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N-Grams and the Last-Good-Reply Policy applied
in General Game Playing
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Abstract—The aim of General Game Playing (GGP) is to create
programs capable of playing a wide range of different games
at an expert level, given only the rules of the game. The most
successful GGP programs currently employ simulation-based
Monte-Carlo Tree Search (MCTS). The performance of MCTS
depends heavily on the simulation strategy used. In this paper
we introduce improved simulation strategies for GGP that we
implement and test in the GGP agent CADIAPLAYER, which won
the International GGP competition in both 2007 and 2008. There
are two aspects to the improvements: first, we show that a simple
ϵ-greedy exploration strategy works better in the simulation play-
outs than the softmax-based Gibbs measure currently used in
CADIAPLAYER and, secondly, we introduce a general framework
based on N-Grams for learning promising move sequences.
Collectively, these enhancements result in a much improved
performance of CADIAPLAYER. For example, in our test-suite
consisting of five different two-player turn-based games, they
led to an impressive average win rate of approximately 70%.
The enhancements are also shown to be effective in multi-
player and simultaneous-move games. We additionally perform
experiments with the Last-Good-Reply Policy. The Last-Good-
Reply Policy combined with N-Grams is also tested. The Last-
Good-Reply Policy has already been shown to be successful in Go
programs and we demonstrate that it also has promise in GGP.

Index Terms—General Game Playing, Monte-Carlo Tree
Search (MCTS), N-Grams, Last-Good-Reply Policy.

I. INTRODUCTION

PAST research in Artificial Intelligence (AI) in games
focuses on the development of programs capable of

playing one particular game at a world-class level. Such
programs have in common that they depend heavily on elab-
orate game-dependent knowledge, typically provided by their
developers. Furthermore, many of the techniques employed in
these programs are highly specialized and fine tuned for the
particular game at hand. In General Game Playing (GGP), on
the contrary, the aim is to create programs capable of playing
a wide range of different games at an expert level, some of
which they may never have encountered before. This imposes
extra challenges compared to the more traditional approach
where the game to play is known beforehand. First, as such
programs do not have any game-specific knowledge available
beforehand, they have to learn it by themselves during play.
Second, it can no longer be decided in advance by the human
developer which search method suits best for a particular
game. Thus, the program has to decide by itself how to spend
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the available time searching for the best move. Third, no
parameter turning can be done off-line, which imposes the ap-
plication of on-line machine learning. These three challenges
already entail that in GGP a program can become successful
only if it incorporates a wide range of different AI techniques,
like knowledge representation, knowledge discovery, machine
learning, search and on-line optimization.

The first successful GGP programs, such as CLUNEPLAYER
[1] and FLUXPLAYER [2], [3], were based on minimax with
an automatically learned evaluation function. CLUNEPLAYER
and FLUXPLAYER won the International GGP competition in
2005 and 2006, respectively. However, GGP programs using a
Monte-Carlo based approach have proved more successful and
won the competition in all subsequent years: CADIAPLAYER
[4] in 2007 and 2008, ARY [5], [6] in 2009 and 2010, and
TURBOTURTLE in 2011 [7].

Monte-Carlo Tree Search (MCTS) [8]–[10] and/or Nested
Monte-Carlo Search [6] work well in GGP because no game
specific knowledge, besides the basic rules of the game, is
required at the start. Moreover, MCTS can be applied in one-,
two-, and multi-player games, whereas Nested Monte-Carlo
Search is particularly suited for one-player games. However,
to be truly effective, MCTS requires both a robust strategy for
controlling the tradeoff between exploration and exploitation
of actions, as well as heuristic knowledge for effectively
guiding the MCTS simulations [11]. The contribution of
this paper is to propose and evaluate effective methods for
performing those tasks in GGP. More specifically, we: (1) show
that a simple ϵ-greedy exploration strategy works better in the
simulation play-outs than the more commonly used softmax-
based Gibbs measure; (2) introduce a general framework based
on N-Grams for learning promising move sequences, which
results in much improved play, and (3) show that the Last-
Good-Reply Policy [12], [13], which is successful in Go, also
holds promise in GGP.

The paper is structured as follows. In the next two sections
we provide necessary overview background on GGP and
MCTS, respectively. The subsequent section describes the
details of the simulation guidance approach used in CA-
DIAPLAYER as well as the new approaches introduced in
this paper. This is followed by experimental setup and result
sections, and finally we conclude and discuss future work.

II. GENERAL GAME PLAYING

The Logic Group at Stanford University initiated the annual
International GGP competition to stimulate research in the
area of general game playing. As a part of the initiative they
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Fig. 1. Four strategic steps in Monte-Carlo Tree Search (adapted from Chaslot et al. [10])

developed a standard for describing the rules of a game. This
section explains briefly how game rules are specified and how
matches between GGP agents are conducted.

A. The Game Description Language
The rules of a game are expressed in the Game De-

scription Language (GDL) [14] which is a specialization of
the Knowledge Interchange Format (KIF) [15]. It is a first-
order logic language for describing knowledge. With GDL n-
player, deterministic, perfect information, simultaneous-move
games can be described. Turn-based games are represented
by introducing a so called noop (no operation) move which
has no effect and is the only possible move for the player
currently not on turn. Recently, GDL-2 [16] was introduced,
which allows games with chance and imperfect information to
be described.

In GDL a game state is represented by a set of true facts.
The legal moves in that state are described with logical rules.
These legal moves define the possible transitions to other
states. For a detailed specification of GDL, we refer to [14].

B. Game-Master
A game-master server orchestrates games played by GGP

agents. The Dresden GGP Server is a well-known game-
master server hosted on-line [17]. Furthermore, a standalone
Java implementation is freely available under the name Game-
Controller [18]. The agents register themselves at the server.
When the game starts, the game-master sends the rules of the
game to the players, including their role, the startclock and
playclock. The startclock is the time between receiving the
rules and the first move. The playclock is the time between
each move after play has started.

Each agent sends its move to the game-master. If the moves
are legal the game-master applies them to the current game
state. If a player sends an illegal move it is replaced with
a random move determined by the game-master. The game-
master informs the agents about all moves played such that
each agent can update its internal game state accordingly. The
game ends when a terminal state is reached. The agents are
then informed about the obtained rewards.

III. MONTE-CARLO TREE SEARCH

CADIAPLAYER [4] uses Monte-Carlo Tree Search (MCTS)
[8]–[10] to determine which moves to play. The advantage of
MCTS over minimax-based approaches is that no evaluation
function is required. This makes it especially suited for GGP
in which it is difficult to come up with an accurate evaluation
function. MCTS is a best-first search strategy that gradually
builds up a tree in memory. Each node in the tree corresponds
to a state in the game. The edges of a node represent the legal
moves in the corresponding state. Moves are evaluated based
on the average return of simulated games.

MCTS consists of four strategic steps [10] which are
outlined in Fig. 1. (1) The selection step determines how
to traverse the tree from the root node to a leaf node L. It
should balance the exploitation of successful moves with the
exploration of new moves. (2) In the play-out step a random
game is simulated from leaf node L till the end of the game.
Usually a simulation strategy is employed to improve the play-
out [11]. (3) In the expansion step one or more children of
L are added. (4) In the back-propagation step the reward R
obtained is back-propagated through the tree from L to the
root node.

Below we describe how these four strategic steps are
implemented in CADIAPLAYER:

1) In the selection step the Upper Confidence Bounds
applied to Trees (UCT) algorithm [9] is applied to
determine which moves to select in the tree. At each
node s move a∗ selected is given by (1).

a∗ = argmax
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(1)

where N(s) is the visit count of s and N(s, a) is the
number of times move a is selected in node s. The
first term, Q(s, a) is the average return when move a
is played in state s. The second term increases when
state s is visited and siblings of a are selected. If
a state s is visited frequently then even moves with
a relatively low Q(s, a) could be selected again at
some point, because their second term has risen high
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enough. Thus, the first term supports the exploitation
of successful moves while the second term establishes
the exploration of infrequently visited moves. The C
parameter influences the balance between exploration
and exploitation. Increasing C leads to more exploration.
If A(s), the set of legal moves in state s, contains moves
that are never visited before, then another selection
mechanism is utilized, because these moves do not have
an estimated value yet. If there is exactly one move that
is not visited before, then this one is selected by default.
If there are multiple moves that are not visited before,
then the same simulation strategies as used in the play-
out step are used to determine which move to select. In
all other cases (1) is applied.

2) During the play-out step a complete game is simulated.
The most basic approach is to play plain random moves.
However, the play-outs can be improved significantly by
playing quasi-random moves according to a simulation
strategy [11]. The aim is to improve the performance
of the already existing CADIAPLAYER by introducing
new simulation strategies. These simulation strategies
are described in Section IV.

3) In the expansion step nodes are added to the tree.
In CADIAPLAYER, only one node per simulation is
added [8]. This node corresponds to the first position
encountered outside the tree. Adding only one node
after a simulation prevents excessive memory usage,
which could occur when the simulations are fast. Other
expansion strategies are discussed in [19].

4) In the back-propagation step the reward obtained in the
play-out is propagated backwards through all the nodes
on the path from the leaf node L to the root node.
The Q(s,a) values of all state-move pairs on this path
are updated with the just obtained reward. In GGP the
reward lies in the range [0, 100].

More details about the implementation of CADIAPLAYER
can be found in [4], [20].

IV. SIMULATION STRATEGIES

A good simulation strategy can improve the play-outs
significantly [11]. The aim is to improve CADIAPLAYER
by implementing new simulation strategies. The performance
of these simulation strategies is compared with the Move-
Average Sampling Technique (MAST) which was used by
CADIAPLAYER when winning the GGP competition in 2008
[21]. The first subsection explains MAST and the adjustments
we made to it, the second introduces a new simulation strategy
based on N-Grams, and the third describes the Last-Good-
Reply Policy [12], [13], which is already applied successfully
in Go and that we experiment with here in GGP.

A. Move-Average Sampling Technique

The Move-Average Sampling Technique (MAST) [21] is
based on the principle that moves good in one state are likely
to be good in other states as well. The history heuristic [22],
which is used to order moves in αβ search [23], is based on
the same principle. For each move a, a global average Qh(a)

is kept in memory. It is the average of the returned rewards
of the play-outs in which move a occurred. These values are
utilized for selecting moves in the play-out. Furthermore, if in
the MCTS tree a node has more than one unvisited legal move
then the Qh(a) values of these unvisited moves are employed
to determine which move to select. In the original version of
MAST this is done using Gibbs measure:

P (a) =
eQh(a)/τ∑n
b=1 e

Qh(b)/τ

P (a) is the probability that move a will be selected. Moves
with a higher Qh(a) value are more likely to be selected. How
greedy the selection is can be tuned with the τ parameter. In
order to bias the selection of unexplored moves the initial
Qh(a) value is set to the maximum possible score of 100.

A disadvantage of the Gibbs measure is that the probability
of selecting the move with the highest Qh(a) score is not fixed
and unknown. Consequently, it is not assured that moves with
the highest Qh(a) scores will be even chosen at all. Therefore,
for a comparison, we implement a different exploration tech-
nique also based on the Qh(a) values, namely ϵ-greedy [24],
[25]. With a probability of 1 − ϵ the move with the highest
Qh(a) value is selected, and with a probability of ϵ a legal
move is chosen uniformly at random.

B. N-Gram Selection Technique

MAST generalizes the merits of moves from one state to
the next without considering the context in which the moves
are made. Nonetheless, despite its simplicity, this technique
has proved quite successful and, for example, was the main
simulation strategy used in CADIAPLAYER when winning the
International GGP competition in 2008.

Subsequent work on more context aware simulation strate-
gies has returned a mixed success. For example, the PAST
(Predicate-Average Sampling Technique) [26] simulation strat-
egy adds context by taking into account the predicates that
are true in the state in which a move is played. However, a
disadvantage of PAST is that the benefits coming from having
the context added this way were barely sufficient to offset
the computational overhead incurred in keeping track of the
additional predicates. Experiments revealed that PAST was
only slightly better than MAST in Checkers, but in three other
games PAST did not perform better [27].

The method we propose here, called the N-Gram Selection
Technique (NST), keeps track of move sequences instead of
single moves. It offers context in a way that is more favorable
in terms of added benefits vs. computational overhead than, for
example, PAST does. A method similar to NST is applied suc-
cessfully in Havannah [28], [29]. Furthermore, NST also bears
some resemblance with the simulation strategy introduced in
[30], which is based on a tiling of the space of Monte-Carlo
simulations.

NST is based on N-Gram models, often employed in
statistical language processing [31] and in computer games
for predicting the next move of the opponent [32], [33]. The
N-Grams in NST consist of consecutive move sequences S of
length 1, 2 and 3. Similar to as in MAST the average of the
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returned rewards of the play-outs is accumulated. However,
the average, here called R(S), is kept also for longer move
sequences as opposed to single moves only.

The N-Grams are formed as follows. After each simulation,
starting at the root of the tree, for each player all move
sequences of length 1, 2 and 3 that appeared in the simulated
game are extracted. The averages of these sequences are
updated with the obtained reward from the simulation. It is
not checked whether the same move sequence occurred more
than once in the simulation. Thus, if there are m occurrences
of the same move sequence, then the average of this sequence
is updated m times.

The move sequences consist of moves from the current
player and moves from the opponent(s). The role numbers
0, 1, 2, · · · , n − 1, which are assigned to the players at the
beginning of a game with n players, are employed in order
to determine the move of which opponent to include in the
sequences. Suppose that the current player has role number
i and there are n players, then the sequences are constructed
as follows. A sequence of length 1 consists of just one move
of the current player. A sequence of length 2 starts with a
move of player with role (i+ n− 1) mod n and ends with a
move of the current player. A sequence of length 3 starts with
a move of player with role (i+ n− 2) mod n, followed by
a move of the player with role (i+ n− 1) mod n and ends
with a move made by the current player. The moves in these
sequences are consecutive moves.

Fig. 2 gives an example of a play-out. At each step, both
players have to choose a move, because all games in GGP are
assumed to be simultaneous-move games. The example given
here concerns a turn-based, two-player game, which means
that at each step one of the players can only play the noop
move. The example shows that these noop moves are included
in the sequences, because NST handles them as regular
moves. This does not cause any problem, because these move
sequences will only be used during move selection when the
player is not really on turn and has the only option of choosing
the noop move. Therefore, the move sequences containing
noop moves do not negatively influence the decision process
during the play-out.

If the game is truly simultaneous, then at each step all play-
ers choose an actual move instead of some players having to
choose the noop move like in turn-based games. As explained
above, NST includes only one move per step in its sequences.
This means that for an n-player simultaneous game, moves of
n−1 players are ignored each step. Another possibility would
have been to include the moves of all players at each step, but
that would lead to too specific sequences. The disadvantage of
such specific sequences is that fewer statistical samples can be
gathered about them, because they occur much more rarely.

In the play-out, and at the nodes of the MCTS tree
containing unvisited legal moves, the N-Grams are used to
determine which move to select. For each legal move, the
player determines which sequence of length 1, which sequence
of length 2 and which sequence of length 3, would occur
when that move is played. The sequence of length 1 is
just the move itself. The sequence of length 2 is the move
itself appended to the last move played by player with role

Fig. 2. Extracted move sequences from play-out

(i+ n− 1) mod n. The sequence of length 3 is the move
itself appended to the previous last move played by player
with role (i+ n− 2) mod n and the last move played by
the player with role (i+ n− 1) mod n. Thus, in total three
sequences could occur. The player then calculates a score for
a move by taking the average of the R(s) values stored for
these sequences. In this calculation, the R(s) values for the
move sequences of length 2 and length 3 are only taken into
account if they are visited at least k times. In the performed
experiments, k = 7. This value was determined by manual
tuning.

If a move has been played at least once, but the sequences
of length 2 and length 3 occurred fewer than k times, then the
R(s) value of the move sequence of length 1 (which is the
move itself) will be returned.

If a move has never been played before, then no move
sequences exist and the calculation outlined above is not
possible. In that case the score is set to the maximum possible
value of 100 in order to bias the selection towards unexplored
moves.

In this manner, a score is assigned to each legal move in
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a given state. These scores are then used to determine which
move to select. This can be done using either a Gibbs measure
or an ϵ-greedy strategy.

C. Last-Good-Reply Policy

The Last-Good-Reply Policy (LGRP) [12], [13] is a sim-
ulation strategy in which successful replies that occurred in
the play-outs are kept in memory. It bears similarities with
the countermove heuristic [34]. The strategy is to play a move
that is a successful reply to the immediately preceding moves.
If such a legal move is unavailable, then a default fall-back
strategy decides which move to play. The LGRP has been
already applied in Go and Havannah [12], [28]. In [13] an
enhancement is introduced that forgets a stored reply when in
a later simulation the reply is unsuccessful. This modification
improves the LGRP in Go. It is interesting to investigate
whether this simulation strategy works in a broader range of
games. We thus implement and experiment with the LGRP in
CADIAPLAYER.

The implementation of LGRP in CADIAPLAYER is similar
to the variant LGRF-2 which is described in [13]. Like in NST,
the role numbers 0, 1, 2, · · · , n− 1 and the number of players
n are employed for determining to which moves a best reply
is stored. For each player i, two separate tables are created. In
one table, the best replies to a previous move of the player with
role number (i+ n− 1) mod n are stored. In the second table,
the best replies to the previous two moves are stored. This
sequence of two moves starts with a move made by the player
with role number (i+ n− 2) mod n and ends with a move
played by the player with role number (i+ n− 1) mod n.
The moves have to occur directly after each other.

The tables are updated after each simulation. If the reward
obtained by the player is at least as high as the highest reward
obtained by any of the players then the moves made by the
player are stored in the table as being a best reply to their
immediate predecessor(s). If a best reply is already stored it is
overwritten, because only one reply is stored per predecessor
move(s). If the reward of the player is lower than that of any of
the opponents then the moves of the player are removed from
the table if they were stored as best reply to their immediate
predecessor(s).

Fig. 3 gives an example of how the best-reply tables are
updated. The first simulation is a win for Black, so its moves
are stored as best replies in the tables. For White, nothing is
stored because it loses. In the second simulation, Black loses.
Therefore, if an already stored reply occurred, it is removed
from the table. In this case it means that D → A, noop → noop
and noop, noop → noop are deleted. Like in NST, the noop
moves are included in the tables, but as explained in Section
IV-B this does not cause any problem.

These best-reply tables are used during the play-out and for
selecting moves in the MCTS tree when a node has unvisited
legal moves. These tables are already employed after the first
play-out. The move stored as a best reply to the previous two
moves is chosen. These two previous moves form a sequence
of consecutive moves, which starts with a move from the
player with role number (i+ n− 2) mod n and ends with

Fig. 3. Updating the reply tables from the Last-Good-Reply Policy

a move of the player with role number (i+ n− 1) mod n.
If a best reply to this sequence is not legal or unavailable
from the tables, then the selected move is the stored best
reply to the last move from the player with role number
(i+ n− 1) mod n. If also that move is unavailable or illegal,
then a default strategy is used. In the experiments, two default
strategies are tested. The first one is MAST with ϵ-greedy
[24]. The second one is NST with ϵ-greedy.

V. EXPERIMENTAL SETUP

We implemented the aforementioned methods in CADI-
APLAYER to investigate their effectiveness for GGP. The first
subsection introduces the games used in the experiments. The
second subsection describes the setup of the experiments.

A. Games

Below an overview is given of the games employed in the
experiments. Note that most of the classic games enlisted
below are usually a variant on its original counterpart. The
most common adjustments are a smaller board size and a
bound on the number of steps. In all experiments the following
five two-player, turn-based games are used:

• Connect5 is played on an 8×8 board and the player
on turn has to place a piece in an empty square. The
aim is to place five consecutive pieces of the own color
horizontally, vertically or diagonally, like Go-Moku or
Five-in-a-Row.

• Checkers is played on an 8×8 board and the aim is to
capture pieces of the opponent.
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• Breakthrough is played on an 8×8 board. Each player
starts on one side of the board and the aim is to move
one of their pieces to the other side of the board.

• Othello is played on an 8×8 board. Each turn a player
places a piece of its own color on the board. This will
change the color of some of the pieces of the opponent.
The aim is to have the most pieces of the own color on
the board at the end of the game.

• Skirmish is played on an 8×8 board with different kind of
pieces, namely: bishops, pawns, knights and rooks. The
aim is to capture as many pieces from the opponent as
possible, without losing to many pieces either.

These games were chosen because they are used in several
previous CADIAPLAYER experiments [4], [20], [21], [26],
[27], [35].

In the final series of experiments additional games are
included. This helps with evaluating the methods’ robustness
across a wider range of games, including simultaneous-move
and multi-player ones. The following two-player, turn-based,
games are added:

• Clobber is played on a 4×5 board which is completely
filled initially. Each turn a player moves one of its pieces
to a neighboring cell that has to be occupied by the
opponent. The first player that cannot move loses the
game. This is a smaller version of Clobber, because the
tournament board size is 10×10.

• Sheep and Wolf is an asymmetrical game played on an
8×8 board. One player controls the Sheep and the other
player controls the Wolf. The game ends when none of
the players can move or when the Wolf is behind the
Sheep. In this case, if the Wolf is not able to move the
Sheep wins. Otherwise, the Wolf wins.

The following three-player, turn-based games are added:

• TTCC4 stands for: TicTacChessCheckersFour and is
played on a 7×7 board. Each player has a pawn, a
checkers piece and a knight. The aim of each player is
to form a line of three with its own pieces.

• Chinese Checkers is played on a star shaped board. Each
player starts with three pieces positioned in one star. The
aim is to move all these three pieces to the empty star
at the opposite side of the board. This is a variant of
the original Chinese Checkers, because according to the
standard rules each player has ten pieces instead of three.

The following two-player, simultaneous-move games are
added:

• Chinook is a variant of Breakthrough where two indepen-
dent games are played simultaneously. One game on the
white squares and another one on the black squares.

• In Runners each turn both players decide how many steps
they want to move forward or backward. The aim is to
reach a certain location before the opponent does.

• Fighter is a fighting game where both players try to hit
each other. When a player is hit, its life points go down.
The aim is to have more life points than the opponent
at the end of the game. The game ends after 25 steps or
when one of the players has zero life points.

• Pawn Whopping is similar to Breakthrough, but with
slightly different movement and is simultaneous.

Fighter, Clobber and Pawn Whopping were used during the
German Open in GGP of 2011 [36].

B. Setup
In all experiments, two variants of CADIAPLAYER are

matched against each other. The startclock and playclock are
set to 60 and 30 seconds, respectively. In the final experiment,
however, we additionally look at the effects of using shorter
time controls, where both the startclock and the playclock are
set to 10 seconds. The k parameter of the NST simulation strat-
egy is set to 7. This value was determined by manual tuning.
The τ parameter of the Gibbs measure used in CADIAPLAYER
was left unchanged to the preset value of 10.

In all experiments, the programs switch roles such that
none has any advantage. For the two-player games, there
are two possible configurations. For the three-player games,
there are eight possible configurations, where two of them
consist of three times the same player. Therefore, there are
only six interesting configurations which are employed in the
experiments [25].

In the first experiment we investigate the effects of using an
ϵ-greedy strategy [24] instead of Gibbs measure. The original
CADIAPLAYER using MAST with Gibbs measure (CPMAST)
plays against the version that uses MAST with an ϵ-greedy
strategy (CPMASTG). ϵ ranges from 0.1 till 0.7. The aim is to
determine whether an ϵ -greedy selection mechanism performs
better than Gibbs measure and for which ϵ the best overall
performance is obtained. This ϵ will be used in subsequent
experiments.

In the second experiment we compare the performance of
the NST and LGRF-2 strategies against that of CPMASTG. In
order to make a fair comparison, all the strategies are using
an ϵ-greedy strategy (for LGRF-2 this applies to the fall-back
strategy only). The following three variants of CADIAPLAYER
play against CPMASTG. First, CPNST which uses NST as a
simulation strategy. Second, CPLGR-MASTG which uses LGRF-2
with CPMASTG as a fall-back strategy. Third, CPLGR-NST which
uses LGRF-2 with CPNST as a fall-back strategy.

The third experiment is similar to the second experiment,
but now the three variants as described above play against
CPMAST instead of CPMASTG. This means that they play against
the original CADIAPLAYER that is using MAST with Gibbs
measure. With this experiment, the aim is to examine how
much performance is gained (or lost) overall compared with
the original CADIAPLAYER when applying the simulation
strategies as described in this article.

The fourth experiment resembles the third experiment, but
now all players employ Gibbs measure. The intention of this
experiment is to investigate how the new simulation strategies
perform when they employ Gibbs measure instead of an ϵ-
greedy strategy

In the fifth experiment, CPLGR-NST plays against CPNST.
From the results of the previous experiments, which are shown
in Section VI, it became clear that these two simulation
strategies performed the best. Therefore, the intention of this
experiment is to determine which one is superior.
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In the final experiment, CPMAST, CPNST, CPLGR-MASTG and
CPLGR-NST are matched against CPUCT which plays uniformly
random moves in the play-out phase. This experiment is
similar to the one performed in [35] where also improved
versions of CADIAPLAYER were matched against CPUCT. Two
different time settings are tested in order to investigate how
sensitive the performance of the simulation strategies is to
thinking time. In the first time setting, the startclock is set to
60s and the playclock is set to 30s. This is the same as in the
other experiments. In the second time setting, the startclock
and playclock are both set to 10s. This is the same time
setting as used in the experiment performed in [35]. For CPNST,
CPLGR-MASTG and CPLGR-NST, ϵ is set to 0.2. Furthermore, in
this experiment eight games are added in order to validate the
chosen value of ϵ and in order to examine how the techniques
perform in multi-player games and simultaneous-move games.

VI. EXPERIMENTAL RESULTS

This section discusses the results of the experiments de-
scribed above. All tables show both a win rate, averaged over
at least ≈300 games, and a 95% confidence interval. The win
rate is calculated as follows. For the two-player games, each
game won gives a score of 1 point and each game that ends in
a draw results in a score of 1

2 point. The win rate is the sum of
these points divided by the total number of games played. For
the three-player games, a similar calculation is performed but
the draws are counted differently. If all three players obtained
the same reward, then the draw is counted as 1

3 point. If two
players obtained the same, highest reward, the draw is counted
as 1

2 point for the corresponding players.

A. ϵ-greedy compared with Gibbs measure

Table I shows the performance of CPMASTG against CPMAST
on our benchmark games for different values of ϵ. We see that
the ϵ value that gives the best performance differs from one
game to the next. For instance, in Connect5, CPMASTG per-
forms better when ϵ, and thus exploration, increases. A likely
explanation is the lack of moves that are good in general. In
Checkers, for each of the tested values of ϵ, CPMASTG performs
much better than CPMAST. Thus, in Checkers, CPMASTG is not
highly sensitive to a change in ϵ. In [35] it was demonstrated
that in Checkers the MAST simulation strategy had only a little
performance gain over a fully random simulation strategy. This
explains why the introduction of more randomness in CPMASTG
has not much influence on its playing strength in Checkers.
For the other three games, the optimal value of ϵ is around
0.4.

Overall, that ϵ = 0.4 value seems to be a good compromise,
resulting in the ϵ-greedy selection player handily outperform-
ing the Gibbs measure on all games except Breakthrough. So it
seems that, at least for this set of games, an ϵ-greedy selection
mechanism is better than Gibbs measure.

A possible explanation is that with Gibbs measure the
probability that the move with the highest heuristic score is
chosen is not fixed, because it depends on the scores for the
other moves as well. Consequently, it is not assured that the
move with the highest heuristic score will be even chosen at

all. In contrast, with ϵ-greedy the probability of selecting the
move with the highest score is fixed to be 1-ϵ.

Furthermore, with Gibbs measure the move selection is
always biased by the heuristic scores for the moves. A heuristic
score gives an estimate of the quality of a move. Consequently,
when these heuristic scores do not correspond with the real
quality of a move then it could be that good moves are missed.
This is not a problem with the ϵ-greedy strategy because with
a probability of ϵ a plain random move is played. Thus it is
less likely that good moves are missed.

B. CPMASTG compared with CPNST and CPLGR

In this experiment, CPMASTG always uses ϵ = 0.4, because
in the previous section it is demonstrated that this leads to
the best overall performance. For CPNST , CPLGR-MASTG and
CPLGR-NST three different values for ϵ are used, namely 0.1,
0.2 and 0.4.

Table II shows the results of player CPNST against
CPMASTG. For each tested values of ϵ the CPNST player
is significantly better in Connect5 and Breakthrough. The best
overall performance of CPNST is obtained at ϵ = 0.1. There
CPNST demonstrates statistically significant improvement in
all games but Checkers, where performance is approximately
on par. Therefore, based on these results, CPNST is overall
clearly a superior player to CPMASTG.

Table III shows the win rate of CPLGR−MASTG against
CPMASTG. CPLGR−MASTG is significantly better in Con-
nect5 and Breakthrough. For the other three games,
CPLGR−MASTG does not improve upon CPMASTG. Espe-
cially in Othello, at ϵ = 0.4 and ϵ = 0.1 the performance of
CPLGR−MASTG is notably worse than that of CPMASTG. A
possible explanation is that in Othello there are certain moves
that are good in general, for example placing stones in the
corners because they cannot be captured. This makes Othello
particularly suited for the MAST simulation strategy. However,
LGRF-2 is less appropriate for Othello, because when the
player has placed a stone in the corner and subsequently lost
the game then this move is removed from the best reply table.
Consequently, in the next simulation it is less likely that the
player will place a stone in the corner although it would be a
good move.

Finally, Table IV shows the win rate of CPLGR−NST against
CPMASTG. When this result is contrasted to Table II, we
see that the performance of CPLGR−NST and CPNST is
overall similar, with neither dominating the other. For example,
CPLGR−NST is better in Connect5 whereas CPNST is better
in Othello. In a later experiment (Section VI-E) we match
the two players against each other to further investigate their
relative strength.

To summarize, two main conclusions can be drawn from
these experiments. First, the performance of the simulation
strategy depends heavily on the type of game. Second, the
NST simulation strategy and the LGRF-2 combined with NST
seem to give the best overall performance.

C. CPMAST compared with CPNST, CPLGR-MASTG and CPLGR-NST

In this experiment, CPNST, CPLGR-MASTG and CPLGR-NST
play against CPMAST , the original CADIAPLAYER equipped
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TABLE I
WIN % OF CPMASTG AGAINST CPMAST FOR DIFFERENT VALUES OF ϵ

Game ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.5 ϵ = 0.6 ϵ = 0.7

Connect5 28.1 (±4.68) 33.6 (±5.05) 49.7 (±5.55) 57.9 (±5.50) 59.6 (±5.48) 71.7 (±5.05) 72.7 (±4.99)
Checkers 74.4 (±4.53) 73.7 (±4.68) 69.8 (±5.09) 71.1 (±5.06) 65.6 (±5.33) 68.7 (±5.19) 62.7 (±5.42)

Breakthrough 46.8 (±5.69) 46.2 (±5.51) 44.6 (±5.48) 43.0 (±5.46) 43.5 (±5.60) 41.3 (±5.57) 33.1 (±5.11)
Othello 60.9 (±5.54) 64.4 (±5.28) 64.3 (±5.26) 64.6 (±5.28) 60.9 (±5.49) 58.1 (±5.57) 50.5 (±5.44)

Skirmish 48.2 (±5.22) 54.6 (±5.32) 61.6 (±5.41) 61.8 (±5.41) 59.2 (±5.51) 54.4 (±5.58) 56.7 (±5.57)

TABLE II
WIN % OF CPNST WITH DIFFERENT VALUES OF ϵ AGAINST CPMASTG

WITH ϵ=0.4

Game ϵ = 0.1 ϵ = 0.2 ϵ = 0.4

Connect5 75.7 (±4.86) 76.8 (±4.70) 76.0 (±4.83)
Checkers 49.9 (±4.39) 45.6 (±4.37) 46.5 (±5.64)

Breakthrough 73.7 (±4.98) 77.0 (±4.76) 67.3 (±5.31)
Othello 56.9 (±4.85) 49.8 (±5.66) 46.0 (±5.64)

Skirmish 55.0 (±4.88) 51.0 (±5.57) 51.6 (±5.62)

TABLE III
WIN % OF CPLGR−MASTG WITH DIFFERENT VALUES OF ϵ AGAINST

CPMASTG WITH ϵ=0.4

Game ϵ = 0.1 ϵ = 0.2 ϵ = 0.4

Connect5 63.0 (±5.46) 73.5 (±4.99) 76.5 (±4.80)
Checkers 55.3 (±4.87) 47.5 (±5.65) 41.0 (±5.57)

Breakthrough 70.0 (±5.19) 69.1 (±5.20) 69.3 (±5.22)
Othello 38.7 (±5.51) 43.3 (±5.61) 36.5 (±5.45)

Skirmish 44.3 (±4.87) 45.7 (±5.64) 50.8 (±5.62)

TABLE IV
WIN % OF CPLGR−NST WITH DIFFERENT VALUES OF ϵ AGAINST

CPMASTG WITH ϵ=0.4

Game ϵ = 0.1 ϵ = 0.2 ϵ = 0.4

Connect5 85.7 (±3.88) 84.2 (±4.13) 81.3 (±4.41)
Checkers 43.5 (±4.35) 41.4 (±4.33) 36.8 (±5.46)

Breakthrough 75.7 (±4.86) 79.7 (±4.55) 80.7 (±4.31)
Othello 42.7 (±5.60) 38.0 (±5.49) 31.3 (±5.25)

Skirmish 52.4 (±4.75) 53.8 (±4.37) 50.7 (±5.66)

with MAST and Gibbs measure. The results, which are shown
in Tables V, VI and VII, are in line with the results of
the previous experiments. As in the previous experiments,
the overall performance of CPLGR-NST and CPNST seems to
be better than the overall performance of CPLGR-MASTG. This
experiment clearly shows that, at least on this set of five
games, CPNST and CPLGR-NST improve the playing strength
of the original CADIAPLAYER significantly. Especially CPNST
seems to be a robust simulation strategy as it is consistently
better than the original CADIAPLAYER. Furthermore, ϵ = 0.2
gives the overall best performance, because in this case all
simulation strategies have for each of the five games a win
rate above 50% against CPMAST.

TABLE V
WIN % OF CPNST WITH DIFFERENT VALUES OF ϵ AGAINST CPMAST

Game ϵ = 0.1 ϵ = 0.2

Connect5 73.3 (±4.93) 77.2 (±4.75)
Checkers 66.5 (±5.34) 71.5 (±5.07)

Breakthrough 69.7 (±5.20) 71.3 (±5.12)
Othello 71.0 (±5.13) 73.0 (±5.02)

Skirmish 70.7 (±4.63) 74.7 (±4.44)

TABLE VI
WIN % OF CPLGR−MASTG WITH DIFFERENT VALUES OF ϵ AGAINST

CPMAST

Game ϵ = 0.1 ϵ = 0.2

Connect5 61.8 (±5.50) 75.3 (±4.88)
Checkers 76.4 (±4.71) 70.9 (±5.07)

Breakthrough 66.0 (±5.36) 62.3 (±5.48)
Othello 55.9 (±4.59) 54.5 (±4.88)

Skirmish 50.3 (±5.66) 58.3 (±5.46)

TABLE VII
WIN % OF CPLGR−NST WITH DIFFERENT VALUES OF ϵ AGAINST

CPMAST

Game ϵ = 0.1 ϵ = 0.2

Connect5 81.2 (±4.42) 82.7 (±4.28)
Checkers 71.2 (±5.13) 62.0 (±5.45)

Breakthrough 69.7 (±5.20) 71.8 (±5.05)
Othello 47.7 (±5.65) 53.8 (±5.15)

Skirmish 66.5 (±5.34) 73.3 (±5.00)

D. CPMAST compared with CPNST−Gibbs, CPLGR-MAST-Gibbs

and CPLGR-NST-Gibbs

The aim of the following experiment is to investigate how
the NST and LGR techniques perform in combination with
Gibbs measure instead of ϵ-greedy. Therefore, CPNST-Gibbs,
CPLGR-MAST-Gibbs and CPLGR-NST-Gibbs are matched against
CPMAST . The results are shown in Table VIII. By comparing
the results with the results in Tables V, VI and VII it is
clear that, like for MAST, the ϵ-greedy exploration technique
gives an overall better performance than Gibbs measure. An
explanation for this result was already given in Section VI-A.

TABLE VIII
WIN % AGAINST CPMAST

Game CPNST-Gibbs CPLGR-MAST-Gibbs CPLGR-NST-Gibbs

Connect5 55.5 (±5.53) 66.3 (±5.26) 62.6 (±5.39)
Checkers 43.0 (±5.59) 38.1 (±5.41) 41.7 (±5.55)

Breakthrough 63.9 (±5.35) 53.5 (±5.55) 61.9 (±5.41)
Othello 50.5 (±5.57) 41.8 (±5.49) 35.0 (±5.31)

Skirmish 50.8 (±5.57) 57.1 (±5.51) 53.7 (±5.55)

E. CPNST compared with CPLGR-NST

From the previous experiments it is clear that CPNST and
CPLGR-NST have the best overall performance. Therefore, in
this experiment these two players are matched against each
other. The win rate of CPNST is shown in Table IX. It
clearly shows that the performance of the simulation strategies
depends on the type of game. CPLGR-NST appears to be better
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TABLE IX
WIN % OF CPNST AGAINST CPLGR−NST FOR DIFFERENT VALUES OF ϵ

Game ϵ = 0.1 ϵ = 0.2

Connect5 40.2 (±5.55) 43.3 (±4.86)
Checkers 55.5 (±5.62) 58.3 (±5.35)

Breakthrough 40.3 (±5.55) 36.7 (±5.45)
Othello 71.0 (±5.13) 66.8 (±5.33)

Skirmish 51.1 (±4.78) 53.1 (±4.77)

in Connect5 and Breakthrough while CPNST is clearly better
in Othello. The large performance difference in Othello again
suggests that a strategy like LGRF-2 is not appropriate for
Othello. Why LGRF-2 seems not appropriate for a game like
Othello is already discussed in Section VI-B. Thus, from
these experiments we see that each simulation strategy has its
strengths and weaknesses, with neither dominating the other.

F. Comparison with CPUCT

In the final experiment, CPMAST, CPNST, CPLGR-MASTG and
CPLGR-NST play against CPUCT. For CPNST, CPLGR-MASTG and
CPLGR-NST ϵ is set to 0.2, because this value obtained the best
overall performance against CPMAST as shown in Section VI-C.
Our test-suite is now extended with eight more games. The
purpose of this is twofold. First, it allows us to evaluate the
performance of the techniques on a wider range of games,
including multi-player and simultaneous-move ones. Secondly,
it validates whether the chosen value for the ϵ parameter
performs equally well in games that were not used for tuning
the parameter. Table X shows the results when using the same
time setting as in the previous experiments.

Like in the previous experiments, for the first five games
the overall performance of CPLGR-NST and CPNST seems to
be better than the overall performance of CPLGR-MASTG. Fur-
thermore, CPLGR-NST performs significantly worse than CPNST
in Othello. This was already observed in Sections VI-B and
VI-E. Additionally, the results show that in the first five games
CPNST, CPLGR-MASTG and CPLGR-NST have in each game a
higher win rate than CPMAST. This is in line with the results
shown in Tables V, VI and VII, because for ϵ = 0.2 the win
rate of CPNST, CPLGR-MASTG and CPLGR-NST against CPMAST
is always above 50%.

The results of the eight additional games indicate that CPNST
is a more robust technique than CPLGR-MASTG and CPLGR-NST.
The overall performance in these new games is for CPNST at
least as good as CPMAST. Only in Runners CPNST does not
perform well. The reason is that in Runners there are a small
number of legal moves to choose from which do not have
intuitive countermoves. The inclusion of N-Grams does not
add anything, because there is not a direct relation between
moves of one player and the other player.

Thus for CPNST the chosen value of ϵ works in other
games as well. CPLGR-MASTG is not really better than CPMAST
and CPLGR-NST leads to mixed results. Furthermore, CPNST
performs significantly better in Chinese Checkers and Chinook
compared with CPMAST indicating that the addition of N-
Grams can also increase the performance in multi-player
games and simultaneous-move games.

The results for Fighter, which is a non-board game, seem
to indicate that the N-Grams are not beneficial for this game.
However, the reason is that in Fighter between 70% and 90%
of the games ended in a draw. When the drawn games are
left out the win rates are 0.43 (n = 30), 0.58 (n = 76),
0.55 (n = 85) and 0.66 (n = 56) for CPMAST, CPNST,
CPLGR-MASTG and CPLGR-NST, respectively. Therefore, it shows
that especially CPLGR-NST seems to work better in Fighter than
CPMAST.

Table XI shows the results of the same experiment but
with a time setting where startclock and playclock both equal
10s. The performance of CPMAST is not much affected by
the shorter time setting. However, the other three simulation
strategies show a drastic decrease in performance in Skirmish
compared with the longer time setting. Furthermore, the win
rate of CPNST in Othello and the win rates of CPNST and
CPLGR-NST in Sheep and Wolf and Chinook are reduced
considerably. Still, there are also improvements. CPLGR-MASTG
increases its win rate in Connect5 by approximately 10%
points and CPNST, CPLGR-MASTG and CPLGR-NST increase their
win rate in Runners substantially. Furthermore, all programs
increase their win rate in Pawn Whopping by approximately
10% points.

Overall, the performance of CPNST, CPLGR-MASTG and
CPLGR-NST appears to be better on the longer time setting
compared with the shorter time setting. Moreover, the results
indicate that CPNST, CPLGR-MASTG and CPLGR-NST benefit much
more from longer thinking times than CPMAST does. This
result implies that the new simulation strategies will benefit
more from faster computer hardware, thus potentially resulting
in even more relative gains in playing strength on future
computers. The most probable reason is that CPMAST has less
overhead than the other three simulation strategies resulting
in more simulations per second. For the 13 games used in
this experiment CPMAST has on average approximately 83
simulations per second, CPNST has 67 simulations per second,
CPLGR-MASTG has 66 simulations per second and CPLGR-NST
has an average of approximately 53 simulations per second.

VII. CONCLUSIONS AND FUTURE WORK

In this article ϵ-greedy was compared with the Gibbs
measure as a selection mechanism for the CADIAPLAYER.
Furthermore, a new simulation strategy based on N-Grams,
called NST, was proposed. The NST simulation strategy,
compared with MAST, looks to a greater extend at the context
in which a move is made. This is done in a natural and
computationally economic way by keeping track of scores
for move sequences instead of only scores for single moves.
Additionally, the Last-Good-Reply Policy, the variant named
LGRF-2, was tested in CADIAPLAYER.

Three important observations drawn from the experimental
results are given below.

First, an ϵ-greedy selection mechanism appears to be better
than Gibbs measure. For ϵ = 0.4 the program employing
ϵ-greedy performs significantly better in four of the five
games. A possible explanation is that with Gibbs measure the
probability that the move with the highest heuristic score is
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TABLE X
WIN % AGAINST CPUCT , STARTCLOCK=60S, PLAYCLOCK=30S

Game CPMAST CPNST CPLGR-MASTG CPLGR-NST

Connect5 66.5 (±5.34) 85.8 (±3.95) 84.0 (±4.15) 91.3 (±3.18)
Checkers 56.7 (±5.61) 71.0 (±5.11) 76.9 (±4.69) 69.6 (±5.18)

Breakthrough 86.0 (±3.93) 96.4 (±2.10) 88.0 (±3.68) 97.3 (±1.82)
Othello 70.1 (±5.15) 82.8 (±4.27) 70.0 (±5.19) 73.6 (±4.93)

Skirmish 45.0 (±5.63) 71.5 (±5.11) 56.2 (±5.61) 69.2 (±5.22)

Clobber 52.0 (±5.65) 54.3 (±5.64) 55.6 (±5.21) 48.7 (±5.64)
Sheep and Wolf 51.3 (±5.66) 65.3 (±5.39) 55.3 (±5.63) 71.0 (±5.13)

TTCC4 60.6 (±5.05) 66.0 (±4.89) 44.7 (±5.14) 45.7 (±5.15)
Chinese Checkers 65.1 (±4.85) 73.0 (±4.22) 59.7 (±4.98) 59.4 (±4.99)

Chinook 79.3 (±4.56) 90.0 (±3.39) 84.2 (±4.13) 88.7 (±3.59)
Runners 54.2 (±5.64) 31.3 (±5.25) 37.5 (±5.48) 28.7 (±5.12)
Fighter 49.3 (±5.66) 51.9 (±5.46) 51.5 (±5.66) 52.8 (±5.48)

Pawn Whopping 74.3 (±4.91) 74.0 (±4.93) 71.4 (±5.08) 73.2 (±4.93)

TABLE XI
WIN % AGAINST CPUCT , STARTCLOCK=10S, PLAYCLOCK=10S

Game CPMAST CPNST CPLGR-MASTG CPLGR-NST

Connect5 66.2 (±5.35) 86.5 (±3.87) 94.3 (±2.62) 90.0 (±3.39)
Checkers 56.2 (±5.54) 69.3 (±5.19) 72.1 (±5.03) 63.0 (±5.46)

Breakthrough 86.3 (±3.89) 93.3 (±2.82) 91.3 (±3.15) 92.4 (±2.97)
Othello 62.2 (±5.49) 77.3 (±4.74) 68.0 (±5.28) 58.0 (±5.59)

Skirmish 45.5 (±5.64) 40.4 (±5.53) 36.8 (±5.46) 36.0 (±5.43)

Clobber 49.0 (±5.66) 54.7 (±5.63) 53.0 (±5.65) 60.3 (±5.54)
Sheep and Wolf 51.5 (±5.61) 59.3 (±5.56) 53.0 (±5.65) 61.3 (±5.51)

TTCC4 58.1 (±5.10) 59.3 (±4.99) 35.6 (±4.95) 37.8 (±4.93)
Chinese Checkers 58.3 (±5.58) 71.2 (±4.72) 57.2 (±5.11) 51.9 (±5.54)

Chinook 74.2 (±4.87) 82.7 (±3.91) 77.6 (±4.64) 78.9 (±4.54)
Runners 50.2 (±5.51) 41.8 (±5.49) 49.8 (±5.57) 44.2 (±5.53)
Fighter 49.8 (±5.66) 53.7 (±5.64) 52.2 (±5.65) 49.8 (±5.66)

Pawn Whopping 85.9 (±3.92) 85.9 (±3.92) 82.0 (±4.30) 85.0 (±4.01)

chosen is not fixed, because it depends on the scores for the
other moves as well. Furthermore, with Gibbs measure the
move selection is always biased by the heuristic scores for the
moves which may lead to missing a good move in case these
heuristics are not entirely correct.

Second, the experiments revealed that LGRF-2 works not
only in Go, but in other games as well. GGP is an ideal domain
to test this because of the wide variety such programs can
play. Furthermore, the experiments showed that the fall-back
strategy is also important, because the LGRF-2 employing
NST as a fall-back strategy performed much better than
LGRF-2 using MAST as a fall-back strategy.

Third, the NST simulation strategy based on N-Grams is a
robust strategy. On a set of five two-player, turn-based games it
leads to a win rate of approximately 70% against the original
CADIAPLAYER. Moreover, it is shown that the inclusion of
N-Grams is able to increase the performance in multi-player
games and simultaneous-move games. Furthermore, the new
simulation strategies are likely to benefit more than the original
strategy from faster future computer hardware.

To conclude, MAST may work well in games where there
are consistently good moves, independent of the game state
and independent of the moves played by the opponent. The
NST simulation strategy may perform well in games where
there is a strong relation between the moves of all the
players and where certain move sequences are always clearly
better than others, independent of the game state. LGRF-2
may function well in games where there is a strong relation

between the moves of all the players, depending on the current
game state. Due to the forgetting mechanism, it is able to
respond quickly to a change in game state. The disadvantage
is that LGRF-2 is less robust than NST. A single simulation
influences immediately the choices for the next simulation.

The experiments showed that NST and LGRF-2 have
promise in GGP. We expect that there is still room for further
improvement. Therefore, three directions for future work are
given below.

First, from all experiments it became clear that the per-
formance of a specific simulation strategy depends on the
type of game. Therefore, interesting future work is to develop
techniques that can learn on-line which simulation strategy to
employ.

Second, it became evident that there is no single optimum
for the ϵ parameter in an ϵ-greedy selection mechanism.
Hence, on-line parameter tuning is an important subject for
future research.

Third, in order to make the NST simulation strategy even
more general a method to detect the noop moves should be
included. This is required for unusual games in which there is
a non-standard turn-taking mechanism. For instance, the game
Pentago is turn-taking, but players get two turns in a row.
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