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Abstract— We consider the move generation in a modern
board game where the set of all the possible moves is too large
to be generated. The idea is to provide a set of simple abstract
tactics that would generate enough combinations to provide
strong opposition. The reduced search space is then traversed
using the αβ search. We also propose a technique that allows
us to remove the stochasticity from the search space. The model
was tested in a game called Axis and Allies: a modern, turn-
based, perfect information, non-deterministic, strategy board
game. We first show that a tree search technique based on a
restrained set of moves can beat the actual scripted AI engine
— E.Z. FODDER. We can conclude from the experiments that
searching deeper generates complex maneuvers which in turn
significantly increase the likelihood of victory.

I. INTRODUCTION

Typically, modern board games offer challenges in the field
of AI due to their high complexity. Such games often involve
several phases during a turn which have non-deterministic
(stochastic) properties or imperfect information.

Traditionally, finding the best move based on search can
be generalized as: (1) traversal of the search space; (2)
evaluation of the board position; (3) move generation [1].
The majority of the research focuses on the traversal of the
search space. For instance, pruning algorithms are a common
approach to improve the traversal [2], [3]. From classic αβ
[2] to forward pruning [4], these methods seek to increase
the efficiency of the search space traversal.

The second research branch tackles problems regarding
the evaluation function; from the elaboration of different
features, to the trade-off between speed and the amount
of knowledge [5], [6], [7]. An entirely different form of
evaluation is required when there is no static evaluation
function that can grasp the intricaties of the board, such as
the game of Go [8]. Monte-Carlo evaluations are then used
[9]; a number of random games are played and their outcome
is used as evaluation score.

The third type of research deals with the challenge of a
large number of discrete possible moves that renders the
search space to be almost continuous. There are neither
classic tree search [10] nor stochastic tree search methods
[11], [12] that can efficiently traverse a continuous search
space [13]. Researchers applied the idea of making plans, as
it was done in Chess [14], [15], [16] and more recently in
Arimaa [17]. The idea of plans to narrow down the number
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of possibilities will be used in the move generator of a
modern board game, our test bed, namely Axis and Allies:
The number of moves considered is first reduced, then a
search technique is applied to play strongly.

This paper focuses specifically on move generation in the
context of a set of atomic moves which cannot be efficiently
generated or traversed. The goal is to develop a model that
consists of a set of tactics. Once combined together, these
tactics generate more complex maneuvers. Moreover, the
model includes a technique that allows the removal of the
chance nodes during the combat resolution.

The outline of the paper is as follows. First, Section II
presents a brief description of the game Axis and Allies.
Second, Section III discusses its search space. Subsequently,
Section IV covers related work. Next, Section V describes
the model. Section VI explains the experiments and gives
the results. Finally, Section VII presents the conclusion and
Section VIII gives an outlook on future research.

II. DESCRIPTION OF THE GAME

Axis and Allies (AAA) is a 50 year old WWII game,
initially invented by Larry Harris Jr. It is a modern mul-
tiplayer board game with a high level of complexity, which
can be described as a turn-based, perfect information, non-
deterministic, strategy game that provides several challenges
for an AI engine. In terms of complexity, Axis and Allies can
be roughly ranked between the game of Risk and Civilization.

Figure 1 shows a part of the standard board. According
to Bell’s games categorization [18], this game falls into the
wargame genre.

Over time, five versions of the main game have been
released, the most recent in 2008. Originally published by
Milton Bradley, it is now owned by Hasbro under Avalon

Fig. 1. Part of the standard board
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Hill: Wizard of the Coast. Due to a high degree of popularity
among the fan community, an Java-based open-source release
— TRIPLEA — has been created and enables the design of
various scenarios [19]. This environment is used as test bed
in this paper.

There are three ways to win the standard game: total, major
or minor victories. The most popular one is the total victory.
The purpose of the total victory is to secure all cities, but
most of the time it scales down to capture every opponent’s
capital. Minor and major represent a certain number of cities
one must control to secure a victory. The last two victory
conditions are popular in tournaments because it shortens
the length of the game. Although there are multiple ways to
win, an evaluation function that grasps the actual state of the
game is possible [20].

AAA bears both similarities and differences to Risk [21],
[22]. Structurally and economically, AAA deploys some
similar traits. Every province has an economic value; a
player controls provinces and the sum of their respective
values equals his income per turn; players take turns to battle
for the control of provinces. However, AAA is much more
complex in several ways; specifically, it has more phases,
more decisions to take per phase and more combinations of
possible moves.

Three types of province exist: (1) land, (2) water and (3)
inaccessible. Land and water provinces are only accessible to
certain classes of units whereas the inaccessible type cannot
be crossed by any unit.

Each unit has four characteristics: (1) cost, (2) attack
points, (3) defense points and (4) movement points. The cost
is the amount of money one must spend in order to buy
the unit. The attack and defense points are within a range
between 1 and 5 and used during the resolution of a combat.
Basically, for every unit involved in combat a die is rolled
and there is a hit if the result is equal or lower than the
specification of the units. Obviously, the attacker uses the
attack point and the defender uses the defense point. The
movement point is the number of provinces a unit can cross
during 1 turn.

Figure 2 summarizes the specification for the 12 units in
the game. Unit cost is displayed to the right of each icon;
below, each value triplet denotes attack/defense/move
attributes. For instance, the infantry unit has a cost of 3,
an attack of 1, a defense of 2 and a move of 1.

Three classes of unit exist: (1) land, (2) aerial and (3)
water. There are five land units: infantry, artillery, tank,
anti-aerial gun and factory. These units must remain on
land unless they are carried by a specific water unit. The
infantry unit is the cheapest to buy. It has a weak attack
and a moderate defense. It can only move to an adjacent
province during a turn. The artillery unit is similar in terms
of specifications. Moreover, if an infantry unit is supported
by an artillery unit during an attack, the attack of the former
increases to 2. The tank constitutes the third land unit. It is a
well rounded unit. The anti-aerial gun does not possess attack
or defense points. Every time an enemy aerial unit crosses a

Fig. 2. Units specification

province with an anti-aerial gun, the player can throw a die
and if the die equals 1 it kills the aerial unit. The factory
allows the possibility to spawn units in the province.

There are two aerial units: plane and bomber. These units
can move through both land and water provinces, but always
have to land on a province that was in the possession of
the player at the beginning of the turn. The plane can move
across 4 provinces. It is a powerful unit in defense with the
ability to reach strategic positions rapidly. The bomber unit is
expensive, but is the ultimate attack unit on land provinces.
It can perform two types of attack: normal or economic.
Normal is the same type of attack as for the other units
whereas economic attack is the ability to bomb the enemy
factory. In doing so, the opponent loses money based on the
result of the roll of a die.

There are five water units: submarine, destroyer, transport,
carrier and battleship. Every unit in this class can move
across two provinces. Naturally, they have to remain on water
provinces. When a submarine attacks an opposing fleet that
does not have a destroyer, it can cause casualties before
the start of the combat by attacking first. The destroyer
prevents the submarine from launching their devastating
surprise attack. The carrier has the ability to carry up to two
planes. The battleship is the ultimate water unit. It needs to
be hit twice before it is destroyed.

A turn is split into five phases. The first phase consists
of gambling an investment into Research and Development.
It consists of using dice to decide whether there is a tech-
nological advance. A technological advance improves the
specification of a unit.

During the second phase, the player uses his remaining
money to buy units. This phase is rather straightforward.
There are two constraints; the amount of money a player
possess and the maximum number of units one can place on
the board per turn. It is only possible to place new units on
a province where there is an industrial complex — factory.
The number of units that can be placed on a province is
bounded by the value of the province. The units are bought
at this phase, but are only placed on the board during the
final phase, at the end of a turn.

The third phase is called the ‘combat move’. This differs to
a great extent from Risk. All the attacks must be declared be-
fore any of them is resolved. Every attack has a probabilistic
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outcome. Therefore, the crucial point here is to send enough
units to achieve a goal, but also to divide them in such way
that as many goals as possible are achieved. After the combat
moves are declared, there is the combat resolution. At this
point, there is a decision to take after every dice roll: retreat
or not. Only the attacker can retreat, the defender cannot. If
the situation becomes clearly disadvantageous, it is better to
retreat than lose units of high economical value.

Experienced human players often use a strategy called
strafing. This strategy allows the attacker to use the most
powerful units in attack and to retreat after all the cheap
units are dead to inflict a maximum damage to the opponent
without losing any valuable units.

The fourth phase, ‘non combat move’, follows the ‘combat
resolution’. In this phase, all units that were not directly
involved in a combat can be moved and all aerial units used
in combat must land. This phase is separated from the combat
move to bring fresh forces to the front and to allow the
possibility that, if a combat resolution has gone tremendously
wrong, at least a defensive move can be attempted to protect
the front.

The fifth and final phase is called deployment — rein-
forcement. In this phase, the units bought at the beginning
of the turn can be placed. This is to simulate the time to build
them. It has one main characteristic different from Risk. At
the beginning of the turn, a player cannot use his newly
bought units to launch a surprise attack like in Risk.

III. BRANCHING FACTOR

The search space for AAA is large. To compute the number
of possible moves, the branching factor, one must multiply
every possible combinations of every type of unit for every
province. Equation 1 gives the formula to compute such a
number.

∏

k∈K

∏

p∈P

(rp − 1 + ukp)!
(rp − 1)!ukp!

(1)

Where K is the number of unit types, P is the number of
provinces on a map, ukp is the number of units of type k on
the province p and rp is the number of provinces the unit
ukp can reach, including the starting province.

Equation 1 computes the number of all possible moves,
but identical boards from different interactions still have to
be removed. For instance, if two adjacent provinces send one
infantry unit to each other, the resulting board is the same.
Equation 2 only shows the formula to remove the interaction
between a pair of provinces. It gets increasingly complex
to remove identical boards with interactions for triplets or
more and the magnitude of possible moves does not change
significantly. Therefore, only the interactions from pairs of
provinces is shown.

Px∑

px=0

ukp∑

i=1

B
∏

k∈K

∏

py∈Py

(rpxpy
− 2 + ukpxpy

− i)!
(rpxpy

− 2)!(ukpxpy
− i)!

(2)

Where Px is the set of all pair of adjacent provinces and
Py is every specific province within the pair. B is the rest
of the board given by Equation 1, where P is replaced with
P − Py .

On a map such as Figure 3, Equation 1 gives a number
≈ 2.6 × 1016. When identical boards from the pairwise
interaction are removed using Equation 2, the number of
possible moves drops to ≈ 9.3 × 1015. It can be compared
with the game Diplomacy which has ≈ 2.2 × 1015 unique
opening moves [23]. The branching factor for AAA is thus
very large. Even worse, this is only an estimation for the
initial board. As the game progresses, the number of units
changes which means the number of moves can become
much larger. Also, this is only the number of possible moves
for the board, it neither includes the number of possible
combinations during the buying phase nor the stochastic
outcome of a battle.

Fig. 3. Minimap

IV. RELATED WORK

AAA is a complex game. There are multiple decisions to
make at the five phases. The only AI engine available1 —
called E.Z. FODDER [19] and written by Sean Bridges — is
heavily scripted and only provides an interesting challenge
for beginners. It plays weakly against more experienced
opponents partly because it behaves like a greedy player. For
AAA, simple brute-force algorithms such as minimax [10]
and its αβ pruning enhancement [2] are not computationally
feasible.

Shannon [24] first formalized the idea of a selective move
generator, later known as ‘forward pruning’; however, this
was not further developed due to unconvincing results for a
few decades. Forward pruning is attractive, yet it is known to
be error prone and dangerous. The selective move generator
proposed in this paper is entirely distinct from Shannon’s
forward pruning. Instead of pruning moves that are not
promising, it deliberately avoids the generation of quasi-
similar moves.

1The TRIPLEA community is currently developing a second engine that
will be released soon.
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This paper proposes the creation of a set of atomic ‘meta
moves’ or ‘tactics’ that would generate complex maneuvers
in a search based approach. It is an alternative to providing
a smaller set of possible moves from domain-specific expert
knowledge as it was done in the game Settlers of Catan [25]
and Amazons [26]. A similar concept of our idea has recently
been tested in WARGUS [27], a Real-Time Strategy game,
and in the game of Kriegspiel [28].

The purpose of this paper is to work on move generation,
not on the search technique. Therefore, αβ was preferred
because the strengths and weaknesses of this algorithm are
well tested and known [29]. We think that our idea of move
generation can be transferred to other search algorithms such
as Monte-Carlo Tree Search [11], [12], [30], [31].

V. MODEL: DLSAI

In this section we propose a model — dlsAI — to play
AAA. Subsection V-A develops the notion of core tactics
in dlsAI. In Subsection V-B, a modification in the combat
resolution is presented to abstract a stochastic search to a
deterministic one. This modification aims to further reduce
the search space. In Subsection V-C, the evaluation function
is described.

A. Tactics

To reduce the number of moves, the model separates the
provinces into three abstract types: (1) front line, (2) rein-
forcement and (3) supply. A province can be more than one
type. The front line provinces juxtapose the opposing armies.
For these provinces, tactical decisions regarding combats
have to be taken. The reinforcement provinces contain a
factory. Specific choices have to be made on where and
how to send units to the front. The last type of provinces
— supply — are provinces that have units on them but
cannot participate in any combat and are not a reinforcement
province. They simply send units toward the closest front
line.

To elaborate a functional AI, four basic tactics were coded
into the move generator. The first one is the attack, which
means all units move from a front province to attack the
adjacent enemy province. There can be more than one enemy
province neighboring the front province, but the selection of
which one is the best is beyond the scope of this paper.

Figure 4 shows the attack tactic used by the left player
where province ‘B’ is a supply province and province ‘C’ is
a front line province. Subfigure 4(a) represents the board
before the left player launches an attack. Subfigure 4(b)
illustrates 2 infantries from the province ‘C’ and 2 fighters,
1 bomber and 3 tank units from the province ‘B’ that are
deployed over province ‘D’. The infantry on the province ‘B’
did not move because it cannot participate in the combat.

The second tactic is the retreat. It consists in moving away
from the enemy units. Figure 5 shows the retreat tactic used
by the left player where province ‘B’ is a supply province
and province ‘C’ is a front line province. Subfigure 5(a)
represents the board before the retreat move. Subfigure 5(b)

(a) Start (b) Attack move

Fig. 4. Attack tactic

(a) Start (b) Retreat

Fig. 5. Retreat tactic

illustrates the retreat of 1 infantry from province ‘C’ to
province ‘B’.

The third one is a split-attack tactic. This tactic only
sends enough units to take a province, but not necessarily
to hold it. Figure 6 shows the split-attack tactic used by
the left player where province ‘A’ is both front line and
reinforcement province. This sequence is separated into 4
different phases. Subfigure 6(a) represents the board before
the left player executes the split-attack tactic. Subfigure 6(b)
illustrates a part of the left player’s army sent to province ‘B’
— 2 infantries and 1 plane. Subfigure 6(c) presents another
part of the left player’s army sent to province ‘G’ — 2
infantries and 1 plane. Subfigure 6(d) shows another part
of the left player’s army sent to province ‘K’ — 2 infantries
and 1 plane.

(a) Start (b) Split 1 (c) Split 2 (d) Split 3

Fig. 6. Split-attack tactic

The fourth tactic is the pass action. Nothing moves on the
selected province.

From these four tactics on the front line, different combi-
nations become possible depending on the number of front
lines. dlsAI is able to plan a joint attack where stacks of
units from different front lines can combine their forces on
a specific province. It also allows the planning of maneuvers
such as sending a small force from two or more adjacent
stacks to take one or multiple strategic provinces. From depth
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three and onwards, dlsAI is able to create different traps
by strategically retreating a part of its force to entice the
opponent.

As mentioned in Section II, units can only be put on a
province where there is a factory. From this province, they
must be sent to one of the front lines. To keep the number of
moves generated as small as possible, a simplification was
introduced in the model. The board possesses different fronts;
while on supply provinces the units are not included in the
move generation unless they can participate in one of the
tactics.

Another decision is the way the units are split over dif-
ferent fronts. There are three tactics considered at this phase
for the reinforcement provinces. dlsAI can either choose to
send every unit to a specific front, split his forces along
different fronts or not reinforce any of them. The method
that determines the number of front lines is not dependent
upon the board state. It is hard coded for a specific map and
does not take into consideration the situation of the board.

The number of possible reinforcements moves is
given by reinforcingAFront × numberOfFronts +
SplitReinforcement + NoMove. Considering Figure 3,
there are 5 — 1 × 3 + 1 + 1 — possible reinforcement
moves. The number of possible moves is simply given
by tacticsprovinces × reinforcementMoves. For a map
such as Figure 3 — where there are three fronts and one
reinforcement province — there are 320 possible moves —
43×5 — instead of ≈ 9.3×1015. The reduction is substantial
yet the idea is that with those few core tactics, it should
be enough to play relatively strong when a sufficient search
depth is reached.

B. Combat Resolution

A major simplification can be executed for the combat
resolution. Once all invasions are announced, the proba-
bilistic resolution begins using dice. For non-deterministic
outcomes, Expectimax [32] is the algorithm of choice. It
extends the minimax concept to stochastic outcomes, by
adding chance nodes to the search tree. The value of chance
node is the weighted sum of the values of the chance
events [1]. For the combat resolution phase, it means to
weight every possible outcome by their respective probability
of occurrence. Different pruning methods were developed
such as safe pruning (e.g. Star1 and Star2 [33], [34]) and
speculative pruning (e.g. ChanceProbCut [3]) to increase the
search performance.

However, keeping track of all possible outcomes from
a battle involving 20 units for instance would shatter the
reduction presented in the previous subsection. To avoid this
drawback in terms of performance, some straightforward
substitutions are available to remove the probability in the
outcome. One consists of evaluating the amount of damage
that a stack of units is likely to inflict. For instance, consider
2 tank units that execute an attack. In the case of an attack,
one must throw a die for every unit and the result must be
lower or equal to the attack point to have a hit. Tank units

have 3 attack points. Hence, the probability that 1 tank will
hit is 50%.

Instead of representing the odds as a percentage, dlsAI
assumes that it is real damage. Therefore, a tank that attacks
does not have 50% chance to make a kill, but causes 0.5
damage. Obviously, every time the damage equals 1 there is
one unit removed on the opposite side.

In the following example, if 2 tank units execute an attack
(2 dice that hit with 3 or less each), they are likely to make 1
kill on the first turn (50%) and the remaining odds are 25%
chance to make 2 kills and 25% chance to make 0 kill. DlsAI
considers the attack of 2 tank units as one kill on the first
round. This transformation can be seen as if every unit had
a hit point. At every iteration during a combat — when the
dice are rolled — the respective defense or attack points are
deduced from the opponent’s hit points. The total number of
hit points, attack points and defense points are updated and
the process repeats until one side reaches 0 or the attacker
retreats. Basically, dlsAI computes the mean and does not
include the likelihood. For a stack of units that has 26 points
of attack, the outcome should be 4 casualties ( 26

6 ). The rule
for units removal, albeit not optimal, is efficient and simple:
The cheapest units are removed first. Figure 7 presents the
pseudocode for resolving combat.

WHILE attackingUnits > 0 OR defendingUnits > 0
FOR every attackingUnit

attackHitPoints+=1;
attackPoints+= attack value of attackingUnit;

END FOR
FOR every defendingUnit

defendHitPoints+=1;
defendPoints+= defence value of defendingUnit;

END FOR
defendHitPoints-=(attackPoints/6);
attackHitPoints-=(defendPoints/6);
attackingUnits.update(attackHitPoints);
defendingUnits.update(defendHitPoints);

END WHILE

Fig. 7. Pseudocode for combat resolution.

The situation where there is a remainder still has to be
addressed. There are two possible solutions for this problem.
The first one is to roll a die and look if the number is lower
than the remainder. The advantage of this technique is that it
allows the use of integers to represent units. The disadvantage
is that if you have to simulate the same combat several times,
the outcome is most of the time different.

For this reason, a second solution was chosen. It involves
the use of doubles instead of integers. If the number of
casualties is 4 1

3 , then this is exactly the number of units that
will be removed. In this scenario, it is possible that a 1

2 tank
unit attacks a 1

3 infantry unit. The performance of dlsAI is
slowed down by the use of doubles, but the non-determinism
is factored out of the combat resolution.
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C. Evaluation function

The aim of this subsection is to explain how the underlying
strategies in AAA are represented by the evaluation function.
It describes how dlsAI evaluates a board position by applying
an evaluation function that uses three main features.

The first one is the economical value of its army compared
to the opponent. Every unit has a value — cost — and dlsAI
compares the sum of the existing units. It gives an indication
on the current board situation of the standing armies and their
relative weights.

The second feature is the economic situation. Every
province has a value and is under control of one player. The
sum of the values of all the provinces that belongs to a player
gives its income per turn. dlsAI compares those two incomes.
This measure is important to estimate the potential growth.

The third feature is the number of units dlsAI can place
per turn compared to the opponent. A new unit can only be
placed on a province where a factory is built and the number
of units is given by the value of the province. A province
with a factory has a high strategic importance because the
absolute number of units one can place per turn compared
to the opponent can change the purchase strategy.

Those three features give a rough idea of the current
board situation. The evaluation function could be improved
with more features, but the focus is on the move generation
and this evaluation function allows dlsAI to create a set of
strategies.

VI. EXPERIMENTS

This section describes the experiments that were con-
ducted. First, the test domain is defined and its properties
are dicussed. Second, the results are presented. dlsAI was
tested against E.Z. FODDER and against itself, playing at
different depths. Each game used the total victory condition.

A. Test Domain

The model described earlier was tested on the map mini-
map, depicted in Figure 3. This map was selected for multiple
reasons. It has two players and it is balanced in a way that
both players start with the same board situation. It uses 7 unit
types instead of the 12 standard ones. Basically, there are
no water units in this version. There are only 14 provinces.
However, as mentioned in Section III this game still has a
large branching factor.

Even though both players have a symmetric start, the first
player has a significantly higher chance of winning.

B. Results

DlsAI finds the best move in less than a second at depth
1, in more or less 10 second at depth 2 and approximately 3
minutes at depth 3. The first series of experiments compare
the performance of dlsAI at a depth of 3 against E.Z.
FODDER. The results are shown in Table I. ‘Num of games’
represents the number of games played. Victory is expressed
as a percentage. ‘Avg lgt(turn)’ means the average length
expressed in turns. Similarly, ‘Max(turn)’ and ‘Min(turn)’
are the longest and shortest length of a game, respectively

expressed in turns, before victory. The suffix following
dlsAI represents the depth at which it plays for the specific
experiment.

Table I shows that when dlsAI plays first, after 100 games,
it has maintained a score of 99 victories. When it plays
second, it realizes 98 victories out of 100. These results
demonstrate that on this specific map, dlsAI:D3 is better than
E.Z. FODDER.

TABLE I
DLSAI:D3 VS E.Z. FODDER

dlsAI:D3 (First player) dlsAI:D3 (Second Player)
Num of games 100 100

Victory(%) 99 98
Avg lgt(turn) 15.21 16.77

Max(turn) 22 23
Min(turn) 9 8

The average length is similar whether dlsAI:D3 plays
first — 15.21 — or second — 16.77. The Max(turn) and
Min(turn) indicators shows that in a hundred games, the
length did not vary much.

The defeats were scrutinized to understand what happened
and in the three cases, the same pattern was found. In fact,
dlsAI:D3 took the capital of the enemy and was clearly
winning. However, from this point on, it does not protect
adequately its own capital because the evaluation function
is returning a certain win. The opponent, having a stack of
units closer to the capital of dlsAI:D3, continues its attack
and takes the capital. From there, dlsAI:D3 is helpless and it
ends in a defeat. Clearly, this is a weakness in the evaluation
function.

The main interest in this experiment was to evaluate if
dlsAI:D3 could execute more complex maneuvers than the
four core tactics. At depth 2 and more, it retreats when facing
a stronger army. However, at depth 3, it will sometimes
retreat even when there is an equilibrium in strength to
lure the enemy out. This highly efficient maneuver can be
described as a trap. Other more subtle maneuvers are used
more often such as a joint attack or a combined split attack.

In the next series of experiments we evaluate whether the
search depth matters for dlsAI. Table II shows the result of
dlsAI at depth 2 vs dlsAI at depth 1. In this case, dlsAI:D1
is a greedy player. It does not use the retreat tactics because
it does not consider the possibility of being attacked.

TABLE II
DLSAI:D2 VS DLSAI:D1

dlsAI:D2 (First player) dlsAI:D2 (Second Player)
Num of games 100 100

Victory(%) 98 89
Avg lgt(turn) 17.41 16.37

Max(turn) 62 40
Min(turn) 5 8

When dlsAI:D2 plays first, 98% of the time it achieves
victory compared to 89% when it plays second. The dif-
ference in winning percentage is significant at a confidence
interval of 95%. This result allows us to infer that dlsAI:D2
is statistically better than dlsAI:D1.

2010 IEEE Conference on Computational Intelligence and Games (CIG’10) 167



There is also a significant difference in the winning
percentage if dlsAI:D2 played first or second. It seems that
the map favors the first player.

The average length of the game when dlsAI:D2 plays
first — 17.41 — or second — 16.37 — is comparable to
Table I. This is a relatively short game. The Max(turn) value
indicates that even if dlsAI:D2 is losing for a good part of
the game, a comeback against a weaker opponent is possible.
Again, it is partly explained by the use of the retreat tactic.
dlsAI:D2 keeps its strength and waits for an opportunity.
The Min(turn) measure shows that dlsAI:D2 can win rapidly
against a greedy player.

Table III presents a test with dlsAI at depth 3 versus dlsAI
at depth 2. It provides some insight on the gain in strength
per depth. The victory percentage, albeit less impressive than
noted in Table II, nevertheless demonstrates the dominance
of dlsAI:D3 over dlsAI:D2. When playing first, dlsAI:D3
achieves 81.64% of victory whereas when playing second
the victory percentage drops to only 50%. Also, the length
of the game is significantly longer than the precedent table.

TABLE III
DLSAI:D3 VS DLSAI:D2

dlsAI:D3 (First player) dlsAI:D3 (Second Player)
Num of games 50 50

Victory(%) 81.64 50
Avg lgt(turn) 40.12 31.05

Max(turn) 161 45
Min(turn) 13 22

Table IV represents the results of dlsAI playing each time
against itself both at depth 3. The results show that the map is
advantageous for the first player. A perfectly balanced map if
the data was normally distributed would give 50% of victory
for both side. A Student’s test revealed that at a confidence
interval of 95%, we may infer that there is an advantage for
the first player. In other words, to play first gives a significant
advantage.

TABLE IV
DLSAI:D3 VS DLSAI:D3

dlsAI(First player) dlsAI(Second Player)
Num of games 50 50

Victory(%) 78.85 21.15
Avg lgt(turn) 32.46 40.27

Max(turn) 75 75
Min(turn) 11 21

The average length of a game is much higher than in Table
I and Table II. It does not directly translate into a stronger
opponent, but it is a good hint in this direction. This value
shows the impact of a strategic retreat. The ‘Min turn’ value
again shows that the first player can expect to win quicker
than the second.

Based on the experiments presented in Table II, III,
and IV, Table V shows the impact of the outcome of a
probabilistic combat resolution in the evaluation function.
This value represents the highest score dlsAI allocated to a
board position for where the game was lost. The maximum

value the evaluation function can return is 10,000 and the
cheapest unit (i.e. infantry) is worth 15 points. The impact of
search depth and play order on the behavior of the evaluation
function gives an important insight on its robustness.

TABLE V
IMPACT OF THE PROBABILISTIC ASPECT IN AAA

depth / Max(value) First player Second Player
D2 vs D1 467 152
D3 vs D2 1257 429
D3 vs D3 483 464

In a game that involves chance such as AAA, one battle can
change the entire equilibrium. It is expected that dlsAI will
make miscalculations from the removal of the chance nodes
in the combat resolution. When dlsAI:D2 plays first against
a greedy player, the result is around 500. The maximum
error in the evaluation when it plays second is significantly
low compared to the other values. In this case, it is simply
because there were only two games that dlsAI:D2 managed
to lose therefore preventing it from having a higher value.

When dlsAI:D3 plays against dlsAI:D2 as the first player,
this value is surprisingly high — 1257. However, at depth
2, the fact is that dlsAI will use the retreat tactics therefore
minimizing the mistakes. At depth 3, it is able to plan a
trap but not to evaluate what will happen after. For instance,
dlsAI:D3 sometimes launches an attack knowing that the rest
of the stack will be taken at the next turn by the opponent.
However, by a clever reinforcement, it will be able to take
it back. The problem is that it does not evaluate the chance
that the opponent can take it back again (depth 4), therefore
resulting in a loss of units. This may explain such a large
difference in Table V.

When dlsAI plays against itself at depth 3, the value is
fairly consistent whichever side it plays. Also, it seems a
good estimation to say once it gives a score over 500, it
should be an almost certain win.

VII. CONCLUSION

In this paper, instead of considering the entire search
space, we focused on a few core tactics that can create
complex maneuvers depending on the depth of the search.
αβ search was applied in AAA. To further reduce the search
space, we also proposed a technique to remove the stochas-
ticity during the combat resolution phase.

We showed that our model — dlsAI — outperformed the
actual scripted AI engine — E.Z. FODDER — on minimap.
From the experiments presented in Table II and III, we can
infer that deeper searches generated sufficient number of
complex maneuvers which in turn increase the number of
victories significantly.

In AAA, it is currently computationally too expensive to
achieve a search depth of 4 for 2 players. It is expected that in
order to play at a strong level, a tree-search based algorithm
has to reach at least twice the number of players. Therefore,
for the map minimap, as there are two players, the search
depth must be four. For a 5-player map, such as the standard
board, a 10-ply search would be needed.
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VIII. FUTURE WORK

The first direction is to improve the evaluation function.
Although dlsAI can win quickly, it still has some problems
finishing a game. Sometimes, dlsAI could deal a critical blow
but does not execute the maneuver because its own losses are
larger than the opponent’s. A good chess equivalent would
be to sacrifice a queen for a bishop in the end game when
you have an overwhelming piece advantage. The current
evaluation function fails to grasp this dimension of the game.
Furthermore, the defeats recorded against E.Z. FODDER
indicate that either other features are needed, or the weights
require fine tuning to improve the performance. Preliminary
experiments were conducted to weight each feature; however,
better weights might be found through machine-learning
techniques.

The second direction is an implementation of a Monte-
Carlo technique such as MCTS / UCT [11], [12], [30], [31]. It
is expected that the notion of planning still has to be applied
in order to make MCTS work because there are too many
moves to be able to execute a trade-off between exploration
and exploitation [30].

A third direction is to achieve drastic computational gain
by finding a way to separate the board into subgames. This
has been done in the game of Amazons using Temperature
Discovery Search [35]. For the game AAA, the problem is
mainly related to aerial units because they have such a long
range of action. Those units can easily move from one front
to another and therefore preventing the board to be separated
into subgames.

A fourth direction is to use machine-learning technique as
it was done in the game Settlers of Catan [36] to approach
this problem.
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