
Nested Monte-Carlo Tree Search
for Online Planning in Large MDPs

Hendrik Baier1 and Mark H. M. Winands1

Abstract. Monte-Carlo Tree Search (MCTS) is state of the art for
online planning in large MDPs. It is a best-first, sample-based search
algorithm in which every state in the search tree is evaluated by the
average outcome of Monte-Carlo rollouts from that state. These roll-
outs are typically random or directed by a simple, domain-dependent
heuristic. We propose Nested Monte-Carlo Tree Search (NMCTS), in
which MCTS itself is recursively used to provide a rollout policy for
higher-level searches. In three large-scale MDPs, SameGame, Click-
omania and Bubble Breaker, we show that NMCTS is significantly
more effective than regular MCTS at equal time controls, both using
random and heuristic rollouts at the base level. Experiments also sug-
gest superior performance to Nested Monte-Carlo Search (NMCS) in
some domains.

1 INTRODUCTION

Monte-Carlo Tree Search (MCTS) [13, 19] is an online planning al-
gorithm that combines the ideas of best-first tree search and Monte-
Carlo evaluation. Since MCTS is based on sampling, it does not
require a transition function in explicit form, but only a generative
model of the domain. Because it grows a highly selective search tree
guided by its samples, it can handle search spaces with large branch-
ing factors. By using Monte-Carlo rollouts, MCTS can take long-
term rewards into account even with distant horizons. Combined with
multi-armed bandit algorithms to trade off exploration and exploita-
tion, MCTS has been shown to guarantee asymptotic convergence
to the optimal policy [19], while providing approximations when
stopped at any time.

MCTS has achieved considerable success in domains as diverse as
the games of Go [16, 20], Amazons [21], LOA [35], and Ms. Pacman
[18]; in General Game Playing [15], planning [24, 31], and optimiza-
tion [14, 25, 27].

For the consistency of MCTS, i.e. for the convergence to the op-
timal policy, uniformly random rollouts beyond the tree are suf-
ficient. However, heuristically informed rollout strategies typically
greatly speed up convergence [17]. In this paper, we propose Nested
Monte-Carlo Tree Search (NMCTS), using the results of lower-level
searches recursively to provide rollout policies for searches on higher
levels. We demonstrate the significantly stronger performance of
NMCTS as compared to regular MCTS, at equal time controls, in
the deterministic MDP domains SameGame, Clickomania and Bub-
ble Breaker.

This paper is organized as follows. Section 2 provides the neces-
sary background for the overview of related work on nested or meta-

1 Games and AI Group, Department of Knowledge Engineering,
Maastricht University, The Netherlands, email: {hendrik.baier,
m.winands}@maastrichtuniversity.nl

search in a Monte-Carlo framework in Section 3. Section 4 proposes
Nested Monte-Carlo Tree Search, and Section 5 shows experimen-
tal results in our three test domains. Conclusions and future research
follow in Section 6.

2 BACKGROUND

This section briefly outlines Markov Decision Processes and the
common structure of value-based reinforcement learning algorithms.
Monte-Carlo methods are introduced, and Monte-Carlo Tree Search
is presented as the baseline search algorithm for this paper.

2.1 Markov Decision Processes

Markov decision processes (MDPs) represent a classic framework
for modeling reinforcement learning—the task of an agent learning
from experience how to act in an environment that provides feedback
(cf. [32]). An MDP is defined as a 4-tuple (S,A, P·(·, ·), R·(·, ·)),
where S is the set of states of the environment,A is the set of actions
available to the agent, Pa(s, s′) = Pr(st+1 = s′|st = s, at = a)
is the probability that choosing action a in state s at time t will lead
to state s′ at time t + 1 (the transition function), and Ra(s, s′) is
the direct reward given to the agent after choosing action a in state
s and transitioning to state s′ (the reward function). The defining
property of MDPs is the Markov property, stating that given a state s
and an action a, the next state s′ is conditionally independent of all
preceding states and actions in the history of the agent.

In the case of episodic tasks, the agent chooses an action at ∈ A
based on the current state st ∈ S of the environment at each discrete
time step t ∈ {1, 2, 3, . . . , T}. The environment then returns a new
state st+1 and a reward rt+1. The agent chooses its actions according
to a policy, a mapping π(s, a) = Pr(at = a|st = s) from states
of the environment to probabilities of selecting each possible action
when in those states.

The goal of the agent is to find a policy that at any point in time
t maximizes the expected return, the expected cumulative reward
Rt =

∑T
k=t+1 rk. In value-based reinforcement learning, this is ac-

complished by learning a value function V π(s) = Eπ [Rt|st = s]
representing the expected return when starting in a given state s and
following policy π thereafter. For every MDP, there is a unique opti-
mal value function V ∗ defined by ∀s ∈ S. V ∗(s) = maxπ V

π(s),
and at least one optimal policy π∗ achieving V ∗.

Value-based RL algorithms typically find an optimal policy via
policy iteration. This process alternatingly computes the value func-
tion V π of the current policy π (policy evaluation), and uses the new-
found V π to derive a better policy π′ (policy improvement).



2.2 Monte-Carlo Planning and Search in MDPs
Monte-Carlo methods are a class of model-free evaluation algo-
rithms tailored to episodic tasks. Since episodic tasks provide well-
defined sample returns for all visited states at the end of each episode,
the return of a given state can be estimated by averaging the returns
received after visiting that state in a number of episodes. According
to the law of large numbers, such Monte-Carlo estimates converge to
the true value function as the agent collects more and more experi-
ence.

Given a generative model of the environment—a model that is able
to draw samples from the transition function—learning methods such
as Monte-Carlo can be applied to simulated experience (rollouts),
without actually interacting with the environment. This process is
called planning. If planning is focused on improving an agent policy
solely for the current state, i.e. on computing the optimal next action,
it is called search [32].

2.3 Monte-Carlo Tree Search
Monte-Carlo Tree Search (MCTS) [13, 19] is a best-first search al-
gorithm with Monte-Carlo evaluation of states. For each action de-
cision of the agent, MCTS constructs a search tree T ⊆ S, starting
from the current state as root. This tree is selectively deepened into
the direction of the most promising actions, which are determined by
the success of Monte-Carlo rollouts starting with these actions. After
n rollouts, the tree contains n+1 states, for which distinct estimates
of V π are maintained.

MCTS works by repeating the following four-phase loop until
computation time runs out [10]. Each loop represents one simulated
episode of experience.

Phase one: selection. The tree is traversed from the root to one of
the leaves. At each node, MCTS uses a selection policy to choose the
action to sample from this state. Critical is a balance of exploitation
of actions with high value estimates and exploration of actions with
uncertain value estimates.

Phase two: expansion. When a leaf has been reached, one or more
of its successors are added to the tree. In this paper, we always add
the immediate successor of the leaf in the simulation.

Phase three: rollout. A rollout (also called “playout”) policy is
used to choose actions until the episode ends. Uniformly random ac-
tion choices are sufficient to achieve convergence of MCTS to the
optimal action in the limit, but rollout policies utilizing basic domain
knowledge can improve convergence speed considerably.

Phase four: backpropagation. The cumulative reward of the fin-
ished episode is used to update value estimates of all states traversed
during the simulation.

Listing 1 shows pseudocode of MCTS for deterministic environ-
ments, where not only the immediate next action choice is of interest,
but also the best solution sequence for the entire task found so far. It
uses a uniformly random rollout policy.

In a variety of applications, a variant of MCTS called Upper Con-
fidence Bounds for Trees (UCT) [19] has shown excellent perfor-
mance. UCT uses the UCB1 formula, originally developed for the
multi-armed bandit problem [3], to select states in the tree and to
trade off exploration and exploitation. In all experiments in this pa-
per, a variant of UCT with the selection policy UCB1-TUNED is
used. This policy takes the empirical variance of actions into account
and has been shown to be empirically superior to UCB1 in several
multi-armed bandit scenarios [3].

Described in the framework of policy iteration, there are two in-
teracting processes within MCTS.

MCTS(startState) {
bestResult ← -Infinity
bestSolution ← {}
for(numberOfIterations) {

currentState ← startState
solution ← {}
while(currentState ∈ Tree) {

currentState ← selectAction(currentState)
solution ← solution + currentState

}
addToTree(currentState)
while(simulationNotEnded) {

currentState ← randomAction(currentState)
solution ← solution + currentState

}
result = cumulativeReward(solution)
forall(state ∈ solution) {

state.value ← backPropagate(state.value, result)
}
if(result > bestResult) {

bestResult ← result
bestSolution ← solution

}
}
return (bestResult, bestSolution)

}

Listing 1. MCTS with random rollout policy

Policy evaluation: In the backpropagation phase after each episode
of experience, the return from that episode is used to update the value
estimates of each visited state s ∈ T .

ns ←− ns + 1 (1a)

V̂ π(s)←− V̂ π(s) + r − V̂ π(s)
ns

(1b)

where ns is the number of times state s has been traversed in all
episodes so far, and r is the return received at the end of the current
episode.

Policy improvement: During each episode, the policy adapts to the
current value estimates. In case of a deterministic MDP and MCTS
using UCB1-TUNED in the selection phase, and a uniformly random
policy in the rollout phase, let

UVar(s, a) =

(
1

ns,a

ns,a∑
t=1

r2s,a,t

)
−

(
1

ns,a

ns,a∑
t=1

rs,a,t

)2

+

√
2 lnns
ns,a

(2a)
be an upper confidence bound for the variance of action a in state s,
where ns,a is the number of times action a has been chosen in state
s in all episodes so far, and rs,a,t is the reward received when action
a was chosen in state s for the t-th time. Let

UVal(s, a) =

√
2 ln(ns)

ns,a
min

(
1

4
, UVar(s, a)

)
(2b)

be an upper confidence bound for the value of action a in state s.
Then, the policy of the MCTS agent is

π(s) =

argmax
a∈A(s)

(
V̂ π
(
Pa(s)

)
+ C × UVal(s, a)

)
if s ∈ T

random(s) otherwise
(2c)

where Pa(s) is the state reached from position s with action a,
random(s) chooses one of the actions available in s with uniform
probability, and C is an exploration coefficient whose optimal value
is domain-dependent.



3 RELATED WORK

Tesauro and Galperin [34] were the first to use Monte-Carlo rollouts
for improving an MDP policy online. For each possible action a in
the current state of the agent, they generated several rollouts starting
with a and then following the policy as given by a “base controller”
(an arbitrary heuristic). After estimating the expected reward of each
action by averaging rollout results, they improved the heuristic by
choosing and executing the action with the best estimated value. This
resembles one cycle of policy iteration, focused on the current state.

Yan et al. [36] introduced the idea of online improvement of a base
policy through nested search. The first level of nesting corresponds
to a rollout strategy as proposed in [34], estimating the value of each
action by starting with this action and then following the base policy.
The second level estimates the value of each action by starting with
this action and then executing a first-level search; higher levels are
defined analogously. Bjarnason [5] improved this approach for Soli-
taire by using different heuristics and nesting levels for every phase
of the game.

Cazenave [6, 7] proposed similar search methods to Yan’s iterated
rollouts under the names of Reflexive Monte-Carlo Search (RMCS)
and Nested Monte-Carlo Search (NMCS). The main difference to
preceding approaches is that RMCS and NMCS assume a uniformly
random base policy instead of an informed search heuristic, and the
best sequence found so far is kept in memory. NMCS has since
been applied to a variety of problems, such as expression discov-
ery [8], bus network regulation [9] and General Game Playing [23],
and it has been improved for certain types of domains by adding
the AMAF technique [1] and by re-introducing and optimizing base
search heuristics [25].

Rosin [26] developed Nested Rollout Policy Adaptation (NRPA),
a variant of NMCS that adapts the rollout policy during search us-
ing gradient ascent. At each level of the nested search, NRPA shifts
the rollout policy towards the best solution found so far, instead of
advancing towards this solution directly on the search tree. The al-
gorithm depends on a domain-specific representation of actions that
allows for the generalization of action values across different states.

In the context of MCTS, nested search has so far only been used
for the preparation of opening books for the deterministic 2-player
game of Go [2, 11, 12]. In these applications, nested search was per-
formed offline to provide opening databases for the underlying online
game playing agent. The different levels of search therefore used dif-
ferent tree search algorithms adapted to their respective purpose, and
nested and regular MCTS have not been compared on the same task.

So far, no nested search algorithm has made use of the selectiv-
ity and exploration-exploitation control that MCTS provides. In this
paper, we propose Nested Monte-Carlo Tree Search (NMCTS) as a
general online planning algorithm for MDPs. We expect it to out-
perform MCTS in a similar way to how NMCS outperforms naive
Monte-Carlo search—through nesting. Furthermore, we expect it to
outperform NMCS in a similar way to how MCTS outperforms naive
Monte-Carlo search—through selective tree search.

4 NESTED MONTE-CARLO TREE SEARCH

We define a level-0 Nested Monte-Carlo Tree Search (NMCTS) as
a single rollout with the base rollout policy—either uniformly ran-
dom, or guided by a simple heuristic. A level-1 NMCTS search cor-
responds to MCTS, employing level-0 searches as state evaluations.
A level-n NMCTS search for n ≥ 2 recursively utilizes the results
of level-(n− 1) searches as evaluation returns.

NMCTS(startState, solution, level) {
bestResult ← -Infinity
bestSolution ← {}
for(numberOfIterationsForLevel(level)) {

currentState ← startState
while(currentState ∈ Tree) {

currentState ← selectAction(currentState)
solution ← solution + currentState

}
addToTree(currentState)
if(level = 1) {

while(simulationNotEnded) {
currentState ← randomAction(currentState)
solution ← solution + currentState

}
result = cumulativeReward(solution)

} else {
(result,solution) =

NMCTS(currentState, solution, level-1)
}
forall(state ∈ solution) {

state.value ← backPropagate(state.value, result)
}
if(result > bestResult) {

bestResult ← result
bestSolution ← solution

}
}
return (bestResult, bestSolution)

}

Listing 2. NMCTS with random rollout policy

Listing 2 shows pseudocode of NMCTS for deterministic environ-
ments, using a uniformly random rollout policy. It is called with an
empty solution as argument on the highest nesting level. Finding the
most effective trade-off between the numbers of samples at each level
is subject to empirical optimization.

As the selection, expansion and backpropagation steps of MCTS
are preserved in NMCTS, many successful techniques from MCTS
research such as the UCB1-TUNED selection policy can be applied
in NMCTS as well. Parameters can be tuned for each level of search
independently.

In [28], it was found to be effective in SameGame not to spend
the entire search time on the initial position of a problem, but to dis-
tribute it over all actions in the episode (or the first z actions). We call
this technique action-by-action search as opposed to global search,
and it is applicable at all levels of NMCTS. In case action-by-action
search is used, a decision has to be made which action to choose and
execute at each step of the search. Two possible options are a) choos-
ing the most-sampled action—as traditionally done in MCTS—, or
b) choosing the next action in the overall best solution found so far.
Setting NMCTS to action-by-action search, using only one rollout
per legal action in each action search, and then choosing the next
action of the best known solution leads to NMCS as a special case
of NMCTS. This special case does not provide for an exploration-
exploitation tradeoff, nor does it build a tree going deeper than the
number of nesting levels used, but it allows relatively deep nesting
due to the low number of rollouts per search level.

5 EXPERIMENTAL RESULTS

We tested Nested Monte-Carlo Tree Search on three different deter-
ministic, fully observable MDPs: The puzzles named “SameGame”,
“Clickomania” and “Bubble Breaker” [22, 28, 29, 30, 33]. These do-
mains have identical transition functions, but different reward func-
tions, resulting in different distributions of high-quality solutions.
The decision problem associated with these optimization problems
is NP-complete [4].

The rules of the puzzles are as follows. A two-dimensional board



or grid is filled with M × N tiles of C different colors, usually
randomly distributed, at the start. Each action consists of select-
ing a group of two or more vertically or horizontally connected,
identically-colored tiles. When the action is executed, the tiles of this
group are removed from the board. If there are tiles above the deleted
group, they fall down; if an entire column of the board is emptied of
tiles, the columns to the right shift to the left to close the gap. An
episode ends when no actions are left to the agent. The reward the
agent receives depends on the specific variant of the puzzle:

Clickomania. The goal of this puzzle is to clear the board of tiles
as far as possible. At the end of each episode, the agent receives a
reward equivalent to the number of tiles removed.

Bubble Breaker. The goal of this puzzle is to create and then re-
move the largest possible groups of tiles. After each action re-
moving a group of size groupSize, the agent receives a reward
of groupSize∗(groupSize−1) points.

SameGame. In this puzzle, both the removal of large groups and the
clearing of the board are rewarded. Each action removing a group
of size groupSize results in a reward of (groupSize−2)2
points; additionally, ending the episode by clearing the board com-
pletely is rewarded with an extra 1000 points. If the game ends
without clearing the board, the agent receives a negative reward.
It is computed by assuming that all remaining tiles of the same
color are connected into virtual groups, and subtracting points for
all colors according to the formula (groupSize−2)2.

We compared regular MCTS and level-2 NMCTS in all three do-
mains, using a random rollout policy. For SameGame, we also em-
ployed a state-of-the-art informed rollout policy, consisting of the
TabuColorRandomPolicy [30] (setting a “tabu color” at the start of
each rollout that is not chosen as long as groups of other colors
are available) in combination with a multi-armed bandit learning the
best-performing tabu color for the position at hand (based on UCB1-
TUNED).

The experiments for Bubble Breaker and SameGame were con-
ducted on the first 100 training positions used in [30]2. These posi-
tions consist of 15×15 boards with randomly distributed tiles of 5
different colors. Algorithms were allocated 9120 seconds (about 2.5
hours) of computation time per position. The experiments on Clicko-
mania were conducted using 100 randomly generated 20×20 boards
with 10 different tile colors, to provide a greater challenge. Each al-
gorithm here only ran for 1280 seconds per position.

As it has been shown for SameGame that restarting several short
MCTS runs on the same problem can lead to better performance than
a single, long run [30], we tested several numbers of randomized
restarts for MCTS and tuned the selection policy for each of them.
The same settings were then used for NMCTS, with the number of
nested level-1 NMCTS searches equivalent to the number of restarts
for multi-start MCTS. The exploration factor C of level 2 was set to
0 in all NMCTS conditions.

Fig. 1, 2 and 3 show that in Bubble Breaker and SameGame—
in the latter using both random and informed rollouts—level-2 NM-
CTS significantly outperformed multi-start MCTS in all experimen-
tal conditions (p<0.0001 in a paired-samples, two-tailed t-test). The
figures show both the performance of NMCTS and multi-start MCTS
as well as the average difference in performance and the correspond-
ing 95% confidence interval. The best results in SameGame were
achieved building a level-2 tree out of 36,480 level-1 searches of 250
ms each, with informed base-level rollouts. In comparison to the best

2 Available online at http://www.unimaas.nl/games/SameGame/TestSet.txt

38 152 608 2280 9120 36480
1,400

1,600

1,800

2,000

2,200

2,400

2,600

2,800

number of MCTS restarts/level-1 NMCTS searches

av
er

ag
e

be
st

so
lu

tio
n

ov
er

10
0

te
st

po
si

tio
ns

multi-start MCTS
level-2 NMCTS

0

200

400

600

800

1,000

1,200

1,400

av
er

ag
e

im
pr

ov
em

en
to

ve
r1

00
te

st
po

si
tio

ns

Figure 1. Performance of NMCTS in Bubble Breaker with random rollout
policy. Bars show the average performance increase over multi-start MCTS

with a 95% confidence interval.

38 152 608 2280 9120 36480

2,000

2,200

2,400

2,600

2,800

number of MCTS restarts/level-1 NMCTS searches

av
er

ag
e

be
st

so
lu

tio
n

ov
er

10
0

te
st

po
si

tio
ns

multi-start MCTS
level-2 NMCTS

0

200

400

600

800

1,000

av
er

ag
e

im
pr

ov
em

en
to

ve
r1

00
te

st
po

si
tio

ns

Figure 2. Performance of NMCTS in SameGame with random rollout
policy. Bars show the average performance increase over multi-start MCTS

with a 95% confidence interval.

38 152 608 2280 9120 36480

3,000

3,100

3,200

3,300

3,400

3,500

number of MCTS restarts/level-1 NMCTS searches

av
er

ag
e

be
st

so
lu

tio
n

ov
er

10
0

te
st

po
si

tio
ns

multi-start MCTS
level-2 NMCTS

0

100

200

300

400

500

600
av

er
ag

e
im

pr
ov

em
en

to
ve

r1
00

te
st

po
si

tio
ns

Figure 3. Performance of NMCTS in SameGame with informed rollout
policy. Bars show the average performance increase over multi-start MCTS

with a 95% confidence interval.



1 20 80 320 1280 5120 25600 80000
220

240

260

280

300

320

340

360

380

number of MCTS restarts/level-1 NMCTS searches

av
er

ag
e

be
st

so
lu

tio
n

ov
er

10
0

te
st

po
si

tio
ns

multi-start MCTS
level-2 NMCTS

0

20

40

60

80

100

120

140

160

av
er

ag
e

im
pr

ov
em

en
to

ve
r1

00
te

st
po

si
tio

ns

Figure 4. Performance of NMCTS in Clickomania with random rollout
policy. Bars show the average performance increase over multi-start MCTS

with a 95% confidence interval.

performance of multi-start MCTS, achieved with 2280 restarts of 4-
second searches, the use of a nested tree increased the average best
solution per position from 3395.9 to 3465.96. As a comparison, a
doubling of the search time to 4560 restarts only resulted in a perfor-
mance increase to 3431.0.

In Clickomania, level-2 NMCTS also achieved the highest score
(see Fig. 4). While the results of multi-start MCTS for different num-
bers of restarts suggest that a single, global MCTS search could per-
form relatively well in Clickomania, memory limitations reduced the
effectivity of this approach. NMCTS however is able to constantly
reuse tree nodes of lower-level searches, and therefore does not suf-
fer from this problem. We observed that the best-performing NMCTS
setting tested used less than 15% memory of what a single, global
MCTS search would have required for optimal performance.

2,900 3,000 3,100 3,200 3,300

level-2 NMCTS

level-3 NMCS

average best solution over 100 test positions

0 100 200 300 400

improvement

average improvement over 100 test positions

Figure 5. Performance of level-3 NMCS and level-2 NMCTS in
SameGame with a random rollout policy. NMCS was stopped after 9120
seconds. NMCTS employs 2280 level-1 searches, each 100 milliseconds

long, for each of the first 40 actions of an episode.

Fig. 5, 6 and 7 show a comparison of level-2 NMCTS to level-
3 NMCS, including both the average results of the two algorithms
as well as the average performance increase and corresponding 95%
confidence interval. Here, NMCTS used action-by-action search on
level 2, and advanced from action to action by choosing the next ac-
tion of the best solution found so far. NMCS was not able to complete
a level-3 search in the given time of 9120 seconds; consequently,
the best solutions found after 9120 seconds were used for the com-
parisons. NMCTS outperformed NMCS in SameGame with random
playouts (p<0.0001), SameGame with informed playouts (p<0.01)

3,400 3,450 3,500 3,550 3,600

level-2 NMCTS

level-3 NMCS

average best solution over 100 test positions

0 50 100 150 200

improvement

average improvement over 100 test positions

Figure 6. Performance of level-3 NMCS and level-2 NMCTS in
SameGame with an informed rollout policy. NMCS was stopped after 9120

seconds. NMCTS employs 608 level-1 searches, each 750 milliseconds
long, for each of the first 20 actions of an episode.

340 350 360 370 380

level-2 NMCTS

level-3 NMCS

average best solution over 100 test positions

0 10 20 30 40

improvement

average improvement over 100 test positions

Figure 7. Performance of level-3 NMCS and level-2 NMCTS in
Clickomania. NMCS was stopped after 9120 seconds. NMCTS employs
25600 level-1 searches, each 5 milliseconds long, for each of the first 10

actions of an episode.

and Clickomania (p<0.0001). For Bubble Breaker, manual testing
has not revealed parameter settings superior to NMCS yet. Automatic
parameter tuning is in preparation.

6 CONCLUSION AND FUTURE RESEARCH

In this paper, we proposed Nested Monte-Carlo Tree Search (NM-
CTS) as an online planning algorithm for large MDPs. Empirical
results in the test domains of SameGame, Bubble Breaker and Click-
omania show that NMCTS significantly outperforms regular Monte-
Carlo Tree Search (MCTS). Experiments in SameGame and Clicko-
mania suggest performance superior to Nested Monte-Carlo Search
(NMCS). Since both MCTS and NMCS represent specific parameter
settings of NMCTS, correct tuning of NMCTS has to lead to greater
or equal success in any MDP domain.

Several promising directions remain for future research. First, in
the experiments so far we have only used an exploration factor of 0
for level 2 of NMCTS. This means that the second level of tree search
proceeded greedily in all experiments—it only made use of the se-
lectivity of MCTS, but not of the exploration-exploitation tradeoff.
Careful tuning of exploration at all search levels could lead to consid-
erable performance improvements. Second, it appears that NMCTS
is most effective in domains where multi-start MCTS outperforms
a single, long MCTS run (like SameGame and BubbleBreaker), al-
though its lower memory requirements can still represent an advan-
tage in domains where multi-start MCTS is ineffective (like Clicko-
mania). The differences between these classes of tasks remain to be
characterized. Third, we plan to extend NMCTS to partially observ-
able as well as stochastic MDPs.



ACKNOWLEDGEMENTS
This work is funded by the Netherlands Organisation for Scientific
Research (NWO) in the framework of the project Go4Nature, grant
number 612.000.938.

REFERENCES
[1] H. Akiyama, K. Komiya, and Y. Kotani, ‘Nested Monte-Carlo Search

with AMAF Heuristic’, in Proceedings of the 2010 International Con-
ference on Technologies and Applications of Artificial Intelligence
(TAAI), pp. 172–176, (2010).

[2] P. Audouard, G.M.J.-B. Chaslot, J.-B. Hoock, J. Perez, A. Rimmel,
and O. Teytaud, ‘Grid Coevolution for Adaptive Simulations: Appli-
cation to the Building of Opening Books in the Game of Go’, in Appli-
cations of Evolutionary Computing, eds., M. Giacobini, A. Brabazon,
S. Cagnoni, G. A. Di Caro, A. Ekárt, A. Esparcia-Alcázar, M. Farooq,
A. Fink, P. Machado, J. McCormack, M. O’Neill, F. Neri, M. Preuss,
F. Rothlauf, E. Tarantino, and S. Yang, pp. 323–332, (2009).

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer, ‘Finite-Time Analysis of the
Multiarmed Bandit Problem’, Machine Learning, 47(2-3), 235–256,
(2002).

[4] T. C. Biedl, E. D. Demaine, M. L. Demaine, R. Fleischer, L. Jacobsen,
and J. I. Munro, ‘The Complexity of Clickomania’, in More Games
of No Chance, Proceedings of the MSRI Workshop on Combinatorial
Games, ed., R. J. Nowakowski, pp. 389–404, (2002).

[5] R. Bjarnason, P. Tadepalli, and A. Fern, ‘Searching Solitaire in Real
Time’, ICGA Journal, 30(3), 131–142, (2007).

[6] T. Cazenave, ‘Reflexive Monte-Carlo Search’, in Proceedings of Com-
puter Games Workshop 2007, eds., H. J. van den Herik, J. W. H. M.
Uiterwijk, M. H. M. Winands, and M. P. D. Schadd, pp. 165–173,
(2007).

[7] T. Cazenave, ‘Nested Monte-Carlo Search’, in Proceedings of the
21st International Joint Conference on Artificial Intelligence, ed.,
C. Boutilier, pp. 456–461, (2009).

[8] T. Cazenave, ‘Nested Monte-Carlo Expression Discovery’, in Proceed-
ings of the 19th European Conference on Artificial Intelligence, eds.,
H. Coelho, R. Studer, and M. Wooldridge, pp. 1057–1058, (2010).

[9] T. Cazenave, F. Balbo, and S. Pinson, ‘Using a Monte-Carlo Approach
for Bus Regulation’, in 12th International IEEE Conference on Intelli-
gent Transportation Systems, 2009 (ITSC ’09), pp. 1–6, (2009).

[10] G. M. J.-B. Chaslot, M. H. M. Winands, H. J. van den Herik, J. W. H. M.
Uiterwijk, and B. Bouzy, ‘Progressive Strategies for Monte-Carlo Tree
Search’, New Mathematics and Natural Computation, 4(3), 343–357,
(2008).

[11] G.M.J.-B. Chaslot, J.-B. Hoock, J. Perez, A. Rimmel, O. Teytaud,
and M.H.M. Winands, ‘Meta Monte-Carlo Tree Search for Automatic
Opening Book Generation’, in Proceedings of IJCAI 2009 Workshop
on General Intelligence in Game Playing Agents, pp. 7–12, (2009).

[12] C.-W. Chou, P.-C. Chou, H. Doghmen, C.-S. Lee, T.-C. Su, F. Teytaud,
O. Teytaud, H.-M. Wang, M.-H. Wang, L.-W. Wu, and S.-J. Yen, ‘To-
wards a Solution of 7×7 Go with Meta-MCTS’. Advances in Computer
Games, 13th International Conference (ACG 2011). In press.

[13] R. Coulom, ‘Efficient Selectivity and Backup Operators in Monte-
Carlo Tree Search’, in 5th International Conference on Computers and
Games (CG 2006). Revised Papers, eds., H. J. van den Herik, P. Cian-
carini, and H. H. L. M. Donkers, volume 4630 of Lecture Notes in Com-
puter Science, pp. 72–83. Springer, (2007).

[14] F. de Mesmay, A. Rimmel, Y. Voronenko, and M. Püschel, ‘Bandit-
Based Optimization on Graphs with Application to Library Perfor-
mance Tuning’, in Proceedings of the 26th Annual International Con-
ference on Machine Learning, ICML 2009, eds., A. P. Danyluk, L. Bot-
tou, and M. L. Littman, pp. 729–736, (2009).

[15] H. Finnsson and Y. Björnsson, ‘Simulation-Based Approach to General
Game Playing’, in Proceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence, AAAI 2008, eds., D. Fox and C. P. Gomes, pp.
259–264, (2008).

[16] S. Gelly and D. Silver, ‘Achieving Master Level Play in 9 x 9 Computer
Go’, in Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, AAAI 2008, eds., D. Fox and C. P. Gomes, pp. 1537–1540,
(2008).

[17] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, ‘Modification of UCT
with Patterns in Monte-Carlo Go’, Technical report, HAL - CCSd -
CNRS, France, (2006).

[18] N. Ikehata and T. Ito, ‘Monte-Carlo Tree Search in Ms. Pac-Man’,
in 2011 IEEE Conference on Computational Intelligence and Games
(CIG), pp. 39–46, (2011).

[19] L. Kocsis and C. Szepesvári, ‘Bandit Based Monte-Carlo Planning’,
in 17th European Conference on Machine Learning, ECML 2006, eds.,
J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, volume 4212 of Lecture
Notes in Computer Science, pp. 282–293. Springer, (2006).

[20] C.-S. Lee, M.-H. Wang, G. M. J.-B. Chaslot, J.-B. Hoock, A. Rim-
mel, O. Teytaud, S.-R. Tsai, S.-C. Hsu, and T.-P. Hong, ‘The Computa-
tional Intelligence of MoGo Revealed in Taiwan’s Computer Go Tour-
naments’, IEEE Transactions on Computational Intelligence and AI in
Games, 1(1), 73–89, (2009).

[21] R. J. Lorentz, ‘Amazons Discover Monte-Carlo’, in Proceedings of the
6th International Conference on Computers and Games, eds., H. J.
van den Herik, X. Xu, Z. Ma, and M. H. M. Winands, pp. 13–24, (2008).

[22] S. Matsumoto, N. Hirosue, K. Itonaga, K. Yokoo, and H. Futahashi,
‘Evaluation of Simulation Strategy on Single-Player Monte-Carlo Tree
Search and its Discussion for a Practical Scheduling Problem’, in Pro-
ceedings of the International MultiConference of Engineers and Com-
puter Scientists 2010, volume 3, pp. 2086–2091, (2010).

[23] J. Méhat and T. Cazenave, ‘Combining UCT and Nested Monte Carlo
Search for Single-Player General Game Playing’, IEEE Transactions
on Computational Intelligence and AI in Games, 2(4), 271–277, (2010).

[24] H. Nakhost and M. Müller, ‘Monte-Carlo Exploration for Deterministic
Planning’, in Proceedings of the 21st International Joint Conference on
Artificial Intelligence, ed., C. Boutilier, pp. 1766–1771, (2009).

[25] A. Rimmel, F. Teytaud, and T. Cazenave, ‘Optimization of the Nested
Monte-Carlo Algorithm on the Traveling Salesman Problem with Time
Windows’, in Proceedings of Applications of Evolutionary Computa-
tion - EvoApplications 2011, eds., C. Di Chio, A. Brabazon, G. A. Di
Caro, R. Drechsler, M. Farooq, J. Grahl, G. Greenfield, C. Prins,
J. Romero, G. Squillero, E. Tarantino, A. Tettamanzi, N. Urquhart, and
A. S. Etaner-Uyar, pp. 501–510, (2011).

[26] C. D. Rosin, ‘Nested Rollout Policy Adaptation for Monte Carlo Tree
Search’, in Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, ed., T. Walsh, pp. 649–654, (2011).

[27] A. Sabharwal and H. Samulowitz, ‘Guiding Combinatorial Optimiza-
tion with UCT’, in ICAPS 2011 Workshop on Monte-Carlo Tree Search:
Theory and Applications, (2011).

[28] M. P. D. Schadd, M. H. M. Winands, M. J. W. Tak, and J. W. H. M.
Uiterwijk, ‘Single-Player Monte-Carlo Tree Search for SameGame’,
Knowledge-Based Systems. In press.

[29] M. P. D. Schadd, M. H. M. Winands, H. J. van den Herik, and H. Aldew-
ereld, ‘Addressing NP-Complete Puzzles with Monte-Carlo Methods’,
in Proceedings of the AISB 2008 Symposium on Logic and the Simula-
tion of Interaction and Reasoning, volume 9, pp. 55–61, (2008).

[30] M. P. D. Schadd, M. H. M. Winands, H. J. van den Herik, G. M. J.-
B. Chaslot, and J. W. H. M. Uiterwijk, ‘Single-Player Monte-Carlo
Tree Search’, in Proceedings of the 6th International Conference on
Computers and Games, eds., H. J. van den Herik, X. Xu, Z. Ma, and
M. H. M. Winands, pp. 1–12, (2008).

[31] D. Silver and J. Veness, ‘Monte-Carlo Planning in Large POMDPs’,
in Advances in Neural Information Processing Systems 23, NIPS 2010,
eds., J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,
and A. Culotta, pp. 2164–2172, (2010).

[32] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
MIT Press, 1998.

[33] F. W. Takes and W. A. Kosters, ‘Solving SameGame and its Chessboard
Variant’, in Proceedings of the 21st Benelux Conference on Artificial In-
telligence, BNAIC 2009, eds., T. Calders, K. Tuyls, and M. Pechenizkiy,
pp. 249–256, (2009).

[34] G. Tesauro and G. R. Galperin, ‘On-line Policy Improvement using
Monte-Carlo Search’, in Advances in Neural Information Processing
Systems 9, NIPS 1996, eds., M. Mozer, M. I. Jordan, and T. Petsche,
pp. 1068–1074, (1997).

[35] M. H. M. Winands, Y. Björnsson, and J.-T. Saito, ‘Monte Carlo Tree
Search in Lines of Action’, IEEE Transactions on Computational Intel-
ligence and AI in Games, 2(4), 239–250, (2010).

[36] X. Yan, P. Diaconis, P. Rusmevichientong, and B. Van Roy, ‘Solitaire:
Man Versus Machine’, in Advances in Neural Information Process-
ing Systems 17, NIPS 2004, eds., L. K. Saul, Y. Weiss, and L. Bottou,
(2004).


