTS) has become a popular
search technique for playing multi-player games over the past few years.
In this paper we propose a technique called Playout Search. This en-
hancement allows the use of small searches in the playout phase of MCTS
in order to improve the reliability of the playouts. We investigate maxn,
Paranoid and BRS for Playout Search and analyze their performance
in two deterministic perfect-information multi-player games: Focus and
Chinese Checkers. The experimental results show that Playout Search
significantly increases the quality of the playouts in both games. How-
ever, it slows down the speed of the playouts, which outweighs the benefit
of better playouts if the thinking time for the players is small. When the
players are given a sufficient amount of thinking time, Playout Search
employing Paranoid search is a significant improvement in the 4-player
variant of Focus and the 3-player variant of Chinese Checkers.

1 Introduction

Deterministic perfect-information multi-player games pose an interesting chal-
lenge for computers. In the past the standard techniques to play these games
were maxn [13] and Paranoid [20]. Similar to for instance Best Reply Search
(BRS) [18] and Coalition-Mixer [12], these search techniques use an evaluation
function to determine the values of the leaf nodes in the tree. Applying search is
generally more difficult in multi-player games than in 2-player games. Pruning in
the game tree of a multi-player game is much harder [19]. With αβ pruning, the
size of a tree in a 2-player game can be reduced from O(bd) to O(b

d
2 ) in the best

case. In Paranoid, the size of the game tree can only be reduced to O(b
n−1

n d) in
the best case and in BRS, the size can be reduced to O

(
(b(n− 1))d

2d
n e/2

)
. When

using maxn, safe pruning is hardly possible. Also, opponent’s moves are less pre-
dictable. Contrary to 2-player games, where two players always play against
each other, in multi-player games (temporary) coalitions might occur. This can
change the behavior of the opponents.

Over the past years, Monte-Carlo Tree Search (MCTS) [7, 10] has become a
popular technique for playing multi-player games. MCTS is a best-first search



2 J.A.M. Nijssen and M.H.M. Winands

technique that instead of an evaluation function uses simulations to guide the
search. Next, MCTS is able to compute mixed equilibria in multi-player games
[19], contrary to maxn, Paranoid and BRS. MCTS is used in a variety of multi-
player games, such as Focus [15], Chinese Checkers [15, 19], Hearts [19], Spades
[19], and multi-player Go [5].

For MCTS, a tradeoff between search and knowledge has to be made. The
more knowledge is added, the slower each playout gets. The trend seems to fa-
vor fast simulations with computationally light knowledge, although recently,
adding more heuristic knowledge at the cost of slowing down the playouts has
proven beneficial in some games [21]. Game-independent enhancements in the
playout phase of MCTS such as Gibbs sampling [2] and RAVE [16] have proven
to increase the playing strength of MCTS programs significantly. With ε-greedy
playouts [19], some simple game-specific knowledge can be incorporated. Lorentz
[11] improved the playing strength of the MCTS-based Havannah program Wan-
derer by checking whether the opponent has a ‘mate-in-one’ when selecting a
move in the beginning of the playout. Winands and Björnsson [21] proposed αβ-
based playouts for the 2-player game Lines of Action. Although computationally
intensive, it significantly improved the playing strength of the MCTS program.

In this paper we propose Playout Search for MCTS in multi-player games.
Instead of using computationally light knowledge in the playout phase, small
two-ply searches are used to determine the moves to play. We test three different
search techniques that may be used for Playout Search. These search techniques
are maxn, Paranoid and BRS. Playout Search is tested in two disparate multi-
player games: Focus and Chinese Checkers.

The remainder of the paper is structured as follows. First, Section 2 gives a
brief overview of the application of MCTS in multi-player games. Next, Playout
Search is introduced in Section 3. An overview of the rules and domain knowledge
for Focus and Chinese Checkers is given in Section 4. Subsequently, Section 5
describes the experiments and the results. Finally, the conclusions and an outlook
on future research are given in Section 6.

2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [7, 10] is a search technique that gradually
builds up a search tree, guided by Monte-Carlo simulations. In contrast to classic
search techniques such as αβ-search [9], it does not require a heuristic evaluation
function. The MCTS algorithm consists of four phases [6]: selection, expansion,
playout and backpropagation (see Fig. 1). By repeating these four phases itera-
tively, the search tree is constructed gradually. Below we explain the application
to multi-player games for our MCTS program [15].

In the selection phase the search tree is traversed from the root node until a
node is found that contains children that have not been added to the tree yet.
The tree is traversed using the Upper Confidence bounds applied to Trees (UCT)
[10] selection strategy. In our program, we have enhanced UCT with Progressive
History [15]. The child i with the highest score vi in Formula 1 is selected.



Playout Search for Monte-Carlo Tree Search in Multi-Player Games 3

Selection Expansion Playout Backpropagation

A selection 
strategy is used 
to traverse the 
tree

One new node 
is created

A simulation 
strategy is 
used to finish 
the game

The result is 
propagated 
back in the 
tree

Iterated N times

Fig. 1. Monte-Carlo Tree Search scheme (Slightly adapted from [6]).

vi =
si

ni
+ C ×

√
ln(np)
ni

+
sa

na
× W

ni − si + 1
(1)

In this formula, si denotes the total score of child i, where a win is being rewarded
1 point and a loss 0 points. The variables ni and np denote the total number of
times that child i and parent p have been visited, respectively. C is a constant,
which determines the exploration factor of UCT. In the Progressive History
part, sa represents the score of move a, where each playout in which a was
played resulted in a win adds 1 point and a loss 0 points. na is the number of
times move a has been played in any previous playout. W is a constant that
determines the influence of Progressive History.

In the expansion phase one node is added to the tree. Whenever a node is
found which has children that have not been added to the tree yet, then one of
these children is chosen and added to the tree [7].

During the playout phase, moves are played in self-play until the game is
finished. Usually, the playouts are being generated using random move selec-
tion. However, progression has been identified as an important success factor for
MCTS [8, 22]. Ideally, each move should bring the game closer towards its conclu-
sion. Otherwise, there is a risk of the simulations leading mostly to futile results.
In slow-progressing games, such as Chinese Checkers and Focus (see Section 4),
knowledge should be added to the playouts [3] to ensure a quick resolution of
the game. Often, simple evaluations are used to select the moves to play. In our
MCTS program, the following two strategies have been incorporated. 1) When
using a move evaluator, a heuristic is used to assign a value to all valid moves
of the current player. The move with the highest evaluation score is chosen.
The move evaluator is fast, but it only considers a local area of the board. 2)
With one-ply search, all valid moves of the current player are performed and the
resulting board positions are evaluated. The move which gives the best board



4 J.A.M. Nijssen and M.H.M. Winands

position, i.e., the highest evaluation score for the current player, is chosen. The
board evaluator is slower than the move evaluator, but it gives a more global
evaluation. Knowledge can also be incorporated by employing 2-ply searches to
determine the move to play. In Section 3 we explain which search techniques are
used.

Finally, in the backpropagation phase, the result is propagated back along
the previously traversed path up to the root node. In the multi-player variant
of MCTS, the result is a tuple of size N, where N is the number of players. The
value corresponding to the winning player is 1, the value corresponding to the
other players is 0. The game-theoretic values of terminal nodes are stored and, if
possible, backpropagated in such a way that MCTS is able to prove a (sub)tree
[15, 22].

This four-phase process is repeated either a fixed number of times, or until
the time is up. When the process is finished, the child of the root node with the
highest win rate is returned.

3 Playout Search

In this section we propose Playout Search for MCTS in multi-player games.
In Subsection 3.1 we explain which search techniques are used in the playout
phase. In Subsection 3.2 we describe which enhancements are used to speed up
the search.

3.1 Search Techniques

Instead of playing random moves biased by computationally light knowledge in
the playout phase, domain knowledge can be incorporated by performing small
searches. This reduces the number of playouts per second significantly, but it
improves the reliability of the playouts. When selecting a move in the playout
phase, one of the following three search techniques is used to choose a move.

1) Two-ply maxn [13]. A two-ply maxn search tree is built where the current
player is the root player and the first opponent plays at the second ply. Both the
root player and the first opponent try to maximize their own score. αβ-pruning
in a two-ply maxn search tree is not possible.

2) Two-ply Paranoid [20]. Similar to maxn, a two-ply search tree is built where
the current player is the root player and the first opponent plays at the second
ply. The root player tries to maximize its own score, while the first opponent
tries to minimize the root player’s score. In a two-ply Paranoid search tree,
αβ-pruning is possible.

3) Two-ply Best Reply Search (BRS) [18]. BRS is similar to Paranoid search. The
difference is that at the second ply, not only the moves of the first opponent are
considered, but the moves of all opponents are investigated. Similar to Paranoid
search, αβ-pruning is possible.



Playout Search for Monte-Carlo Tree Search in Multi-Player Games 5

3.2 Search Enhancements

The major disadvantage of incorporating search in the playout phase of MCTS is
the reduction of the number of playouts per second [21]. In order to prevent this
reduction from outweighing the benefit of the quality of the playouts, enhance-
ments should be implemented to speed up the search and keep the reduction
of the number of playouts to a minimum. In our MCTS program, the following
enhancements to speed up the playout search are used.

The number of searches can be reduced by using ε-greedy playouts [19]. With
a probability of ε, a move is chosen uniform randomly. Otherwise, the selected
search technique is used to select the best move. An additional advantage of
ε-greedy playouts is that the presence of this random factor gives more varied
playouts and prevents the playouts from being stuck in ‘local optima’, where
all players keep moving back and forth. ε-greedy playouts are used with all
aforementioned playout strategies.

The amount of αβ-pruning in a tree can be increased by using move ordering.
When using move ordering, a player’s moves are sorted using a static move
evaluator. In the best case, the number of evaluated board positions in a two-
ply search is reduced from b2 to 2b − 1 [9]. The size of the tree can be further
reduced by using k-best pruning. Only the k best moves are investigated. This
reduces the branching factor of the tree from b to k. The parameter k should
be chosen such that it is significantly smaller than b, while avoiding the best
move being pruned. Move ordering and k-best pruning are used in all techniques
described in Subsection 3.1.

Another move ordering technique is applying killer moves [1]. In each search,
two killer moves are always tried first. These are the two last moves that were
best or caused a cutoff, at the current depth. Moreover, if the search is completed,
the killer moves for that specific level in the playout are stored, such that they
can be used during the next MCTS iterations. Killer moves are only used with
search techniques where αβ-pruning is possible, i.e., Paranoid and BRS search.

Other enhancements were tested, but they did not improve the performance
of the MCTS program. The application of transposition tables [4] was tested,
but the information gain did not compensate for the overhead. Also, aspiration
search [14] did not speed up the search significantly. This can be attributed to
the limited amount of pruning possible in a two-ply search tree.

4 Test Domains

Playout Search is tested in two different games: Focus and Chinese Checkers. In
this section we briefly discuss the rules and the properties of Focus and Chinese
Checkers in Subsection 4.1 and 4.2, respectively. In Subsection 4.3 we explain
the move and board evaluators for Focus and Chinese Checkers.

4.1 Focus

Focus is an abstract multi-player strategy board game, which was invented in
1963 by Sid Sackson [17]. This game has also been released under the name



6 J.A.M. Nijssen and M.H.M. Winands

(a) 2 players (b) 3 players (c) 4 players

Fig. 2. Set-ups for Focus

Domination. Focus is played on an 8× 8 board where in each corner three fields
are removed. It can be played by 2, 3 or 4 players. Each player starts with a
number of pieces on the board. In Fig. 2, the initial board positions for the 2-,
3- and 4-player variants are given.

In Focus, pieces can be stacked on top of each other. A stack may contain up
to 5 pieces. Each turn a player may move a stack orthogonally as many fields as
the stack is tall. A player may only move a stack of pieces if a piece of his color
is on top of the stack. It is also allowed to split stacks in two smaller stacks. If
a player decides to do so, then he only moves the upper stack as many fields as
the number of pieces that are being moved.

If a stack lands on top of another stack, then the stacks are merged. If the
merged stack has a size of n > 5, then the bottom n − 5 pieces are captured
by the player, such that there are 5 pieces left. If a player captures one of his
own pieces, he may later choose to place one piece back on the board, instead
of moving a stack. This piece may be placed either on an empty field or on top
of an existing stack.

There exist two variations of the game, each with a different winning condi-
tion. In the standard version of the game, a player has won if all other players
cannot make a legal move. However, such games can take a long time to finish.
Therefore, we chose to use the shortened version of the game. In this version,
a player has won if he has either captured certain number of pieces in total, or
a number of pieces from each player. In the 2-player variant, a player wins if
he has captured at least 6 pieces from the opponent. In the 3-player variant, a
player has won if he has captured at least 3 pieces from both opponents or at
least 10 pieces in total. In the 4-player variant, the goal is to capture at least 2
pieces from each opponent or capture at least 10 pieces in total.

4.2 Chinese Checkers

Chinese Checkers is a board game that can be played by 2 to 6 players. This
game was invented in 1893 and has since then been released by various publishers



Playout Search for Monte-Carlo Tree Search in Multi-Player Games 7

Fig. 3. A Chinese Checkers board [19].

under different names. Chinese Checkers is played on a star-shaped board. The
most commonly used board contains 121 fields, where each player starts with 10
checkers. We decided to play on a slightly smaller board [19] (see Fig. 3). In this
version, each player plays with 6 checkers. The advantage of a smaller board is
that games take a shorter amount of time to complete, which means that more
Monte-Carlo simulations can be performed and more experiments can be run.
Also, it allows the use of a stronger evaluation function.

The goal of each player is to move all his pieces to his home base at the other
side of the board. Pieces may move to one of the adjacent fields or they may
jump over another piece to an empty field. It is also allowed to make multiple
jumps with one piece in one turn, making it possible to create a setup that
allows pieces to jump over a large distance. The first player who manages to fill
his home base wins the game.

4.3 Domain Knowledge

For Chinese Checkers, the value of a move equals ds−dt, where ds is the distance
of the source location of the piece that is moved to the home base, and dt the
distance of the target location to the home base. For each location on the board,
the distance to each home base is stored in a table. Note that the value of a
move is negative if the piece moves away from the home base. For determining
the board value, a lookup table [19] is used. This table stores, for each possible
configuration of pieces, the minimum number of moves a player should perform
to get all pieces in the home base, assuming that there are no opponents’ pieces
on the board. For any player, the value of a board equals 28−m, where m is the
value stored in the table which corresponds to the configuration of the pieces of
the player. Note that 28 is the highest value stored in the table.

For Focus, the value of a move equals 10(n + t) + s, where n is the number
of pieces moved, t is the number of pieces on the target location, and s is the
number of stacks the player gained. The value of s can be 1, 0, or –1. For any
player, the board value is based on the minimum number of pieces the player
needs to capture to win the game, r, and the number of stacks the player controls,
c. The score is calculated using the formula 600− 100r + c.



8 J.A.M. Nijssen and M.H.M. Winands

Table 1. 95% confidence intervals of some winning rates for 1500 games.

Win percentage Confidence interval

50% ± 2.5%
40% / 60% ± 2.5%
30% / 70% ± 2.3%
20% / 80% ± 2.0%

5 Experiments

In this section, we describe the experiments that were performed to investigate
the strength of Playout Search for MCTS in Focus and Chinese Checkers. In
Subsection 5.1 the experimental setup is given. In Subsection 5.2 we present
the experimental results for the different search techniques of Playout Search in
Focus and Chinese Checkers.

5.1 Experimental Setup

The MCTS engines of Focus and Chinese Checkers are written in Java [15].
For Formula 1, the constant C is set to 0.2 and W is set to 5. All players
use ε-greedy playouts with ε = 0.05. The value of k for k-best pruning is set
to 5. These values were achieved by systematic testing. The experiments were
run on a cluster containing of AMD64 Opteron 2.4 GHz processors. In order
to test the performance of Playout Search, we performed several round-robin
tournaments where each participating player uses a different playout strategy.
These playout strategies include 2-ply maxn (M), 2-ply Paranoid (P) and 2-ply
BRS (B). Additionally, we include players with one-ply (O) and move evaluator
(E) playouts as reference players. The tournaments were run for 3-player and
4-player Chinese Checkers and 3-player and 4-player Focus. In each game, two
different player types participate. If one player wins, a score of 1 is added to
the total score of the corresponding player type. For both games, there may be
an advantage regarding the order of play and the number of different players.
In a 3-player game there are 23 = 8 different player-type assignments. Games
where only one player type is playing are not interesting, leaving 6 ways to assign
player types. For four players, there are 24−2 = 14 assignments. Each assignment
is played multiple times until approximately 1,500 games are played and each
assignment was played equally often. In Table 1, 95% confidence intervals of
some winning rates for 1500 games are given.

5.2 Results

In the first set of experiments, all players were allowed to perform 5000 playouts
per move. The results are given in Table 2. The numbers are the win percentages
of the players denoted on the left against the players denoted at the top.

The results show that for 3-player Chinese Checkers, BRS is the best tech-
nique. It performs slightly better than maxn and Paranoid. BRS wins 53.4% of



Playout Search for Monte-Carlo Tree Search in Multi-Player Games 9

Table 2. Round-robin tournament of the different search techniques in Chinese Check-
ers and Focus with 5000 playouts per move (win%).

E O M P B Avg. E O M P B Avg.
Move eval. - 25.2 20.9 21.2 18.3 21.4 Move eval. - 44.5 38.4 38.5 33.3 38.7
One-ply 74.8 - 44.5 40.5 38.9 49.7 One-ply 55.5 - 44.3 44.1 40.5 46.1
Maxn 79.1 55.5 - 48.1 46.6 57.3 Maxn 61.6 55.7 - 52.0 45.2 53.6
Paranoid 78.8 59.5 51.9 - 49.1 59.8 Paranoid 61.5 55.9 48.0 - 44.5 52.5
BRS 81.7 61.1 53.4 50.9 - 61.8 BRS 66.7 59.5 54.8 55.5 - 59.1

3-player Chinese Checkers 3-player Focus

E O M P B Avg. E O M P B Avg.
Move eval. - 30.3 27.6 26.9 22.9 26.9 Move eval. - 42.0 35.0 35.2 33.4 36.4
One-ply 69.7 - 47.4 45.1 39.7 50.5 One-ply 58.0 - 43.3 42.6 40.1 46.0
Maxn 72.4 52.6 - 49.1 48.1 55.6 Maxn 65.0 56.7 - 50.5 48.5 55.2
Paranoid 73.1 54.9 50.9 - 46.2 56.3 Paranoid 64.8 57.4 49.5 - 48.2 55.0
BRS 77.1 60.3 51.9 53.8 - 60.8 BRS 66.6 59.9 51.5 51.8 - 57.5

4-player Chinese Checkers 4-player Focus

Table 3. Playouts per second for each type of player in each game variant.

Game Move eval. One-ply Maxn Paranoid BRS

3-player Focus 7003 6138 2336 3356 1911
4-player Focus 6976 6237 2344 3410 1887
3-player Chinese Checkers 7322 6047 3439 4307 3890
4-player Chinese Checkers 5818 4630 2407 3066 2536

the games against maxn and 50.9% against Paranoid. These three techniques
perform significantly better than one-ply and the move evaluator. The win rates
against one-ply vary from 55.5% to 61.6% and against the move evaluator from
78.8% to 81.7%. In the 4-player variant, maxn, Paranoid and BRS remain the
best techniques, where BRS performs slightly better than the other two. BRS
wins 53.8% of the games against Paranoid and 51.9% against maxn. The win
rates of maxn, Paranoid and BRS vary from 72.4% to 77.1% against the move
evaluator and from 52.6% to 60.3% against one-ply.

For 3-player Focus, the best technique is BRS, winning 54.8% against maxn

and 55.5% against Paranoid. Maxn and Paranoid are equally strong. The win
rates of maxn, Paranoid and BRS vary between 61.5% and 66.7% against the
move evaluator and between 55.7% and 59.5% against one-ply. BRS is also the
best technique in 4-player Focus, though it is closely followed by maxn and Para-
noid. BRS wins 51.5% of the games against maxn and 51.8% against Paranoid.

In the second set of experiments, we gave each player 5 seconds per move. For
reference, Table 3 shows the average number of playouts per second for each type
of player in each game variant. Note that at the start of the game, the number
of playouts is smaller. As the game progresses, the playouts become shorter and
the number of playouts per second increases.

The results of the round-robin tournament are given in Table 4. In 3-player
Chinese Checkers, one-ply and Paranoid are the best techniques. Paranoid wins



10 J.A.M. Nijssen and M.H.M. Winands

Table 4. Round-robin tournament of the different search techniques in Chinese Check-
ers and Focus for time settings of 5 seconds per move (win%).

E O M P B Avg. E O M P B Avg.
Move eval. - 28.7 42.7 31.5 36.1 34.8 Move eval. - 43.2 54.2 48.1 51.8 49.3
One-ply 71.3 - 62.5 50.8 58.2 60.7 One-ply 56.8 - 58.9 53.9 57.9 56.9
Maxn 57.3 37.5 - 36.1 43.5 43.5 Maxn 45.8 41.1 - 43.5 50.7 45.3
Paranoid 68.5 49.2 63.9 - 55.7 59.3 Paranoid 51.9 46.1 56.5 - 52.7 51.8
BRS 63.9 41.8 56.5 44.3 - 51.6 BRS 48.2 42.1 49.3 47.3 - 46.7

3-player Chinese Checkers 3-player Focus

E O M P B Avg. E O M P B Avg.
Move eval. - 33.7 45.9 35.4 42.9 39.5 Move eval. - 42.3 41.1 40.1 43.9 49.1
One-ply 66.3 - 60.5 53.7 56.2 59.2 One-ply 57.7 - 51.3 48.3 54.5 53.0
Maxn 54.1 39.5 - 40.3 46.6 45.1 Maxn 58.9 48.7 - 47.9 55.9 52.9
Paranoid 64.6 46.3 59.7 - 56.2 56.7 Paranoid 59.9 51.7 52.1 - 54.3 54.5
BRS 57.1 43.8 53.4 43.8 - 49.5 BRS 56.1 45.5 44.1 45.7 - 47.9

4-player Chinese Checkers 4-player Focus

Table 5. Win rates of the Paranoid player against the one-ply player for time settings
of 5 and 30 seconds per move.

Game 5 seconds 30 seconds

3-player Chinese Checkers 49.2% 53.9%
4-player Chinese Checkers 46.3% 48.3%
3-player Focus 46.1% 50.7%
4-player Focus 51.7% 54.1%

49.2% of the games against one-ply and 68.5% against the move evaluator. BRS
ranks third, and the move evaluator and maxn are the weakest techniques. In
4-player Chinese Checkers, one-ply is the best technique, closely followed by
Paranoid. One-ply wins 53.7% of the games against Paranoid. Paranoid is still
stronger than the move evaluator, winning 64.6% of the games. BRS comes in
third place, outperforming maxn and the move evaluator.

One-ply also performs the best in 3-player Focus. Paranoid plays slightly
stronger than the move evaluator, with Paranoid winning 51.9% of the games
against the move evaluator. One-ply wins 56.8% of the games against the move
evaluator and 53.9% against Paranoid. The move evaluator and Paranoid per-
form better than BRS and maxn. In 4-player Focus, Paranoid performs better
than in the 3-player version and outperforms one-ply. Paranoid wins 51.7% of
the games against one-ply and 59.9% against the move evaluator. Maxn also per-
forms significantly better than in the 3-player version. It is as strong as one-ply
and better than the move evaluator, winning 58.9% of the games.

In the final set of experiments, we gave the players 30 seconds per move.
Because these games take quite some time to finish, only the one-ply player and
the Paranoid player were matched against each other. In the previous set of
experiments, these two techniques turned out to be the strongest. The results
are given in Table 5.



Playout Search for Monte-Carlo Tree Search in Multi-Player Games 11

Paranoid appears to perform slightly better when the players receive 30 sec-
onds per move compared to 5 seconds per move. In 3-player Chinese Checkers,
Paranoid wins 53.9% of the games, compared to 49.2% with 5 seconds. In 4-
player Chinese Checkers, 48.3% of the games are won by Paranoid, compared
to 46.3% with 5 seconds. In 3-player Focus, the win rate of Paranoid increases
from 46.1% with 5 seconds to 50.7% with 30 seconds and in 4-player Focus from
51.7% to 54.1%.

6 Conclusions and Future Research

In this paper we proposed Playout Search for improving the playout phase
of MCTS in multi-player games. We applied 2-ply maxn, Paranoid and BRS
searches to select the moves to play in the playout phase. Some enhancements,
such as ε-greedy playouts, move ordering, killer moves and k-best pruning were
implemented to speed up the search.

The results show that Playout Search significantly improves the quality of
the playouts in MCTS. This benefit is countered by a reduction of the num-
ber of playouts per second. Especially BRS and maxn suffer from this effect.
Based on the experimental results we may conclude that Playout Search for
multi-player games might be beneficial if the players receive sufficient thinking
time and Paranoid search is employed. Under these conditions, Playout Search
outperforms playouts using light heuristic knowledge in the 4-player variant of
Focus and the 3-player variant of Chinese Checkers.

There are two directions for future research. First, it may be interesting to
test Playout Search in other games as well. Second, the two-ply searches may be
further optimized. Though a two-ply search will always be slower than a one-
ply search, the current speed difference could be reduced further. This can be
achieved for instance by improved move ordering or lazy evaluation functions.

References

1. S.G. Akl and M.M. Newborn. The Principal Continuation and the Killer Heuristic.
In Proceedings of the ACM Annual Conference, pages 466–473, New York, NY,
USA, 1977. ACM.

2. Y. Björnsson and H. Finnsson. CadiaPlayer: A simulation-based general game
player. IEEE Transactions on Computational Intelligence and AI in Games,
1(1):4–15, 2009.

3. B. Bouzy. Associating domain-dependent knowledge and Monte Carlo approaches
within a go program. Information Sciences, 175(4):247–257, 2005.

4. D.M. Breuker, Uiterwijk J.W.H, H, and H.J. van den Herik. Replacement Schemes
and Two-Level Tables. ICCA Journal, 19(3):175–180, 1996.

5. T. Cazenave. Multi-player Go. In H.J. van den Herik, X. Xu, Z. Ma, and M.H.M.
Winands, editors, Computers and Games (CG 2008), volume 5131 of LNCS, pages
50–59, Berlin, Germany, 2008. Springer.

6. G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, and
B. Bouzy. Progressive strategies for Monte-Carlo Tree Search. New Mathematics
and Natural Computation, 4(3):343–357, 2008.



12 J.A.M. Nijssen and M.H.M. Winands

7. R. Coulom. Efficient selectivity and backup operators in Monte-Carlo Tree Search.
In H.J. van den Herik, P. Ciancarini, and H.H.L.M. Donkers, editors, Computers
and Games (CG 2006), volume 4630 of LNCS, pages 72–83, Berlin, Germany, 2007.
Springer.

8. H. Finnsson and Y. Björnsson. Simulation Control in General Game Playing
Agents. In IJCAI’09 Workshop on General Intelligence in Game Playing Agents,
pages 21–26, 2009.

9. D.E. Knuth and R.W. Moore. An analysis of alpha-beta pruning. Artificial Intel-
ligence, 6(4):293–326, 1975.

10. L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In J. Fürnkranz,
T. Scheffer, and M. Spiliopoulou, editors, Machine Learning: ECML 2006, volume
4212 of Lecture Notes in Artificial Intelligence (LNAI), pages 282–293, Berlin,
Germany, 2006. Springer.

11. R.J. Lorentz. Improving Monte-Carlo Tree Search in Havannah. In H.J. van den
Herik, H. Iida, and A. Plaat, editors, Computers and Games (CG 2010), volume
6515 of LNCS, pages 105–115, Berlin, Germany, 2011. Springer.

12. U. Lorenz and T. Tscheuschner. Player Modeling, Search Algorithms and Strate-
gies in Multi-player Games. In H.J. van den Herik, S.-C. Hsu, T.-S. Hsu, and
H.H.L.M. Donkers, editors, Advances in Computer Games (ACG11), volume 4250
of LNCS, pages 210–224, Berlin, Germany, 2006. Springer.

13. C. Luckhart and K.B. Irani. An algorithmic solution of n-person games. In Proceed-
ings of the 5th National Conference on Artificial Intelligence (AAAI), volume 1,
pages 158–162, 1986.

14. T.A. Marsland. A review of game-tree pruning. ICCA Journal, 9(1):3–19, 1986.
15. J.A.M. Nijssen and M.H.M. Winands. Enhancements for Multi-Player Monte-Carlo

Tree Search. In H.J. van den Herik, H. Iida, and A. Plaat, editors, Computers and
Games (CG 2010), volume 6515 of LNCS, pages 238–249, Berlin, Germany, 2011.
Springer.

16. A. Rimmel, F. Teytaud, and O. Teytaud. Biasing Monte-Carlo Simulations through
RAVE Values. In H.J. van den Herik, H. Iida, and A. Plaat, editors, Computers
and Games (CG 2010), volume 6515 of LNCS, pages 59–68, Berlin, Germany, 2011.
Springer.

17. S. Sackson. A Gamut of Games. Random House, New York, NY, USA, 1969.
18. M.P.D. Schadd and M.H.M. Winands. Best Reply Search for Multiplayer Games.

IEEE Transactions on Computational Intelligence and AI in Games, 3(1):57–66,
2011.

19. N.R. Sturtevant. An analysis of UCT in multi-player games. In H.J. van den Herik,
X. Xu, Z. Ma, and M.H.M. Winands, editors, Computers and Games (CG 2008),
volume 5131 of LNCS, pages 37–49, Berlin, Germany, 2008. Springer.

20. N.R. Sturtevant and R.E. Korf. On pruning techniques for multi-player games.
In Proceedings of the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on Innovative Applications of Artificial Intelligence, pages
201–207. AAAI Press / The MIT Press, 2000.

21. M.H.M. Winands and Y. Björnsson. αβ-based Play-outs in Monte-Carlo Tree
Search. In 2011 IEEE Conference on Computational Intelligence and Games (CIG
2011), pages 110–117. IEEE Press, 2011.

22. M.H.M. Winands, Y. Björnsson, and J.-T. Saito. Monte Carlo Tree Search in Lines
of Action. IEEE Transactions on Computational Intelligence and AI in Games,
2(4):239–250, 2010.


