
Informed Search in Complex Games





Informed Search in Complex Games

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit Maastricht,

op gezag van de Rector Magnificus,
Prof. mr. G.P.M.F. Mols,

volgens het besluit van het College van Decanen,
in het openbaar te verdedigen

op woensdag 1 december 2004 om 12:00 uur

door

Mark Henricus Maria Winands



Promotor: Prof. dr. H.J. van den Herik
Copromotor: Dr. ir. J.W.H.M. Uiterwijk

Leden van de beoordelingscommissie:
Prof. dr. A.J. van Zanten (voorzitter)
Prof. dr. A. de Bruin (Erasmus Universiteit Rotterdam)
Prof. ir. L.A.A.M. Coolen
Prof. dr. H. Iida (Shizuoka University, Hamamatsu, Japan)
Prof. dr. E.O. Postma

Dissertation Series No. 2004-17

The research reported in this thesis has been carried out under the auspices of SIKS,

the Dutch Research School for Information and Knowledge Systems.

ISBN 90-5278-429-9

Universitaire Pers Maastricht

Printed by Datawyse b.v., Maastricht, The Netherlands.

c©2004 M.H.M. Winands, Valkenburg, The Netherlands.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted, in any form or by any means, electronically, mechanically, photo-

copying, recording or otherwise, without prior permission of the author.



Preface

In 1999 I became acquainted with the game LOA (Lines of Action). To me it was a
fascinating and attractive topic of games research and I chose it for my M.Sc. project
on knowledge representation and search. It was a joy working on it and my interest
in games and AI enlarged every day. During this project I was offered to continue my
research as a Ph.D. student at the computer science department of the Universiteit
Maastricht, part of the research institute IKAT (Institute for Knowledge and Agent
Technology). After some thought I accepted this offer, a choice I still enjoy. Then,
submitted papers (a new world to me) were accepted and led to this thesis. The
result would not have existed without the support of a variety of people. In this
preface I want to acknowledge them.

First of all, I wish to thank my supervisor professor Jaap van den Herik for
his stimulating efforts to teach me scientific writing and thinking, for the many
other lessons I learned from him, and also for providing me with the opportunity to
broaden my horizon internationally. Next, many thanks go to my daily advisor dr.
Jos Uiterwijk, who always had time to give me advice. Without the help of both
of them this thesis would not have existed. Part of this research was done at the
Computer Games Research Institute (CGRI) of the Shizuoka University. I want to
acknowledge professor Hiroyuki Iida’s advice and support during my stay in Japan.

Moreover, I would like to thank the members of the Search and Games group
for their useful comments and collaboration. I enjoyed working with my former
roommate Levente Kocsis on our various machine-learning experiments in LOA.
Although we hardly agreed, he kept me sharp with his intriguing opinions on society
and computer science. Erik van der Werf confirmed the performance of the relative
history heuristic in his solver Migos. Besides our game-programming joint ventures,
we made some (scientific) trips over the globe. I want to thank Jeroen Donkers for
his enthusiasm to share his broad technical knowledge on a large range of topics. I
do not know what I would have done without his help on LATEX formatting. Last
but not least, Tony Werten’s chess programming tricks (or better hacks) turned out
to be useful in LOA as well.

Then, I would like to thank my colleagues at IKAT for their cooperation and
help. In particular the support offered by the members of the secretarial staff, Joke
Hellemons, Marlies van der Mee, Martine Tiessen, and Hazel den Hoed is highly
appreciated. Furthermore, I thank Peter Geurtz for his computer support and his
willingness to replace the various hardware components I broke.

Beyond IKAT many other people contributed in one or another way to this thesis.



vi

I thank Yngvi Björnsson and Darse Billings for sharing their thoughts about LOA
in general, and LOA evaluation functions in particular. Further, I would like to
acknowledge Lars Eijssen for proof reading this thesis.

In het bijzonder wil ik in mijn ouders bedanken voor de mogelijkheden die ze me
hebben geboden om me te ontwikkelen.

Mark Winands, 2004

Acknowledgements

The research has been carried out under the auspices of SIKS, the Dutch Research
School for Information and Knowledge Systems. Moreover, I gratefully acknowledge
financial support over the years by the Universiteitsfonds Limburg / SWOL.



Table of Contents

Preface v

Table of Contents vii

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Games and AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Informed Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Problem Statement and Research Questions . . . . . . . . . . . . . . 4
1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Test Environment 9

2.1 Lines of Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Solid Formations . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.4 Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.5 Centralisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.6 Material Advantage . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.7 Initiative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 The Role of LOA in the AI Domain . . . . . . . . . . . . . . . . . . 15
2.6 MIA’s Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 LOA Test Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 An Evaluation Function for Lines of Action 19

3.1 Features of an Evaluation Function . . . . . . . . . . . . . . . . . . . 20
3.1.1 Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Centralisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Centre-of-Mass Position . . . . . . . . . . . . . . . . . . . . . 22



viii Table of Contents

3.1.4 Quads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.5 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.6 Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.7 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.8 Uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.9 Player to Move . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.10 Caching certain Features . . . . . . . . . . . . . . . . . . . . . 26

3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Benchmark Evaluators . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Evaluation of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Chapter Conclusion and Future Research . . . . . . . . . . . . . . . 34

4 Proof-Number Search Algorithms 35

4.1 Endgame Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Five Proof-Number Search Algorithms . . . . . . . . . . . . . . . . . 37

4.2.1 Proof-Number Search . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 PN2 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Three Depth-First Proof-Number Search Algorithms . . . . . 39

4.3 Offline PN Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1 Two Enhancements of PN and PN2 . . . . . . . . . . . . . . 41
4.3.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Online PN Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.1 PN-αβ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Chapter Conclusion and Future Research . . . . . . . . . . . . . . . 46

5 An Effective Two-Level Proof-Number Search Algorithm 47

5.1 PDS-PN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.2 First Level: Proof-Number and Disproof-Number Search . . . 48
5.1.3 Second Level: PN Search . . . . . . . . . . . . . . . . . . . . 52
5.1.4 Pseudo Code for PDS-PN . . . . . . . . . . . . . . . . . . . . 53

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.1 Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.2 Three Comparisons of the Algorithms . . . . . . . . . . . . . 57
5.2.3 Comparing the Algorithms for Hard Problems . . . . . . . . 59
5.2.4 Comparing the Algorithms under Reduced Memory . . . . . 60

5.3 Chapter Conclusion and Future Research . . . . . . . . . . . . . . . 60

6 Enhanced Forward Pruning 63

6.1 Variable-Depth Search . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Three Node Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Forward Pruning in the Null-Window Search . . . . . . . . . . . . . 65
6.4 Multi-Cut at ALL Nodes (MC-A) . . . . . . . . . . . . . . . . . . . . 66



Table of Contents ix

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5.1 Parameter Tuning in MC-A . . . . . . . . . . . . . . . . . . . 69
6.5.2 Evaluation of MC-A and Forward-Pruning Methods . . . . . 70
6.5.3 Variable Null-Move Bound . . . . . . . . . . . . . . . . . . . 72
6.5.4 Performance Enhancement with MC-A . . . . . . . . . . . . . 74

6.6 Chapter Conclusion and Future Research . . . . . . . . . . . . . . . 74

7 The Relative History Heuristic 75

7.1 The History and the Butterfly Heuristic . . . . . . . . . . . . . . . . 76
7.2 The Relative History Heuristic . . . . . . . . . . . . . . . . . . . . . 77
7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3.1 Increment Settings . . . . . . . . . . . . . . . . . . . . . . . . 78
7.3.2 Performance in LOA . . . . . . . . . . . . . . . . . . . . . . . 80
7.3.3 Performance in Go . . . . . . . . . . . . . . . . . . . . . . . . 82

7.4 Chapter Conclusion and Future Research . . . . . . . . . . . . . . . 82

8 Conclusions and Future Research 85

8.1 Conclusions on the Research Questions . . . . . . . . . . . . . . . . . 85
8.1.1 Evaluation Function . . . . . . . . . . . . . . . . . . . . . . . 85
8.1.2 Proof-Number Search . . . . . . . . . . . . . . . . . . . . . . 86
8.1.3 Forward Pruning . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.1.4 Move Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.2 Conclusion on the Problem Statement . . . . . . . . . . . . . . . . . 88
8.3 Recommendations for Future Research . . . . . . . . . . . . . . . . . 88

References 91

Appendices

A LOA at the Computer Olympiads 101

B Pseudo Code 111

B.1 Pseudo Code for PN Search . . . . . . . . . . . . . . . . . . . . . . . 111
B.2 Pseudo Code for PN2 Search . . . . . . . . . . . . . . . . . . . . . . 113
B.3 Pseudo Code for PDS . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Index 117

Summary 119

Samenvatting 123

Curriculum Vitae 127

SIKS Dissertation Series 129



x Table of Contents

List of Figures

2.1 (a) The initial position. (b) An example of possible moves. (c) A
terminal position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 A position with a threat. . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 A solid formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Blocking a piece. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 LOA email tournament, 1999, Roessner vs. Handscomb, after 10.

e1-c3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Pseudo code for the concentration feature. . . . . . . . . . . . . . . . 21
3.2 Position with an outlier on b8. . . . . . . . . . . . . . . . . . . . . . 21
3.3 Piece-square table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Scattered pieces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Six different quad types. . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Position with two black Q4’s. . . . . . . . . . . . . . . . . . . . . . . 24
3.7 Position with walls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.8 Pseudo code for evaluation function. . . . . . . . . . . . . . . . . . . 27
3.9 Start positions for the benchmark-evaluator experiments. . . . . . . 30
3.10 The feature space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 An AND/OR tree with proof and disproof numbers. . . . . . . . . . 37

5.1 An illustration of PDS. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Schematical sketch of PDS-PN. . . . . . . . . . . . . . . . . . . . . . 53
5.3 Pseudo code for PDS-PN. . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Results with restricted memory. . . . . . . . . . . . . . . . . . . . . . 61

6.1 An example of an αβ tree with different types of nodes. . . . . . . . 65
6.2 Pseudo code for enhanced PVS. . . . . . . . . . . . . . . . . . . . . . 67
6.3 Pseudo code for enhanced MC-C. . . . . . . . . . . . . . . . . . . . . 68
6.4 Tree sizes for different C, M, and R. . . . . . . . . . . . . . . . . . . 69
6.5 Pseudo code for variable null-move bound. . . . . . . . . . . . . . . . 72
6.6 Variable null-move bound. . . . . . . . . . . . . . . . . . . . . . . . . 73
6.7 MC-A compared to variable null-move bound. . . . . . . . . . . . . . 73

7.1 (a) Rare move. (b) Blocked move. . . . . . . . . . . . . . . . . . 77
7.2 Performance of the relative history heuristic. . . . . . . . . . . . . . 80
7.3 Validating the relative history heuristic. . . . . . . . . . . . . . . . . 81
7.4 Relative history heuristic without using multi-cut. . . . . . . . . . . 81
7.5 Performance of the relative history heuristic in 6×6 Go. . . . . . . . 83

A.1 (a) After 9. h6xh3. (b) After 17. ... a5-d5. . . . . . . . . . . 105
A.2 (a) After 13. b1-c2. (b) After 17. ... g5-f4. (c) After 18. ... d4-g4.106
A.3 (a) After 8. ... a3xc1. (b) After 20. ... g5-d5. (c) After 6. ...

h6xf8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



Table of Contents xi

List of Tables

3.1 Overview of the features. . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Tournament results at various depths. . . . . . . . . . . . . . . . . . 31

4.1 Mobility in PN and PN2. . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Deleting (dis)proved subtrees at the second-level search PN2. . . . . 41
4.3 Comparing the search algorithms on 488 test positions. . . . . . . . 42
4.4 Comparing PDS and PN2 on 463 test positions. . . . . . . . . . . . . 43
4.5 Experimental results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 Experimental results for games with over 45 plies. . . . . . . . . . . 46

5.1 Number of solved positions (by PDS-PN) for different values of a and
b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Comparing the search algorithms on 488 test positions with a limit
of 50,000,000 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Comparing PN2 and PDS-PN on 488 test positions with a limit of
500,000,000 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Comparing PN2, PDS and PDS-PN on 457 test positions (all solved)
with a limit of 50,000,000 nodes. . . . . . . . . . . . . . . . . . . . . 59

5.5 Comparing PN2 and PDS-PN on 286 hard test positions with a limit
of 500,000,000 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1 Added value of MC-A. . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Relative performance of MC-A in combination with null move and

MC-C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3 1000-game match results. . . . . . . . . . . . . . . . . . . . . . . . . 74

7.1 Performance of the history heuristic with different increments on a
test set of 171 positions. . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2 Performance of the relative history heuristic with different increments
on a test set of 171 positions. . . . . . . . . . . . . . . . . . . . . . . 79

A.1 The final standings of the LOA tournament at the 5th Computer
Olympiad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.2 The final standings of the LOA tournament at the CMG 6th Computer
Olympiad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.3 The final standings of the LOA tournament at the 7th Computer
Olympiad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.4 The final standings of the LOA tournament at the 8th Computer
Olympiad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.5 The final standings of the LOA tournament at the 9th Computer
Olympiad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109





Chapter 1

Introduction

This thesis investigates how search can be guided by knowledge in such a way that
the search space is traversed efficiently and effectively. For this task we focus on the
question how to combine knowledge with search. The more adequate the knowledge
is, the better the search. If a search process is sufficiently endowed with knowledge
and as a consequence the search is (rather) successful, we call the search process an
informed-search process. In this chapter we provide a brief introduction on games
and Artificial Intelligence (AI) (Section 1.1) and then discuss the notion of informed
search (Section 1.2). Subsequently, we formulate our problem statement together
with four research questions (Section 1.3). Section 1.4 provides a thesis overview.

1.1 Games and AI

Ever since humans achieved some degree of civilisation, they played games. The
two most important reasons for games to be played are their intellectual challenge
and their entertainment. For the first reason games are used as a testing ground for
computational intelligence. Since the 1950s the AI community compares the com-
puter performance with the human performance (Van den Herik and Iida, 2000),
or otherwise stated: since the birth of AI computational intelligence is measured
with respect to human intelligence. Shannon (1950) and Turing (1953) were the
first to describe a chess-playing program, while Samuel (1959) wrote the first game-
playing program in the domain of Checkers. In the beginning most AI research in
games concentrated on abstract games like Chess and Checkers. Later on (in the
1970s) Backgammon and Bridge were added to this list, in particular since they
possessed additional features, viz. stochastic information and incomplete informa-
tion, respectively. All four games offer a pure abstract competition, with an exact
closed domain (i.e., well-defined rules). The game state is easy to represent and the
possible actions are known. Less abstract games like football, of which the domain
is not properly described and the rules are more vague, did not attract any attention
in the beginning of AI.

Since the 1950s there has been a steady improvement in the strength of game-
playing programs. The quality of these programs can be roughly categorised into
five classes (Allis, Van den Herik, and Herschberg, 1991a).



2 Introduction

(1) Solved games. In certain games perfection is reached by solving them. This
means that the program is always able to achieve the best (i.e., game-theoretic) value
independent of the opponent. The last years quite a number of games have been
classified in this category. We mention Connect-Four (Allis, 1988), Go-Moku (Allis,
1994), Nine Men’s Morris (Gasser, 1995); and recently we saw the solution of Kalah
(Irving, Donkers, and Uiterwijk, 2000), Renju (Wágner and Virág, 2001) and Awari
(Romein and Bal, 2003).

(2) Over-champion games. This is a category of games where the programs
are significantly stronger than the human world champion. The best example is the
game of Checkers, where the game programs have achieved a level above human
capacity since Chinook obtained the Man-Machine World Champion title against
Tinsley in 1994 (Schaeffer, 1997). Other games where over-champion status has
been reached are, for instance, Backgammon (Tesauro, 1994), Othello (Buro, 1997),
and Scrabble (Sheppard, 2002).

(3) Champion-level games. In some games the top programs are on equal
footing with the world champion. The most famous example is Chess. The victory
of Deep Blue against the then reigning World Champion Kasparov in 1997 (Hsu,
2002) is a telling performance. Moreover, the tied matches of the current top chess
programs Deep Fritz (Müller, 2002; Levy, 2003b) and Deep Junior (Müller, 2003)
against the world-champion calibre players Kramnik and Kasparov, respectively,
show that the level of computer Chess is equal to that of the world champion, but
does not yet surpass them (Levy, 2003a).

(4) Grandmaster-level games. Then we have games where the programs can
play on grandmaster level, but are still defeated by the world champion. The games
of Poker (Billings et al., 2000), Hex (Anshelevich, 2002), and Draughts (Guibert and
Wesselink, 2003) are examples.

(5) Amateur-level games. Finally, there exists the category of games where
the level of play is still at amateur level. In this category the level goes from strong
amateur (e.g., Shogi) to weak amateur (e.g., Go) (Van den Herik, Uiterwijk, and
Van Rijswijck, 2002).

We remark that comparing the quality of a game program against humans is
somewhat arbitrary. Some games are less popular among humans than others. This
means that goods results can be achieved quite easily by the lack of a decent human
opponent. Nevertheless, a weakly-playing human might sometimes be the best avail-
able person to give an insight into the progress of the field. Summarising, we can
state that for quite some games at least the grandmaster status has been reached.

It is only a matter of time before most of the game-playing programs will reach
over-champion status. This does not mean that games, which fall in category 2,
are no longer attractive for research. Below we provide four reasons that advocate
further research. First, continuing research in this kind of games could lead to
solving them. Second, continuing research in these games could generate new ideas,
which could successfully be applied in games where the play is still weak. According
to Fraenkel (1996) new ideas could even be used in mathematics and economics.
Third, having the strongest program in a certain domain can still be an intellectual
challenge for other researchers. For example, at the Computer Olympiads programs
are competing against each other and the auctores intellectuales are eager to find



1.2 — Informed Search 3

out which program is the best. Fourth, an over-champion program could be a kind
of almighty tutoring oracle, by which a grandmaster can improve his1 play.

In the last years we observed two shifts in the domain of game-playing programs.
First, there is the research shift from cognition towards perception, which resulted in
more attention to the game of football (e.g., the RoboCup). Second, a shift was seen
from the classic abstract games towards the more commercial games. Role-playing,
adventure, and sport games have become increasingly more popular as a test domain
for AI research. This is partly so because these games offer new challenges, such
as real-time pathfinding and adversarial real-time planning. But it also stems from
the fact that this subdomain has more resources (i.e., these games constitute a
multi-billion enterprise) to do research. Whatever the case, all games will remain
an intriguing subject for AI research in the future. Moreover, informed search is a
topic that will be beneficial for all types of game research mentioned above.

1.2 Informed Search

In complex games a program designer usually lacks the knowledge to let the program
play the game perfectly. For many years, search has been an adequate answer to
bridge (partially) the knowledge gap. As is well known, most games cannot be played
at an acceptable level without using domain knowledge, because the corresponding
state space is too large to be searched completely in a reasonable amount of time. So,
most games can neither be played by using knowledge nor by using search only. Both
search and knowledge have their advantages and drawbacks (see, e.g., Breuker, 1998).
A logical inference of this observation is attempting to combine the advantages
from both sides into a well-functioning procedure. For a good understanding of the
possibilities we examine the trade-off between the amount of knowledge used and
the amount of search performed. Two well-known characteristics frequently used to
measure a position in the trade-off spectrum are the cost of time and the cost of
memory.

First, we look at the time characteristic: evaluating a position by using (some
amount of) knowledge consumes time. On the one hand a program that uses so-
phisticated but time-consuming knowledge determines more accurately the merit of
each node visited. It searches fewer nodes to find the best move or to solve the
problem. On the other hand, a program that uses less detailed (and therefore less
time-consuming) knowledge will search more nodes and will be able to perform a
deeper search, thereby showing an adequate short-term tactical ability. A consider-
able amount of research interest has arisen in the last years to study this phenomenon
(Schaeffer, 1986; Berliner et al., 1990; Junghanns and Schaeffer, 1997; Heinz, 2000).

Second, we look at the memory characteristic: storing knowledge gathered dur-
ing a game requires memory. The purpose of storing knowledge acquired during the
search process is to re-use it at later times. According to Breuker (1998) there are
two points of view: (1) we may reduce the search by using more memory (e.g., trans-
position tables in depth-first search) and (2) we may reduce the need for memory at
the cost of additional searching (e.g., two-level best-first search).

1In contexts where the gender of a non-neutral third person is irrelevant, we will always use
“he” and “his” to avoid the more cumbersome “(s)he” and “her/his”.



4 Introduction

The trade-off is dependent on the type of knowledge used. According to Berliner
(1984) there are two basic types of knowledge available in the search: terminal
knowledge and directing knowledge.

Terminal knowledge is applied to the leaf nodes of the search tree. If the leaf
node represents a terminal position, it produces an exact value (win, loss, or draw).
Otherwise a heuristic evaluation value is computed for the position represented by
the leaf. This value can be interpreted in three different ways (Donkers, 2003): (1) it
is a prediction of the game-theoretic value, (2) it measures the probability to win, and
(3) it measures the profitability of the position. The third interpretation is mostly
used in the evaluation function of game programs. The profitability of a position
is only partly based on the prediction of the game-theoretic value. It may include
also the strengths and weaknesses of the program. The profitability of a position
is independent of the actual opponent; this is in contrast to the probability to win
the position. In machine-learning techniques the probability is used; in practice it is
dependent on the specific opponent(s). The profitability of an evaluation function
is usually determined by the number of games that are won by letting the program
play against itself or against other programs.

Directing knowledge guides the way the search tree is being built. In best-first
search the added domain-specific information selects which node to expand next. In
selective depth-first search methods knowledge is used to decide which branches to
abandon (forward pruning) or to extend beyond the nominal depth (search exten-
sions).

Search needs at least terminal knowledge to solve a problem. If the search is also
using directing knowledge it is called informed search.

1.3 Problem Statement and Research Questions

In the previous section we discussed the relevance of informed search to improve
computer-game play. That is precisely the topic of this thesis. The following problem
statement guides our research.

Problem statement: How can we develop informed-search methods in
such a way that programs significantly improve their performance in a
given domain?

In order to formulate an answer on the problem statement we have to identify a test
domain in which we can test our informed-search methods. The domain has to fulfil
the following three conditions: (1) there should be a complex balance between the
search and knowledge needed; neither search (as in Awari) nor knowledge (as in Hex)
should be the dominant component; (2) the domain should be sufficiently complex
with respect to tactics and strategy; it should not be possible in the near future (say
five years) to solve the game by knowledge or by search, or by a combination of both
of them; (3) it should be a relative unexplored domain, which provides ample room
for new ideas. For instance, in Checkers or Othello almost perfection is reached with
current search methods and “pre-cooked” knowledge.

The game Lines of Action (LOA), which will be explained in the next chapter,
satisfies these three conditions and will be used as test domain. As a guideline to our



1.3 — Problem Statement and Research Questions 5

research we have formulated four explicit research questions, in which we investigate
certain topics of informed search. They deal with (1) the evaluation function, (2)
competitive proof-number search algorithms, (3) forward pruning, and (4) move
ordering.

Research question 1: How can we build a strong evaluation function
for Lines of Action?

Informed search cannot exist without a decent evaluation function (terminal knowl-
edge). For LOA, it is a challenge to build such an evaluation function, since it
should incorporate the basic principles of the game and simultaneously increase the
profitability. The difficulty lies in the fact that knowledge about LOA evaluation
functions is not well developed, although some material on the basic principles has
been published recently (Handscomb, 2000a, 2000b, 2000c; Chaunier and Hand-
scomb, 2001; Billings and Björnsson, 2003).

Research question 2: How can we develop a proof-number search
algorithm, which is competitive in speed and not restricted in working
memory?

The original Proof-Number (PN) search method (Allis, Van der Meulen, and
Van den Herik, 1994) is formulated as a best-first search algorithm. It has the
disadvantage that the whole search tree has to be stored in memory. Then the search
can end prematurely because of memory exhaustion. Recently, some PN variants
have been constructed as depth-first search algorithms; yet they behave as their
corresponding best-first search algorithms. The advantage is that there is no longer
a need to store the whole tree in memory. The disadvantage is that the PN variants
have to re-generate the tree in each iteration. In this thesis we investigate a new
PN variant, called PDS-PN, which does not suffer from the drawbacks mentioned
above. We will compare its performance and memory requirements with enhanced
αβ search and state-of-the-art PN variants.

Research question 3: How can we improve forward-pruning methods
in the Principal-Variation-Search framework?

For long time brute-force αβ search was the standard procedure in games like
Chess (Marsland and Björnsson, 2001). Enhancing the search with forward pruning
has improved game-playing performance during the last ten years. In this thesis
we will look whether it is beneficial to improve forward-pruning methods in the
Principal-Variation-Search (PVS) framework. PVS is in general more efficient than
the original αβ. The forward-pruning methods under consideration are null move
and a relatively new one, called multi-cut.

Research question 4: How can we use information gained during the
search to improve move ordering?

Move ordering (directing knowledge) is one of the main techniques to decrease the
size of the αβ search tree. There exist several move-ordering techniques, which can be



6 Introduction

qualified by their dependency on the search algorithm (Kocsis, 2003). Static move
ordering is independent of the search. These techniques rely on game-dependent
knowledge. The ordering can be acquired by using expert knowledge (e.g., favour-
ing capture moves in Chess) or by learning techniques (e.g., the Neural MoveMap
Heuristic (Kocsis, Uiterwijk, and Van den Herik, 2001b)). Dynamic move ordering
is dependent on the search. These techniques rely on information gained during
the search. The transposition-table move (Breuker, Uiterwijk, and Van den Herik,
1996), the killer moves (Akl and Newborn, 1977), the history heuristic (Schaeffer,
1983), and the butterfly heuristic (Hartmann, 1988) are well-known examples. In
this thesis we present a new dynamic move-ordering variant, called the relative his-
tory heuristic, to replace the history heuristic.

1.4 Thesis Overview

The contents of the thesis is as follows. Chapter 1 contains an introduction, the
problem statement, four research questions, and an overview of the thesis.

Chapter 2 introduces the test environment. It explains the game of Lines of
Action (LOA), which will be used as test domain in this thesis. We provide some
background information, the rules of the game, a variety of game characteristics,
seven basic principles, and a review of the role of LOA in the AI domain. The
search engine of the LOA tournament program MIA, used as test vehicle for all
experiments in this thesis, is described.

Chapter 3 answers the first research question by investigating which features
are important for a LOA evaluation function. The features are based on the basic
principles described in Chapter 2. It turns out that the following nine features are
important: concentration, centralisation, centre-of-mass position, quads, mobility,
walls, connectedness, uniformity, and player to move. These features have resulted
in the evaluator MIA IV.2 The evaluator is tested in a tournament against other
LOA evaluators, which have performed well at the previous Computer Olympiads.
Experiments show that MIA IV defeats them with large margins.

In Chapter 4 we start by providing a short description of the original PN-search
method, and two main successors of the original PN search, i.e., PN2 search and
depth-first variants of PN search such as Proof-number and Disproof-number Search
(PDS). A comparison of the performance between PN, PN2, PDS, and αβ is given.
It is shown that PN-search algorithms clearly outperform αβ in solving endgame
positions in LOA. However, the memory problems make the plain PN search a
weaker solver for the harder problems. PDS and PN2 are able to solve significantly
more problems than PN and αβ. But PN2 is restricted by its working memory,
and PDS is considerably slower than PN2. A solution to this is offered in the next
chapter. Finally, we will have a brief look on real-time applications of PN search.

2The program development of our research investigations is done under the name MIA (Maas-
tricht in Action). Hence, the general name of the LOA program participating in tournaments is
MIA. To distinguish between versions with different evaluators we sometimes identify the name of
the program with the name of its specific evaluator. During the research we have developed four
evaluators, viz. MIA I, MIA II, MIA III, and MIA IV.



1.4 — Thesis Overview 7

Chapter 5 answers the second research question and presents a new proof-number
search algorithm, called PDS-PN. It is a two-level search (like PN2), which performs
at the first level a depth-first PDS, and at the second level a best-first PN search.
Hence, PDS-PN selectively exploits the power of both PN2 and PDS. Experiments
show that within an acceptable time frame PDS-PN is more effective for really hard
endgame positions than αβ and any other PN-search algorithm.

Chapter 6 answers the third research question. Forward-pruning methods, such
as multi-cut and null move, are tested at so-called ALL nodes. Principal Variation
Search (PVS) is improved by four small but essential additions. The new PVS algo-
rithm guarantees that forward pruning is safe at ALL nodes. Experiments show that
multi-cut at ALL nodes (MC-A) when combined with other forward-pruning mecha-
nisms gives a significant reduction of the number of nodes searched. In comparison,
a (more) aggressive version of the null move (variable null-move bound) gives less
reduction at expected ALL nodes than our algorithm. Finally, it is demonstrated
that the playing strength of the LOA program MIA is significantly increased by
MC-A.

Chapter 7 answers the fourth research question by describing a new method for
move ordering, called the relative history heuristic. It is a combination of the history
heuristic and the butterfly heuristic. Instead of only recording moves which are the
best move in a node, we also record the moves which are applied in the search tree.
Both scores are taken into account in the relative history heuristic. In this way
we favour moves which on average are good over moves which are sometimes best.
Experiments show that this method gives a reduction between 10 and 15 per cent of
the number of nodes searched. Preliminary experiments in Go confirm this result.
The relative history heuristic seems to be a valuable element in move ordering.

The research conclusions and recommendations for future investigations are given
in Chapter 8.

Appendix A provides information on the performance of MIA at the LOA tour-
naments of the various Computer Olympiads. In Appendix B the pseudo code for
PN, PN2, and PDS is given.



8 Introduction



Chapter 2

Test Environment

This chapter is based on the publication:

Winands, M.H.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2001a).
The Quad Heuristic in Lines of Action. ICGA Journal, Vol. 24, No. 1,
pp. 3–15.1

The chapter describes the test environment used to answer the problem statement
and the four research questions formulated in Chapter 1. A test environment consists
of a game and a game program. The game under consideration is the game of Lines
of Action. In Section 2.1 we give some background information of the game. The
rules are explained in Section 2.2. The characteristics and basic principles of LOA
are given in Sections 2.3 and 2.4. Section 2.5 gives a short review of the role of LOA
in the AI domain. The search engine of the LOA-playing program MIA (Maastricht
in Action) is briefly described in Section 2.6. Finally, in Section 2.7 we will provide
the conditions which LOA test sets have to fulfil.

2.1 Lines of Action

Lines of Action (LOA) is a two-person zero-sum game with perfect information; it is
a chess-like game with a connection-based goal, played on an 8×8 board. LOA was
invented by Claude Soucie around 1960. Sid Sackson (1969) described the game in
his first edition of A Gamut of Games. The objective of a connection game is to group
the pieces in such a way that they connect two opposite edges (a static goal) or form
a fully-connected group (a dynamic goal). The precise definition of what constitutes
a connection depends on the game in question. Whatever the case, the notion of
connection became one of the great themes in the world of abstract gaming. Many
prominent game inventors made a contribution to this theme. Other examples of
connection games are TwixT (Bush, 2000) and Hex (Anshelevich, 2002). In contrast
to the typical connection games, LOA is more chess-like because (1) pieces are moved
over the board instead of put on the board, and (2) pieces can be captured.

1The author is grateful to the Editor of the ICGA Journal for granting permission to reuse part
of the article in this thesis.



10 Test Environment

2.2 The Rules

LOA is played on an 8×8 board by two sides, Black and White. Each side has twelve
(checker) pieces at its disposal. In this thesis we are using the rules which are used
at the Computer Olympiads and at the MSO World Championships. Below they
are formulated in 9 rules. In some books, magazines or tournaments, the rules 2, 7,
8, and 9 are different from what is specified here.

1. The black pieces are placed in two rows along the top and bottom of the board,
while the white pieces are placed in two files at the left and right edge of the
board (see Figure 2.1a).

2. The players alternately move a piece, starting with Black.

3. A move takes place in a straight line, exactly as many squares as there are
pieces of either colour anywhere along the line of movement (see Figure 2.1b).

4. A player may jump over its own pieces.

5. A player may not jump over the opponent’s pieces, but can capture them by
landing on them.

6. The goal of a player is to be the first to create a configuration on the board
in which all own pieces are connected in one unit. Connected pieces are on
squares that are adjacent, either orthogonally or diagonally (e.g., see Figure
2.1c). A single piece is a connected unit.

7. In the case of simultaneous connection, the game is drawn.

8. If a player cannot move, this player has to pass.

9. If a position with the same player to move occurs for the third time, the game
is drawn.

Figure 2.1: (a) The initial position. (b) An example of possible moves. (c) A terminal
position.



2.3 — Characteristics 11

In the thesis we use the standard chess notation for LOA. The possible moves
of the black piece on d3 in Figure 2.1b are indicated by arrows. The piece cannot
move to f1 because its path is blocked by an opposing piece. The move to h7 is not
allowed because the square is occupied by a black piece.

2.3 Characteristics

Analysis of 2585 self-play matches showed an average branching factor of 29 and an
average game length of 44 ply. The game-tree complexity is estimated to be O(1064)
(Winands, Uiterwijk, and Van den Herik, 2001a) and the state-space complexity
O(1023). The game-tree complexity and state-space complexity are comparable
with those of Othello (Allis et al., 1991a). Considering the current state-of-the-art
computer techniques, it seems that LOA is not solvable by brute-force methods.

A characteristic property of LOA is that it is a converging game (Allis, 1994),
since the initial position consists of 24 pieces, and during the game the number of
pieces (usually) decreases. However, since most terminal positions have still more
than 10 pieces remaining on the board (Winands, 2000), endgame databases are
(probably) not effectively applicable in LOA. As a case in point, we remark that an
endgame database of ten pieces would require approximately 10 terabytes. There-
fore, LOA seems an appropriate test domain for endgame solvers, such as PN-search
algorithms.

2.4 Basic Principles

As stated before, LOA is a chess-like connection game based on a few general basic
principles. Unlike Chess and Checkers, where material is the dominant principle
(Shannon, 1950; Schaeffer, 1997), there is no principle which dominates the others
in LOA. Strong LOA players have identified several basic principles which they
recognise and use as fundamentals for a strategy to play LOA. Currently, there exists
a debate on whether some of the basics principles are really fundamentals for good
play (Billings and Björnsson, 2003). Disregarding this debate, below we will discuss
seven basic principles, which are mentioned frequently as important principles (see
Handscomb, 2000a, 2000b, 2000c; Chaunier and Handscomb, 2001). The seven basic
principles are: threats (2.4.1), solid formations (2.4.2), mobility (2.4.3), blocking
(2.4.4), centralisation (2.4.5), material advantage (2.4.6), and initiative (2.4.7).

2.4.1 Threats

If a player can connect in one move all its pieces in a single connected unit, the
position contains a threat. A threat is a basic principle, because it is an effective
way to devastate the opponent’s position. The opponent typically has to break up its
own formation to undermine the threat (Billings and Björnsson, 2003). For instance,
in Figure 2.2 we see that White threatens to win by the move e8-e6. Black can only
prevent this by g4xe4, weakening its own formation.



12 Test Environment

Figure 2.2: A position with a threat.

2.4.2 Solid Formations

A solid formation denotes a group of pieces that is connected in more than one
direction in such a way that the group cannot be split into separated groups in a
single capture move by the opponent. Solid formations are a basic principle because
it is hard for the opponent to disconnect the pieces (Handscomb, 2000b). In Figure
2.3 Black has created a solid formation in the centre of the board, which is hard
to destroy. However, creating such a formation usually takes many moves, during
which the opponent may create a threat. It is good practice to investigate first
whether it is possible to connect a piece to a group of connected pieces, and only
thereafter to see whether a solid formation can be made.

Figure 2.3: A solid formation.

2.4.3 Mobility

It is important to have a position with many options. Increased mobility makes it
easier to connect your own pieces or obstruct the connection of the opponent pieces
(Handscomb, 2000c). Therefore mobility is a basic principle. We remark that certain
move types are more important than others. In the implementation of mobility in
MIA we come back to this issue (see Subsection 3.1.5).



2.4 — Basic Principles 13

2.4.4 Blocking

Because a piece is not allowed to jump over the opponent’s pieces, it can happen that
the piece is blocked, i.e., cannot move. The fourth basic principle is blocking, since
blocking a piece far away from the other pieces is an effective way of preventing the
opponent to win. For instance, in Figure 2.4 White must first spend many moves to
free the blocked piece, i.e., capturing pieces around the blocked piece on a8, before
it can successfully resume the connection goal. During that time, Black may set up
a winning strategy. Even partial blocking can be quite effective, especially if it forces
a player to find a way around the opponent’s pieces. Handscomb (2000a) describes
that it is a common tactic to create a wall on the b- or g-file, or the 2nd or 7th rank
in the opening phase of the game, which partially blocks pieces of the opposing side.

Figure 2.4: Blocking a piece.

2.4.5 Centralisation

Centralisation means that pieces dominating the centre are regarded to be more
important than other pieces. Centralisation can be done in two ways: (1) putting
the pieces in the centre (actual centralisation) or (2) controlling the centre by tactical
countermeasures. Obviously centralisation is a basic principle, because pieces have to
move through the centre to connect with each other. However, Handscomb (2000b)
argues that the benefits of actual centralisation in LOA are sometimes exaggerated.
Because of the nature of the game, pieces huddled together in the middle of the
board are incapable of capturing each other. Even with only two pieces in a given
line of action, a distance of two squares is needed for a capture, and if there are three
pieces a considerable distance between the pieces is required. In Figure 2.5 the white
pieces are scattered around the edges of the board. Nevertheless, the white piece
on h4 can destroy Black’s formation in the middle by capturing the black piece on
d4. So, in this case, the white pieces on the edges of the board are acting as cruise
missiles.

Of course, this is not possible when all the pieces are in the centre. The example
shows that controlling the centre might be better than occupying it. Hence, actual
centralisation has a limited importance, but successfully controlling the centre is an
important component in the evaluation function. Through an effective control of



14 Test Environment

Figure 2.5: LOA email tournament, 1999, Roessner vs. Handscomb, after 10. e1-c3.

the centre, the two starting groups of the opponent remain separated, whereas the
own groups can be brought together.

2.4.6 Material Advantage

Contrary to Chess and Checkers it is not clear whether the principle of having extra
material is an advantage, a disadvantage, or neutral. At first sight capturing the
opponent’s pieces is not a good idea, because the opponent then needs to connect
fewer pieces. However, it is not hard to see that capture moves are beneficial in some
positions. First, capturing a piece such that the opponent’s formation is destroyed
is mostly a good move. Second, it also happens that a player is able to connect
its own formation only by a capture move. Third, a capture move may be the
only way to free a blocked piece. Fourth, some authors argue that capturing pieces
for the sake of a material advantage is sometimes appropriate (Handscomb, 2000c),
because it contributes to a higher mobility. A player with a material advantage has
more opportunities to prevent the opponent’s threats and create its own threats.
Whether material really is an advantage depends on the position. Whatever the
case, for LOA it is a basic principle. Finally, we remark that material is probably
strongly interrelated to other principles.

2.4.7 Initiative

In their article The Advantage of the Initiative Uiterwijk and van den Herik (2000)
define the initiative as having the right to move first. They show that the initiative
plays an important part when focussing on the solving of small games, such as
Domineering and k -in-a-row games. In the large games Chess and Go the initiative
is an important factor too (Uiterwijk and Van den Herik, 2000). Since in LOA
with its state-space complexity of O(1023) having the initiative constitutes also an
advantage, we consider it as one of the basic principles. Following Uiterwijk and van
den Herik’s idea, we remark that LOA 3×3 is win for the second player, but that
4×4 and 5×5 are wins for the first player. A close analysis of these three sizes reveals
that the 3×3 board is an exception due to its size. For the 4×4 and 5×5 boards the



2.5 — The Role of LOA in the AI Domain 15

initiative is a decisive factor. No conclusion can be made for the n×n boards, but we
conjecture that having the initiative is sufficient to be a basic principle. Moreover,
the endgame in LOA often results in a race to full connection. So having the first
move seems to be an advantage in LOA. It is quite rare in LOA that the obligation
to move leads to a decisive deterioration of the position (i.e., zugzwang).

2.5 The Role of LOA in the AI Domain

Around 1975 LOA received its first credits as an AI research topic. For instance, then
the first LOA program was written at the Stanford AI laboratory by an unknown
author. In the 1980s and 1990s “hobby” programmers wrote several LOA programs.
However, all were easily beaten by humans (Dyer, 2000). At the end of the nineties
LOA became a clear objective or even target of AI researchers. Considering the role
of LOA in the AI domain we can distinguish two different categories.

The first category consists of researchers using LOA as a test domain for their
algorithms. Eppstein (1997) mentioned his dynamic planar-graph techniques to
evaluate the connectivity of LOA positions. Kocsis (2001a; 2001b) applied success-
fully his learning time-allocation algorithms and his new move-ordering method in
LOA, called the Neural MoveMap heuristic. Moreover, Björnsson (2002) confirmed
the good results of his multi-cut method for LOA. Up to then it was only tested
for Chess. Donkers (2003) used LOA to test the admissibility in opponent-model
search. Sakuta et al. (2003) investigated the application of the killer-tree heuristic
and the λ-search method to the endgame of LOA. These techniques were initially
developed for Shogi. Hashimoto et al. (2003) chose LOA as a test domain for his
automatic realisation-probability search method.

The second category consists of researchers trying to build strong LOA programs
by using new ideas. For instance, the programs MIA (Maastricht In Action), Bing,
YL, and Mona belong to this category. Mona was the first program to win the
Annual E-mail Tournament (the unofficial world championship for LOA) in 2001,
with a perfect 14-0 record, including wins over most of the best LOA players in
the world (see Billings and Björnsson, 2003 for more details). Since 2000 LOA is
played at the Computer Olympiad. This is a multi-games event in which all of
the participants are computer programs. For details on the LOA tournaments we
refer to Appendix A. A demo version of MIA can be played online at the website:
http://www.cs.unimaas.nl/m.winands/loa/. The program has been written in Java
and can easily be ported to all platforms supporting Java.

2.6 MIA’s Search Engine

In this thesis MIA’s search engine is used as test vehicle for the experiments. The
standard framework of αβ search (Knuth and Moore, 1975) with all kinds of en-
hancements (Marsland, 1986) offers a good start for building a strong LOA-playing
program. Thus, MIA started its career with an αβ depth-first iterative-deepening
search. Below we briefly describe MIA’s original basic design, which serves as a
starting point for our research. Several techniques were implemented to enhance the



16 Test Environment

search. We mention (1) Principal Variation Search (PVS), (2) transposition tables,
(3) forward pruning, (4) move ordering, and (5) quiescence search.

First, the program uses PVS to narrow the αβ window as much as possible
(Marsland and Campbell, 1982). This means that the β value equals α+1. Such an
algorithm is in general more efficient than the original αβ. The basic idea behind the
method is that it is cheaper to prove a subtree inferior, than to determine its exact
value. It has been shown that this method does well for bushy trees such as occur
in Chess. Because the branching factor of LOA (29) is in the same range as that of
Chess (38), it works fine in LOA too. Another popular algorithm for searching game
trees is NegaScout (Reinefeld, 1983). The two algorithms (PVS and NegaScout) are
essentially equivalent to each other; they expand the same search tree (Björnsson,
2002).

Second, a two-deep transposition table (Breuker et al., 1996) is applied to prune
a subtree or to narrow the αβ window. The well-known Zobrist-hashing method
(Zobrist, 1970) is used for storing the entries in the table. At all interior nodes which
are more than 2 ply away from the leaves, the program generates all the moves to
perform the Enhanced Transposition Cutoffs (ETC) scheme (Schaeffer and Plaat,
1996).

Third, two forward-pruning techniques are applied. A null move (Donninger,
1993) is performed before any other move and it is searched to a lower depth (reduced
by R) than other moves. A variable scheme, called adaptive null move (Heinz, 1999),
is used to set R. If the remaining depth is more than 6, R is set to 3. When the
number of pieces of the side to move is lower than 5 the remaining depth has to be
more than 8 to set R to 3. In all other cases R is set to 2. If the null move does not
cause a β cut-off, multi-cut (Björnsson and Marsland, 1999) is performed.

Fourth, for move ordering, (1) the move stored in the transposition table, if
applicable, is always tried first. Then (2) two killer moves (Akl and Newborn, 1977)
are tried. These are the last two moves, which were best or at least caused a cut-off
at the given depth. Thereafter follow: (3) capture moves going to the inner area
(the central 4×4 board) and (4) capture moves going to the middle area (the 6×6
rim); finally, (5) all the other moves are ordered decreasingly according to the history
heuristic (Schaeffer, 1983).

Fifth, in the leaf nodes of the tree a quiescence search is performed, since
the evaluation function should only be applied to positions that are quiescent.
This quiescence search looks at capture moves that form or destroy connections
(Winands et al., 2001a) and at capture moves going to the central 4×4 board.

We remark that the various proof-number search algorithms to be discussed in
Chapters 4 and 5 are not part of the original search engine. Moreover, in Chapter
6 the original search engine will be enhanced with multi-cut at ALL nodes and in
Chapter 7 with the relative history heuristic.

2.7 LOA Test Sets

In contrast to Chess there are no widely accepted test sets in LOA. This fact has
given us the additional challenge to construct our own test sets. The sets should at



2.7 — LOA Test Sets 17

least fulfil three conditions (see below). All test sets have the following two conditions
in common: (1) the positions should have occurred in real games, and (2) the players
who created the positions should be strong. Therefore, we selected the positions from
games played between strong human players, man-machine games, games played at
the Computer Olympiads, and other computer-computer contests. Moreover, we
constructed two types of sets: (a) sets of positions to test our proof-number search
algorithms, and (b) sets of positions to test the αβ-search enhancements.

The first type consists of endgame positions. They have to fulfil the additional
condition that (3a) the positions should not be too trivial to solve. Therefore,
positions are selected which are 10 plies or more before the end of the game. These
sets are used in Chapters 4 and 5. Sakuta et al. (2003) used successfully one of our
sets of endgame positions to test the killer-tree heuristic and the λ-search method.

The second type consists of positions which are (3b) uniformly selected from
real games. Because the αβ-search enhancements are applied during the game, test
positions from the opening and middle game have to be included. These sets are
used in Chapters 6 and 7.

All test sets can be found at http://www.cs.unimaas.nl/m.winands/loa.



18 Test Environment



Chapter 3

An Evaluation Function for
Lines of Action

This chapter is an updated and abridged version of the following two publica-
tions:

1. Winands, M.H.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2001a).
The Quad Heuristic in Lines of Action. ICGA Journal, Vol. 24, No. 1,
pp. 3–15.

2. Winands, M.H.M., Herik, H.J. van den, and Uiterwijk, J.W.H.M. (2003a).
An Evaluation Function for Lines of Action. Advances in Computer
Games 10: Many Games, Many Challenges (eds. H.J. van den Herik,
H. Iida, and E.A. Heinz), pp. 249–260. Kluwer Academic Publishers,
Boston, MA, USA.1

The chapter answers the first research question by investigating which features
are important for a LOA evaluation function. These features are partially based on
the basic principles described in Chapter 2. The standard framework of the αβ search
with its enhancements offers a good start for building a strong LOA program (see
Section 2.6). But, the real challenge in LOA is building a decent evaluation function,
which incorporates the strategic intricacies of the game. The difficulty lies in the
fact that knowledge about LOA evaluation functions is not well developed, although
some material on this topic has been published recently (Billings and Björnsson,
2003). In this chapter we discuss the latest evaluation function used in the program
MIA.

The chapter is organised as follows. In Section 3.1 the relevant features of the
evaluation function are enumerated and explained. The profitability of the evalua-
tion function is tested against other evaluators in Section 3.2. An evaluation of the
features and a review of their interdependencies are given in Section 3.3. Finally, in
Section 3.4 we present our chapter conclusion and topics for future research.

1Thanks are due to the Editor of the ICGA Journal and the Editors of Advances in Computer

Games 10 for giving permission of reusing relevant parts of the articles in this thesis.



20 An Evaluation Function for Lines of Action

3.1 Features of an Evaluation Function

Below MIA’s evaluation function is explained in detail. The evaluator consists of
the following nine features: concentration, centralisation, centre-of-mass position,
quads, mobility, walls, connectedness, uniformity, and player to move. The nine
features follow directly from the seven basic principles given in Chapter 2. The
choice of features that fully cover the description of a position is most relevant. It is
better to have all features correct and all the initial weights wrong than to have the
initial weights correct and miss one of the (important) features (Bushinsky, 2004).
The description of the features follows below; relevant examples and clarifications
are given, adequate references to further details are supplied (Subsections 3.1.1 to
3.1.9). It is followed by some information about the use of caching (Subsection
3.1.10).

3.1.1 Concentration

The concentration feature is based on the basic principles of threats and solid for-
mations. It measures how close pieces are to each other. By doing so, we reward
positions with pieces in each other’s neighbourhood. It is hoped that the pieces
eventually will be connected in a solid formation or will create threats to win.

The concentration of the pieces is calculated by a centre-of-mass approach (see
also the third feature). In MIA it is done in four steps. First, the centre-of-mass of
the pieces on the board is computed for each side (in MIA this is done incrementally
to save time). Second, we compute for each piece its distance to the centre-of-mass.
The distance is measured as the minimal number of squares from the piece to the
centre-of-mass. These distances are summed together, called the sum-of-distances.
Third, the sum-of-minimal-distances is looked up in a table. The sum-of-minimal-
distances is dependent on the number of pieces on the board (see the example below)
and it is defined as the sum of the minimal distances of the pieces from the centre-
of-mass. This number is necessary since otherwise boards with a few pieces would
be preferred. For instance, if we have ten pieces, there will be always eight pieces
at a distance of at least 1 from the centre-of-mass, and one piece at a distance of at
least 2. In this case the sum-of-minimal-distances is 10. Thus, the sum-of-minimal-
distances is subtracted from the sum-of-distances, the result being called the surplus-
of-distances. Fourth, we calculate the concentration, defined as the inverse of the
average surplus-of-distances. The pseudo code of the concentration feature is given
in Figure 3.1.

The disadvantage of this feature is that it aims to connect as many pieces as
possible in a local group, hardly worrying about some remote pieces (orphans). It
is sometimes hard to connect these orphans. For instance, in Figure 3.2 the black
pieces are grouped around their centre-of-mass at e2, but the black piece on b8 is
rather far away from this group.



3.1 — Features of an Evaluation Function 21

...........................................................

//com = centre-of-mass

//Compute total distance of all the pieces towards c.o.m.

for(each p Pieces){

//Compute distance

difrow = abs(com.row - p.row);

difcol = abs(com.col - p.col);

sum_of_distances += (difrow > difcol) ? difrow : difcol;

}

sum_of_min_distances = lookupTable(Pieces);

surplus_of_distances = sum_of_distances - sum_of_min_distances;

concentration = 1 / surplus_of_distances;

...........................................................

Figure 3.1: Pseudo code for the concentration feature.

Figure 3.2: Position with an outlier on b8.

3.1.2 Centralisation

The centralisation feature is based on the basic principle of the same name. Accord-
ing to the centralisation feature pieces controlling the centre are more important
than others. Centralisation is important because pieces have to move through the
centre to connect with each other.

Analogous to piece-square tables in Chess, each piece obtains a value dependent
on its board square in MIA. Pieces at squares closer to the centre are given higher
values than the ones farther away. Pieces at the edge are given a negative value. This
is done because such pieces are easy to block by a wall (but see Subsection 3.1.6).
Pieces at the corner are punished even more severely. To prevent the program from
over-aggressively capturing pieces, the average is computed instead of the sum of
piece values. The piece-square table for the black pieces as used in MIA IV is
given in Figure 3.3. The numbers are based on strategic principles and tuned by
experiments.

We remark that centralisation can also be obtained indirectly by punishing moves
not going to the centre. This is done in the mobility feature (see Subsection 3.1.5).



22 An Evaluation Function for Lines of Action

...........................................................

pieceSquareTable[] = {-80, -25, -20, -20, -20, -20, -25, -80,

-25, 10, 10, 10, 10, 10, 10, -25,

-20, 10, 25, 25, 25, 25, 10, -20,

-20, 10, 25, 50, 50, 25, 10, -20,

-20, 10, 25, 50, 50, 25, 10, -20,

-20, 10, 25, 25, 25, 25, 10, -20,

-25, 10, 10, 10, 10, 10, 10, -25,

-80, -25, -20, -20, -20, -20, -25, -80};

...........................................................

Figure 3.3: Piece-square table.

3.1.3 Centre-of-Mass Position

The centre-of-mass position feature is indirectly based on the basic principle of solid
formations. It evualates the global position of all the pieces. This means that it looks
at the position of the centre-of-mass on the board. The initial idea was to prevent
formations from being built on the edges, where they are rather easily destroyed or
blocked.

The value of this feature is dependent on the board square of the centre-of-
mass. We use a simple table lookup for computation in MIA. Interestingly, after
applying Temporal-Difference (TD) learning to enhance the weights, the weight for
the centralised centre-of-mass feature changed its sign (Winands et al., 2002), which
means that opposite to expectations it is good to have the centre-of-mass closer to
the edge instead of in the centre.

If the centre-of-mass is in the centre, it is possible that pieces are scattered over
the board (e.g., the white pieces in Figure 3.4). If the centre-of-mass is at the edge,
pieces have to be in the neighbourhood of each other, otherwise they would lie outside
the board. Therefore, this feature contributes to the concentration and indirectly
to the connectedness (see Subsection 3.1.7). Another plausible explanation of why
it is worse to have the main piece formation in the centre is that it can be more

Figure 3.4: Scattered pieces.



3.1 — Features of an Evaluation Function 23

easily attacked at that place, whereas groups residing closer to the edge can only be
attacked from one side.

3.1.4 Quads

The quads feature is based on the basic principles of solid formations and material
advantage. It looks at the solidness of the formation in particular. The feature
favours pieces, which are connected in more than one direction, because it is harder
for the opponent to disconnect them. The use of quads for a LOA evaluation function
was first proposed and implemented by Dave Dyer in 1996 in his program LoaJava
and empirically evaluated by Winands et al. (2001a). The heuristic is based on the
use of quads, an Optical Character Recognition method. A quad is defined as a 2×2
array of squares (Gray, 1971). In LOA there are 81 quads for each side, including
also quads covering only a part of the board along the edges. Taking into account
rotational equivalence, there are six different quad types, depicted in Figure 3.5.

Qd

A quad with two 

diagonally-adjacent

pieces

Q0

A quad with no 

pieces

Q1

A quad with one 

piece

Q2

A quad with two 

pieces

Q3

A quad with three 

pieces

Q4

A quad with four 

pieces

Figure 3.5: Six different quad types.

In this feature we only consider quads of three (Q3) or four pieces (Q4) of the
same colour, since it is impossible to destroy these formations by a single capture.
However, the danger exists that many of those quads are created outside the neigh-
bourhood of the centre-of-mass. So, in MIA we reward only Q3’s and Q4’s, which
are at a distance of at most two squares of the centre-of-mass. For instance, Black
has two Q4’s in Figure 3.6. In passing we note that this feature implicitly favours a
material advantage.

The effect of implicitly favouring a component due to the introduction of another
feature is first described by Schaeffer (1984) for chess. Obviously, it is a challenge
to analyse the interrelationship in LOA too, since it turns out to be an issue for



24 An Evaluation Function for Lines of Action

almost all components. A possible disadvantage of this feature is that if the position
becomes too solid, its flexibility may decrease drastically. The mobility feature (see
Subsection 3.1.5) may adjust this disadvantage.

Figure 3.6: Position with two black Q4’s.

3.1.5 Mobility

The mobility feature is based on the basic principle of the same name. It looks at
the potential of the moves in a position. The idea is that it is easier to connect
your own pieces or obstruct the connection of opponent pieces if you have more and
better moves. The feature was first implemented in Mona and YL.

When evaluating a position in MIA, the possible moves of both sides are gen-
erated (irrespective of who is to move). The moves are not rewarded equally. Ex-
periments have shown that certain move types are to be preferred above others (see
also Hashimoto et al., 2003). Therefore, in MIA the following bonus/malus system
is applied: the value of a capture move is doubled, the value of a move going to an
edge or a move along an edge is halved. If a move belongs to multiple categories,
the bonus/malus system is used multiple times. For example, let us assume that a
regular move gets value 1, then a capture move gets value 2, a capture move going
to an edge gets value 1, a capture move in an edge line going to a corner gets value
0.5. The computational requirements of this feature are not high. For each line con-
figuration (represented as a bit vector) the mobility can be precomputed and stored
in a table. During the search, the index scheme can be updated incrementally and
in the evaluation function only a few table lookups have to be done.

An advantage of this feature that it is fast to evaluate. A disadvantage of this
implementation is that it is too static. For example, all capture moves are given a
bonus, even the ones which capture the last unconnected opponent’s piece. More-
over, all edge moves are given a penalty, even if they connect to the main group.
A more global look of the position would be needed to distinguish these kind of
exceptions.



3.1 — Features of an Evaluation Function 25

Figure 3.7: Position with walls.

3.1.6 Walls

The wall feature is based on the basic principle of blocking. Because a piece is not
allowed to jump over the opponent’s pieces, it can happen that the piece is blocked,
i.e., cannot move. Blocking a piece far away from the other pieces is an effective way
of preventing the opponent to win. Even partial blocking, called a wall (Handscomb,
2000a), can be quite effective, since it forces a player to find a way around the wall.
Detecting whether a piece is (partially) blocked can be expensive as we have to know
what the moves of the piece are and what its goal is.

In MIA we look only at walls that prevent the opponent’s edge pieces from moving
toward the centre. These walls are quite common and effective. The patterns can
be precomputed and stored in a table. Using a bit-board representation they can be
easily looked-up. We remark that we take special care of walls which block corner
pieces.

For example, in Figure 3.7 the piece on a4 is blocked in three ways going to
the centre, whereas the piece on h4 is only blocked in two centre directions. In the
evaluator, we distinguish between walls which block two or three centre directions.
The piece on h8 is blocked only in two directions, but we evaluate this position as
if it was blocked in 3 centre directions. The totally isolated piece on a8 is evaluated
as if there were two walls which both block the piece in three directions. The pieces
on b1 and c1 are completely blocked, but we take only the two 3-centre-directions
blocks into account. Thus, we only look at certain blocking patterns for edge pieces.
It is a subject of future research to incorporate more of these patterns.

3.1.7 Connectedness

The connectedness feature is based on the basic principles of threats and solid forma-
tions. It measures the pairwise connections between the pieces. We reward positions
with high connectedness; it is hoped that they eventually will be connected in one
unit or will create threats to win.

In MIA we compute the average number of connections of a piece. In some
evaluation functions the total number of connections is taken into account (e.g.,
YL), but this could implicitly be a material advantage. Any kind of material feature



26 An Evaluation Function for Lines of Action

in LOA evaluation functions can be dangerous because the program might wildly
capture pieces. This feature does not take into account whether a connection is
important. To distinguish among connections, a global look at the board would be
needed, which is time consuming. The number of connections for each side in each
line configuration can be precomputed as is done with the mobility feature.

Of course the connectedness feature is highly correlated with the concentration
feature and the quads feature. Though each has its own merits, these three features
should be carefully tuned consequently.

3.1.8 Uniformity

The uniformity feature is based on the basic principle of solid formations. It is used
to achieve a uniform distribution of the pieces (Chaunier and Handscomb, 2001) to
counterbalance the negative effects of the centre-of-mass approach. It prevents that
one or more pieces become too remote from the main group.

In MIA this is done in a way which is primitive but effective. The smallest
rectangular area covering the distributed pieces is computed. The smaller the area
is, the higher the reward is. An analogous implementation was first realised in the
program YL (Billings and Björnsson, 2003).

3.1.9 Player to Move

The player-to-move feature is based on the basic principle of the initiative. It rewards
the moving side. Having the initiative is mostly an advantage in LOA (Winands,
2000) like in many other games (Uiterwijk and Van den Herik, 2000).

Since MIA is using variable-depth search (because of the adaptive null move, the
multi-cut, and quiescence search) not all leaf nodes are evaluated at the same depth.
Therefore, leaf nodes in the search tree may have a different player to move, which
is compensated in the evaluation function. This is done by giving a small bonus to
the side to move.

3.1.10 Caching certain Features

It is possible in our evaluation function to cache computations of certain features,
which can be used in other positions. For example, let us assume that we investigate
the move b8-c8 in Figure 3.2 and evaluate the resulting position. If we next inves-
tigate b8-b7 we notice that certain properties of White’s position remain the same
(e.g., the number of pieces, centre-of-mass, the number of connections), whereas
others can change (e.g., moves, blockades). It is easy to see that we do not have to
compute the concentration, centralisation, centre-of-mass position, quads, connect-
edness, and uniformity for White again. Evaluation of these six features, which are
independent of the position of the other side, are stored in an evaluation cache table.
In the current evaluation function this gives a speed-up of at least 60 percent in the
number of nodes investigated per second.

The pseudo code of the evaluation function using caching is given in Figure 3.8.



3.2 — Experiments 27

...........................................................

//Compute evaluation score

//Are the independent features cached for Black?

independent_features_Black = lookUpCacheTable(Hash_Black);

if(independent_features_Black == NO_VALUE){

//Compute Black’s independent features

independent_features_Black = compConcentration(comBlack) +

compCentralisation() +

lookUpCOMPosition(comBlack) +

compQuads() +

compUniformity() +

lookUpConnection(index_Black);

//Store Black’s independent features value in the cache table

storeCacheTable(Hash_Black, independent_features_Black);

}

//Are the independent features cached for White?

independent_features_White = lookUpCacheTable(Hash_White);

if(independent_features_White == NO_VALUE){

//Compute White’s independent features

independent_features_White = compConcentration(comWhite)+

compCentralisation()+

lookUpCOMPosition(comWhite) +

compQuads() +

compUniformity() +

lookUpConnection(index_White);

//Store White’s independent features value in the cache table

storeCacheTable(Hash_White, independent_features_White);

}

//Compute evaluation score

eval = independent_features_Black - independent_features_White +

lookupMobility(index) +

lookupWalls(index) +

player_to_move +

randomValue(); //Random factor

...........................................................

Figure 3.8: Pseudo code for evaluation function.

3.2 Experiments

In order to quantify the improvements of the evaluation function, we played a round-
robin tournament in which evaluators from earlier tournament versions of the pro-
gram participated. All evaluators used the original search engine, described in Sec-
tion 2.6. The evaluators are explained in Subsection 3.2.1. The results are described
in Subsection 3.2.2.



28 An Evaluation Function for Lines of Action

3.2.1 Benchmark Evaluators

The benchmark evaluation functions2 are described below.

Evaluator: MIA I The core of this evaluation function is the centre-of-mass
approach. The quads feature is also implemented. Pieces at the edge are given a
negative bonus (edge-penalty feature). In this version, a centralised centre-of-mass
position was slightly more preferred (Winands et al., 2001a). The idea was to prevent
formations from being built on the edges, where they are more easily destroyed or
blocked. The weights of the features were carefully hand-tuned. In retrospect this
evaluator was primitive, although it won a game against both Mona and YL at the
Fifth Computer Olympiad (Björnsson, 2000).

Evaluator: MIA II The major change of this evaluation function compared
to the previous one is the introduction of a primitive mobility feature. There is
no discrimination in rewarding different move types. In this evaluator, pieces at
a corner edge are punished more severely. Using this evaluator, the tournament
program shared the first place with YL in the regular tournament at the CMG
Sixth Computer Olympiad. The play-off match was won by YL (Björnsson and
Winands, 2001).

Evaluator: MIA III This evaluation function is enhanced with the wall feature.
An absolute centralisation feature replaced the edge-penalty feature. The difference
with the centralisation feature, described in Subsection 3.1.2, is that it computes
the sum of piece values. A bonus is given for the player to move. The major
improvement was retuning all the weights by using TD-learning (Winands et al.,
2002). There were three major changes in the weights. First, the initial weight
of the dominating centre-of-mass was decreased to one tenth of its original value,
indicating that we had wrongly interpreted the precise value of this feature. Second,
the weight for the centralised centre-of-mass feature changed its sign, which means
that opposite to expectations it is good to have the centre-of-mass closer to the edge
instead of in the centre. Third, the weight of the absolute centralisation feature
increased the most, indicating that we had underestimated the importance of this
feature. Using this evaluator the tournament program finished second at the Seventh
Computer Olympiad (scoring 1.5 points out of 4 against the much improved winner
YL) (Björnsson and Winands, 2002). An exhibition match was played against Mona
during the Third International Conference on Computers and Games 2002 (CG’02),
which ended in a 2-2 tie (Billings and Björnsson, 2002).

Evaluator: MIA IV This evaluation function incorporates all features as de-
scribed in Section 3.1. The centre-of-mass position, wall, and player-to-move features
used the same weights as the ones in MIA III. All the weights of the other features
were basically found by using TD-learning. Some of them were adjusted by hand
afterwards. Using this evaluator the tournament program won the Eighth Computer
Olympiad (Winands, 2003) and the Ninth Computer Olympiad (see Appendix A).

An overview of the separate features as used in the four evaluators is given in Ta-
ble 3.1. Four of them are not used anymore in the latest evaluator MIA IV. The edge
penalty and absolute centralisation are integrated in the centralisation feature. Cen-

2Here, we would like to recall the footnote of Section 1.4 on the program MIA and the evaluators
MIA I, MIA II, MIA III, and MIA IV.



3.2 — Experiments 29

tralised centre-of-mass was replaced after applying TD-learning. Primitive mobility
was replaced after experiments had revealed that a mobility feature distinguishing
move types was significantly better. Here, we note that the weights and details of
the features may differ between different evaluators. We will not elaborate on the
specific configuration of the weights. Using TD-learning we found several weight
configurations, which performed more or less equally well. Finally, we reiterate that
it is easier to correct a weight than to discover a missing feature when improving an
evaluation function. Therefore, we keep our focus on the nine features discussed in
Section 3.1 in the remainder of the chapter.

Table 3.1: Overview of the features.

MIA I MIA II MIA III MIA IV
Concentration X X X X
Edge Penalty X X
Absolute Centralisation X
Centralisation X
Centralised Centre-of-mass Position X X
Centre-of-mass Position X X
Quads X X X X
Primitive Mobility X X
Mobility X
Walls X X
Connectedness X
Uniformity X
Player to Move X X

3.2.2 Results

The evaluators, previously described, competed with each other in a round-robin
tournament. Ten different start positions, given in Figure 3.9, were used to increase
the variety of play. The positions appear often after two ply in games at a strong
level. For each start position, 100 games (50 with Black and 50 with White) were
played. Thus, in total 1000 games were performed for each pair of evaluators.

To prevent that programs played the same games over and over again, a suffi-
ciently large random factor (i.e., [−100,+100] points3) was included in each evalu-
ation function.

Fixed-depth searches were used as time control instead of time. At first sight
it may look as if we are favouring the more advanced evaluators (i.e., they are
time intensive because of the extra knowledge). However, there are two factors
that counterbalance this potential favouring. First, the difference in speed is quite
moderate. The program runs only 15 per cent slower with the MIA IV evaluator

3100 points equals more or less the heuristic advantage of the first player in the initial position.



30 An Evaluation Function for Lines of Action

1: BTM 2: BTM 3: BTM 4: BTM 5: BTM

6: BTM 7: BTM 8: BTM 9: BTM 10: BTM

Figure 3.9: Start positions for the benchmark-evaluator experiments.

than with the MIA I evaluator. All the evaluators have to compute the average
distance to the centre-of-mass and the quads, these are time-consuming elements.
Most other additions are relatively cheap. Second, when an evaluator is a good
predictor of the position, a best move found at a shallow search is more likely to
remain good and it may therefore cause cut-offs at deeper searches. For example,
when the MIA I evaluator is used in the original search engine it searches 75 per
cent more nodes compared to the MIA IV evaluator. The advantage of fixing the
depth is that we can measure the influence of increasing the depth.

In Table 3.2 the results of the tournaments are given for searches to depth 4,
6, 8, and 10, respectively. In each tournament a total of 6000 games is played. It
is easy to see that an increase of version number is accompanied by an increase in
playing strength. On the one hand, we see that search depth has an influence on the
play of the weak MIA I. It performs worse against the other evaluators when both
programs are searching more deeply. A reason might be that a deep search is not
able to compensate the lack of knowledge of MIA I, while the search depth exploits
more of the potential of MIA II, III and IV. On the other hand, MIA II, III and IV
perform approximately the same against each other at each depth. Although MIA
II’s only major improvement is a primitive mobility feature, it outperforms MIA I,
but it even plays much better against MIA III and IV than MIA I does. The increase
of strength from MIA II to MIA III is not that large compared to the increase from
MIA I to MIA II. MIA II has a winning percentage of 90 per cent against MIA I at
depth 10, whereas MIA III has only a winning percentage of 65 per cent against MIA
II. Even worse, at deep searches MIA II performs better against MIA I than MIA
III does. But, MIA III performs much better against the sophisticated MIA IV than
MIA II does. A possible explanation is that the addition of the wall feature has a
negative effect against primitive evaluators and does only work against sophisticated
evaluators. MIA IV defeats the previous evaluators of MIA by a fair distance. Even
the strong MIA III is not able to score more than 20 to 25 per cent of the points
against MIA IV.



3.3 — Evaluation of Results 31

Table 3.2: Tournament results at various depths.

Tournament results at depth 4.

Evaluator MIA I MIA II MIA III MIA IV
MIA I - 259 199 71.5
MIA II 741 - 373 163.5
MIA III 801 627 - 248.5
MIA IV 928.5 836.5 751.5 -

Tournament results at depth 6.

Evaluator MIA I MIA II MIA III MIA IV
MIA I - 188 168.5 51
MIA II 812 - 356 174
MIA III 831.5 644 - 223.5
MIA IV 949 826 776.5 -

Tournament results at depth 8.

Evaluator MIA I MIA II MIA III MIA IV
MIA I - 137 159.5 41.5
MIA II 863 - 360 129
MIA III 840.5 640 - 205
MIA IV 958.5 871 795 -

Tournament results at depth 10.

Evaluator MIA I MIA II MIA III MIA IV
MIA I - 97.5 137.5 44.5
MIA II 902.5 - 359.5 121.5
MIA III 862.5 640.5 - 234.5
MIA IV 955.5 878.5 765.5 -

3.3 Evaluation of Results

In this section we give an evaluation of the importance of the features used in the
evaluation function of MIA IV. Thereafter we will provide a schematic overview
of the feature space for the nine features and review the interdependencies of the
features. Our findings are based on experiments performed in the phase of fine-
tuning the evaluation-function features for the Computer Olympiads, and on our
experience with several versions of MIA when playing games. We deal with them
in the order we perceive now as the best order, i.e., enumerated from the most



32 An Evaluation Function for Lines of Action

important feature down to the feature with the weakest impact.
Obviously, the concentration feature is the dominant feature. It contributes to

the essence of the goal: connect all pieces. It was present in all evaluation functions
of MIA, right from the beginning, and as evidenced by our experiments gave by far
the largest improvement in playing strength.

The importance of the mobility of the pieces was not taken into account in MIA
I. However, it appeared to be crucial to be included. In first instance we did so
as a primitive component (disregarding move types), but in the later evaluation
functions its effect appeared to be even more important when the bonuses for the
moves were distinguished according to their type. Apart from the concentration
feature, mobility dominates all other features.

After mobility, the quads feature is the most important one. The quads feature
has proved to be a very effective way to stimulate reaching solid positions, from which
the connection goal can be reached. We claim to have been the first to discover the
importance of the feature for LOA (Winands, 2000).

Thereafter follows on the fourth place, centralisation. It is a simple but important
addition to the concentration feature, encouraging the control of the centre of the
board.

The next three most important features are difficult to arrange in the right order.
They are uniformity, connectedness, and walls. According to our experience they
are more or less equally important, but clearly dominate the remaining two features.
All three can be seen as corrections or additions to the two dominating features, i.e.,
concentration and mobility.

The centre-of-mass position feature comes at the eight position. It stimulates that
building of the main block happens closer to the edge, where it is less vulnerable to
opponent attacks. The effects are small, but sometimes significant.

The least important feature is the bonus for the player to move. Its effect is
small, but non-negligible.

To summarise the importance of the features by the effects on the playing
strength of each feature, the decreasing order is as follows:

concentration > mobility > quads > centralisation > {uniformity, con-
nectedness, walls} > centre-of-mass position > player to move

In Figure 3.10 we sketch the feature space in the form of a qualitative probabilistic
network (Wellman, 1990) for the nine features of MIA IV. By arrows we denote the
interdependencies. A ‘+’ label means that a higher value for the source feature will
correspond with large probability to a higher value of the destination feature, i.e., a
positive dependency relation. Likewise a ‘–’ denotes a negative dependency relation.
We will briefly elucidate Figure 3.10 by describing the twelve interdependencies from
left to right.

It is easy to see that the centralisation feature and centre-of-mass position feature
have a negative dependency. The centralisation aims to put the pieces in the centre of
the board, whereas the centre-of-mass position feature aims to build a main group
outside the centre. However, both the centralisation feature and centre-of-mass
position contribute to the concentration. If the pieces are in the centre, they will



3.3 — Evaluation of Results 33

C.o.m. 

Position

Concentration

Quads

Mobility 

Connectedness

Walls

Centralisation 

Uniformity 

+

+

+

-

-

+

+

+
+

+

-

+

Player to 

move 

Figure 3.10: The feature space.

be concentrated. Moreover, if the centre-of-mass is at the edge, the pieces will be
concentrated too.

The uniformity feature contributes to the concentration feature. For instance,
moving an outlier one square closer to the centre-of-mass increases not only the
uniformity value but also the concentration value. Concentration does not neces-
sarily contribute to uniformity. There can still be outliers in a position with high
concentration.

The concentration and quads feature have a positive dependency on each other.
Both the concentration and quads feature aim at grouping pieces together, where
concentration has the largest impact.

If the concentration is high, the pieces will be grouped in one main group, and
more pieces will be connected with each other. However, if the number of connections
is high, it does not mean they are concentrated into one main group.

Quads and walls contribute to the connectedness feature. They are both im-
plicitly favouring connections. But the connectedness feature does not necessarily
contribute to them. It is possible to build a position with high connectedness but
with a low quads-value and a low walls-feature value. If quads are built far away
from the centre-of-mass, they will not be rewarded by the quads feature. If a wall
does not block a piece, it will not receive a reward too.

Mobility and quads have a negative dependency. If the position becomes too
solid, its flexibility and therefore mobility may decrease drastically. Mobility can
prevent building strong unbreakable positions. In the same way mobility and con-
centration have a negative dependency.



34 An Evaluation Function for Lines of Action

Walls are a way to decrease the opponent’s mobility and therefore relatively
increase the player’s own mobility. But, a high mobility does not mean that the
opponent’s pieces are blocked by walls.

The player-to-move is a correcting factor which does neither influence nor is
influenced by other features.

There exist much interconnectedness and overlap between the features, which
influence their performance. Therefore, all the features have to be simultaneously
fine-tuned (or heuristically optimised) in a careful way.

3.4 Chapter Conclusion and Future Research

In this chapter we tested the strength of the various evaluators of MIA which all
performed respectably at the Computer Olympiads. Many features in the evaluation
function do not consume much time. By using precomputed tables and caching, most
of them are quite straightforward to evaluate.

The most important feature is concentration, followed by the mobility feature.
All features are essential and contribute to the playing strength. As evidenced by
observation we mention that MIA IV defeated all older evaluators by large mar-
gins. There exist much interconnectedness and overlap between the features, which
influence their performance. Therefore, all the features have to be simultaneously
fine-tuned (or heuristically optimised) in a careful way. We conclude that the com-
bination of the nine features mentioned in Section 3.1 has resulted in an evaluation
function that significantly increased the playing strength of our LOA program com-
pared to programs with less-sophisticated evaluation functions. With the present
evaluator we gained first places at the 8th and 9th Computer Olympiad.

There are still many possibilities to improve the evaluator. We mention for
instance, more patterns of blocked pieces, better distinction of move types in the
mobility component, and additional knowledge whether a connection is important.
Moreover, there is room to fine-tune certain weights and parameters in the evaluation
function. Finally, a topic of future research is switching off one feature, retuning the
weights and investigating whether the playing strength increases or decreases (cf.
Schaeffer, 1986).

In Chapters 2 and 3 we have addressed the terminal knowledge part of the in-
formed search. In the next chapters we will concentrate on the various aspects of
the search engine of MIA, including the directing knowledge used to steer the search
process.



Chapter 4

Proof-Number Search
Algorithms

This chapter is an updated and abridged version of the following three publi-
cations:

1. Winands, M.H.M. and Uiterwijk, J.W.H.M. (2001). PN, PN2 and PN* in
Lines of Action. The CMG Sixth Computer Olympiad Computer-Games
Workshop Proceedings (ed. J.W.H.M. Uiterwijk), Technical Reports in
Computer Science CS 01-04, Universiteit Maastricht, Maastricht, The
Netherlands.

2. Winands, M.H.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2001b).
Combining Proof-Number Search with Alpha-Beta Search. Proceedings
of the Thirteenth Belgium-Netherlands Conference on Artificial Intelli-
gence (BNAIC 2001) (eds. B. Kröse, M. de Rijke, G. Schreiber, and M.
van Someren), pp. 299–306, Universiteit van Amsterdam, Amsterdam,
The Netherlands.

3. Winands, M.H.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2003c).
PDS-PN: A New Proof-Number Search Algorithm: Application to Lines
of Action. Computers and Games, Lecture Notes in Computer Science
2883 (eds. M. Müller, J. Schaeffer, and Y. Björnsson), pp. 170–185,
Springer-Verlag, Berlin, Germany.1

The second research question deals with proof-number search algorithms. In
this chapter we will investigate several PN-search algorithms. They can be applied
in two different ways: offline and online. First, we will concentrate on the offline
application of the PN-search algorithms. The number of positions they can solve
(i.e., the post-mortem analysis quality) is tested on a set of endgame positions.
Moreover, we will investigate to what extent the algorithms are restricted by their
working memory or by the search speed. Our findings will be used when answering

1The author is grateful to Springer-Verlag for the permission of reusing relevant parts of the
article in this thesis.



36 Proof-Number Search Algorithms

the second research question in the next chapter. Then, we will briefly investigate
the online application of PN search. In particular, the real-time application of PN
search during a game is examined.

The chapter is organised as follows. In Section 4.1 we discuss the need for special
algorithms to solve endgame positions. Section 4.2 describes PN, PN2, and depth-
first variants of PN search. In Section 4.3 we examine the offline solution power and
the solution time, in relation to that of αβ. Then, we focus on the performance of
online PN search in Section 4.4. Finally, in Section 4.5 we present our conclusion
and propose future research.

4.1 Endgame Solvers

Most modern game-playing computer programs successfully use αβ search (Knuth
and Moore, 1975) with enhancements for online game-playing (Campbell, Hoane,
and Hsu, 2002). However, the enhanced αβ search is sometimes not sufficient to
play well in the endgame. In some games, such as Chess, this problem is solved
by the use of endgame databases (Nalimov, Haworth, and Heinz, 2000). Due to
memory constraints this is only feasible for endgames with a relatively small state-
space complexity, although nowadays the size may be considerable. An alternative
approach is the use of a specialised binary (win or non-win) search method, such as
proof-number (PN) search (Allis et al., 1994). The latter method is inspired by the
conspiracy-number algorithm (McAllester, 1988; Schaeffer, 1990).

In many domains PN search outperforms αβ search in proving the game-theoretic
value of endgame positions. The PN-search idea is a heuristic, which prefers ex-
panding shallow subtrees over wide ones. PN search or a variant thereof has been
successfully applied to the endgame of Awari (Allis et al., 1994), Chess (Breuker,
Allis, and Van den Herik, 1994a), Checkers (Schaeffer and Lake, 1996), Shogi (Seo,
Iida, and Uiterwijk, 2001), and Go (Kishimoto and Müller, 2003a). Since PN search
is a best-first search, it has to store the whole search tree in memory. When the
memory is full, the search has to end prematurely.

To overcome this problem PN2 was proposed in Allis (1994), as an algorithm
to reduce memory requirements in PN search. It is elaborated upon in Breuker
(1998). Its implementation and testing for chess positions is extensively described
in Breuker, Uiterwijk, and Van den Herik (2001b). PN2 performs two levels of PN
search, one at the root and one at the leaves of the first level. As in the B* algorithm
(Berliner, 1979), a search process is started at the leaves to obtain a more accurate
evaluation. Although it uses far less memory than PN search, it is still a best-first
search algorithm with the disadvantage that the search can end prematurely because
of memory exhaustion.

Recently, the idea behind the MTD(f ) algorithm (Plaat et al., 1996) is success-
fully applied in PN variants: try to construct a depth-first algorithm that behaves as
its corresponding best-first search algorithm. In 1995, Seo formulated a depth-first
iterative-deepening version of PN search, later called PN* (Seo et al., 2001). The
advantage of this variant is that there is no need to store the whole tree in memory.
The disadvantage is that PN* is slower than PN (Sakuta and Iida, 2001).



4.2 — Five Proof-Number Search Algorithms 37

Other depth-first variants are PDS (Nagai, 1998) and df-pn (Nagai and Imai,
1999). Although their generation of nodes is even slower than PN*’s, they are
building smaller search trees. Hence, they are in general more efficient than PN*.

4.2 Five Proof-Number Search Algorithms

In this section we give a short description of PN search (Subsection 4.2.1), PN2

search (Subsection 4.2.2) and three depth-first variants of PN search (Subsection
4.2.3).

4.2.1 Proof-Number Search

Proof-number (PN) search is a best-first search algorithm especially suited for finding
the game-theoretical value in game trees (Allis, 1994). Its aim is to prove the true
value of the root of a tree. A tree can have three values: true, false, or unknown.
In the case of a forced win, the tree is proved and its value is true. In the case
of a forced loss or draw, the tree is disproved and its value is false. Otherwise the
value of the tree is unknown. In contrast to other best-first algorithms PN search
does not need a domain-dependent heuristic evaluation function to determine the
most-promising node to be expanded next (Allis et al., 1994). In PN search this
node is usually called the most-proving node. PN search selects the most-proving
node using two criteria: (1) the shape of the search tree (the branching factor of
every internal node) and (2) the values of the leaves. These two criteria enable PN
search to treat game trees with a non-uniform branching factor efficiently.

1
a

b c

ih lk

ed gf

2

1

2
0
�

�

0

0
�

�

0

�

0

1

1

1

1

1

2

1

1

draw ??

loss ?

j

?

1

1

win

1
a

b c

ih lk

ed gf

2

1

2
0
�

�

0

0
�

�

0

�

0

1

1

1

1

1

2

1

1

draw ??

loss ?

j

?

1

1

win

Figure 4.1: An AND/OR tree with proof and disproof numbers.



38 Proof-Number Search Algorithms

Below we explain PN search on the basis of the AND/OR tree depicted in Figure
4.1, in which a square denotes an OR node, and a circle denotes an AND node. The
numbers to the right of a node denote the proof number (upper) and disproof number
(lower). A proof number represents the minimum number of leaf nodes which have
to be proved in order to prove the node. Analogously, a disproof number represents
the minimum number of leaf nodes which have to be disproved in order to disprove
the node. Because the goal of the tree is to prove a forced win, winning nodes are
regarded as proved. So, they have proof number 0 and disproof number ∞ (e.g.,
node i). Lost or drawn nodes are regarded as disproved (e.g., nodes f and k). They
have proof number ∞ and disproof number 0. Unknown leaf nodes have a proof
and disproof number of unity (e.g., nodes g, h, j and l). The proof number of an
internal AND node is equal to the sum of its children’s proof numbers, since to prove
an AND node all the children have to be proved. The disproof number of an AND
node is equal to the minimum of its children’s disproof numbers, since to disprove
an AND node it suffices to disprove one child. The proof number of an internal OR
node is equal to the minimum of its children’s proof numbers, since to prove an OR
node it suffices to prove one child. The disproof number of an internal OR node is
equal to the sum of its children’s disproof numbers, since to disprove an OR node all
the children have to be disproved. The procedure of selecting the most-proving node
to expand is as follows. We start at the root. Then, at each OR node the child with
the lowest proof number is selected as successor, and at each AND node the child
with the lowest disproof number is selected as successor. Finally, when a leaf node
is reached, it is expanded and its children are evaluated. This is called immediate
evaluation. The selection of the most-proving node (j ) in Figure 4.1 is given by the
bold path.

The number of node traversals to select the most-proving node can have a neg-
ative impact on the execution time. Therefore, Allis (1994) proposed the following
small enhancement. The updating process can be terminated when the proof and
disproof number of a node do not change. From this node we can start the next
most-proving node selection. For an adequate description of implementation details
we refer to Allis et al. (1994) and Appendix B.1, where the essentials for implemen-
tation are given.

In the naive implementation, proof and disproof numbers are each initialised
to unity in the unknown leaves. In other implementations, the proof number and
disproof number are set to 1 and n for an OR node (and the reverse for an AND
node), where n is the number of legal moves. In LOA this would mean that we take
the mobility of the moving player in the position into account. As we have seen in
the previous chapter this is an important feature. The effect of this enhancement is
tested in Subsection 4.3.1.

Here we reiterate that a disadvantage of PN search is that the whole search tree
has to be stored in memory. When the memory is full, the search process has to be
terminated prematurely. A partial solution is to delete proved or disproved subtrees
(Allis, 1994). In the next subsections we discuss two main variants of PN search
that handle the memory problem more adequately.



4.2 — Five Proof-Number Search Algorithms 39

4.2.2 PN2 Search

For an adequate description we repeat a few sentences of our own. PN2 is first
described in Allis (1994), as an algorithm to reduce memory requirements in PN
search. It is elaborated upon in Breuker (1998). Its implementation and testing for
chess positions is extensively described in Breuker et al. (2001b). PN2 consists of
two levels of PN search. The first level consists of a PN search (pn1), which calls a
PN search at the second level (pn2) for an evaluation of the most-proving node of
the pn1-search tree. This pn2 search is bound by a maximum number of nodes to be
stored in memory. The number is a fraction of the size of the pn1-search tree. The
fraction f(x) is given by the logistic-growth function (Berkey, 1988), x being the size
of the first-level search:

f(x) =
1

1 + e
a−x

b

(4.1)

with parameters a and b, both strictly positive. The number of nodes y in a pn2-
search tree is restricted to the minimum of this fraction function and the number of
nodes which can still be stored. The formula to compute y is:

y = min(x × f(x), N − x) (4.2)

with N the maximum number of nodes to be stored in memory.

The pn2 search is stopped when the number of nodes stored in memory exceeds
y or the subtree is (dis)proved. After completion of the pn2 search, the children
of the root of the pn2-search tree are preserved, but subtrees are removed from
memory. The children of the most-proving node (the root of the pn2-search tree)
are not immediately evaluated by a second-level search, only when they are selected
as most-proving node. This is called delayed evaluation. We remark that for pn2-
search trees immediate evaluation is used. The essentials of our implementation are
given in Appendix B.2.

As we have seen in Subsection 4.2.1, proved or disproved subtrees can be deleted.
If we do not delete proved or disproved subtrees in the pn2 search the number of
nodes searched is the same as y, otherwise we can continue the search longer. The
effect of deleting (dis)proved pn2 subtrees is tested in Subsection 4.3.1.

4.2.3 Three Depth-First Proof-Number Search Algorithms

Recently, three depth-first PN variants have been proposed, which solved the mem-
ory problem of PN-search algorithms.

In 1995, Seo formulated the first depth-first iterative-deepening version of PN
search, later called PN* (Seo et al., 2001). PN* uses a method called multiple-
iterative deepening. Instead of iterating only at the root node such as in the ordinary
iterative deepening, it iterates also at AND nodes. To each AND node a threshold
is given. The subtree rooted at that node is continued to be searched as long as the



40 Proof-Number Search Algorithms

proof number is below the assigned threshold. To keep iterative deepening effective,
the method is enhanced by storing the expanded nodes in a transposition table.

The disadvantage of PN* is that it has difficulties to disprove a (sub)tree, which
harms its solving performance (Sakuta and Iida, 2001). Nagai (1998, 1999) proposed
a second depth-first search algorithm, called Proof-number and Disproof-number
Search (PDS), which is a straight extension of PN*. Instead of using only proof
numbers such as in PN*, PDS uses disproof numbers too.2 Moreover PDS uses
multiple-iterative deepening in every node. To keep iterative deepening effective,
the method is enhanced by storing the expanded nodes in a TwoBig transposition
table (Breuker et al., 1996). PDS uses two thresholds in searching, one for the proof
numbers and one for the disproof numbers. We note that PDS suffers from the
graph-history interaction (GHI) problem (cf. Breuker et al., 2001a). In the present
implementation this problem is ignored (Nagai, 1999). In Chapter 5 we will describe
PDS in detail. For essentials of the implementation we refer to Appendix B.3.

Recently, Nagai (2002) has introduced a third depth-first PN algorithm, called df-
pn (depth-first proof-number search). It is mainly a variant of PDS. The algorithm
df-pn does not perform iterative deepening at the root node. Instead it sets the
thresholds of both proof number and disproof number at the root node to a large
value. As the search goes more deeply, the threshold values are distributed among
the descendant nodes. Contrary to PDS, it has been proved that df-pn always selects
the most-proving node. It turns out that df-pn suffers more from the GHI problem
than PDS. It has a fundamental problem when applied to a domain with repetitions
(Kishimoto and Müller, 2003a). Solutions to the GHI problem have recently been
proposed (Nagai, 2002; Kishimoto and Müller, 2003b). Although df-pn sometimes
solves positions faster than PDS, it solves in practice fewer positions. Experiments
have shown that PDS is superior to df-pn (Sakuta, 2001). Therefore, we have chosen
not to concentrate on the df-pn algorithm.

4.3 Offline PN Search

In this section we test the offline performance of three PN-search variants. We
are making a comparison between PN, PN2, PDS and αβ. For the αβ depth-first
iterative-deepening search, nodes at depth i are counted only during the first it-
eration that the level is reached. This is how analogous comparisons are done in
Allis (1994). For PN, PN2 and PDS search, all nodes evaluated for the termina-
tion condition during the search are counted. For PDS this node count is equal
to the number of expanded nodes (function calls of the recursive PDS algorithm);
for PN and PN2, this node count is equal to the number of nodes generated. The
maximum number of nodes searched is 50,000,000. The limit corresponds roughly
to tournament conditions (i.e., 180 seconds per move). The maximum number of
nodes stored in memory is 1,000,000. The parameters (a,b) of the growth function
used in PN2 are set at (1800K, 240K) according to the suggestions in Breuker et al.
(2001b). First, we test the mobility enhancement in PN and PN2; and the effect of
deleting (dis)proved subtrees at the pn2 search of the PN2 in Subsection 4.3.1. Then
we compare PN, PN2, PDS and αβ search with each other in Subsection 4.3.2.

2We recall that PN and PN2 use disproof numbers too.



4.3 — Offline PN Search 41

4.3.1 Two Enhancements of PN and PN2

We will first test the effect of enhancing PN and PN2 with mobility in one experiment
and then of deleting (dis)proved pn2 subtrees in another experiment.

In the first experiment, we tested PN search and PN2 with the mobility en-
hancements on a test set of 116 positions.3 We used the enhancement of deleting
of (dis)proved pn2 subtrees for PN2. The results are shown in Table 4.1. In the
second column we see that PN search solved 85 positions using mobility; without
mobility it solved 53 positions. PN2 search using mobility solved 109 positions and
without it solved only 91 positions. Next, in the third column we see that on a set
of 53 positions that both PN algorithms are able to solve, PN search using mobility
is roughly 5 times faster in nodes than PN search without mobility. Finally, in the
fourth column we see that on a set of 91 positions that both PN2 algorithms are able
to solve, PN2 search using mobility is more than 6 times faster in nodes than PN2

search without using mobility. In general we may conclude that mobility speeds up
the PN and PN2 with a factor 5 to 6. The extra time spent on this extension is only
20 per cent. Owing to mobility PN search can solve many more positions, because
the memory constraint is violated less frequently.

Table 4.1: Mobility in PN and PN2.

Algorithm # of pos. solved Total nodes (53 pos.) Total nodes (91 pos.)

PN 53 24,357,832 -
PN + Mob. 85 5,053,630 -
PN2 91 - 345,986,639
PN2+ Mob. 109 - 56,809,635

In the second experiment, we tested the effect of deleting (dis)proved subtrees at
the pn2 search of the PN2. The results are shown in Table 4.2. Both variants (not
deleting pn2 subtrees and deleting pn2 subtrees) used mobility in the experiment.
On a set of 108 positions that both versions were able to solve, we can see that
deleting (dis)proved subtrees improves the search with 10 per cent. It also solves
one additional position.

Table 4.2: Deleting (dis)proved subtrees at the second-level search PN2.

Algorithm # of pos. solved Total nodes (108 pos.)

PN2 not deleting pn2 subtrees 108 463,076,682
PN2 deleting pn2 subtrees 109 416,168,419

In the remainder of this thesis we will use these two enhancements (i.e., mobility
and deleting (dis)proved pn2 subtrees), for PN and PN2.

3The test set can be found at http://www.cs.unimaas.nl/m.winands/loa/tswin116.zip.



42 Proof-Number Search Algorithms

4.3.2 Comparison

In this subsection we compare PN, PN2, PDS and αβ search with each other. The
goal is to investigate the effectiveness of the PN-search variants by experiments.
We will look how many endgame positions they can solve and how much effort (in
nodes and CPU time) they take. PN, PN2, PDS and αβ are tested on a set of 488
forced-win LOA positions.4 Two comparisons are made, they are described below.

First Comparison

In the second column of Table 4.3 we see that 470 positions were solved by the PN2

search, 473 positions by PDS, only 356 positions by PN, and 383 positions by αβ.
In the third and fourth column the number of nodes and the time consumed are
given for the subset of 314 positions, which all four algorithms were able to solve.
If we have a look at the third column, we see that PN search builds the smallest
search trees and αβ by far the largest. PN2 and PDS build larger trees than PN but
can solve significantly more positions. This suggests that both algorithms are better
suited for harder problems. PN2 investigates 1.2 times more nodes than PDS, but
PN2 is (more than) six times faster than PDS in CPU time for this subset.

Table 4.3: Comparing the search algorithms on 488 test positions.

Algorithm # of positions solved 314 positions
(out of 488) Total nodes Total time (ms.)

αβ 383 1,711,578,143 22,172,320
PN 356 89,863,783 830,367
PN2 470 139,254,823 1,117,707
PDS 473 118,316,534 6,937,581

From the experiments we may draw the following three conclusions.

1. PN-search algorithms clearly outperform αβ in solving endgame positions in
LOA.

2. The memory problems make the plain PN search a weaker solver for the harder
problems.

3. PDS and PN2 are able to solve significantly more problems than PN and αβ.

Second Comparison

For a better insight how much faster PN2 is than PDS in CPU time, we did a
second comparison. In Table 4.4 we compare PN2 and PDS on the subset of 463
test positions, which both algorithms were able to solve. Now, PN2 searches 2.6 times
more nodes than PDS. The reason for the decrease of performance is that for hard

4The test set can be found at http://www.cs.unimaas.nl/m.winands/loa/tscg2002a.zip.



4.4 — Online PN Search 43

problems the pn2-search tree becomes as large as the pn1-search tree. Therefore,
the pn2-search tree is causing more overhead. However, if we have a look at the
CPU times we see that PN2 is still three times faster than PDS. The reason is that
PDS has a relatively large time overhead because of the delayed evaluation (see
the next chapter). Consequently, the number of nodes generated is higher than the
number of nodes expanded. In our experiments, we observed that PDS generated
nodes 7 to 8 times slower than PN. Such a figure for the overhead is in agreement
with experiments performed in Othello and Tsume-Shogi (Sakuta and Iida, 2001).
We remark that Nagai’s (1999) Othello results showed that PDS was better than
PN search, (i.e., it solved the positions faster than PN). Nagai assigned to both
the proof number and the disproof number of unknown nodes a 1 in his PN search
and therefore did not use the mobility enhancement. In contrast, we incorporated
the mobility in the initialisation of the proof numbers and disproof numbers in our
PN search. We believe that comparing PDS with a PN-search algorithm without
using mobility component is not fair. Since PDS does not store unexpanded nodes
which have a proof number 1 and disproof number 1, it can be said that PDS already
initialises the proof number and disproof number by using the number of its children
(Nagai, 1999). The mobility enhancement is already implicitly incorporated in the
PDS search.

Table 4.4: Comparing PDS and PN2 on 463 test positions.

Algorithm Total nodes Total time (ms.)

PN2 1,462,026,073 11,387,661
PDS 562,436,874 34,379,131

From this second experiment we may conclude that PDS is considerably slower
than PN2 in CPU time. Therefore, PN2 seems to be a better endgame solver under
tournament conditions. Counterbalancing this success, we note that PN2 is still
restricted by its working memory and is not fit for solving really hard problems.

4.4 Online PN Search

In the previous section we have seen that PN search is able to solve more instances of
a set of endgame positions than αβ search and that it does so faster than αβ search.
So, we may state that PN search has been applied successfully offline in our test
domain. In this section we introduce a method of combining PN search and αβ search
online instead of offline. Moreover, the benefit of using a transposition table to reuse
some knowledge, achieved during the PN search, in the αβ search is examined. We
remark that our method of combining perfect and heuristic evaluations is much
simpler to apply than Beal’s (1984) nested Minimax, using heuristic values together
with perfect upper and lower bounds. The organisation of this section is as follows.
The combination of PN and αβ, called PN-αβ, is described in Subsection 4.4.1. In
Subsection 4.4.2 we describe the experimental design. The results of using PN-αβ

are presented and discussed in Subsection 4.4.3.



44 Proof-Number Search Algorithms

4.4.1 PN-αβ

The idea of combining PN search and αβ search originates from Van der Meulen who
used PN search in combination with αβ search (Allis, 1994) in the Awari program
Lithidion (Allis, Van der Meulen, and Van den Herik, 1991b). In the opponent’s
time Lithidion performed PN searches on its potential moves looking for wins.
When the opponent selected a losing move, Lithidion used the outcome of the
PN search to select the winning move. The weakness of the method is that it is
impossible to perform deep PN searches for all possible opponent moves in the
opponent’s time when the number of moves is large.

In this subsection, we introduce another way of combining the two search methods
consecutively. We denote this combination by PN-αβ. PN is done in the player’s own
time and the information gained in the PN search is used in the αβ search. PN-αβ

works as follows. In endgame positions PN search is applied for some fixed fraction
of the allotted time for a move. Here, an endgame position is defined as a position
occurring in a game after a fixed number of moves. The PN search terminates
prematurely when either the position is proved or disproved, or the system runs
out of memory. When the position can be proved, a winning move is played. It is
possible that this move is not optimal (i.e., it will not lead to a shortest win).

During the PN search a position is stored if and only if it is a proven position.
Nodes are stored in a proved-node transposition table (called PN-TT) by using the
well-known Zobrist-hashing method (Zobrist, 1970). Disproved nodes are not stored
because it is not known whether the game-theoretic value of the node is a loss or a
draw. When two positions have the same hash index, the last examined position is
preferred over early ones (replacement scheme New, see Breuker et al., 1994b). The
usual schemes Big or Deep are not used, because the number of nodes of a subtree
or the depth of a subtree are not appropriate measures for replacement in case of
PN search. If it is known that draws are impossible in a game (such as Hex), then
it is possible to store also the disproved nodes in a separate table and to use them
in an analogous way as proved nodes in αβ.

If the PN-search algorithm is not able to find a winning move, the αβ-search
algorithm is applied for the remaining time. Whenever a position is examined in the
αβ search, the position is looked up in the PN-TT for a possible cut-off. Between
the moves the transposition table is not cleared because the stored positions may
still be useful during the game. The number of moves played defining an endgame
position and the fraction of time allotted to PN search are controllable parameters
to be fine-tuned.

4.4.2 Experimental Design

One of the big challenges in PN search is to find out when to apply it during a real
game. On the one hand, if PN search is used too soon in a game, it will have a
negative effect on the outcome of the game because time has been wasted. On the
other hand, if PN search is applied too late, it will have no positive effect at all. After
some experiments we found that the best strategy to enable the PN-αβ in MIA was
to exploit it in positions after 17 moves (34 plies) by using PN search a quarter of the
time allotted for a move. Since the time was limited to 30 seconds per move, it means
that PN search is trying to solve the position in 7.5 seconds when to move. In that



4.4 — Online PN Search 45

amount of time the memory will not completely be filled. Regarding the experiments
we only took into account games which lasted longer than 34 plies. Drawn games
were also not taken into account. Five series of experiments have been run. The
first experiment estimated the proportion of wins by Black and White when both
sides used plain αβ search in a series of 300 games. This proportion was taken as a
reference for the other experiments. The second and third experiment measured the
advantage of PN-αβ over plain αβ for each colour. The fourth and fifth experiment
measured the advantage of PN-αβ without using PN-TT over plain αβ for each side.

4.4.3 Experimental Results

Table 4.5 provides the results for the five series of experiments. The third and
fourth column give the absolute and relative game scores, respectively. The table
shows that PN-αβ search has an advantage over normal αβ search, but only when
information gathered in the PN search is reused by the transposition table. If we
take the reference ratio of Black and White win percentages into account, we see that
enabling PN-αβ yields an increase in performance of some 6 per cent, irrespective
of colour.

Table 4.5: Experimental results.

Black White Absolute Relative

αβ αβ 159-131 55-45
PN-αβ with PN-TT αβ 122-78 61-39

αβ PN-αβ with PN-TT 96-104 48-52
PN-αβ without PN-TT αβ 150-149 50-50

αβ PN-αβ without PN-TT 104-81 57-43

In these experiments using PN search even has a negative effect when the infor-
mation is not reused. A potential reason is the following. If we have performed an
unsuccessful PN search, αβ cannot reach the usual search depth (approximately one
ply) because of the time already used for the PN search. The PN-TT is making up
for this in two ways. First, when a position occurs in the PN-TT it should not be
explored or evaluated again. Despite of the time used for doing the PN search, it
can even happen that αβ can search more deeply than a normal search due to the
PN-TT. Second, the heuristic error of the evaluation function is assumed to be less,
which can result in other (better) move decisions.

Although the method is quite successful, we still have not solved the problem
when to use PN search. Using PN search after a fixed number of moves is an artificial
solution. Clearly, for each different opponent, the parameters have to be determined
separately. Nevertheless, even then PN search will sometimes still be activated too
late (or too early). In Table 4.6 we have selected from Table 4.5 only the games with
over 45 plies. Although the set is too small for meaningful conclusions, it seems that
applying PN search for too long has a negative effect. In other words, sometimes it
is better to inactivate PN-αβ in the very end of a game. In conclusion, it remains



46 Proof-Number Search Algorithms

Table 4.6: Experimental results for games with over 45 plies.

Black White absolute relative

αβ αβ 22-18 55-45
PN-αβ with PN-TT αβ 21-21 50-50

αβ PN-αβ with PN-TT 21-18 54-46
PN-αβ without PN-TT αβ 38-36 51-49

αβ PN-αβ without PN-TT 31-17 65-35

a challenge to find a dynamic strategy, which determines on a per-move basis when
to apply PN search in a game. We believe that a good heuristic may improve the
results of Table 4.5 considerably.

An important issue is that the framework of MIA is appropriate for the beneficial
use of a PN-TT. According to Breuker (1998) PN search explores some positions
more deeply than an αβ search would do. The information gained in those deep
searches is not useful in a narrow αβ search, but MIA uses a search extension in the
form of a quiescence search (see Chapter 2), which can lead to deeper paths than
usual in depth-limited αβ search. In this sense MIA is somewhat biased in favour
of the method of using information from PN search.

From the above, we may conclude that our method of combining PN search and
αβ outperforms plain αβ search in the tournament program MIA. We note that the
kind of games played by MIA potentially results in PN-search friendly positions,
i.e., positions with many forced moves. Therefore, it has to be tested whether this
approach is also profitable in other LOA programs. It might happen that PN-αβ is
compensating for the possible weak play of MIA in the endgame. Another conclusion
might be that the proved-nodes transposition table makes up for the loss of time
when the position is not proved.

4.5 Chapter Conclusion and Future Research

Below we offer five observations. First, we have observed that mobility and deleting
(dis)proved pn2 subtrees speed up PN and PN2 and increase their ability of solving
endgame positions. Second, we have seen that the various PN-search algorithms
outperform αβ in solving endgame positions in LOA. Third, the memory problems
make the plain PN search a weaker solver for the harder problems. Fourth, PDS and
PN2 are able to solve significantly more problems than PN and αβ. Fifth, in the
tournament program MIA our method of combining PN search and αβ outperforms
plain αβ search.

We may conclude that PN and its variants offer a valuable tool for enhancing
programs in endgames. We remark that PN2 is still restricted by working memory,
and that PDS is three times slower than PN2 (Table 4.4) because of the delayed
evaluation. We will solve the memory and speed problem in the next chapter.

One problem clearly remains, viz. that there is no dynamic strategy available
that determines when to use PN-αβ search instead of αβ. This will be subject of
future research.



Chapter 5

An Effective Two-Level
Proof-Number Search
Algorithm

This chapter is an updated and abridged version of the following two articles:

1. Winands, M.H.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2003c).
PDS-PN: A New Proof-Number Search Algorithm: Application to Lines
of Action. Computers and Games, Lecture Notes in Computer Science
2883 (eds. M. Müller, J. Schaeffer, and Y. Björnsson), pp. 170–185,
Springer-Verlag, Berlin, Germany.

2. Winands, M.H.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2004b).
An Effective Two-Level Proof-Number Search Algorithm. Theoretical
Computer Science, Vol. 313, No. 3, pp. 511–525.1

In Chapter 4 we have seen that (1) the advantage of PN2 over PDS is that it is
faster and that (2) the advantage of PDS over PN2 is that its tree is constructed
as a depth-first tree, which is not restricted by the available working memory. This
chapter answers the second research question by presenting a new proof-number
search algorithm, called PDS-PN . It is a two-level search (like PN2), which performs
at the first level a depth-first Proof-number and Disproof-number Search (PDS), and
at the second level a best-first PN search. Hence, PDS-PN selectively exploits the
power of both PN2 and PDS.

The chapter is organised as follows. In Section 5.1 we explain the working of PDS-
PN by elaborating on PDS and the idea of two-level search algorithms. Then, in
Section 5.2, the results of experiments with PDS-PN on a set of endgame positions
are given. Finally, in Section 5.3 we present our conclusion and propose future
research.

1The author is grateful to Springer-Verlag and Elsevier for giving permission of reusing relevant
parts of the articles in this thesis.



48 An Effective Two-Level Proof-Number Search Algorithm

5.1 PDS-PN

In this section we give a description of PDS-PN search, which is a two-level search
using PDS at the first level and PN at the second level. In Subsection 5.1.1 we
motivate why we developed the method. In Subsection 5.1.2 we describe the first-
level PDS, and in Subsection 5.1.3 we provide background information on the second-
level technique. Finally, in Subsection 5.1.4 the relevant parts of the pseudo code
are given.

5.1.1 Motivation

We were motivated to develop the PDS-PN algorithm by the clear advantage that
PDS is traversing a depth-first tree instead of a best-first tree. Hence, PDS is not
restricted by the available working memory. As against this, PN has the advantage
of being fast compared to PDS (see Chapter 4).

The PDS-PN algorithm is designed to combine the two advantages. At the first
level, the search is a depth-first search, which implies that PDS-PN is not restricted
by memory. At the second level the focus is on fast PN. It is a complex balance,
but we expect that PDS-PN will be faster than PDS, and PDS-PN will not be
hampered by memory restrictions. Since the expectation on the effectiveness of
PDS-PN is difficult to prove we have to rely on experiments (see Section 5.2). In
the next two subsections we start describing PDS-PN.

5.1.2 First Level: Proof-Number and Disproof-Number Search

PDS-PN is a two-level search like PN2. At the first level a PDS search is performed,
denoted pn1. For the expansion of a pn1 leaf node, not stored in the transposition
table, a PN search is started, denoted pn2.

Proof-number and Disproof-number Search (PDS) (Nagai, 1998) is a straightfor-
ward extension of PN*. Instead of using only proof numbers such as in PN*, PDS
uses disproof numbers too. PDS exploits a method called multiple-iterative deepen-
ing. Instead of iterating only in the root such as in ordinary iterative deepening,
PDS iterates in all interior nodes. The advantage of using the multiple-iterative-
deepening method is that in most cases it accomplishes to select the most-proving
node (see below), not only in the root, but also in the interior nodes of the search
tree. To keep iterative deepening effective, the method is enhanced by storing the
expanded nodes in a TwoBig transposition table (Breuker et al., 1996).

PDS uses two thresholds for a node, one as a limit for proof numbers and one for
disproof numbers. Once the thresholds are assigned to a node, the subtree rooted in
that node is stopped to be searched if both the proof number and disproof number
are larger than or equal to the thresholds or if the node is proved or disproved. The
thresholds are set in the following way. At the start of every iteration, the proof-
number threshold pnt and disproof-number threshold dnt of a node are equal to the
node’s proof number pn and disproof number dn. If it seems more likely that the
node can be proved than disproved (called proof-like), the proof-number threshold is
increased. If it seems more likely that the node can be disproved than proved (called



5.1 — PDS-PN 49

disproof-like), the disproof-number threshold is increased. In passing we note that
it is easier to prove a tree in an OR node, and to disprove a tree in an AND node.
Below we repeat Nagai’s (1998) heuristic to determine proof-like and disproof-like.

In an interior OR node n with parent p (direct ancestor) the solution of n is
proof-like, if the following condition holds:

pntp > pnp AND (pnn ≤ dnn OR dntp ≤ dnp) (5.1)

otherwise, the solution of n is disproof-like.
In an interior AND node n with parent p (direct ancestor) the solution of n is

disproof-like, if the following condition holds:

dntp > dnp AND (dnn ≤ pnn OR pntp ≤ pnp) (5.2)

otherwise, the solution of n is proof-like.
When PDS does not prove or disprove the root given the thresholds, it increases

the proof-number threshold if its proof number is smaller than or equal to its disproof
number, otherwise it increases the disproof-number threshold. Finally, we remark
that only expanded nodes are evaluated. This is called delayed evaluation (cf. Allis,
1994). The expanded nodes are stored in a transposition table. The proof and
disproof number of a node are set to unity when not found in the transposition
table. Since PDS does not store unexpanded nodes which have a proof number 1
and disproof number 1, it can be said that PDS initialises the proof and disproof
number by using the number of children. The mobility enhancement of PN and PN2

(see Subsection 4.2.1) is already implicitly incorporated in the PDS search.
PDS is a depth-first search algorithm but behaves like a best-first search algo-

rithm. In most cases PDS selects the same node for expansion as PN search. By
using transposition tables PDS suffers from the graph-history-interaction problem
(cf. Breuker et al., 2001a). Especially the GHI evaluation problem can occur in
LOA too. For instance, draws can be agreed upon due to the three-fold-repetition
rule. Thus, dependent on its history a node can be a draw or can have a different
value. However, in the current PDS algorithm we ignore this problem, since we
believe that it is less relevant for the game of LOA than for Chess.

A Detailed Example

A detailed step-by-step example of the working of PDS is given in Figure 5.1. A
square denotes an OR node, and a circle denotes an AND node. The numbers at the
upper side of a node denote the proof-number threshold (left) and disproof-number
threshold (right). The numbers at the lower side of a node denote the proof number
(left) and disproof number (right).

In the first iteration (top of Figure 5.1), threshold values of the root A are set
to unity. A is expanded, and nodes B and C are generated. The proof number of
A becomes 1 and the disproof number becomes 2. Because both numbers are larger
than or equal to the threshold values the search stops.



50 An Effective Two-Level Proof-Number Search Algorithm

A

B C

1

1111

2

11

A

CB

H I

J K

3 2

3 1

1

2 1

2

12

∞

∞

∞ ∞

∞

0

0

0

0

0

11

14

Iteration 1:

Iteration 2:

Iteration 3:

2 2

A

CB

H ID E

   1                 4  1  2

22

1111 11 1

 2  1             2    1 

F

1 1

G

1 1 1

Figure 5.1: An illustration of PDS.



5.1 — PDS-PN 51

In the second iteration (middle of Figure 5.1), the proof-number threshold is
incremented to 2, because the proof number of A (i.e., 1) is the smaller one of both
A’s proof number and disproof number (i.e., 2). We again expand A and re-generate
B and C. The proof number of A is below its proof-number threshold and we continue
searching. Now we have to select the child with minimum proof number. Because B
and C have the same proof number, the left-most node B is selected. Initially, we
set the proof-number and disproof-number threshold of B to its proof and disproof
number (both 1). Because B is an AND node we have to look whether the solution
of B is disproof-like by checking condition 5.2. The disproof-number threshold of
A is not larger than its disproof number (both are 2), therefore the solution of B
is not disproof-like but proof-like. Thus, the proof-number threshold of B has to
be incremented to 2. Next, node B is expanded and the nodes D, E, F and G
are generated. The search in node B is stopped because its proof number (i.e., 4)
and disproof number (i.e., 1) are larger than or equal to the thresholds (i.e., 2 and
1, respectively). Node B is stored in the transposition table with proof number 4
and disproof number 1. Then the search backtracks to A. There we have to check
whether we still can continue searching A. Since the proof number of A is smaller
than its threshold, we continue and subsequently we select C, because this node has
now the minimum proof number. The thresholds are set in the same way as in node
B. Node C has two children H and I. The search at node C is stopped because its
proof number (i.e., 2) and disproof number (i.e., 1) are not below the thresholds.
C is stored in the transposition table with proof number 2 and disproof number 1.
The search backtracks to A and is stopped because its proof number (i.e., 2) and
disproof number (i.e., 2) are larger than or equal to the thresholds. We remark that
at this moment B and C are stored because they were expanded.

In the third iteration (bottom of Figure 5.1) the proof-number threshold of A is
incremented to 3. Nodes B and C are again generated, but this time we can find
their proof and disproof numbers in the transposition table. The node with smallest
proof number is selected (C with proof number 2). Initially, we set the proof-number
threshold and disproof-number threshold of C to its proof and disproof number (i.e.,
2 and 1, respectively). Because C is an AND node we have to look whether the
solution is disproof-like by checking condition 5.2. The disproof-number threshold
of A is not larger than its disproof number (both are 2), therefore the solution
is not disproof-like but proof-like. Thus, the proof-number threshold of C has to
be incremented to 3. C has now proof-number threshold 3 and disproof-number
threshold 1. Nodes H and I are generated again by expanding C. This time the
proof number of C (i.e., 2) is below the proof-number threshold (i.e., 3) and the
search continues. The node with minimum disproof number is selected (i.e., H ).
Initially, we set the proof-number threshold and disproof-number threshold of H to
its proof and disproof number (i.e., both 1). Because H is an OR node we have to
look whether the solution is proof-like by checking condition 5.1. The proof-number
threshold of C (i.e., 3) is larger than its proof number (i.e., 2), therefore the solution
is proof-like. Hence, the search expands node H with proof-number threshold 2 and
disproof-number threshold 1. Nodes J and K are generated. Because the proof
number of H (i.e., 1) is below its threshold (i.e., 2), the node with minimum proof
number is selected. Because J is an AND node we have to look whether the solution



52 An Effective Two-Level Proof-Number Search Algorithm

of J is disproof-like by checking condition 5.2. The disproof-number threshold of
H (i.e., 1) is not larger than its disproof number (i.e., 2), therefore the solution of
J is not disproof-like but proof-like. J is expanded with proof-number threshold 2
and disproof number threshold 1. Since node J is a terminal win position its proof
number is set to 0 and its disproof number set to ∞. The search backtracks to H. At
node H the proof number becomes 0 and the disproof number ∞, which means the
node is proved. The search backtracks to node C. The search continues because the
proof number of C (i.e., 1) is not larger than or equal to the proof-number threshold
(i.e., 3). We select now node I because it has the minimum disproof number. The
thresholds of node I are set to 2 and 1, as was done in H. The node I is a terminal
win position; therefore its proof number is set to 0 and its disproof number to ∞.
At this moment the proof number of C is 0 and the disproof number ∞, which
means that the node is proved. The search backtracks to A. The proof number of A
becomes 0, which means that the node is proved. The search stops at node A and
the tree is proved.

5.1.3 Second Level: PN Search

For an adequate description we reiterate a few sentences from Subsection 4.2.2. At
the leaves of the first-level search tree, the second-level search is called, similar as in
PN2 search. The PN search of the second-level, denoted pn2 search, is bounded by
the number of nodes that may be stored in memory. The number is a fraction of the
size of the pn1-search tree, for which we take the current number of nodes stored
in the transposition table of the PDS search. Preferably, this fraction should start
small, and grow larger as the size of the first-level search tree increases. A standard
model for this growth is the logistic-growth model (Berkey, 1988). The fraction f(x)
is therefore given by the logistic-growth function, x being the size of the first-level
search:

f(x) =
1

1 + e
a−x

b

(5.3)

with parameters a and b, both strictly positive. The parameter a determines the
transition point of the function: as soon as the size of the first-level search tree
reaches a, the second-level search equals half the size of the first-level search. Pa-
rameter b determines the S-shape of the function: the larger b, the more stretched
the S-shape is. The number of nodes y in a pn2-search tree is restricted by the min-
imum of this fraction function and the number of nodes which can still be stored.
The formula to compute y is:

y = min(x × f(x), N − x) (5.4)

with N the maximum number of nodes to be stored in memory.
The pn2 search is stopped when the number of nodes stored in memory exceeds

y or the subtree is (dis)proved. After completion of the pn2-search tree, only the
root of the pn2-search tree is stored in the transposition table of the PDS search.



5.1 — PDS-PN 53

We remark that for pn2-search trees immediate evaluation (cf. Allis, 1994) is used.
This two-level search is schematically sketched in Figure 5.2.

Leaf node in the first level. 

Root node in second level.

Second-level search stops when 

a certain limit of nodes in 

memory is reached or its root is 

(dis)proved.

The subtrees of the root are 

deleted when the second-

level search stops. 

PDS

PN

Figure 5.2: Schematical sketch of PDS-PN.

In the second-level search proved or disproved subtrees are deleted. If we do not
delete proved or disproved subtrees in the pn2 search, the number of nodes searched
becomes the same as y. When we include deletions the second-level search can
continue on average considerably longer.

5.1.4 Pseudo Code for PDS-PN

In this subsection we provide the pseudo code for PDS-PN. For ease of comparison
we use similar pseudo code as used by Nagai (1998) for the PDS algorithm. The
proof number in an OR node and the disproof number in an AND node are equiva-
lent. Analogously, the disproof number in an OR node and the proof number in an
AND node are equivalent. As they are dual to each other, an algorithm similar to
negamax in the context of minimax searching can be constructed. This algorithm is
called NegaPDSPN. In the following, procedure MID(n) performs multiple iterative
deepening. The function proofSum(n) computes the sum of the proof numbers of all
the children. The function disproofMin(n) computes the minimum of the disproof
numbers of all the children. The procedures putInTT() and lookUpTT() store and
retrieve information to and from the transposition table. isTerminal(n) checks
whether a node is a win, a loss or a draw. The procedure generateChildren(n)

generates the children of the node. By default, the proof number and disproof num-
ber of a node are set to unity. The procedure findChildrenInTT(n) checks whether
the children are already stored in the transposition table. If a hit occurs for a child,
its proof number and disproof number are set to the values found in the transposition
table. The procedure PN() is just the plain PN search. The algorithm is described
in Allis (1994) and Breuker (1998). The function computeMaxNodes() computes the
number of nodes which may be stored for the PN search, according to equation 5.4.



54 An Effective Two-Level Proof-Number Search Algorithm

//Iterative deepening at root r

procedure NegaPDSPN(r){

r.proof = 1;

r.disproof = 1;

while(true){

MID(r);

//Terminate when the root is proved or disproved

if(r.proof == 0 || r.disproof == 0)

break;

if(r.proof <= r.disproof)

r.proof++;

else

r.disproof++;

}

}

//Explore node n

procedure MID(n){

//Look up in the transposition table

lookUpTT(n, &proof, &disproof);

if(proof == 0 || disproof == 0

|| (proof >= n.proof && disproof >= n.disproof)){

n.proof = proof; n.disproof = disproof;

return;

}

//Terminal node

if(isTerminal(n)){

if((n.value == true && n.type == AND_NODE)

||(n.value == false && n.type == OR_NODE)){

n.proof = INFINITY; n.disproof = 0;

}

else{

n.proof = 0; n.disproof = INFINITY;

}

putInTT(n);

return;

}

generateChildren(n);

//Avoid cycles



5.1 — PDS-PN 55

putInTT(n);

//Multiple-iterative deepening

while(true){

//Check whether the children are already stored in the TT.

//If a hit occurs for a child, give its proof number and

//disproof number the values found in the TT.

findChildrenInTT(n);

//Terminate searching when both proof and disproof number

//exceed their thresholds

if(proofSum(n) == 0 || disproofMin(n) == 0 || (n.proof <=

disproofMin(n) && n.disproof <= proofSum(n))){

n.proof = disproofMin(n);

n.disproof = proofSum(n);

putInTT(n);

return;

}

proof = max(proof, disproofMin(n));

n_child = selectChild(n, proof);

if(n.disproof > proofSum(n) && (proof_child <= disproof_child

|| n.proof <= disproofMin(n)))

n_child.proof++;

else

n_child.disproof++;

//This is the PDS-PN part

/////////////////////////////////

if(!lookUpTT(n_child)){

//Call PN search with a second argument the maximum number

//of nodes in memory

PN(n_child, computeMaxNodes());

putInTT(n_child);

}

else

/////////////////////////////////

MID(n_child);

}

}

//Select among children

selectChild(n, proof){

min_proof = INFINITY;



56 An Effective Two-Level Proof-Number Search Algorithm

min_disproof = INFINITY;

for(each child n_child){

disproof_child = n_child.disproof;

if(disproof_child != 0)

disproof_child = max(disproof_child, proof);

//Select the child with the lowest disproof_child (if there are

//plural children among them select the child with the lowest

//n_child.proof)

if(disproof_child < min_disproof || (disproof_child = min_disproof

&& n_child.proof < min_proof)){

n_best = n_child;

min_proof = n_child.proof;

min_disproof = disproof_child;

}

}

return n_best;

}

Figure 5.3: Pseudo code for PDS-PN.

5.2 Experiments

In this section we compare αβ, PN2, PDS, and PDS-PN search with each other. The
goal is to prove the effectiveness of PDS-PN by experiments. We will investigate
how many endgame positions it can solve and the effort (in nodes and CPU time)
it takes compared with αβ, PN2, PDS. For PDS and PDS-PN we use a TwoBig
transposition table. In Subsection 5.2.1 we test PDS-PN with different parameters
a and b for the growth function. In Subsection 5.2.2 we compare PDS-PN with αβ,
PN2 and PDS on a set of 488 LOA positions in three different ways. In Subsection
5.2.3 we compare PDS-PN with PN2 on a set of hard LOA problems. Finally,
we evaluate the algorithms PDS-PN and PN2 in solving problems under restricted
memory conditions in Subsection 5.2.4.

5.2.1 Parameter Tuning

In the following series of experiments we measured the solving ability with different
parameters a and b. Parameter a takes values of 150K, 450K, 750K, 1050K, and
1350K, and for each value of a parameter b takes values of 60K, 120K, 180K, 240K,
300K, and 360K. The results are given in Table 5.1. For each a holds that the
number of solved positions grows with increasing b, when the parameter b is still
small. If b is sufficiently large, increasing it will not enlarge the number of solved



5.2 — Experiments 57

positions. In the process of parameter tuning we found that PDS-PN solves the most
positions with (450K, 300K) (see the bold line in Table 5.1). However, the difference
with parameters configurations (150K, 180K), (150K, 240K), (150K, 300K), (150K,
360K), (450K, 360K), and (1350K, 300K) is not significant. On the basis of these
results we decided that it is not necessary to perform experiments with a larger a.

Table 5.1: Number of solved positions (by PDS-PN) for different values of a and b.

a b # of solved pos.

150,000 60,000 460
150,000 120,000 458
150,000 180,000 466
150,000 240,000 466
150,000 300,000 465
150,000 360,000 466
450,000 60,000 445
450,000 120,000 463
450,000 180,000 460
450,000 240,000 461

450,000 300,000 467

450,000 360,000 464
750,000 60,000 432
750,000 120,000 449
750,000 180,000 461

a b # of solved pos.

750,000 240,000 463
750,000 300,000 460
750,000 360,000 461

1,050,000 60,000 421
1,050,000 120,000 448
1,050,000 180,000 451
1,050,000 240,000 459
1,050,000 300,000 459
1,050,000 360,000 460
1,350,000 60,000 421
1,350,000 120,000 433
1,350,000 180,000 447
1,350,000 240,000 454
1,350,000 300,000 465
1,350,000 360,000 459

5.2.2 Three Comparisons of the Algorithms

In the experiments with PN2, PDS, and PDS-PN all nodes evaluated during the
search are counted; for the αβ depth-first iterative-deepening searches nodes at
depth i are counted only during iteration i. We adopted this method from Allis
(1994). It makes a general comparison possible. The maximum number of nodes
searched is 50,000,000. The limit corresponds roughly to tournament conditions.
The maximum number of nodes stored in memory is 1,000,000. The parameters
(a,b) of the growth function used in PN2 are set at (1800K, 240K) according to the
suggestions in Breuker et al. (2001b). The parameter configuration (450K, 300K)
found in the previous subsection will be used for PDS-PN. The smaller value of a
corresponds with the smaller pn1 trees resulting from the use of PDS-PN instead of
PN2. The fact that PDS is much slower than PN is an important factor too.

First Comparison

αβ, PN2, PDS, and PDS-PN are tested on the same set of 488 forced-win LOA
positions as described in Subsection 4.3.2. The results are given in Table 5.2. In
the first column the four algorithms are mentioned. In the second column we see



58 An Effective Two-Level Proof-Number Search Algorithm

that 382 positions are solved.2 by αβ, 470 positions by PN2, 473 positions by PDS,
and 467 positions by PDS-PN. The set of 488 positions contains no position that
only could be solved by αβ search. In the third and fourth column the number
of nodes and the time consumed are given for the subset of 371 positions, which
all four algorithms are able to solve. A look at the third column shows that PDS
search builds the smallest search trees and αβ by far the largest. Like PN2 and PDS,
PDS-PN solves significantly more positions than αβ. This suggests that PDS-PN
is a better endgame solver than αβ. As we have seen before, PN2 and PDS-PN
investigate more nodes than PDS, but both are still faster in CPU time than PDS
for this subset. Due to the limit of 50,000,000 nodes and the somewhat lower search
efficiency, PDS-PN solves three positions fewer than PN2 and six fewer than PDS.

Table 5.2: Comparing the search algorithms on 488 test positions with a limit of 50,000,000
nodes.

Algorithm # of positions solved 371 positions
(out of 488) Total # of nodes Total time (ms.)

αβ 382 2,645,022,391 33,878,642
PN2 470 505,109,692 3,642,511
PDS 473 239,896,147 16,960,325

PDS-PN 467 924,924,336 5,860,908

Second Comparison

To investigate whether the memory restrictions are an actual obstacle we increase
the limit of nodes searched to 500,000,000 nodes. In this second comparison PN2

solves now 479 positions and PDS-PN becomes the best solver with a performance
of 483 positions. The detailed results are given in Table 5.3.

Table 5.3: Comparing PN2 and PDS-PN on 488 test positions with a limit of 500,000,000
nodes.

Algorithm # of positions solved 479 positions
(out of 488) Total # of nodes Total time (ms.)

PN2 479 2,261,482,395 13,295,688
PDS-PN 483 4,362,282,235 23,398,899

The performance of PDS-PN in Table 5.3 is more effective than that of PN2,
viz. 483 to 479. However, we should thoughtfully take into account the condition
for the total number of nodes searched and the time spent. Therefore, we continue

2We remark that a slightly less inefficient version of our αβ implementation could solve 383
positions (see Chapter 4).



5.2 — Experiments 59

our research in the direction of nodes searched and time spent with the 50,000,000
nodes limit. A reason for this decision is that the experimental time constraints are
necessary for the PDS experiments.

Third Comparison

For a better insight into the relation between PN2, PDS, and PDS-PN we have done
a third comparison. In Table 5.4 we provide the results of PN2, PDS, and PDS-PN
on a new subset of 457 positions of the principal test set, viz. all positions the
three algorithms could solve under the 50,000,000 nodes limit condition. Now, PN2

searches 2.6 times more nodes than PDS. The reason for the difference of performance
is that for hard problems the pn2-search tree becomes as large as the pn1-search tree.
Therefore, the pn2-search tree is causing more overhead. However, if we look at the
CPU time we see that PN2 is almost four times faster than PDS. PDS has a relatively
large time overhead because it performs multiple-iterative deepening at all nodes.
PDS-PN searches 3.7 times more nodes than PDS but is still three times faster than
PDS in CPU time. This is because PDS-PN is focussing more on the fast PN at the
second level than on PDS at the first level. PDS-PN searches more nodes than PDS
since the pn2-search tree is repeatedly rebuilt and removed. The overhead is even
bigger than PN2’s overhead because the children of the root of the pn2-search tree
are not stored (i.e., this is done to focus more on the fast PN search). It explains
why PDS-PN searches 1.4 times more nodes than PN2. Hence, our provisional
conclusions are that on this set of 457 positions and under the 50,000,000 nodes
condition: (1) PN2 outperforms PDS-PN, and (2) PDS-PN is a faster solver than
PDS and therefore more effective than PDS.

Table 5.4: Comparing PN2, PDS and PDS-PN on 457 test positions (all solved) with a
limit of 50,000,000 nodes.

Algorithm Total # of nodes Total time (ms.)

PN2 1,275,155,583 9,357,663
PDS 498,540,408 36,802,350

PDS-PN 1,845,371,831 11,952,086

5.2.3 Comparing the Algorithms for Hard Problems

Since the impact of the 50,000,000 nodes condition somewhat obscured our pro-
visional conclusions above and since we felt that PDS-PN had its own merits in
comparison with PN2 we performed a new experiment with LOA problems. In this
experiment PN2 and PDS-PN are tested on a different set of 286 LOA positions,
which were on average harder than the ones in the previous test set.3 The conditions
are the same as in the previous experiments except that the maximum number of

3The test set can be found at http://www.cs.unimaas.nl/m.winands/loa/tscg2002b.zip.



60 An Effective Two-Level Proof-Number Search Algorithm

nodes searched is set at 500,000,000. The PDS algorithm is not included because
it takes too much time given the current node limit. In Table 5.5 we see that PN2

solves 265 positions and PDS-PN 276. We remark that PN2 solves 10 positions,
that PDS-PN does not solve, but that PDS-PN solves 21 positions that PN2 does
not solve. The ratio in nodes and time between PN2 and PDS-PN for the positions
solved by both (255) is roughly similar to the previous experiments. The reason why
PN2 solves fewer positions than PDS-PN is its being restricted in working memory.
We are in a delicate position since new experiments with much more working mem-
ory are now on the list to be performed. However, we assume that the nature of
PN2 with respect to using so much memory cannot be overcome. Hence we may
conclude that within an acceptable time frame PDS-PN is a more effective endgame
solver than PN2 for hard problems.

Table 5.5: Comparing PN2 and PDS-PN on 286 hard test positions with a limit of
500,000,000 nodes.

Algorithm # of positions solved 255 positions
(out of 286) Total # of nodes Total time (ms.)

PN2 265 10,061,461,685 57,343,198
PDS-PN 276 16,685,733,992 84,303,478

5.2.4 Comparing the Algorithms under Reduced Memory

From the experiments in the previous subsection it is clear that PN2 will not be able
to solve very hard problems since it will run out of working memory. To support
this statement experimentally even further, we tested the solving ability of PN2

and PDS with restricted working memory. In these experiments we started with a
memory capacity sufficient to store 1,000,000 nodes, subsequently we divided the
memory capacity by two at each next step. The parameters a and b were also
divided by two. The relation between memory and number of solved positions for
both algorithms is given in Figure 5.4. We see that the solving performance rapidly
decreases for PN2. The performance of PDS-PN remains stable for a long time.
Only when PDS-PN is restricted to fewer than 10,000 nodes, it begins to solve fewer
positions. This experiment suggests that PDS-PN is to be preferred above PN2 for
the very hard problems, because it is not suffering from memory constraints.

5.3 Chapter Conclusion and Future Research

Below we offer three observations, a conclusion, and a suggestion for future research.
Our first observation is that PDS-PN is able to solve significantly more LOA

endgame problems than αβ search with enhancements. Our second observation is
that the PDS-PN algorithm is almost as fast as PN2 when the parameters for its
growth function are chosen properly. It turns out that for each a it holds that the



5.3 — Chapter Conclusion and Future Research 61

0

50

100

150

200

250

300

350

400

450

500

1,00010,000100,0001,000,000

Nodes in Memory

S
o

lv
e

d
 P

o
s

it
io

n
s

PDS-PN

PN
 2

Figure 5.4: Results with restricted memory.

number of solved positions grows with increasing b, when the parameter b is still
small. If b is sufficiently large, increasing it will not enlarge the number of solved
positions. Our third observation states that (1) PDS-PN solves more hard positions
than PN2 within an acceptable time frame and (2) PDS-PN is more effective than PN
or even PN2 because it does not run out of memory for hard problems. Moreover,
PDS-PN performs quite well under harsh memory conditions. This is especially
appropriate for hard problems and for environments with very limited memory such
as hand-held computer platforms.

Hence, we may conclude that PDS-PN is a more effective endgame solver for a
set of hard problems than PDS and PN2.

Finally, we believe that an adequate challenge is testing PDS-PN in other do-
mains with difficult endgames. An example of a game notoriously known for its
difficult endgames is the game of Tsume-Shogi (a variant of Shogi). Several hard
problems including solutions over a few hundred ply are solved by PN* (Seo et al.,
2001) and PDS (Sakuta and Iida, 2001; Nagai, 2002). It would be interesting to test
PDS-PN on these problems.



62 An Effective Two-Level Proof-Number Search Algorithm



Chapter 6

Enhanced Forward Pruning

This chapter is an updated and abridged version of the following two publica-
tions:

1. Winands, M.H.M., Herik, H.J. van den, Uiterwijk, J.W.H.M., and Werf,
E.C.D. van der (2003b). Enhanced Forward Pruning. Proceedings of the
7th Joint Conference on Information Sciences (JCIS 2003) (eds. P. Wang
et al.), pp. 485–488.

2. Winands, M.H.M., Herik, H.J. van den, Uiterwijk, J.W.H.M., and Werf,
E.C.D. van der (2004a). Enhanced Forward Pruning. Information
Sciences. Accepted for publication.1

This chapter answers the third research question by improving forward-pruning
methods in the Principal-Variation-Search (PVS) framework (Marsland, 1983). PVS
is essentially equivalent to the popular NegaScout (Reinefeld, 1983) in the sense that
it expands the same search tree (Björnsson, 2002). Forward-pruning methods, such
as multi-cut and null move, are improved at so-called ALL nodes. We modified
the Principal Variation Search by four small but essential additions. The new PVS
algorithm guarantees that forward pruning is safe at ALL nodes.

This chapter is organised as follows. In Section 6.1 we give a short overview
about variable-depth search. Section 6.2 explains the different node types in the
αβ search. Next, the way forward pruning works in PVS is explained in Section
6.3. Subsequently, multi-cut is described in Section 6.4. The method is tested at
expected ALL nodes and compared to an aggressive version of the null move in
Section 6.5. Finally, Section 6.6 gives the chapter conclusion and future research.

6.1 Variable-Depth Search

For a long time, brute-force αβ search was the standard procedure in games such
as Chess and Checkers. Over the years many improvements have been proposed.

1The author is grateful to Elsevier for the permission of reusing relevant parts of the article in
this thesis.



64 Enhanced Forward Pruning

An obvious improvement is the introduction of a variable-depth search, i.e., explor-
ing promising moves more deeply (extending the search) and non-promising moves
less deeply (pruning the search). The use of selective extensions provided better
results right from the beginning. An example of a knowledge-independent technique
which explores some continuations more deeply is singular extensions (Ananthara-
man, Campbell, and Hsu, 1988). Enhancing the search with forward pruning led to
mixed results until the 1990s, when the null move (Beal, 1989; Goetsch and Camp-
bell, 1990; Donninger, 1993) was introduced in Chess. It proved to be successful
in Chess and quite decent in some other games. However, its implicit assumption
that passing is often bad made it less applicable for games where zugzwang occurred
a lot (e.g., Checkers). As an alternative Buro introduced ProbCut (1995) and its
enhanced version Multi-ProbCut (2000). It has been proved to be successful in Oth-
ello, but has not yet been shown convincingly useful in other games (e.g., Chess or
Checkers). Nevertheless, these forward-pruning techniques have in common that,
again, no explicit domain knowledge is required to make the search decision.

Recently, a new forward-pruning mechanism, called multi-cut (Björnsson and
Marsland, 1999), has been proposed. According to its inventors it is more domain
independent than the previous two. It has been adopted by some of the world’s
strongest commercial Chess programs (Björnsson, 2002). In particular, multi-cut is
successfully applied to the game of LOA (Björnsson, 2002). Traditionally, multi-cut
forward pruning was not applied at expected ALL nodes, since it was assumed that
the technique was only successful at CUT nodes. However, in this chapter we will
investigate whether it is beneficial to use forward-pruning methods at expected ALL
nodes in the PVS framework.

6.2 Three Node Types

Knuth and Moore (1975) identified three types of nodes in the αβ minimax tree:
type-one, type-two, and type-three nodes. In this paper we use the terminology
introduced by Marsland and Popowich (1985). They identify the nodes as PV,
CUT, and ALL nodes, respectively. The root of the tree is a PV node. At a PV
node all the children have to be investigated. The best move found at a PV node
leads to a successor PV node, while all the other investigated children are CUT
nodes. At a CUT node the child causing a β cut-off is an ALL node. In a perfectly
ordered tree only one child of a CUT node has to be explored. At an ALL node all
the children have to be explored. The successors of an ALL node are CUT nodes.

Before searching a node we do not really know what the type of the node will be.
Thus, before exploring nodes we refer to them as expected PV nodes, expected CUT
nodes, and expected ALL nodes. If none of the moves causes a cut-off at an expected
CUT node, the node becomes an ALL node. If one of the children at an expected
ALL node turns out not to be a CUT node, the expected ALL node becomes a CUT
node. When all expected CUT nodes on a path from the root to a leaf node have
become ALL nodes, a new principal variation has emerged (all the nodes on the
path have become in fact PV nodes). In Figure 6.1 the different types of nodes are
depicted in a tree. True PV, CUT, and ALL nodes are denoted by P, C, and A.



6.3 — Forward Pruning in the Null-Window Search 65

Expected CUT and expected ALL nodes, which turn to have a different node type,
are denoted by C and A. Shaded nodes are not belonging to the minimal tree.

P

P

AA A

A A

CC CC

A

CC

Max

Min

Min

Max

C C

C

C C

P

P

4 2 -4 45 2 6 0 1 -92

14 5 4 6

4 1

2

2

4

Figure 6.1: An example of an αβ tree with different types of nodes.

The Principal-Variation-Search (PVS) framework (Marsland, 1983) is able to
determine the expected and true type of a node. This algorithm is in general more
efficient than the original αβ. The algorithm considers the first node explored at
the root (and at subsequent PV nodes) to be a PV node. The value of that node
is therefore treated as best value, and all the siblings are searched using a closed
αβ-window (i.e., β = α + 1) to prove that they are inferior. This part of the search
is called zero-width-window search (Marsland and Björnsson, 2001) or null-window
search (NWS) (Björnsson et al., 1997). In the NWS, nodes are assumed not to be
on the principal variation and therefore are expected to be alternately CUT and
ALL nodes. If the NWS returns a score less than or equal to α, then that particular
sibling has been proved inferior. Sometimes, the NWS returns a better score and a
re-search has to be done. In that case the αβ-window is opened and the child node
under consideration is regarded as a PV node.

6.3 Forward Pruning in the Null-Window Search

Recently, it has become practice to use forward-pruning methods only in the NWS
part of the PVS framework (Björnsson et al., 1997; Feldmann, 1997; Marsland and
Björnsson, 2001). The idea is that it is too risky to prune forward at an expected
PV node, because a possible mistake causes an immediate change of the principal
variation. If we erroneously prune forward at some CUT node and the resulting
score is backed up all the way to a PV node, we obtain a fail low (the subtree
seemingly has been proved inferior). The result of the mistake is that a possible new
principal variation is overlooked in this position. Therefore, forward pruning at a



66 Enhanced Forward Pruning

CUT node without further provisions is dangerous. However, by the large savings
achieved it has proved worthwhile to implement further provisions making forward
pruning at CUT nodes more safe (and thus acceptable). If we erroneously forward
prune at some ALL node and the resulting score is backed up all the way to a PV
node, we obtain a fail high and a re-search will be performed. The algorithm is
then searching for a new principal variation and regards the subsequent nodes as
PV nodes. Because no forward pruning is done at PV nodes, it is possible to find
out whether there exists a new PV or not. In this case the result of the mistake will
be that an extra amount of nodes has been searched. In principle, forward pruning
at an expected ALL node is not dangerous but can trigger unnecessary re-searches.

To ensure that a re-search is performed which is able to correct the value, some
small changes in the PVS algorithm have to be made. The following four additions
are performed.

1. To prevent that a backed-up value of a forward-pruned ALL node causes a β

cut-off at the PV node lying above, the forward-pruning mechanism should
return a value equal to β in case of a cut-off (which is equal to α + 1 at an
ALL node).

2. If the window of the PV node was already closed and the NWS should return
a value equal to β (α + 1), we still have to do a re-search.

3. If we do a re-search and the returned value of the NWS equals α+1, we should
do a re-search with α as lower bound.

4. CUT nodes where a fail-low has occurred with a value equal to α are not stored
in the transposition table because their values are uncertain.

Pseudo code for this enhanced PVS algorithm is given in Figure 6.2.

6.4 Multi-Cut at ALL Nodes (MC-A)

Multi-cut pruning is a new forward-pruning method (Björnsson and Marsland, 1999).
Before examining an expected CUT node to full depth, the first M child nodes are
searched to a depth reduced with a factor R. If at least C child nodes return a value
larger than or equal to β, a cut-off occurs. However, if the pruning condition is not
satisfied, the search continues as usual, re-exploring the node under consideration to
a full depth d. The multi-cut code is given in Figure 6.3.

In general the behaviour of multi-cut is as follows. The higher M and R are and
the lower C is, the higher the number of prunings is.

In our opinion, we made two small improvements to the original algorithm by
Björnsson and Marsland, 1999 (indicated in Figure 6.3). First, when at a reduced
depth a winning value is found, the search is stopped and the winning value is
returned. Second, if the multi-cut does not succeed in causing a cut-off, the moves
causing a β cut-off at the reduced depth are tried first in the normal search. The
remaining question is whether multi-cut is also useful at ALL nodes. The inventors
of the multi-cut algorithm anticipated that it would not be successful elsewhere



6.4 — Multi-Cut at ALL Nodes (MC-A) 67

CUT_NODE = 1, ALL_NODE = -1, PV_NODE = 0;

PVS(node, alpha, beta, depth, node_type){

//Transposition table lookup, omitted

.....................................

if(depth == 0)

return evaluate(pos);

if(node_type != PV_NODE){

//Forward-pruning code, omitted

.....................................

if(forward_pruning condition holds) return beta; //Addition 1

}

next = firstSuccessor(node);

best = -PVS(next, -beta, -alpha, depth-1, -node_type);

if(best >= beta) goto Done;

next = nextSibling(next);

while(next != null){

alpha = max(alpha, best);

//Null-Window Search Part

value = -PVS(next, -alpha-1, -alpha, depth-1,

(node_type == CUT_NODE)?ALL_NODE:CUT_NODE);

//Re-search

if((value > alpha && value < beta) ||

//Addition 2

(node_type == PV_NODE && value == beta && beta == alpha+1)){

//Value is not a real lower bound

if(value == alpha+1) //Addition 3

value = alpha;

value = -PVS(next, -beta, -value, depth-1, node_type);

}

if(value > best){

best = value;

if(best >= beta) goto Done;

}

next = nextSibling(next);

}

if(node_type == CUT_NODE && best == alpha) return best; //Addition 4

Done: //Store in Transposition table, omitted

.....................................

}

Figure 6.2: Pseudo code for enhanced PVS.



68 Enhanced Forward Pruning

...........................................................

//Forward-pruning code

if(node_type == CUT_NODE && depth > 2){

next = firstSuccessor(node);

c = 0, m = 0;

while(next != null && m < M){

value = -PVS(next, -beta, -alpha, depth-1-R, -node_type);

if(value >= beta){

c++;

//Keep track of the moves causing a cut-off at d-R

storeCutOffNode(next);

if(value >= WIN_SCORE) //Addition 1

return value;

else if(c >= C)

return beta;

}

m++;

next = nextSibling(next);

}

//Re-order moves

putCutOffNodesInFront(); //Addition 2

}

...........................................................

Figure 6.3: Pseudo code for enhanced MC-C.

(Björnsson and Marsland, 2001b) and therefore did not test it at expected ALL
nodes. Henceforth, we call multi-cut at expected CUT nodes MC-C and at expected
ALL nodes MC-A. In the following section, some experiments are reported on testing
whether MC-A is beneficial.

6.5 Experiments

In this section four series of experiments are described with multi-cut at expected
ALL nodes. In the first series, MC-A is tested under different parameter settings
(Subsection 6.5.1). In the second series of experiments, we investigate the added
value of MC-A with different combinations of forward-pruning methods (Subsection
6.5.2). In the third series, the variable null-move bound is tested and compared to
MC-A (Subsection 6.5.3). Finally, in the fourth series of experiments the increase
in playing strength of MIA is tested (Subsection 6.5.4).



6.5 — Experiments 69

6.5.1 Parameter Tuning in MC-A

In the first series of experiments we tried to find the parameter setting (C, M, R) of
MC-A, which gave the largest node reduction. Using a set of 171 LOA positions2,
the program was tested at depth 10 using its normal enhancements described in the
previous subsection. The following pairs of C and R were investigated: (1,2), (2,2),
(3,2), (4,2), (1,3), (2,3), (3,3), (4,3), and (4,4). For each pair the parameter M took
the values 2, 4, 6, 8, 10, 12, 14, and 16 except when M < C. In the case of C = 3
we also investigated M = 3. In Figure 6.4 the total number of nodes searched for
each set of parameters is given. The results of the search without MC-A (default)
are showed for comparison. In the process of parameter tuning we found that MC-A
(2,10,2) is the most efficient. However, the difference with several other parameter
configurations is not significant (e.g., (2,6,3)). It is clear that configurations with
C = 1 have a moderate success. Probably, many re-searches had to be executed
because of its aggressive nature (i.e., too much pruning). Configurations with C =
4 do not give good results as well, especially not when R and M are chosen too low.
The parameter C = 4 is too conservative (i.e., not much pruning) and can be made
more aggressive by increasing R and M. It appears that C = 2 and C = 3 are close
to each other if M is sufficiently high.

In Figure 6.4 we see that MC-A with an optimal parameter setting gives a reduc-

2The test set can be found at http://www.cs.unimaas.nl/m.winands/loa/TMP.zip.

280

300

320

340

360

380

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M

S
e
a
rc

h
e
d

 N
o

d
e
s
 

(i
n

 m
il

li
o

n
s

)

Default

C=1,R=2

C=1,R=3

C=2,R=2

C=2,R=3

C=3,R=2

C=3,R=3

C=4,R=2

C=4,R=3

C=4,R=4

Figure 6.4: Tree sizes for different C, M, and R.



70 Enhanced Forward Pruning

tion in nodes of 28 per cent compared to the default search engine. If we compare
the (aggressive) optimal setting of parameters (i.e., (2,10,2)) to the ones in MC-C
(i.e., (3,10,2)) we see a difference of 6 per cent. We would like to remark that MC-C
parameters of MIA were already chosen more aggressively than the ones in the LOA-
playing program YL (i.e., (3,3,2)) (Björnsson, 2002). The last data point gives less
reduction according to our experiments (see Figure 6.4).

A possible enhancement is making the values for C, M, and R variable instead
of constant for MC-A. An attractive scheme is to set R to 2 or 3 dependent on
the search depth and static board properties (this idea is used in adaptive null-
move pruning). Unfortunately, preliminary experiments showed no extra reduction
of nodes, so we did not pursue this idea any further. Another idea is to forward
prune immediately when the reduced search returns a value greater than β + δ with
a sufficiently large δ. Using the optimal parameter setting, the optimal δ value (525)
gives a small reduction of 1.5 per cent of nodes searched at depth 10 for the given
test set. This heuristic is included in the following experiments. Finally, we remark
that if we would not include the re-ordering of moves after an unsuccessful MC-A
the number of nodes searched increases with 2 per cent at depth 10.

6.5.2 Evaluation of MC-A and Forward-Pruning Methods

In the second series of experiments we tested the added value of MC-A, using the
optimal parameter setting of the previous subsection, against the same set of 171
positions at several depths in our original search engine. We also looked at the
performance of MC-A in combination with the already included pruning methods
(i.e., MC-C and null move). The results are given in Table 6.1.

If MC-A is added in a search engine where no forward pruning is used, we see that
there is hardly an improvement in performance. The decrease in the number of nodes
searched, is only some 2 per cent. Apparently, when no forward pruning is used at
all, multi-cut is useless at expected ALL nodes. This is in accordance with the claim
of Björnsson and Marsland (2001b). However, if some forward-pruning method is
used we see that MC-A gives significant improvements. In the case of using only null
move adding MC-A gives a further reduction increasing to 15 per cent at depth 12.
If only MC-C is used as forward-pruning method, introducing MC-A to the search
brings a further reduction increasing to 85 per cent at depth 12. This saving seems
enormous but we have to consider that in the previous experiment null-move pruning
was already performed at ALL nodes. In the case of using only MC-C there is no
forward pruning at expected ALL nodes, which therefore results in a large saving
when MC-A is added. We remark that the tree sizes of the combination MC-C
and MC-A are approximately the same as the combination null move and MC-C.
When null move and MC-C are available in the engine (the original situation), MC-A
reduces the search tree with another 42 per cent at depth 14.

Since we have tuned MC-A at this particular test set (Subsection 6.5.1), we per-
formed similar experiments on a set consisting of 156 different positions3 to validate
the result. In the first column of Table 6.2 we see the relative performance of MC-A
on the original test set. In the second column the relative performance of MC-A is

3The test set can be found at http://www.cs.unimaas.nl/m.winands/loa/VMP.zip.



6.5 — Experiments 71

Table 6.1: Added value of MC-A.

No Forward pruning Only Null move

d No MC-A MC-A % No MC-A MC-A %

5 5,071,689 4,995,845 98.5 3,504,759 3,404,882 97.2

6 19,896,101 19,286,868 96.9 10,109,533 9,518,082 94.1

7 113,653,808 110,663,056 97.4 36,265,257 34,671,647 95.6

8 416,549,038 406,489,302 97.6 92,749,650 89,483,140 96.5

9 2,427,406,280 2,395,844,102 98.7 314,507,126 303,466,596 96.5

10 9,635,185,102 9,460,591,510 98.2 891,348,022 813,032,326 91.2

11 - - - 2,930,142,106 2,599,157,486 88.7

12 - - - 8,362,297,395 7,080,475,905 84.7

Only MC-C Null move and MC-C

d No MC-A MC-A % No MC-A MC-A %

5 2,097,908 1,955,564 93.2 2,012,835 1,897,600 94.3

6 7,314,731 5,549,772 75.9 6,083,136 5,122,496 84.2

7 28,656,432 20,221,202 70.6 20,491,711 17,423,109 85.0

8 85,103,638 50,333,688 59.1 50,018,470 42,242,144 84.5

9 297,239,554 149,671,128 50.4 142,182,834 116,784,068 82.1

10 1,286,515,396 393,490,307 30.6 397,092,800 283,350,391 71.4

11 4,860,474,957 1,358,658,246 28.0 1,223,918,717 846,066,886 69.1

12 23,806,355,059 3,536,842,482 14.9 3,328,838,963 2,162,692,924 65.0

13 - - - 9,869,101,893 6,289,563,990 63.7

14 - - - 30,087,791,323 17,578,589,423 58.4

given for the validation set. If we compare those two columns with each other, we
see that there is not much difference between them and similar results are achieved.

Table 6.2: Relative performance of MC-A in combination with null move and MC-C.

Depth Original Set (171 positions) Validation Set (156 positions)

5 94.3 94.7
6 84.2 86.8
7 85.0 83.7
8 84.5 82.0
9 82.1 79.8
10 71.4 73.9
11 69.1 72.0
12 65.0 68.5
13 63.7 64.8
14 58.4 61.4



72 Enhanced Forward Pruning

In summary, our experiments have showed that if forward pruning is already
used, additional forward pruning at ALL nodes gives a significant improvement. Of
course, it is possible that another forward-pruning mechanism might achieve the
same results. For example, making the null-move mechanism at ALL nodes more
aggressive is a possibility to gain reductions. In our experiments we have made the
null move more aggressive by setting the reduction factor at 3 when searching an
expected ALL node. In the next subsection we test the variable null-move bound.

6.5.3 Variable Null-Move Bound

Campbell and Goetsch (1990) introduced the idea of variable null-move bound, which
was implemented and tested by Björnsson and Marsland (2001a). The idea is that a
null-move cut-off can be forced if the returned null-move search value is larger than
or equal to β− t, where t is the minimal value of a tempo. The value t is dependent
on the evaluation function. This allows a larger part of the null-move searches to
cause cut-offs. The pseudo code is given in Figure 6.5. We remark that the null
move is considered as a regular move. Therefore, if a null move originates from a
CUT node, its successor is an ALL node, and vice versa.

...........................................................

//Forward-pruning code

if(node_type != PV_NODE && depth > 2){

next = swapSides(node);

if(node_type == ALL_NODE) bound = beta - t else bound = beta;

value = -PVS(next, -bound, -bound+1, depth-1-R, -node_type);

if(value >= bound) return beta;

}

...........................................................

Figure 6.5: Pseudo code for variable null-move bound.

To compare variable null-move bound (VNMB) with MC-A we investigated in the
third series of experiments whether VNMB at expected ALL nodes gives a reduction
of nodes. The heuristic was tested against the same set of 171 positions with 10-ply
searches. The search was not enhanced with MC-A. The parameter t was increased
with a step size of 25 to find a value which gives the most reduction. The results are
given in Figure 6.6. For comparison the results of the default search and the search
enhanced with MC-A are also given.

We see that the best result for t is achieved when t lies between 200 and 350.
A reduction of 16 per cent is achieved compared to the original one (of course with
the null move and MC-C). But the search enhanced with MC-A is still 15 per cent
faster. When t is larger than 500, the search enhanced with variable null-move
bound searches more nodes than the original one. The forward pruning becomes too
aggressive resulting in too many re-searches.

We additionally tested the combination of MC-A and VNMB with different t
(see the graph denoted “Combination” in Figure 6.6). There was no setting of t for
which the combination was better than the MC-A enhanced search. When t became



6.5 — Experiments 73

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000

t

S
e

a
rc

h
e

d
 N

o
d

e
s

(i
n

 m
il
li
o

n
s
) VNMB

Default

MC-A

Combination

Figure 6.6: Variable null-move bound.

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 2 4 6 8 10 12 14 16

Depth

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n

c
e

Figure 6.7: MC-A compared to variable null-move bound.

sufficiently large the combination behaved the same as the VNMB. In Figure 6.7 the
relative performance of MC-A is compared to VNMB with the optimal parameter
t = 200 for several search depths. We see that the search enhanced with MC-A
searches fewer nodes than the one enhanced with VNMB. This difference increases
with depth to some 22 per cent.



74 Enhanced Forward Pruning

These experiments suggest that MC-A is not surpassed by aggressive null-move
pruning at expected ALL nodes. We believe that MC-A is a significant enhancement
in a PVS search where forward pruning is used. In general these experiments suggest
that extra forward pruning at ALL nodes gives a safe reduction of the number of
nodes searched.

6.5.4 Performance Enhancement with MC-A

In the fourth series of experiments we tested the possible increase of playing strength
by using MC-A with the optimal parameter setting (of Subsection 6.5.1). Two
versions of MIA were matched against each other, one using MC-A and the other
without MC-A. These versions used all the enhancements described in Subsection
2.6. Both programs played 1000 games, switching sides halfway. The thinking time
was limited to 60 seconds per move, simulating tournament conditions. To prevent
that programs played the games over and over again, a random factor was included
in the evaluation function (see Subsection 3.2.2). The results are given in Table 6.3.

Table 6.3: 1000-game match results.

Score Winning ratio

MC-A vs. Default 549-451 1.21

We observe that the modified version outplayed the original version with a win-
ning ratio of 1.21 (i.e., scoring 21 per cent more winning points than the opponent).
This result reveals that MC-A improves the playing strength of MIA significantly.

6.6 Chapter Conclusion and Future Research

This chapter showed that forward pruning at expected ALL nodes is safe and bene-
ficial. Multi-cut at expected ALL nodes gives a safe reduction of approximately 40
per cent of the number of nodes searched in combination with null move and the
regular multi-cut MC-C. Experiments suggested that parameters more aggressively
chosen than MC-C lead to an additional improvement. We observed that MC-A still
searches 22 per cent fewer nodes than variable null-move bound at expected ALL
nodes. Moreover, MC-A was able to increase significantly the playing strength of the
program MIA. From these observations we may conclude that MC-A is a valuable
enhancement of PVS.

As future research, experiments are envisaged in other games to test the per-
formance of MC-A. Whether MC-A surpasses an aggressive version of null move in
other games also has to be tested. Finally, the combination of MC-A and variable
null-move bound has to be tuned with different settings of C, M, R and t.



Chapter 7

The Relative History
Heuristic

This chapter is an updated and abridged version of the following publication:

Winands, M.H.M., Werf, E.C.D. van der, Herik, H.J. van den, and Uiter-
wijk, J.W.H.M. (2004c). The Relative History Heuristic. Proceedings
of the Fourth International Conference on Computers and Games (CG
2004) (eds. H.J. van den Herik, Y. Björnsson, and N.S. Netanyahu).
Accepted for publication.1

Most modern game-playing computer programs successfully use the αβ algorithm
to reduce the search tree. The efficiency of αβ search is dependent on the enhance-
ments used (Campbell et al., 2002). Move ordering is one of the main techniques to
reduce the size of the search tree.

The history heuristic is a popular choice for ordering moves dynamically, in par-
ticular when other techniques are not applicable. In the past the butterfly heuristic
(Hartmann, 1988) was proposed to replace the history heuristic, but it did not
succeed. This chapter answers the fourth research question by proposing a new
dynamic move-ordering variant, called the relative history heuristic, to replace the
history heuristic.

The chapter is organised as follows. In Section 7.1 we review the history heuris-
tic and the butterfly heuristic. Next, the relative history heuristic is introduced
in Section 7.2. Subsequently, the results of the experiments are given in Section
7.3. Finally, in Section 7.4 we present our conclusion and propose topics for future
research.

1Thanks are due to the Editors of CG 2004 for giving permission of reusing relevant parts of
the article in this thesis.



76 The Relative History Heuristic

7.1 The History and the Butterfly Heuristic

The history heuristic is a simple, inexpensive way to reorder moves dynamically at
interior nodes of search trees. It was invented by Schaeffer (1983) and has been
adopted in several game-playing programs. Unlike the killer heuristic, which only
maintains a history of the one or two best killer moves at each ply, the history
heuristic maintains a history for every legal move seen in the game tree. Since there
is only a limited number of legal moves, it is possible to maintain a score for each
move in two (black and white) tables. At every interior node in the search tree
the history-table entry for the best move found is incremented by a value (e.g., 2d,
where d is the depth of the subtree searched under the node). The best move is
in this case defined as the move which either causes a β cut-off, or which causes
the best score. When a new interior node is examined, moves are re-ordered by
descending order of their scores. The scores in the tables can be maintained during
the whole game. Each time a new search is started the scores are decremented by a
factor (e.g., divided by 2). They are only reset to zero or to some default values at
the beginning of a complete new game. Details on the effectiveness or the strategy
to maintain history scores during the whole game are dependent on the domain or
game program.

The history heuristic does not cost much memory. The history tables are defined
as two tables with 4096 entries (64 from squares × 64 to squares), where each entry
is 4 or 8 bytes large. These tables can be easily indexed by a 12-bit key representing
the origin and destination. In the history table we have also defined moves which
are illegal.

Hartmann (1988) called attention to two disadvantages of the history heuristic.
(A) Quite some space for the history table is wasted, because space for illegal moves
is reserved too. For instance, in the game of Chess 44 per cent of the possible moves
are legal. In LOA, this number is even lower because knight moves are not allowed.
This gives that 1456 of the 4096 moves are legal, meaning that only 36 per cent of
the entries in the table are used. Although this waste of memory is not a problem
for games with a small dimensionality of moves, it can be a problem for games with
a larger dimensionality of moves (for instance Amazons). (B) Moreover, Hartmann
pointed out that some moves are played less frequently than others. There are two
reasons for this. (B1) The moves are less frequently considered as good moves. (B2)
The moves occur less frequently as legal moves in a game. The disadvantage of the
history heuristic is that it is biased towards moves that occur more often in a game
than others. However, the history heuristic has as implicit assumption that all the
legal moves occur roughly with the same frequency in the game (tree). So, in games
where this condition approximately holds an absolute measure seems appropriate.
But in other games where some moves occur more frequently than other moves, we
should resort to other criteria. For instance, assume we have a move which is quite
successful when applicable (e.g., it then causes a cut-off) but it does not occur so
often as a legal move in the game tree. This move will not obtain a high history
score and is therefore ranked quite low in the move ordering. Therefore a different
valuation of such a move may be considered.

To counter some elements of the two disadvantages Hartmann (1988) proposed



7.2 — The Relative History Heuristic 77

Figure 7.1: (a) Rare move. (b) Blocked move.

an alternative for the history heuristic, the butterfly heuristic. This heuristic takes
the move frequencies in search trees into account. Two tables are needed (one for
Black and one for White), called butterfly boards. They are defined in the same
way as in the history heuristic (i.e., 64 from squares × 64 to squares). Any move
that is not cut is recorded. Each time a move is executed in the search tree, its
corresponding entry in the butterfly board (for each side) is also incremented by a
value. Moves are now reordered by their butterfly scores. The butterfly heuristic
was denied implementation by its inventor, since he expected that it would be far
less effective than the history heuristic.

7.2 The Relative History Heuristic

We believe that we can considerably improve the performance of the history heuristic
in some games by making it relative instead of absolute. The score used to order
the moves (movescore) is given by the following formula:

movescore =
hhscore

bfscore
(7.1)

where hhscore is the score found in the history table and bfscore is the score found
in the butterfly board. We call this move ordering the relative history heuristic. We
remark that we only update the entries of moves seen in the regular search, not in
the quiescence search, because some (maybe better) moves are not investigated in
the quiescence search. We apply the relative history heuristic everywhere in the tree
(including in the quiescence search) for move ordering.

In some sense this heuristic is related to the realisation-probability search method
(Tsuruoka, Yokoyama, and Chikayama, 2002). In that scheme the move frequencies
gathered offline are used to limit or extend the search.

LOA is a nice test bed for the relative history heuristic. Dependent on the
position some moves occur more often than others in the search tree. For example,
moves going seven squares far are possible if and only if there are seven pieces of the
same colour side by side on that line. In Figure 7.1a it is possible to move a1-h8,



78 The Relative History Heuristic

but it is very rare that in a real game a position occurs where seven pieces of the
same colour occupy a diagonal. In contrast, consider a move like a8-d5 that occurs
regularly in a game, but in the position depicted in Figure 7.1b it will not often
be applied in the corresponding search tree, since most of the time Black will not
consider to move its piece on b7.

7.3 Experiments

In this section we show the results of various experiments with the relative history
heuristic. This is done on a test set of 171 LOA positions.2 We performed six series of
experiments. In the first and second series, we tested the standard history heuristic
and the relative history heuristic with different increments, respectively (Subsection
7.3.1). In the third, fourth, and fifth series, we compared the performance of the
relative history heuristic with the standard history heuristic under different configu-
rations (Subsection 7.3.2). Finally, in the sixth series of experiments, we tested the
performance of the relative history heuristic in another domain, namely for 24 test
positions for 6×6 Go (Subsection 7.3.3).

7.3.1 Increment Settings

In the following two series of experiments we tried to find the optimal increment
setting for the history table and the butterfly board, which gave the largest node
reduction. Using our set of 171 LOA positions, the program was tested for depth 14
using its normal enhancements as described in Subsection 2.6.

Table 7.1: Performance of the history heuristic with different increments on a test set of
171 positions.

History Increment Total Nodes
depth 5 depth 9 depth 14

0 2,480,001 188,717,928 30,997,625,767
1 1,901,956 113,163,113 14,478,291,866
d 1,896,429 111,283,177 14,064,388,392
d2 1,900,055 111,673,124 13,915,673,199
2d 1,878,114 111,471,652 13,925,222,389

In the first series of experiments we tested the increments of the history table in
a configuration where we used the standard history heuristic. Initially the history
heuristic was developed for programs that were searching to a depth much less than
14. Considering the nature of a search tree, it might be that the best increment to
be used depends on the search depth. Therefore we performed experiments for the
original depths 5 and 9 used as test depths by Schaeffer (1983, 1989). The following

2The test set can be found at http://www.cs.unimaas.nl/m.winands/loa/TMP.zip.



7.3 — Experiments 79

increments were used: 1, d, d2, and 2d, where d is the explored depth of the move
causing the cut-off. The increment 2d is the standard increment of the history
table. The result of the search without history heuristic (increment 0) is given for
comparison. Table 7.1 shows that there is not much difference between the size of
the search tree using increments d, d2 and 2d. For depth 14, the history heuristic
gives in all the cases a reduction of approximately 55 per cent of the number of nodes
searched. Unlike data for Chess, reported in Schaeffer (1989), we see a steady growth
of the reduction with increasing search depth in LOA. Surprisingly, the increment of
1 is generating for the various depths a search tree that is only slightly larger than
other increments. Apparently, the depth of the move explored is not so important in
the history heuristic. Hence we may conclude that, unlike some data so far available
for chess (Schaeffer, 1986), the choice of the increment is of little value in the test
environment we studied.

Table 7.2: Performance of the relative history heuristic with different increments on a test
set of 171 positions.

History Increment Butterfly Increment Total Nodes

1 1 12,261,241,807
1 d 12,544,923,748
1 d2 12,936,458,114
1 2d 12,741,580,747
d 1 12,654,462,037
d d 12,433,892,630
d d2 12,914,014,566
d 2d 13,075,535,903
d2 1 12,501,473,310
d2 d 12,238,059,952
d2 d2 12,509,830,417
d2 2d 12,234,575,562
2d 1 12,354,762,028
2d d 13,081,065,785
2d d2 12,928,253,841
2d 2d 12,954,976,931

In the second series of experiments we looked at various increment parameter
settings of the history table and the butterfly board (h,b) in our engine using the
relative history heuristic and using a search depth of 14 ply. In Table 7.2 the total
number of nodes searched for each combination of parameters is given. In the pro-
cess of parameter tuning we found that (d2,2d) is the most efficient. However, the
difference with several other parameter configurations is not significant (e.g., (1,1),
(d2,d) or (2d,1)). The difference between the best and worst parameter setting is
6 per cent in nodes searched. Hence, we may conclude that the exact choice of
parameters seems to be not very critical.



80 The Relative History Heuristic

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 2 4 6 8 10 12 14 16

Depth

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
c

e

Figure 7.2: Performance of the relative history heuristic.

7.3.2 Performance in LOA

In the third series of experiments we tested the added value of the relative history
heuristic, using the optimal parameter setting of the previous subsection, against
the same set of 171 LOA positions for several depths in our original search engine
under different conditions.

In Figure 7.2 we plot the relative performance of the two heuristics defined as
the size of the search tree investigated using the relative history heuristic divided by
that of the standard history heuristic, as a function of the search depth. We observe
that until depth 8 there is no significant difference between the two move-ordering
schemes. From depth 9 onwards the difference increases with the depth to some 12
per cent at depth 14. We see that the search enhanced with the relative history
heuristic searches fewer nodes than the one enhanced with the standard setting.

Since we have tuned our heuristic with this particular test set (Subsection 7.3.1),
we performed a fourth series of experiments on a set consisting of 156 different
positions3 to validate the result. The positions were searched up to depth 15. In
Figure 7.3 we see the relative performance of the two heuristics on the validation set.
If we compare Figure 7.2 with Figure 7.3, we see that similar results are achieved.

Since the performance of many search enhancements may to some extent depend
on the search engine, we modified the search engine in the fifth series of experiments
by switching the multi-cut forward-pruning mechanism off. Because of the dimin-
ished forward pruning the sizes of our search trees increased and we were not able to
conduct experiments at depth 13 and further. Looking at Figure 7.4 we see that the

3The test set can be found at http://www.cs.unimaas.nl/m.winands/loa/VMP.zip.



7.3 — Experiments 81

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 2 4 6 8 10 12 14 16

Depth

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
c

e

Figure 7.3: Validating the relative history heuristic.

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 2 4 6 8 10 12 14

Depth

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
c

e

Figure 7.4: Relative history heuristic without using multi-cut.



82 The Relative History Heuristic

relative history heuristic decreases the search with 11 per cent at depth 12. Hence,
we may conclude that the same pattern as in the previous experiments has started.
We expect that this pattern will continue, which is to be confirmed in the future by
more powerful machines.

7.3.3 Performance in Go

The relative history heuristic was designed for LOA. To investigate whether the
relative history heuristic would be interesting for other domains too, we tested its
performance on the small-board games of Go in the sixth series of experiments, for
which we used the program Migos4 that recently had solved Go on the 5×5 board
(Van der Werf, Van den Herik, and Uiterwijk, 2003).

Migos uses an iterative-deepening PVS with a transposition table with 224 dou-
ble entries (using the two-deep replacement scheme), enhanced transposition cut-offs,
symmetry lookups in the transposition table, internal unconditional bounds, and an
enhanced move ordering in which the history heuristic is an important component.
The implementation of the history heuristic employs one shared table for both the
black and white moves which exploits the game-dependent property in Go that
moves on the same intersection are often good for both sides. After some parameter
tuning for the relative history heuristic increments, which we optimised for solving
the empty 5×5 board, we found that using d3 for both the history and the butterfly
board gave quite promising results5.

The current challenge in small-board Go is solving the 6×6 board (5×5 is the
largest square board solved by a computer). Therefore we decided to test the per-
formance of the relative history heuristic on a set of 24 problems for the 6×6 board
published in Go World by James Davies (1979, 1980). Figure 7.5 shows the aver-
age relative performance of the relative history heuristic compared to the standard
settings without a butterfly table. Since we only used a small number of test posi-
tions we also plotted the standard deviations. They tend to increase with the search
depth. The reasons for this are (1) the exponential effect of changes in the move
ordering, and (2) a reduction in the number of positions because some positions are
already solved at smaller depths. The results indicate again that for shallow searches
not much should be expected of using the relative history heuristic. However, after
about 10 ply the first improvements become noticeable and at about 15 ply the
relative history heuristic achieves a reduction of roughly 13 per cent. However, we
remark that the test set is too small to draw strong conclusions. So far the results
are favourable for the relative history heuristic and they indicate that the relative
history heuristic is worth investigating in other domains as well.

7.4 Chapter Conclusion and Future Research

Combining the ideas of the history heuristic and the butterfly heuristic resulted in
the relative history heuristic. This heuristic does not suffer from underestimating

4The author would like to thank Erik van der Werf for his assistance in this experiment.
5We tested this combination on the LOA test set, too. Our experiments showed that this

combination belongs to the better ones.



7.4 — Chapter Conclusion and Future Research 83

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 2 4 6 8 10 12 14 16 18

Depth

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n

c
e

Figure 7.5: Performance of the relative history heuristic in 6×6 Go.

less frequently occurring moves in the search tree as the history heuristic does. We
favour moves which are the good moves on average instead of moves which are the
best move in absolute terms. Both the history heuristic and the relative history
heuristic show a steady growth of the reduction with increasing search depth. Using
the relative history heuristic our LOA program MIA searches even between 10 and
15 per cent fewer nodes (see Subsection 7.3.2). The results were confirmed by the
Go program Migos. Hence, we may conclude that the relative history heuristic is
a valuable technique to order the moves in a game tree of considerable depth (more
than 12 plies).

It is remarkable that the utility of increments other than 1 does not show much
better performance in the (relative) history heuristic for our LOA program MIA.
The good performance of the increment of 1 could be the result of some domain-
dependent properties.

Finally, it would be interesting for future research to test our heuristic in still
more different games, especially in Chess, since the original history heuristic was
developed for Chess.





Chapter 8

Conclusions and Future
Research

In this thesis we investigated how search can be guided by knowledge in such a
way that the search space is traversed efficiently and effectively. For this task we
focussed on the question how to combine knowledge with search. This led to the
formulation of our problem statement in Section 1.3. There we have posed four
research questions that should be answered before we could address the problem
statement. In this chapter we will provide our conclusions and provide topics for
future research.

In Section 8.1 we will answer the four research questions one by one. We will for-
mulate from these answers a reply to the problem statement in Section 8.2. Finally,
in Section 8.3 we will provide promising directions for future research.

8.1 Conclusions on the Research Questions

The four research questions stated in Chapter 1 concern four topics of the knowledge-
search trade-off, i.e., concerning (1) the evaluation function, (2) proof-number search,
(3) forward pruning, and (4) move ordering. They are dealt with in the following
subsections, respectively.

8.1.1 Evaluation Function

We noted that search needs at least terminal knowledge to solve a problem. More-
over, informed search cannot exist without a decent evaluation function for our test
domain LOA. A challenge for a LOA program is building an evaluation function,
which incorporates the basic principles of the game and increases the profitability.
This challenge has led us to the first research question.

Research question 1: How can we build a strong evaluation function
for Lines of Action?



86 Conclusions and Future Research

In our attempt to answer this question, we investigated which features were impor-
tant for a LOA evaluation function. The features are based on the basic principles
described in Chapter 2. It turned out that the following nine features were impor-
tant: concentration, centralisation, centre-of-mass position, quads, mobility, walls,
connectedness, uniformity, and player to move. These features have resulted in the
evaluator MIA IV. The profitably of the evaluator was tested in a tournament against
other LOA evaluators which performed well at previous Computer Olympiads. Ex-
periments showed that MIA IV defeated them with quite large margins. Many
features in the evaluation function do not consume much time. The program runs
only 15 per cent slower with the MIA IV evaluator than with the MIA I evaluator.
By using precomputed tables and caching, most features are quite straightforward
to evaluate. The most important feature is concentration, followed by the mobility
feature. All features are essential and contribute to the playing strength. There
exist much interconnectedness and overlap between the features, which influence
their performance. Therefore, all the features have to be simultaneously fine-tuned
(or heuristically optimised) in a careful way. The combination of the nine features
mentioned has resulted in an evaluation function that significantly increased the
playing strength of our LOA program compared to programs with less-sophisticated
evaluation functions.

8.1.2 Proof-Number Search

We saw that that the PN-search algorithms, PN, PN2 and PDS, clearly outperformed
αβ in solving endgame positions in LOA. However, some memory problems made
the plain PN search a weaker solver for the harder problems. PDS and PN2 were
able to solve significantly more problems than PN and αβ. PN2 was restricted by its
working memory, and PDS was considerably slower than PN2. When reducing the
need for memory at the cost of additional searching, we arrived at a crucial memory
characteristic of knowledge in an informed-search process. This led to the second
research question.

Research question 2: How can we develop a proof-number search
algorithm, which is competitive in speed and not restricted in working
memory?

We presented a new proof-number search algorithm, called PDS-PN. It is a two-
level search (like PN2), which performs at the first level a depth-first Proof-number
and Disproof-number Search (PDS), and at the second level a best-first PN search.
Hence, PDS-PN selectively exploits the power of both PN2 and PDS.

We observed that PDS-PN was able to solve significantly more LOA endgame
problems than αβ search with enhancements. Moreover, the PDS-PN algorithm was
almost as fast as PN2 when the parameters (a,b) for its growth function were chosen
properly. It turned out that for each a it held that the number of solved positions
grew with increasing b, when the parameter b was still small. If b was sufficiently
large, increasing it did not enlarge the number of solved positions. We observed that
(1) PDS-PN solved more hard positions than PN2 within an acceptable time frame
and (2) PDS-PN was more effective than PN or even PN2 because it did not run out



8.1 — Conclusions on the Research Questions 87

of memory for hard problems. Moreover, PDS-PN performed quite well under harsh
memory conditions. This is especially appropriate for hard problems and for envi-
ronments with very limited memory such as hand-held computer platforms. Hence,
we may conclude that within an acceptable time frame PDS-PN is more effective for
really hard endgame positions than αβ and any other PN-search algorithm.

8.1.3 Forward Pruning

We defined informed search as search, which is also using directing knowledge.
Therefore, we investigated whether it is beneficial to improve forward-pruning meth-
ods, such as null move and multi-cut, in the Principal-Variation-Search (PVS) frame-
work. This has led to the third research question.

Research question 3: How can we improve forward-pruning methods
in the Principal-Variation-Search framework?

Forward-pruning methods, such as multi-cut and null move, were tested at so-called
ALL nodes. The Principal Variation Search was improved by four small but essential
additions. The new PVS algorithm guarantees that forward pruning is safe at ALL
nodes. Experiments showed that multi-cut at ALL nodes (MC-A) when combined
with other forward-pruning mechanisms offered a significant reduction of the num-
ber of nodes searched. Multi-cut at expected ALL nodes gave a safe reduction of
approximately 40 per cent of the number of nodes searched in combination with null
move and the regular multi-cut MC-C. Experiments suggested that parameters more
aggressively chosen than MC-C led to an additional improvement. In comparison,
a (more) aggressive version of the null move (variable null-move bound) gave less
reduction at expected ALL nodes than our algorithm. We demonstrated that the
playing strength of MIA was significantly increased by MC-A. We have shown that
our forward pruning method at expected ALL nodes is safe and beneficial. We may
conclude that MC-A is a valuable forward-pruning enhancement of PVS.

8.1.4 Move Ordering

We remarked that move ordering is an instance of directing knowledge in an informed-
search process. Especially in an αβ search, move ordering is one of the main tech-
niques to reduce the size of the search tree. One important category is dynamic
move ordering, which is dependent on information gained during the search. This
has led to the fourth research question.

Research question 4: How can we use information gained during the
search to improve move ordering?

Combining the ideas of the history heuristic and the butterfly heuristic resulted in
the relative history heuristic. This heuristic does not suffer from underestimating
less frequently occurring moves in the search tree as the history heuristic does. The
relative history heuristic favours moves which are the good moves on average instead
of moves which are the best move in absolute terms. The relative history heuristic



88 Conclusions and Future Research

showed a steady growth of the reduction with increasing search depth. Using the
relative history heuristic our LOA program MIA searched even between 10 and 15
per cent fewer nodes. The results were confirmed by the Go program Migos (Van der
Werf et al., 2003). Hence, we may conclude that the relative history heuristic is a
valuable dynamic move-ordering technique in a game tree of considerable depth
(more than 12 plies). Finally, we remark that the utility of increments other than 1
does not show a much better performance in the (relative) history heuristic for our
LOA program MIA. The good performance of the increment of 1 could be the result
of some domain-dependent properties.

8.2 Conclusion on the Problem Statement

Our problem statement was:

Problem statement: How can we develop informed-search methods in
such a way that programs significantly improve their performance in a
given domain?

Taking the answers to the research questions above into account we see that there
are several successful ways to improve the performance of informed-search methods.
Our improvements of the evaluation function, proof-number search, forward pruning,
and move ordering have given significant results in our LOA test domain.

8.3 Recommendations for Future Research

We complete this chapter by listing six recommendations for future research.

1. Improving the evaluation function. More patterns of blocked pieces,
better distinction of move types in the mobility component, and additional
knowledge whether a connection is important are some of the issues which
could improve the evaluator. There is still room to fine tune certain weights
and parameters in the evaluation function. Finally, we believe that combining
the ideas of the strong programs YL and Mona with MIA IV would probably
further increase the playing strength significantly.

2. Automatic feature extraction. Although the weights are (partially) au-
tomatically tuned by TD-learning, the features of our evaluation function are
mostly selected by hand (sometimes with the help of statistical data analy-
sis). We believe that ways to perform automatic feature extraction will be a
valuable tool for building evaluation functions for unknown games.

3. Improving PN-αβ. At the moment there is no dynamic strategy available
which determines when to use PN-αβ search instead of αβ. A possible solution
is the use of machine-learning methods that decide when and for how long to
use PN search.



8.3 — Recommendations for Future Research 89

4. Improving the MC-A. The combination of MC-A and variable null-move
bound has to be tuned with different settings of C, M, R and t. Instead of
initialising the parameters with fixed values, a variable scheme dependent on
the game state is more appropriate.

5. Reviving the countermove heuristic. The relative history heuristic was
partially based on the forgotten butterfly heuristic. It would be interesting to
revisit another dynamic move-ordering technique, the countermove heuristic
(Schaeffer, 1986; Uiterwijk, 1992).

6. Application to other domains. We believe that an adequate challenge is
testing PDS-PN in other domains with difficult endgames. An example of a
game notoriously known for its difficult endgames is the game of Tsume-Shogi
(a variant of Shogi). Several hard problems including solutions over a few
hundred ply are solved by PN* (Seo et al., 2001) and PDS (Sakuta and Iida,
2001; Nagai, 2002). It would be interesting to test PDS-PN on these problems.
Next, experiments are envisaged in other games to test the performance of MC-
A. Whether MC-A surpasses an aggressive version of null move in other games
has to be tested, too. Finally, it would be interesting for future research to
test our relative history heuristic in other different games, especially in Chess,
since the original history heuristic was developed for Chess.



90 Conclusions and Future Research



References

Akl, S.G. and Newborn, M.M. (1977). The Principal Continuation and the Killer
Heuristic. 1977 ACM Annual Conference Proceedings, pp. 466–473, ACM Press,
New York, NY, USA.[6, 16]

Allis, L.V. (1988). A Knowledge-Based Approach of Connect Four: The Game
is Over, White to Move Wins. M.Sc. thesis, Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands. Report No. IR-163. [2]

Allis, L.V. (1994). Searching for Solutions in Games and Artificial Intelligence. Ph.D.
thesis, Rijksuniversiteit Limburg, Maastricht, The Netherlands. [2, 11, 36, 37,
38, 39, 40, 44, 49, 53, 57]

Allis, L.V., Herik, H.J. van den, and Herschberg, I.S. (1991a). Which Games Will
Survive? Heuristic Programming in Artificial Intelligence 2: the Second Com-
puter Olympiad (eds. D.N.L. Levy and D.F. Beal), pp. 232–243. Ellis Horwood,
Chichester, England. [1, 11]

Allis, L.V., Meulen, M. van der, and Herik, H.J. van den (1991b). Databases in
Awari. Heuristic Programming in Artificial Intelligence 2: the Second Com-
puter Olympiad (eds. D.N.L. Levy and D.F. Beal), pp. 73–86. Ellis Horwood,
Chichester, England. [44]

Allis, L.V., Meulen, M. van der, and Herik, H.J. van den (1994). Proof-Number
Search. Artificial Intelligence, Vol. 66, No. 1, pp. 91–123. [5, 36, 37, 38]

Anantharaman, T.S., Campbell, M., and Hsu, F.-h. (1988). Singular Extensions:
Adding Selectivity to Brute-Force Searching. ICCA Journal, Vol. 11, No. 4, pp.
135–143. Also published (1990) in Artificial Intelligence, Vol. 43, No. 1, pp.
99–109. [64]

Anshelevich, V.V. (2002). A Hierarchical Approach to Computer Hex. Artificial
Intelligence, Vol. 134, Nos. 1–2, pp. 101–120. [2, 9]

Beal, D.F. (1984). Mixing Heuristic and Perfect Evaluations: Nested Minimax.
ICCA Journal, Vol. 7, No. 1, pp. 10–15. [43]

Beal, D.F. (1989). Experiments with the Null Move. Advances in Computer Chess
5 (ed. D.F. Beal), pp. 65–79. Elsevier Science Publishers, Amsterdam, The
Netherlands. [64]



92 References

Berkey, D.D. (1988). Calculus. Saunders College Publishing, New York, NY, USA.
[39, 52]

Berliner, H.J. (1979). The B*-Tree Search Algorithm: A Best-First Proof Procedure.
Artificial Intelligence, Vol. 12, No. 1, pp. 23–40. [36]

Berliner, H.J. (1984). Search vs. Knowledge: An Analysis from the Domain of
Games. Artificial and Human Intelligence, pp. 105–117, Elsevier Science Pub-
lishers B.V., Amsterdam, The Netherlands. [4]

Berliner, H.J., Goetsch, G., Campbell, M.S., and Ebeling, C. (1990). Measuring the
Performance Potential of Chess Programs. Artificial Intelligence, Vol. 43, No. 1,
pp. 7–20. [3]

Billings, D. and Björnsson, Y. (2002). Mona and YL’s Lines of Action Page.
http://www.cs.ualberta.ca/∼games/LOA.[28]

Billings, D. and Björnsson, Y. (2003). Search and Knowledge in Lines of Action.
Advances in Computer Games 10: Many Games, Many Challenges (eds. H.J.
van den Herik, H. Iida, and E.A. Heinz), pp. 231–248. Kluwer Academic Pub-
lishers, Boston, MA, USA.[5, 11, 15, 19, 26]

Billings, D., Davidson, A., Schaeffer, J., and Szafron, S. (2000). The Challenge of
Poker. Artificial Intelligence, Vol. 134, Nos. 1–2, pp. 201–240. [2]

Björnsson, Y. (2000). YL Wins Lines of Action Tournament. ICGA Journal, Vol. 23,
No. 3, pp. 179–180. [28, 101]

Björnsson, Y. (2002). Selective Depth-First Game-Tree Search. Ph.D. thesis, Uni-
versity of Alberta, Edmonton, Canada. [15, 16, 63, 64, 70]

Björnsson, Y. and Marsland, T.A. (1999). Multi-Cut Alpha-Beta Pruning. Comput-
ers and Games, Lecture Notes in Computing Science 1558 (eds. H.J. van den
Herik and H. Iida), pp. 15–24. Springer-Verlag, Berlin, Germany. [16, 64, 66]

Björnsson, Y. and Marsland, T.A. (2001a). Risk Managament in Game-Tree Prun-
ing. Information Sciences, Vol. 122, No. 1, pp. 23–41. [72]

Björnsson, Y. and Marsland, T.A. (2001b). Multi-Cut Alpha-Beta Pruning in Game-
Tree Search. Theoretical Computer Science, Vol. 252, Nos. 1–2, pp. 177–196.
[68, 70]

Björnsson, Y. and Winands, M.H.M. (2001). YL Wins Lines of Action Tournament.
ICGA Journal, Vol. 24, No. 3, pp. 180–181. [28, 102]

Björnsson, Y. and Winands, M.H.M. (2002). YL Wins Lines of Action Tournament.
ICGA Journal, Vol. 25, No. 3, pp. 185–186. [28, 103]

Björnsson, Y., Marsland, T.A., Schaeffer, J., and Junghans, A. (1997). Searching
with Uncertainty Cut-Offs. ICCA Journal, Vol. 20, No. 1, pp. 29–37. [65]



References 93

Breuker, D.M. (1998). Memory versus Search in Games. Ph.D. thesis, Universiteit
Maastricht, Maastricht, The Netherlands. [3, 36, 39, 46, 53, 111]

Breuker, D.M., Allis, L.V., and Herik, H.J. van den (1994a). How to Mate: Applying
Proof-Number Search. Advances in Computer Chess 7 (eds. H.J. van den Herik,
I.S. Herschberg, and J.W.H.M. Uiterwijk), pp. 251–272. University of Limburg,
Maastricht, The Netherlands. [36]

Breuker, D.M., Herik, H.J. van den, Uiterwijk, J.W.H.M., and Allis, L.V. (1994b).
Replacement Schemes for Transposition Tables. ICCA Journal, Vol. 14, No. 4,
pp. 183–193. [44]

Breuker, D.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (1996). Replacement
Schemes and Two-Level Tables. ICCA Journal, Vol. 19, No. 3, pp. 175–180. [6,
16, 40, 48]

Breuker, D.M., Herik, H.J. van den, Uiterwijk, J.W.H.M., and Allis, L.V. (2001a).
A Solution to the GHI Problem for Best-First Search. Theoretical Computer
Science, Vol. 252, Nos. 1–2, pp. 121–149. [40, 49]

Breuker, D.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2001b). The PN2-
Search Algorithm. Advances in Computer Games 9 (eds. H.J. van den Herik
and B. Monien), pp. 115–132, IKAT, Universiteit Maastricht, Maastricht, The
Netherlands. [36, 39, 40, 57]

Buro, M. (1995). ProbCut: An Effective Selective Extension of the Alpha-Beta
Algorithm. ICCA Journal, Vol. 18, No. 2, pp. 71–76. [64]

Buro, M. (1997). The Othello Match of the Year: Takeshio Murakami vs. Logistello.
ICCA Journal, Vol. 20, No. 3, pp. 189–193. [2]

Buro, M. (2000). Experiments with Multi-ProbCut and a New High-Quality Evalu-
ation Function for Othello. Games in AI Research (eds. H.J. van den Herik and
H. Iida), pp. 77–96. Universiteit Maastricht, Maastricht, The Netherlands. [64]

Bush, D. (2000). An Introduction to TwixT. Abstract Games, Vol. 1, No. 2, pp.
9–12. [9]

Bushinsky, S. (2004). Personal Communication. [20]

Campbell, M., Hoane, A.J. Jr., and Hsu, F.-h. (2002). Deep Blue. Artificial Intelli-
gence, Vol. 134, Nos. 1–2, pp. 57–83. [36, 75]

Chaunier, C. and Handscomb, K. (2001). Lines of Action Strategic Ideas – Part 4.
Abstract Games, Vol. 2, No. 1, pp. 12–14. [5, 11, 26]

Davies, J. (1979). Small-Board Problems. Go World, Vol. 14–16, pp. 55–56. [82]

Davies, J. (1980). Go in Lilliput. Go World, Vol. 17, pp. 55–56. [82]

Donkers, H.H.L.M. (2003). Nosce Hostem: Searching with Opponent Models. Ph.D.
thesis, Universiteit Maastricht, Maastricht, The Netherlands. [4]



94 References

Donkers, H.H.L.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2003). Admissi-
bility in Opponent-Model Search. Information Sciences, Vol. 154, Nos. 3–4, pp.
119–140. [15]

Donninger, C. (1993). Null Move and Deep Search: Selective-Search Heuristics for
Obtuse Chess Programs. ICCA Journal, Vol. 16, No. 3, pp. 137–143. [16, 64]

Dyer, D. (2000). Lines of Action Homepage. http://www.andromeda.com/people/
ddyer/loa/loa.html. [15]

Eppstein, D. (1997). Dynamic Connectivity in Digital Images. Information Process-
ing Letters, Vol. 62, No. 3, pp. 121–126. [15]

Feldmann, R. (1997). Fail High Reductions. Advances in Computer Chess 8 (eds.
H.J. van den Herik and J.W.H.M Uiterwijk), pp. 111–127. Universiteit Maas-
tricht, Maastricht, The Netherlands. [65]

Fraenkel, A.S. (1996). Combinatorial Games: Selected Bibiliography with a Suc-
cint Gourmet Introduction. Games of No Chance. Combinatorial Games at
MSRI 1994 (ed. R.J. Nowakowski), pp. 493–537. Cambridge University Press,
Cambridge, England. [2]

Gasser, R.U. (1995). Harnessing Computational Resources for Efficient Exhaustive
Search. Ph.D. thesis, Swiss Federal Institute of Technology, Zürich, Switzerland.
[2]

Goetsch, G. and Campbell, M.S. (1990). Experiments with the Null-Move Heuristic.
Computers, Chess, and Cognition (eds. T.A. Marsland and J. Schaeffer), pp.
159–168. Springer-Verlag, New York, NY, USA.[64, 72]

Gray, S.B. (1971). Local Properties of Binary Images in Two Dimensions. IEEE
Transactions on Computers, Vol. 20, No. 5, pp. 551–561. [23]

Guibert, N. and Wesselink, W. (2003). The Revenge Match Samb – Buggy. ICGA
Journal, Vol. 26, No. 2, pp. 126–131. [2]

Handscomb, K. (2000a). Lines of Action Strategic Ideas – Part 1. Abstract Games,
Vol. 1, No. 1, pp. 9–11. [5, 11, 13, 25]

Handscomb, K. (2000b). Lines of Action Strategic Ideas – Part 2. Abstract Games,
Vol. 1, No. 2, pp. 18–19. [5, 11, 12, 13]

Handscomb, K. (2000c). Lines of Action Strategic Ideas – Part 3. Abstract Games,
Vol. 1, No. 3, pp. 18–19. [5, 11, 12, 14]

Hartmann, D. (1988). Butterfly Boards. ICCA Journal, Vol. 11, Nos. 2–3, pp. 64–71.
[6, 75, 76]

Hashimoto, T., Nagashima, J., Sakuta, M., Uiterwijk, J.W.H.M., and Iida, H.
(2003). Automatic Realization-Probability Search. Internal report, Dept. of
Computer Science, University of Shizuoka, Hamamatsu, Japan. [15, 24]



References 95

Heinz, E.A. (1999). Adaptive Null-Move Pruning. ICCA Journal, Vol. 22, No. 3,
pp. 123–132. [16]

Heinz, E.A. (2000). Scalable Search in Computer Chess. Vieweg Verlag, Braun-
schweig, Germany. [3]

Herik, H.J. van den and Iida, H. (eds.) (2000). Games in AI Research. Universiteit
Maastricht, Maastricht, The Netherlands. [1]

Herik, H.J. van den, Uiterwijk, J.W.H.M., and Rijswijck, J. van (2002). Games
Solved, Now and in the Future. Artificial Intelligence, Vol. 134, Nos. 1–2, pp.
277–311. [2]

Hsu, F.-h. (2002). Behind Deep Blue: Building the Computer that Defeated the
World Chess Champion. Princeton University Press, Princeton, NJ, USA.[2]

Irving, G., Donkers, H.H.L.M., and Uiterwijk, J.W.H.M. (2000). Solving Kalah.
ICGA Journal, Vol. 23, No. 3, pp. 139–1–48. [2]

Junghanns, A. and Schaeffer, J. (1997). Search versus Knowledge in Game-Playing
Programs Revisited. IJCAI-97, pp. 692–697. [3]

Kishimoto, A. and Müller, M. (2003a). A Solution to the GHI Problem for
Depth-First Proof-Number Search. Proceedings of the 7th Joint Confer-
ence on Information Sciences (JCIS 2003) (ed. P. Wang et. al), pp. 489–492,
JCIS/Association for Intelligent Machinery, Inc, USA.[36, 40]

Kishimoto, A. and Müller, M. (2003b). Df-pn in Go: An Application to the One-
Eye Problem. Advances in Computer Games 10: Many Games, Many Chal-
lenges (eds. H.J. van den Herik, H. Iida, and E.A. Heinz), pp. 125–141. Kluwer
Academic Publishers, Boston, MA, USA.[40]

Knuth, D.E. and Moore, R.W. (1975). An Analysis of Alpha-Beta Pruning. Artificial
Intelligence, Vol. 6, No. 4, pp. 293–326. [15, 36, 64]

Kocsis, L. (2003). Learning Search Decisions. Ph.D. thesis, Universiteit Maastricht,
Maastricht, The Netherlands. [6]

Kocsis, L., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2001a). Learning Time Al-
location using Neural Networks. Computers and Games, Lecture Notes in Com-
puter Science 2063 (eds. T.A. Marsland and I. Frank), pp. 170–185, Springer-
Verlag, Berlin, Germany. [15]

Kocsis, L., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2001b). Move Ordering
using Neural Networks. Engineering of Intelligent Systems, Lecture Notes in
Artificial Intelligence, Vol. 2070 (eds. L. Montosori, J. Váncza, and M. Ali), pp.
45–50. Springer-Verlag, Berlin, Germany. [6, 15]

Levy, D. (2003a). The State of the Art in Man vs. Machine Chess. ICGA Journal,
Vol. 26, No. 1, pp. 3–8. [2]



96 References

Levy, D. (2003b). Kasparov vs. X3D Fritz. ICGA Journal, Vol. 26, No. 4, pp.
289–290. [2]

Marsland, T.A. (1983). Relative Efficiency of Alpha-Beta Implementations. Proceed-
ings of the 8th International Joint Conference on Artificial Intelligence (IJCAI-
83), pp. 763–766, Karlsruhe, Germany. [63, 65]

Marsland, T.A. (1986). A Review of Game-Tree Pruning. ICCA Journal, Vol. 9,
No. 1, pp. 3–19. [15]

Marsland, T.A. and Björnsson, Y. (2001). Variable-Depth Search. Advances in Com-
puter Games 9 (eds. H.J. van den Herik and B. Monien), pp. 9–24. Universiteit
Maastricht, Maastricht, The Netherlands. [5, 65]

Marsland, T.A. and Campbell, M. (1982). Parallel Search of Strongly Ordered Game
Trees. Computing Surveys, Vol. 14, No. 4, pp. 533–551. [16]

Marsland, T.A. and Popowich, F. (1985). Parallel Game-Tree Search. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence PAMI, Vol. 7, No. 4, pp.
442–452. [64]

McAllester, D.A. (1988). Conspiracy Numbers for Min-Max Search. Artificial Intel-
ligence, Vol. 35, No. 1, pp. 278–310. [36]

Müller, K. (2002). The Clash of the Titans: Kramnik – Fritz Bahrain. ICGA
Journal, Vol. 25, No. 4, pp. 233–238. [2]

Müller, K. (2003). Man Equals Machine In Chess. ICGA Journal, Vol. 26, No. 1,
pp. 9–13. [2]

Nagai, A. (1998). A New AND/OR Tree Search Algorithm using Proof Number and
Disproof Number. Proceedings of Complex Games Lab Workshop, pp. 40–45,
ETL, Tsukuba, Japan. [37, 40, 48, 49, 53, 114]

Nagai, A. (1999). A New Depth-First-Search Algorithm for AND/OR Trees. M.Sc.
thesis, The University of Tokyo, Tokyo, Japan. [40, 43]

Nagai, A. (2002). Df-pn Algorithm for Searching AND/OR Trees and its Applica-
tions. Ph.D. thesis, The University of Tokyo, Tokyo, Japan. [40, 61, 89]

Nagai, A. and Imai, H. (1999). Application of Df-pn+ to Othello Endgames. Pro-
ceedings of Game Programming Workshop in Japan ’99, pp. 16–23, Hakone,
Japan. [37]

Nalimov, E.V., Haworth, G.McC., and Heinz, E.A. (2000). Space-Efficient Indexing
of Chess Endgame Tables. ICGA Journal, Vol. 23, No. 3, pp. 148–162. [36]

Plaat, A., Schaeffer, J., Pijls, W., and Bruin, A. de (1996). Best-First Fixed-Depth
Minimax Algorithms. Artificial Intelligence, Vol. 87, No. 2, pp. 255–293. [36]

Reinefeld, A. (1983). An Improvement to the Scout Search Tree Algorithm. ICCA
Journal, Vol. 6, No. 4, pp. 4–14. [16, 63]



References 97

Romein, J.W. and Bal, H.E. (2003). Solving the Game of Awari using Parallel
Retrograde Analysis. IEEE Computer, Vol. 36, No. 10, pp. 26–33. [2]

Sackson, S. (1969). A Gamut of Games. Random House, New York, NY, USA.[9]

Sakuta, M. (2001). Deterministic Solving of Problems with Uncertainty. Ph.D.
thesis, Shizuoka University, Hamamatsu, Japan. [40]

Sakuta, M. and Iida, H. (2001). The Performance of PN*, PDS and PN Search
on 6×6 Othello and Tsume-Shogi. Advances in Computer Games 9 (eds. H.J.
van den Herik and B. Monien), pp. 203–222. Universiteit Maastricht, Maas-
tricht, The Netherlands. [36, 40, 43, 61, 89]

Sakuta, M., Hashimoto, T., Nagashima, J., Uiterwijk, J.W.H.M., and Iida, H.
(2003). Application of the Killer-tree Heuristic and the Lamba-Search Method
to Lines of Action. Information Sciences, Vol. 154, Nos. 3–4, pp. 141–155. [15,
17]

Samuel, A.L. (1959). Some Studies in Machine Learning Using the Game of Checkers.
IBM Journal of Research and Development, Vol. 3, pp. 210–229. [1]

Schaeffer, J. (1983). The History Heuristic. ICCA Journal, Vol. 6, No. 3, pp. 16–19.
[6, 16, 76, 78]

Schaeffer, J. (1984). The Relative Importance of Knowledge. ICCA Journal, Vol. 7,
No. 3, pp. 138–145. [23]

Schaeffer, J. (1986). Experiments in Search and Knowledge. Ph.D. thesis, Depart-
ment of Computing Science, University of Waterloo, Waterloo, Canada. [3, 34,
79, 89]

Schaeffer, J. (1989). The History Heuristic and the Performance of Alpha-Beta En-
hancements. IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 11, No. 11, pp. 1203–1212. [78, 79]

Schaeffer, J. (1990). Conspiracy Numbers. Artificial Intelligence, Vol. 43, No. 1, pp.
67–84. [36]

Schaeffer, J. (1997). One Jump Ahead: Challenging Human Supremacy in Checkers.
Springer-Verlag, New York, NY, USA.[2, 11]

Schaeffer, J. and Lake, R. (1996). Solving the Game of Checkers. Games of No
Chance (ed. R.J. Nowakowski), pp. 119–133. Cambridge University Press, Cam-
bridge, England. [36]

Schaeffer, J. and Plaat, A. (1996). New Advances in Alpha-Beta Searching. Pro-
ceedings of the 1996 ACM 24th Annual Conference on Computer Science, pp.
124–130. ACM Press, New York, NY, USA.[16]

Seo, M., Iida, H., and Uiterwijk, J.W.H.M. (2001). The PN*-Search Algorithm:
Application to Tsume-Shogi. Artificial Intelligence, Vol. 129, Nos. 1–2, pp.
253–277. [36, 39, 61, 89]



98 References

Shannon, C.E. (1950). Programming a Computer for Playing Chess. Philosophical
Magazine, Vol. 41, No. 7, pp. 256–275. [1, 11]

Sheppard, B. (2002). World-Championship-Caliber Scrabble. Artificial Intelligence,
Vol. 134, pp. 241–275. [2]

Tesauro, G.J. (1994). TD-Gammon, A Self-Teaching Backgammon Program,
Achieves Master-Level Play. Neural Computation, Vol. 6, pp. 215–219. [2]

Tsuruoka, Y., Yokoyama, D., and Chikayama, T. (2002). Game-tree Search Al-
gorithm based on Realization Probability. ICGA Journal, Vol. 25, No. 3, pp.
132–144. [77]

Turing, A.M. (1953). Digital Computers Applied to Games. Faster Than
Thought (ed. B.V. Bowden), pp. 286–297, Pitman Publishing, London, Eng-
land. [1]

Uiterwijk, J.W.H.M. (1992). The Countermove Heuristic. ICCA Journal, Vol. 15,
No. 1, pp. 8–15. [89]

Uiterwijk, J.W.H.M. and Herik, H.J. van den (2000). The Advantage of the Initia-
tive. Information Sciences, Vol. 122, No. 1, pp. 43–58. [14, 26]

Wágner, J. and Virág, I. (2001). Solving Renju. ICGA Journal, Vol. 24, No. 1, pp.
30–34. [2]

Wellman, M.P. (1990). Fundamental Concepts of Qualitative Probablistic Networks.
Artificial Intelligence, Vol. 44, No. 3, pp. 257–303. [32]

Werf, E.C.D. van der, Herik, H.J. van den, and Uiterwijk, J.W.H.M. (2003). Solving
Go on Small Boards. ICGA Journal, Vol. 26, No. 2, pp. 92–107. [82, 88]

Winands, M.H.M. (2000). Analysis and Implementation of Lines of Action. M.Sc.
thesis, Universiteit Maastricht, Maastricht, The Netherlands. [11, 26, 32]

Winands, M.H.M. (2003). MIA IV wins Lines of Action Tournament. ICGA Journal,
Vol. 26, No. 4, pp. 264–265. [28, 105]

Winands, M.H.M. and Uiterwijk, J.W.H.M. (2001). PN, PN2 and PN* in Lines
of Action. The CMG Sixth Computer Olympiad Computer-Games Workshop
Proceedings (ed. J.W.H.M. Uiterwijk), Technical Reports in Computer Science
CS 01-04, Universiteit Maastricht, Maastricht, The Netherlands. [35]

Winands, M.H.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2001a). The
Quad Heuristic in Lines of Action. ICGA Journal, Vol. 24, No. 1, pp. 3–15. [9,
11, 16, 19, 23, 28]

Winands, M.H.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2001b). Com-
bining Proof-Number Search with Alpha-Beta Search. Proceedings of the
Thirteenth Belgium-Netherlands Conference on Artificial Intelligence (BNAIC
2001) (eds. B. Kröse, M. de Rijke, G. Schreiber, and M. van Someren), pp.
299–306, Universiteit van Amsterdam, Amsterdam, The Netherlands. [35]



References 99

Winands, M.H.M., Kocsis, L., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2002).
Temporal Difference Learning and the Neural MoveMap Heuristic in the Game
of Lines of Action. GAME-ON 2002 3rd International Conference on Intelligent
Games and Simulation (eds. Q. Mehdi, N. Gough, and M. Cavazza), pp. 99–103,
SCS Europe Bvba, Ghent, Belgium.[22, 28]

Winands, M.H.M., Herik, H.J. van den, and Uiterwijk, J.W.H.M. (2003a). An
Evaluation Function for Lines of Action. Advances in Computer Games 10:
Many Games, Many Challenges (eds. H.J. van den Herik, H. Iida, and E.A.
Heinz), pp. 249–260. Kluwer Academic Publishers, Boston, MA, USA.[19]

Winands, M.H.M., Herik, H.J. van den, Uiterwijk, J.W.H.M., and Werf, E.C.D.
van der (2003b). Enhanced Forward Pruning. Proceedings of the 7th Joint
Conference on Information Sciences (JCIS 2003) (ed. P. Wang et al.), pp. 485–
488, JCIS/Association for Intelligent Machinery, Inc, USA.[63]

Winands, M.H.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2003c). PDS-PN:
A New Proof-Number Search Algorithm: Application to Lines of Action. Com-
puters and Games, Lecture Notes in Computer Science 2883 (eds. J. Schaeffer,
M. Müller, and Y. Björnsson), pp. 170–185, Springer-Verlag, Berlin, Germany.
[35, 47]

Winands, M.H.M., Herik, H.J. van den, Uiterwijk, J.W.H.M., and Werf, E.C.D.
van der (2004a). Enhanced Forward Pruning. Information Sciences. Accepted
for publication. [63]

Winands, M.H.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2004b). An
Effective Two-Level Proof-Number Search Algorithm. Theoretical Computer
Science, Vol. 313, No. 3, pp. 511–525. [47]

Winands, M.H.M., Werf, E.C.D. van der, Herik, H.J. van den, and Uiterwijk,
J.W.H.M. (2004c). The Relative History Heuristic. Proceedings of the Fourth
International Conference on Computers and Games (CG 2004) (eds. H.J.
van den Herik, Y. Björnsson, and N.S. Netanyahu). Accepted for publication.
[75]

Zobrist, A.L. (1970). A New Hashing Method for Game Playing. Technical Re-
port 88, Computer Science Department, The University of Wisconsin, Madison,
WI, USA. Reprinted (1990) in ICCA Journal, Vol. 13, No. 2, pp. 69–73. [16,
44]





Appendix A

LOA at the Computer
Olympiads

The Computer Olympiad is a multi-games event in which all participants are com-
puter programs. The Olympiad is a brainchild of David Levy, who organised this
tournament in London in 1989 for the first time. The list of the nine Computer
Olympiads so far is: London (1989), London (1990), Maastricht (1991), London
(1992), London (2000), Maastricht (2001), Maastricht (2002), Graz (2003), and
Ramat-Gan (2004). The purpose of the Olympiad is to find the strongest program
for each game. Some teams arrive with the clear goal of winning the tournament,
other teams come to participate only, and a third type of participants enters the
Olympiad to test new ideas under tournament conditions. The Olympiad is a truly
international event. Participants come from all over the world: USA, Canada, Japan,
Taiwan, China, Israel, and the European Union. The event is held under the aus-
pices of the ICGA (International Computer Games Association). Since 2000 there
has been a LOA computer tournament. In this tournament each program must com-
plete its moves for one game in 30 minutes. Programs play four games against each
other.

The Fifth Computer Olympiad

The fifth Computer Olympiad was held in London in 2000. Three programs com-
peted in the LOA tournament: YL, Mona, and MIA I (see Björnsson, 2000 for a
detailed report). The program YL written by Yngvi Björnsson (Iceland) was the
winner of the University of Alberta LOA computer championship (2000), finishing
with a perfect score of 22-0, ahead of Mona (second place) and 10 other LOA pro-
grams. One of its strengths was that it searched extremely fast and could therefore
analyse positions more deeply than other programs (and humans). Its evaluation
function was carefully tuned with the help of a Temporal-Difference learning method.
The program Mona was written by Darse Billings (Canada). It is well-known for
its established impressive track record when playing email games. The program has



102 Appendix A: LOA at the Computer Olympiads

won each and every email game it has played so far, including games against some of
the world’s elite players. The program used extensive game-specific knowledge and
understood concepts that human players frequently use, such as a main group, bad
outlier pieces, threats, and good vs. bad blockades. MIA I is described in this thesis.
The final standings of the LOA tournament are shown in Table A.1. YL took the
gold medal, Mona was awarded silver, and MIA I received the bronze medal.

Table A.1: The final standings of the LOA tournament at the 5th Computer Olympiad.

Place Program YL Mona MIA I Points
1 YL - 3-1 3-1 6
2 Mona 1-3 - 3-1 4
3 MIA I 1-3 1-3 - 2

The CMG Sixth Computer Olympiad

The sixth Computer Olympiad was held in Maastricht in 2001. Again three pro-
grams competed in the LOA tournament. This time, they were: YL, MIA II, and
Apprentice (see Björnsson and Winands, 2001 for a detailed report). The version
of YL that participated was fundamentally the same as last year’s, although some
small, but important improvements were made. Primarily, the new version had a
better understanding of blocked positions; the search algorithm was augmented with
multi-cut pruning (giving an additional ply of search), repetition detection, and an
enhanced move-ordering mechanism; finally, some minor bugs were fixed here and
there. MIA II is described in this thesis. Apprentice was a newcomer to the scene
(although its author Don Beal (UK) is a veteran computer-game programmer). It
utilised the same search engine as was implemented in Beal’s chess program and as
such it employed many of the standard game-tree search techniques. However, its
evaluation function was rather rudimentary. It evaluated how close each side was to
connecting by approximating how many moves it would take for the side to connect
if it were allowed to move its pieces freely.

The final standings of the LOA tournament are shown in Table A.2. After the
normal rounds, YL and MIA II tied for the first place. Thus a play-off match was
necessary to decide the winner. Two games of 30 minutes each were played and YL
won them both.

YL and MIA II were noticeably stronger than they were last year. This was
apparent from the games they played each other. They turned out to be long and
hard-fought fights.



Appendix A: LOA at the Computer Olympiads 103

Table A.2: The final standings of the LOA tournament at the CMG 6th Computer
Olympiad.

Place Program YL MIA II Apprentice Points
1 YL - 2-2 4-0 6 (+2)
2 MIA II 2-2 - 4-0 6
3 Apprentice 0-4 0-4 - 0

Selected Games

MIA II vs. YL (Game 2)
1. c8-c6 a4-c2 2. d8-b6 a6-c4 3. b8-b5 h2-e2 4. g8-g6 a2-d2 5. g6xc2

h4-f2 6. b6xf2 h6-e3 7. e8-e4 a3-c5 8. g1-g2 h3-g4 9. g2xg4 h5-d5 10.

g4-d4 a5-b6 11. f8-f5 h7-f7 12. e1-g3 e3-c3 13. g3-e3 c3xe3 14. f2-g3

e3-c3 15. g3-e3 c3xe3 16. e4-e7 c5xe7 17. f5-f2 d5xb5 18. c6-e6 b5-c6

19. b1-d3 c6xc2 20. f1-f4 f7xf4 21. e6xc4 e7-e4 22. c4-b3 f4-g3 23. c1-a1

a7-b7 24. d4-b4 b7-d5 25. a1-b2 c2-c3 26. b3xd5 b6-c7 27. b2-a3 c7-e5

28. b4-d4 g3-g4 29. d5-e6 e5-f4 0-1

YL vs. MIA II (Game 3)
1. d1-b3 h4-f2 2. b1-b4 h7-f7 3. g8-g6 h2-e2 4. f8-c5 h3-e3 5. b8-b5

h5-d5 6. c1-c4 h6-h5 7. f1-g2 h5xc5 8. c8xc5 e3xb3 9. d8-b6 d5-d6 10.

g6-f5 f2xf5 11. e1-f2 e2-f3 12. g1-g3 a2-d2 13. c4-c6 a7-a2 14. e8xa4 f7-c4

15. c6xf3 b3xf3 16. f2-h4 d2-d4 17. g2-h3 f5-e4 18. h4-h6 e4-c6 19. h6-g7

a3-e3 20. g3-e5 a2-b2 21. e5xe3 b2-c1 22. e3xc1 f3-d5 23. g7-g8 c4-f7 24.

b4-b7 f7-d7 25. g8-g7 a5-b4 26. b6-a5 d6-c7 27. a4-b3 c6-e6 28. b7xd5

d7xb5 29. h3-g2 e6-c6 30. g2-f1 d4-f4 31. d5-d6 f4-d4 32. c1-d2 a6-b7

33. f1-g2 b7xb3 34. a5xc7 d4-b2 0-1

The Seventh Computer Olympiad

The seventh Computer Olympiad was held in Maastricht in 2002. Four programs
competed in the LOA tournament: YL, MIA III, (T-T), and Pete (see Björns-
son and Winands, 2002 for a detailed report). YL was substantially improved with
respect to the previous year’s version, featuring more extensive LOA domain knowl-
edge and a better-tuned evaluation function. MIA III is described in this thesis.
(T-T) – pronounced as “uruuru” – by Jun Nagashima (Japan), and Pete by Inge
Wallin (Sweden) were newcomers. (T-T) used an innovative selective-extension al-
gorithm, called realisation-probability search (first introduced in the Shogi program
Gekisashi that won the 12th CSA tournament in 2002). Pete’s author is one of
the main contributors to the GNU Go project. The final standings of the LOA
tournament are shown in Table A.3.

YL won its third consecutive gold medal, MIA earned the silver, and (T-T) the
bronze. The fact that Pete lost all its games did not reflect rightly on the program’s



104 Appendix A: LOA at the Computer Olympiads

Table A.3: The final standings of the LOA tournament at the 7th Computer Olympiad.

Place Program YL MIA III (T-T) Pete Points
1 YL - 2.5-1.5 4-0 4-0 10.5
2 MIA III 1.5-2.5 - 3-1 4-0 8.5
3 (T-T) 0-4 1-3 - 4-0 5
4 Pete 0-4 0-4 0-4 - 0

playing strength. It played the opening and middle game very respectably, whereas
the endgame was its weak spot – typically throwing away any advantage it might
have had. Both YL and MIA were again noticeably stronger than last year, a direct
consequence of the competitive nature of these Computer Olympiad events.

Selected Games

MIA III vs. YL (Game 3)

1. e1-g3 a3-d3 2. d8-b6 a4-c2 3. f1-f3 a2-d2 4. d1-g4 h5-f7 5. c8-f5 h7-e7

6. b1-b4 h4-f6 7. b8-b5 c2xf5 8. b4xe7 f6xb6 9. g1-g5 f5xb5 10. c1-b1

d3-d5 11. f3xd5 h2-f2 12. b1-b4 d2xg5 13. e7xg5 h6xf8 14. b4-d4 f8-e7

15. e8-c6 f2-f4 16. c6-e4 b5-c6 17. g5xe7 b6-e6 18. e7-f6 h3-g2 19. g8-h8

e6xe4 20. h8-e5 c6xf6 21. g3-g6 f7-d7 22. g6xe4 a5xd5 23. g4-f3 1-0

YL vs. MIA III (Game 4)

1. b1-b3 h4-f2 2. b8-b6 a2-d2 3. b6xf2 This is a somewhat unusual opening
move. Typically, Black continues to reinforce his blockade along the b-file, instead
of attacking White’s blockade. However, the move played is an interesting choice.
3. ... h5-f7 4. e1-g3 h7-e7 5. d8-b6 d2-d4 6. d1-e2 a6-d3 7. g8-g5 a5-b4

8. f8xh6 e7xg5 9. h6xh3 The white piece on h2 is now completely blocked by
the black pieces (see Figure A.1a). Normally, this would be a clear advantage for
Black, although in this case it is not so clear because there are decentralised black
pieces. Sooner or later Black must release the blockade to activate his pieces. Both
programs evaluate this position as slightly favourable for Black. Maybe, a better
plan for White would have been to play 8. ... h2-h5 (or h3xh6) instead of grabbing a
piece with 8. ... e7xg5. 9. ... a7-c7 10. h3-f5 a4-a2 11. e2-e4 b4xe4 12. c8-e6

a2-a4 13. f1-g2 e4xg2 14. b6-b4 c7-b6 15. c1-c2 g2-f3 16. g1-g4 a3-a5

17. e8-c6 a5-d5 Black is now clearly getting the upper hand (see Figure A.1b).
Although White has a firm grip on the centre, Black circumvents White’s stronghold
by wrapping around the centre. White’s pieces are more scattered and the piece on
h2 is still somewhat poorly placed. Black now finishes the game convincingly. 18.

c6-f6 d4xf6 19. g3-e5 b6-c7 20. f2-g3 h2-f2 21. g3-d6 c7-c5 22. b3-b5

f7-e8 23. c2xa4 f3-d1 24. g4-d4 c5-c4 25. a4-d7 d1-e1 26. d4-b6 e1xe5

27. d7-c7 1-0



Appendix A: LOA at the Computer Olympiads 105

Figure A.1: (a) After 9. h6xh3. (b) After 17. ... a5-d5.

The Eighth Computer Olympiad

The eighth Computer Olympiad was held in Graz in 2003. Three programs com-
peted in the LOA tournament: MIA IV, Bing, and (T-T) (see Winands, 2003 for a
detailed report). MIA IV is described in this thesis. According to its author, (T-T)’s
evaluation function was considerably improved compared to the previous year’s ver-
sion. Bing (Bing Is Not GnuChess) written by Bernard Helmstetter (France) was
a newcomer. It reused a great deal of the code of GNU Chess (mainly written by
Chua Kong-Sian and Stuart Cracraft). The program Bing used a new approach
to LOA: a neural network with one hidden layer in the evaluation function. This
neural network used as input the standard LOA evaluation-function features (i.e.,
distance to the centre-of-mass, mobility, quads, number of connections, etc.).

Each program as usual played four games against each other. Bing and MIA
played the first two games. MIA convincingly won the first game after a crucial
strategic mistake by Bing in the early phase of the game. Still, it did not pass
unnoticed that Bing played the first moves according to the main line of MIA’s
opening book. Moreover, I was a bit surprised by Bing’s good strategic play. The
usual experience with new programs is that they do not play so well in the opening.
Nevertheless, I was confident for the second game in which MIA played White. Bing
surprisingly opened the second game with the somewhat weak 1. c1-c3 (1. b1-b3
or 1. d1-b3 are considered better opening moves). After a few moves (for the moves
of the game, see below), MIA was able to turn the first-player’s advantage into its
own and gradually improved its position on the board. However, after 13. b1-c2

(see Figure A.2a) its score started slowly to drop. Finally, MIA played 13. ... d7-

c6. Post-mortem analysis suggested that 13. ... e5xc3 was maybe better (but not
that much). After the move played the position deteriorated and MIA lost. MIA
apparently walked into a tactical trap and in contrast to the first game Bing did
not make any real mistakes.

On the second day (T-T) entered the arena. I expected that Bing would lose
points against the greatly improved (T-T). However, Bing won the first two games.
Then MIA won without many problems its first game against (T-T). In the next
game (T-T) showed its strength. Again MIA ran into problems with White, and



106 Appendix A: LOA at the Computer Olympiads

Figure A.2: (a) After 13. b1-c2. (b) After 17. ... g5-f4. (c) After 18. ... d4-g4.

once more after it had reached a “favourable” position. However, that position was
doomed because of a very deep and subtle tactical feature. (T-T) got the advantage
back, but erred with 18. c7xa5 (Figure A.2b, possible alternatives are 18. c7-d7 or
18. d3xb3). Somewhat later MIA succeeded to escape. (T-T) finished its already
unfortunate day with another loss against Bing. After this day Bing had 4 points,
MIA 3 points and (T-T) 0 points.

The third day of the tournament turned out to be decision day. Bing started well
by winning again against (T-T), obtaining a good position to win the tournament.
In the third encounter between MIA and Bing, MIA played the black pieces, got
a slight advantage out of the opening, maintained it, and gradually outplayed the
opponent. In the last game against Bing, MIA was again able to reach a decent
position with White. Then Bing sacrificed a few pieces to reach a slippery position.
However, Bing crashed after 18. ... d4-g4 (see Figure A.2c). According to MIA the
game is probably a draw by repetition (19. g5-h4 g4-h3 20. h4-g5 h3-g4). Bing was
not going for the draw, it planned a weak move instead. Under the circumstances
described above (a crashed program) Helmstetter resigned on behalf of the program,
because it was short on time anyway. MIA won easily the last games against (T-T).
The final standings of the LOA tournament are shown in Table A.4.

Table A.4: The final standings of the LOA tournament at the 8th Computer Olympiad.

Place Program MIA IV Bing (T-T) Points
1 MIA IV - 3-1 4-0 7
2 Bing 1-3 - 4-0 5
3 (T-T) 0-4 0-4 - 0

MIA won its first gold medal, Bing earned the silver medal and (T-T) received
the bronze medal. Bing was definitely the surprise of the tournament.



Appendix A: LOA at the Computer Olympiads 107

Selected Games

MIA IV vs. Bing (Game 1)

1. e8-g6 a5-c7 2. d1-b3 a7-d7 3. b8-b5 a6-d6 4. c1-c4 a2-c2 5. b1-b4

a4-a6 6. b5xd7 a6-e6 7. g1-g4 h6xf8 8. g8-g5 d6xg6 9. b3xe6 a3-c3 10.

e6xg6 c2-f5 11. e1-g3 c7-f4 12. b4-b5 f5xf1 13. c4-d5 c3-d2 14. c8xf8

d2xg5 15. d8xg5 f1-e1 16. b5-f5 e1-d1 17. g3-g7 f4-c4 18. f8-f6 d1xg4 19.

g6-e6 1-0

Bing vs. MIA IV (Game 2)

1. c1-c3 a4-c2 2. c8-c5 h5-f7 3. b8-b6 a5xc5 4. g1xc5 a7-d7 5. f1xh3

a2-d2 6. e8-e6 h2-e2 7. c5xc2 a3-c5 8. c2xc5 h7xh3 9. g8-g7 h3xe6 10.

g7-e5 h4-f2 11. f8-d6 f2xc5 12. d8-c8 c5xe5 13. b1-c2 d7-c6 14. c8xe6

c6xc3 15. b6-b5 d2-d5 16. e1xc3 e2xb5 17. c2-c4 d5-d2 18. d1-c2 e5xc3

19. d6-d4 f7-g7 20. e6-e5 d2xd4 21. c2-d3 g7-g6 22. e5-e4 1-0

MIA IV vs. Bing (Game 3)

1. b8-b6 h5-f7 2. e1-g3 h4-f4 3. c1xf4 h6xf4 4. b1-b3 h7-e7 5. g1-g4 h2-f2

6. d1xa4 a6-c4 7. f1-d3 e7-b4 8. a4-c6 h3-g2 9. g3-c3 f2-c5 10. d8xa5

b4xf8 11. a5-c7 a2-a5 12. c3-d4 a3-b2 13. d4-d6 a5-b4 14. e8-e7 g2-e4

15. d3-d5 b2-c3 16. g8-g6 e4-c2 17. b6-f6 a7-b8 18. g4-e6 b8-b5 19. c8-e8

c5-d4 20. e8xb5 c3xf6 21. c7xf7 f4-e3 22. b3-d3 f8-e8 23. c6-e4 c4-c6 24.

g6xc2 b4xe4 25. c2-c4 1-0

Bing vs. MIA IV (Game 4)

1. d8-b6 h5-f7 2. b1-b4 h2-f2 3. b6xf2 h6xf8 4. c8xa6 h7-e7 5. b8-b6

f8xb4 6. e8-c6 h3xf1 7. d1-e2 a5-d2 8. a6-d3 a2xe2 9. g8-g6 e2-b2 10.

g1-g3 f1xd3 11. g3xd3 h4-f6 12. g6-e4 f6-d4 13. b6-d6 e7xe4 14. c1-c3

a4xc6 15. d6-f6 b4-d6 16. c3-f3 c6xf3 17. f6-g5 f7-f4 18. d3-e2 d4-g4 Bing
resigns 0-1

(T-T) vs. MIA IV (Game 2)

1. d1-b3 h4-f2 2. g1-g3 h7-f7 3. g8-g6 h2-e2 4. b1-d3 h6-f4 5. b8-b6 h3-f5

6. e1-b1 f4-d4 7. b1xf5 f2xb6 8. g3-f4 f7-d7 9. c1xa3 h5-h6 10. f8-d6

e2-e4 11. f4-f7 e4-b4 12. c8-c7 d7xf5 13. f1-c4 h6-g5 14. f7xf5 b6xb3 15.

d8xd4 a6xd6 16. g6-e6 a7-c5 17. a3-b2 g5-f4 18. c7xa5 d6-a3 19. f5xc5

a3xd3 20. e6-d6 f4-f3 21. d6xd3 f3-e2 22. d4-d2 b3xd3 23. e8-e6 d3-c3

24. e6-b3 e2xc4 25. a5-b6 a4-d4 26. d2xd4 a2-a3 0-1

The Ninth Computer Olympiad

The ninth Computer Olympiad was held in Ramat-Gan, in 2004. Four programs
competed in the LOA tournament: MIA 4++, Bing, YL, and Lola. MIA 4++ was
a modified and enhanced version of MIA IV. MIA’s author felt that the improvements
were not a sufficient reason to justify an increase of the version number. According



108 Appendix A: LOA at the Computer Olympiads

to their authors, Bing and YL did not change since their last tournament. Lola
written by Rémi Coulom (France) was a newcomer.

The first day YL played its first two games against Lola and won them convin-
cingly. MIA had to face a more difficult opponent: Bing. MIA, playing the black
pieces, had a great start by defeating Bing in 17 moves. Afterwards, this was the
fastest victory in the tournament. In the second game Bing had the advantage by
playing the black pieces. It played the same opening, from which Bing defeated
MIA last year. This time MIA handled the opening better and won the game. The
last game of the day was YL against Bing. YL was the clear favourite to win
this game, but an upset occurred. Direct from the start YL went into panic mode
(assigning extra time to analyse the position). As a spectator I was surprised by the
number of times YL went into panic mode during the game. This never happened
in the past games YL played against MIA. YL lost the game and Bing was back in
the tournament. Björnsson blamed the panic mode for the result and turned it off
in the remaining games.

The second day turned out to be a remarkable day in the LOA tournament.
Bing started with another victory against YL. Next, the old rivals MIA and YL
met. YL had to win to keep a good chance of winning the tournament. The first
game MIA maintained its first-player advantage and gradually outplayed YL. The
second game was more interesting. The moves are given at the end of this section.
It was one of the most balanced and “drawish” games of the tournament. After 8.

... a3xc1, MIA equalled the position for White by trapping the black piece at b1

(see Figure A.3a). During the game, MIA proposed two times a draw, which were
declined by YL. The first one was a draw by repetition, the second one a draw by
simultaneous connections. When YL detected the draw, MIA did not agree. Finally,
the programs drew with the following sequence (see Figure A.3b): 21. d6-c5 f5-d7

22. c5-d6 d7-f5 23. d6-c5 f5-d7 24. c5-d6 d7-f5. After this game MIA had
good chances to keep its title, whereas YL’s chances dwindled. YL now had to fight
for the silver medal. Meanwhile Bing defeated Lola two times. The day ended
with another strong game of Bing against YL (for the moves see below). After 6.

... h6xf8 (see Figure A.3c), YL replied with the strange 7. f3xf7, which MIA and
Bing regarded as a mistake (7. g1-g4 or 7. d8-f6 were better moves). YL lost the
advantage, never fully recovered, and finally lost. Like last year, Bing had suddenly
again a good chance to win the tournament.

The third day started with a confrontation between MIA and Bing. If Bing
would win the two games against MIA, it would have a golden opportunity to win
the tournament. However, Bing did not have the tools to select an alternative
opening. Bing’s author trusted that its random factor in the root would cause a
surprise. Although the games were not the same, Bing lost in the same style as it
had lost the previous games. In the same round YL played Lola. First, it seemed
that YL would win the two games. But then the game Lola-YL became a draw
by simultaneous connection due to a mistake of YL. The next round Bing was
able to defeat YL for the fourth time in a row. This accomplishment has not been
seen earlier in a LOA tournament against YL. Meanwhile MIA faced for the first
time Lola and defeated it. In the next round YL got the opportunity to show its
strength against MIA. Björnsson tried to trick MIA with an unconventional opening



Appendix A: LOA at the Computer Olympiads 109

Figure A.3: (a) After 8. ... a3xc1. (b) After 20. ... g5-d5. (c) After 6. ... h6xf8.

but the plan backfired and YL lost. In the next game MIA had the white pieces and
was able to surprise YL in the opening. MIA won the game. With three games still
to play MIA was already certain of the gold medal. In these rounds Bing defeated
Lola again. Finally, on the fourth day MIA won the remaining three games against
Lola without any problem. The final standings of the LOA tournament are shown
in Table A.5. MIA 4++ took the gold medal, Bing was awarded silver, and YL
received the bronze medal.

Table A.5: The final standings of the LOA tournament at the 9th Computer Olympiad.

Place Program MIA 4++ Bing YL Lola Points
1 MIA 4++ - 4-0 3.5-0.5 4-0 11.5
2 Bing 0-4 - 4-0 4-0 8
3 YL 0.5-3.5 0-4 - 3.5-0.5 4
4 Lola 0-4 0-4 0.5-3.5 - 0.5

Obviously, YL’s supremacy (reigning the LOA community from 2000 to 2003)
has ended. MIA 4++ won the 9th Computer Olympiad LOA tournament without
losing a single game. YL had to face a 7.5-point gap with MIA 4++. However,
the biggest surprise was that Bing, too, defeated convincingly YL four times and
finished in front of it. Lola may be stronger than the result shows. There were
no quick victories by other programs against Lola, which is a sign of reasonable
strength.

Selected Games

MIA4++ vs. Bing (Game 1)
1. e1-g3 a4-c2 2. d8-b6 h7-e4 3. g8-g5 a5-d5 4. b8-b5 a6xc8 5. b1-b4

a3xc1 6. d1-d3 c8-e6 7. b4xe4 a2-d2 8. g1-g4 h6-h1 9. f1-f3 h3-g2 10.

g4xe6 h5xf3 11. g5xd5 d2-f4 12. b6-b4 h4-g5 13. f8-f5 h1-h3 14. g3-f2

h3-e3 15. e8-c6 f3-e2 16. b5xe2 a7-d4 17. b4-c5 1-0



110 Appendix A: LOA at the Computer Olympiads

Bing vs. MIA4++ (Game 2)
1. c1-c3 a4-c2 2. c8-c5 h5-f7 3. b8-b6 a5xc5 4. g1xc5 a7-d7 5. e1-e3

a2-d2 6. g8-g7 h6xe3 7. b6xe3 a3-a5 8. c5xc2 h3xe3 9. c3xe3 a5-c3 10.

e3xc3 a6-c4 11. d8-f6 h4xf6 12. c3xf6 c4xc2 13. b1-b2 h2-g3 14. d1-e2

c2-e4 15. e2-c4 h7-h6 16. f1-f5 h6xf6 17. c4-e6 d2-d4 18. b2-b1 e4-d5 19.

f8-e7 g3-h4 20. e8-d8 d4-e3 21. f5-h5 e3xe6 22. h5xf7 h4-h5 23. g7-f8

h5-f5 0-1

MIA4++ vs. YL (Game 1)
1. e8-g6 a5-c7 2. d1-b3 a7-d7 3. b1-b4 h7-e7 4. f1xh3 h2-e5 5. g8-g5

h4-e4 6. b4xe4 a3-d6 7. e1xe5 a2-a5 8. e4xe7 h5-g4 9. b3-b5 a6-e6 10.

c1-c4 c7xc4 11. e7-g7 h6-h4 12. f8xd6 a5-b4 13. g7-e7 b4-c3 14. h3-f3

g4xc8 15. g1-g4 a4-a3 16. e7-g7 c3-b4 17. g7-f8 d7-c7 18. f3-f5 c4xg4

19. b5-c6 g4-f3 20. b8-b6 c8xf5 21. f8xf5 f3xf5 22. b6-c5 b4-c3 23. g5-g7

f5-f6 24. g7-e7 c7xe7 25. d8-c7 h4-g3 26. g6-f5 1-0

YL vs. MIA4++ (Game 2)
1. d1-b3 h7-f7 2. e1-g3 f7xb3 3. g1-g4 h3xf1 4. g8-g5 h6-f6 5. d8-b6

a4-c2 6. c8-c5 a6-c4 7. b8-e5 h2-e2 8. e5xe2 a3xc1 9. f8-d6 f6-f4 10.

b6-e3 c1xc5 11. b1xb3 a2-d2 12. e8-f8 c5xg5 13. g3-d3 h5-e5 14. e2xe5

h4-f6 15. d6xf6 f1-f5 16. b3-b4 a5xe5 17. e3xe5 d2-f2 18. f8-d6 a7-a6 19.

b4-b5 f2-e3 20. e5xe3 g5-d5 21. d6-c5 f5-d7 22. c5-d6 d7-f5 23. d6-c5

f5-d7 24. c5-d6 d7-f5 drawn by repetition 0.5-0.5

MIA4++ vs. YL (Game 3)
1. e8-g6 a6-d6 2. d8-b6 a7-c7 3. f8xh6 h7-f7 4. b8-b5 h5-e5 5. g8-e8

c7-e7 6. g1-g3 a5-c3 7. h6xd6 a3xd6 8. g6xd6 h3-f5 9. e1xc3 e5xc3 10.

c8-e6 c3-d4 11. b1-b4 a2-d5 12. f1-d3 h2-g2 13. c1-c2 f5-c5 14. c2-e4

f7-h7 15. d3-b3 h7-f7 16. g3-e5 g2-h2 17. b6-c7 c5xc7 18. b3-b6 h4-

h6 19. b6xd4 c7-d8 20. d4-f6 f7-d7 21. e8-g8 d7-f7 22. d1xd5 h6-g7 23.

b4xe7 d8-f8 24. b5-b4 f8-d8 25. e4-c6 a4xc6 26. g8-e8 h2xe5 27. b4-c4 1-0

YL vs. MIA4++ (Game 4)
1. d1-b3 h4-f2 2. b8-b5 h7-f7 3. f1-c4 h5xe8 4. b1-b4 a3xc1 5. g1-g3

c1xc4 6. c8-c6 h2-e2 7. e1-d1 c4xc6 8. g8-g6 a6-e6 9. f8-d6 f7xb3 10.

d8-d5 h3-f5 11. b5xf5 a5xd5 12. f5xd5 f2-d4 13. d6-f8 b3-d3 14. d1-b3

e2-e5 15. g3xd3 h6-g5 16. d3-f5 g5-f4 17. f8-h8 c6-f6 18. h8-f8 f4xb4 19.

f8-d6 a7-c5 20. d5-e4 c5-c4 21. e4-b1 a4-e4 22. d6xd4 e8-d7 23. b1xb4

a2-b2 24. g6-h5 d7-d5 25. f5-f3 f6-d6 26. h5xe5 d6xb4 27. b3-d3 b4-c3 0-1

YL vs. Bing (Game 3)
1. b1-b3 h4-f2 2. b8-b6 f2xb6 3. e8-g6 h3xf1 4. c1-c3 h7-f7 5. g8-g5 h5-f3

6. d1xf3 h6xf8 7. f3xf7 f8-6 8. d8xd6 h2-f4 9. e1-b4 f4xd6 10. f7-f5 a7-b8

11. b3-e3 b8-b5 12. f5xb5 a2-b3 13. e3-e2 f1-f2 14. c3-c5 f2-e1 15. c5-c3

a3-b2 16. g1-e3 d6xb4 17. g5-d5 b3xd5 18. g6-d6 e1-d1 19. e2-c2 a6-a3

20. e3-d2 d5-c6 21. c3xa3 c6-c3 22. a3xc3 d1-c1 23. d6xb4 c1-a3 0-1



Appendix B

Pseudo Code

In this appendix the pseudo code of PN, PN2, and PDS is given.

B.1 Pseudo Code for PN Search

Below we give the pseudo code for PN search, which was discussed in Subsection
4.2.1. For ease of comparison we use similar pseudo code as given in Breuker
(1998). PN(root, maxnodes) is the main procedure of the algorithm. The pro-
cedure evaluate(node) evaluates a position, and assigns one of the following three
values to a node: FALSE, TRUE, and UNKNOWN. The proof and disproof numbers
of a node are initialised by setProofAndDisproofNumbers(node). The function
selectMostProvingNode(node) finds the most-proving node. Expanding the most-
proving node is done by expandNode(node). After the expansion of the most-proving
node, the new information is backed up by updateAncestors(node, root). The
function countNodes() gives the number of nodes currently stored in memory.

//The PN-search algorithm

PN(root, maxnodes){

evaluate(root);

setProofAndDisproofNumbers(root);

while(root.proof != 0 && root.disproof != 0 && countNodes() <= maxnodes){

//Second Part of the algorithm

mostProvingNode = selectMostProvingNode(currentNode);

expandNode(mostProvingNode);

currentNode = updateAncestors(mostProvingNode, root);

}

}

//Calculating proof and disproof numbers

setProofAndDisproofNumbers(node){



112 Appendix B: Pseudo Code

if(node.expanded) //Internal node;

if(node.type == AND_NODE){

node.proof = 0;

node.disproof = INFINITY;

for(each child n){

node.proof = node.proof + n.proof;

if(n.disproof < node.disproof)

node.disproof = n.disproof;

}

}

else{ //OR node

node.proof = ProofNode.INFINITY;

node.disproof = 0;

for(each child n){

node.disproof = node.disproof + n.disproof;

if(n.proof < node.proof)

node.proof = n.proof;

}

}

else //Leaf

switch(node.value){

case FALSE:

node.proof = INFINITY;

node.disproof = 0;

case TRUE:

node.proof = 0;

node.disproof = INFINITY;

case UNKNOWN:

node.proof = 1;

node.disproof = 1;

}

}

//Select the most-proving node

SelectMostProvingNode(node){

while(node.expanded){

n = node.children;

if(node.type == OR_NODE) //OR Node

while(n.proof != node.proof)

n = n.sibling;

else //AND Node

while(n.disproof != node.disproof)

n = n.sibling;

node = n;



B.2 — Pseudo Code for PN2 Search 113

}

return node;

}

//Expand node

expandNode(node){

generateAllChildren(node);

for(each child n){

evaluate(n);

setProofAndDisproofNumbers(n);

//Addition to original code

if((node.type == OR_NODE && n.proof == 0) ||

(node.type == AND_NODE && n.disproof == 0))

break;

}

node.expanded = true;

}

//Update ancestors

updateAncestors(node, root){

do{

oldProof = node.proof;

oldDisProof = node.disproof;

setProofAndDisproofNumbers(node);

//No change on the path

if(node.proof == oldProof && node.disproof == oldDisProof)

return node;

//Delete (dis)proved trees

if(node.proof == 0 || node.disproof == 0)

node.deleteSubtree();

if(node == root)

return node;

node = node.parent;

}while(true)

}

B.2 Pseudo Code for PN2 Search

The pseudo code for PN2 search, which we have discussed in Subsection 4.2.2, is
almost the same as that for PN. We only modified the ExpandNode(node) procedure.
The modified procedure is given below. The function computeMaxNodes() computes



114 Appendix B: Pseudo Code

the number of nodes which may be stored for the PN search, according to equation
5.4.

//Replace code

expandNode(node){

//Call PN search, described in the previous section

PN(node, computeMaxNodes());

//Delete the subtrees of the children

for(each child n){

n.deleteSubtree();

n.expanded = false;

}

}

B.3 Pseudo Code for PDS

In this section the pseudo code for PDS, which we have discussed in Subsection 5.1.2,
is given. We use similar pseudo code as given in Nagai (1998) for the PDS algorithm.
The proof number in an OR node and the disproof number in an AND node are
equivalent. Analogously, the disproof number in an OR node and the proof number
in an AND node are equivalent. As they are dual to each other, an algorithm similar
to negamax in the context of minimax searching can be constructed. This algorithm
is called NegaPDS. In the following, procedure MID(n) performs multiple iterative
deepening. The function proofSum(n) computes the sum of the proof numbers of all
the children. The function disproofMin(n) computes the minimum of the disproof
numbers of all the children. The procedures putInTT() and lookUpTT() store and
retrieve information to and from the transposition table. isTerminal(n) checks
whether a node is a win, a loss, or a draw. The procedure generateChildren(n)

generates the children of a node. By default, the proof number and disproof number
of a node are set to unity. The procedure findChildrenInTT(n) checks whether the
children are already stored in the transposition table. If a hit occurs for a child, its
proof number and disproof number are set to the values found in the transposition
table.

//Iterative deepening at root

procedure NegaPDS(root){

root.proof = 1;

root.disproof = 1;

while(true){

MID(root);

//Terminate when the root is proved or disproved

if(root.proof == 0 || root.disproof == 0)

break;



B.3 — Pseudo Code for PDS 115

if(root.proof <= root.disproof)

root.proof++;

else

root.disproof++;

}

}

//Explore node n

procedure MID(n){

//Look up in the transposition table

lookUpTT(n, &proof, &disproof);

if(proof == 0 || disproof == 0

|| (proof >= n.proof && disproof >= n.disproof)){

n.proof = proof; n.disproof = disproof;

return;

}

//Terminal node

if(isTerminal(n)){

if((n.value == true && n.type == AND_NODE) ||

(n.value == false && n.type == OR_NODE)){

n.proof = INFINITY; n.disproof = 0;

}

else{

n.proof = 0; n.disproof = INFINITY;

}

putInTT(n);

return;

}

generateChildren();

//Avoid cycles

putInTT(n);

//Multiple-iterative deepening

while(true){

//Check whether the children are already stored in the TT.

//If a hit occurs for a child, its proof number and disproof number

//are set to the values found in the TT.

findChildrenInTT(n);

//Terminate searching when both proof and disproof number

//exceed their thresholds.

if(proofSum(n) == 0 || disproofMin(n) == 0 || (n.proof <=

disproofMin(n) && n.disproof <= proofSum(n))){



116 Appendix B: Pseudo Code

n.proof = disproofMin(n);

n.disproof = proofSum(n);

putInTT(n);

return;

}

proof = max(proof,disproofMin(n));

n_child = selectChild(n,proof);

if(n.disproof > proofSum(n) && (proof_child <= disproof_child

|| n.proof <= disproofMin(n)))

n_child.proof++;

else

n_child.disproof++;

MID(n_child);

}

}

//Select among children

selectChild(n, proof){

min_proof = INFINITY;

min_disproof = INFINITY;

for(each child n_child){

disproof_child = n_child.disproof;

if(disproof_child != 0)

disproof_child = max(disproof_child, proof);

//Select the child with the lowest disproof_child (if there are

//plural children among them select the child with the lowest

//n_child.proof)

if(disproof_child < min_disproof || (disproof_child == min_disproof

&& n_child.proof < min_proof)){

n_best = n_child;

min_proof = n_child.proof;

min_disproof = disproof_child;

}

}

return n_best;

}



Index

αβ search. . . . . . . . . . . . . . . . . . . . . . . . . . .15
(T-T) . . . . . . . . . . . . . . . . . . . . . . . . 103–107
adaptive null move. . . . . . . . . . . . . . . . . .16
AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
amateur-level games . . . . . . . . . . . . . . . . . 2
Apprentice . . . . . . . . . . . . . . . . . . . . . . 102
Awari . . . . . . . . . . . . . . . . . . . . . . . . . 2, 4, 36
Backgammon . . . . . . . . . . . . . . . . . . . . . . . . 2
Bing . . . . . . . . . . . . . . . . . . . . . . 15, 105–110
blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
butterfly heuristic . . . . . . . . . . . . . . . . . . 77
caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
centralisation . . . . . . . . . . . . . . . . . . . . . . . 13
centre-of-mass . . . . . . . . . . . . . . . . . . . . . . 20
centre-of-mass position. . . . . . . . . . . . . .22
champion-level games . . . . . . . . . . . . . . . . 2
Checkers . . . . . . . . . . . . .1, 2, 4, 14, 36, 64
Chess . . . .1, 2, 14, 16, 21, 36, 64, 79, 83
Chinook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
complex games. . . . . . . . . . . . . . . . . . . . . . .3
Computer Olympiad . . . . 2, 28, 101–110
concentration . . . . . . . . . . . . . . . . . . . . . . . 20
Connect-Four . . . . . . . . . . . . . . . . . . . . . . . . 2
connectedness . . . . . . . . . . . . . . . . . . . . . . 25
connection game . . . . . . . . . . . . . . . . . . . . . 9
Deep Blue . . . . . . . . . . . . . . . . . . . . . . . . . 2
Deep Fritz . . . . . . . . . . . . . . . . . . . . . . . . . 2
Deep Junior . . . . . . . . . . . . . . . . . . . . . . . 2
delayed evaluation . . . . . . . . . . . . . . . . . . 39
df-pn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
directing knowledge . . . . . . . . . . . . . . . . . . 4
disproof number . . . . . . . . . . . . . . . . . . . . 38
disproof-like . . . . . . . . . . . . . . . . . . . . . . . . 49
disproof-number threshold . . . . . . . . . . 48
disproved . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Domineering . . . . . . . . . . . . . . . . . . . . . . . . 14

Draughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Enhanced Transposition Cutoffs . . . . 16
evaluation function . . . . . . . . . . . 4, 19–34
first-level search . . . . . . . . . . . . . . . . . . . . 39
forward pruning . . . . . . . . . . . . . 16, 64, 65
game-tree complexity . . . . . . . . . . . . . . . 11
Go. . . . . . . . . . . . . . . . . . . . . . . .2, 14, 36, 82
Go-Moku . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
grandmaster-level games . . . . . . . . . . . . . 2
graph-history interaction problem. . . 40
Hex . . . . . . . . . . . . . . . . . . . . . . . . . 2, 4, 9, 44
history heuristic. . . . . . . . . . . . . . . . .16, 76
immediate evaluation . . . . . . . . . . . . . . . 38
informed search . . . . . . . . . . . . . . . . . . . . . . 4
initiative. . . . . . . . . . . . . . . . . . . . . . . . . . . .14
iterative deepening . . . . . . . . . . . . . . . . . 15
k-in-a-row games . . . . . . . . . . . . . . . . . . . 14
Kalah. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
killer move . . . . . . . . . . . . . . . . . . . . . . . . . 16
Lines of Action . . . . . . . . . . . . . 4, 9–34, 77
Lithidion . . . . . . . . . . . . . . . . . . . . . . . . . . 44
LoaJava . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
logistic-growth function . . . . . . . . . . . . . 39
Lola . . . . . . . . . . . . . . . . . . . . . . . . . 107–109
material advantage . . . . . . . . . . . . . . . . . 14
MC-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
MC-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
MIA . . . . . . . . . . . . . . . 15, 19–34, 101–110
Migos . . . . . . . . . . . . . . . . 82, 88, 122, 126
minimax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
mobility . . . . . . . . . . . . . . . . . . . . . 12, 24, 38
Mona . . . . . . . . . . . . . 15, 24, 28, 101, 102
most-proving . . . . . . . . . . . . . . . . . . . . . . . 37
move ordering . . . . . . . . . . . . . . . . . . . . . . 16
MTD(f ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
multi-cut. . . . . . . . . . . . . . . . . . . . . . . .16, 66



118 Index

Multi-ProbCut . . . . . . . . . . . . . . . . . . . . . 64
multiple-iterative deepening. . . . . . . . .39
NegaScout . . . . . . . . . . . . . . . . . . . . . . 16, 63
Nine Men’s Morris . . . . . . . . . . . . . . . . . . . 2
Node

ALL . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
AND. . . . . . . . . . . . . . . . . . . . . . . . . . .38
CUT . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
PV. . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

null move . . . . . . . . . . . . . . . . . . . . . . . 16, 72
null-window search . . . . . . . . . . . . . . . . . 65
Othello . . . . . . . . . . . . . . . . . . . . 2, 4, 11, 64
over-champion games . . . . . . . . . . . . . . . . 2
PDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
PDS-PN . . . . . . . . . . . . . . . . . . . . . . . . 47–61
Pete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
player to move . . . . . . . . . . . . . . . . . . . . . . 26
PN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
PN* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
PN-αβ . . . . . . . . . . . . . . . . . . . . . . . . . . 44–45
PN-TT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Poker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Principal Variation Search . . . . . . 16, 63
ProbCut . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
proof number . . . . . . . . . . . . . . . . . . . . . . . 38
proof-like . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
proof-number search . . . . . . . . . . . . . . . . 37
proof-number threshold . . . . . . . . . . . . . 48
proved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
quads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
qualitative probabilistic network . . . . 32
quiescence search . . . . . . . . . . . . . . . . . . . 16
realisation-probability search . . . . 15, 77
relative history heuristic . . . . . . . . . 75–83
Renju. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
RoboCup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Scrabble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
second-level search . . . . . . . . . . . . . . . . . . 39
Shogi . . . . . . . . . . . . . . . . . . . . . . . . . 2, 36, 61
singular extensions. . . . . . . . . . . . . . . . . .64
solid formations . . . . . . . . . . . . . . . . . . . . 12
solved games. . . . . . . . . . . . . . . . . . . . . . . . .2
state-space complexity . . . . . . . . . . . . . . 11
Temporal-Difference learning. . . . . . . .22
terminal knowledge . . . . . . . . . . . . . . . . . . 4

threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
transposition table . . . . . . . . . . . . . . . . . . 16
Tsume-Shogi . . . . . . . . . . . . . . . . . . . . . . . 61
TwixT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . 26
variable null-move bound . . . . . . . . . . . 72
variable-depth search. . . . . . . . . . . .26, 64
walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
YL 15, 24–26, 28, 70, 101–104, 107–110
zero-width-window search . . . . . . . . . . . 65
Zobrist hashing . . . . . . . . . . . . . . . . . 16, 44
zugzwang . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



Summary

This thesis investigates how search can be guided by knowledge in such a way that
the search space is traversed efficiently and effectively. For this task we focus on
the question how to combine relevant knowledge with intelligent search. The more
adequate the knowledge, the better the search.

Chapter 1 provides a brief introduction on games and Artificial Intelligence (AI).
It then discusses the notion of informed search. It is well-known that regular search
at least needs terminal knowledge to solve a problem. If the search process is us-
ing directing knowledge too, it is called informed search. The following problem
statement guides our research.

Problem statement: How can we develop informed-search methods in
such a way that programs significantly improve their performance in a
given domain?

To answer the problem statement we formulated four research questions on intricate
topics of informed search. They deal with (1) the evaluation function, (2) competi-
tive proof-number search algorithms, (3) forward pruning, and (4) move ordering.

Chapter 2 describes the test environment used to answer the problem statement
and the four research questions. Conditions for a suitable test environment are for-
mulated with emphasis on the notions game and game program. The game under
consideration is the game of Lines of Action (LOA). The chapter provides some back-
ground information, the rules of the game, a variety of game characteristics, seven
basic principles, and a review of the role of LOA in the AI domain. The search
engine of the LOA tournament program MIA (Maastricht in Action) is described.
It is used as test vehicle for all experiments in this thesis.

Informed search cannot exist without a decent evaluation function. For LOA,
it is a challenge to build such an evaluation function, since it should incorporate
the basic principles of the game and simultaneously increase the profitability. This
challenge has led us to the first research question.

Research question 1: How can we build a strong evaluation function
for Lines of Action?



120 Summary

Chapter 3 answers the first research question by investigating which features are
important for a LOA evaluation function. The features are based on the seven basic
principles described in Chapter 2. It turns out that the following nine features are
important: concentration, centralisation, centre-of-mass position, quads, mobility,
walls, connectedness, uniformity, and player to move. The features resulted in the
evaluator MIA IV, which is tested in a round-robin tournament against its predeces-
sors MIA I, MIA II, and MIA III. The latter ones have performed well at previous
Computer Olympiads (2000, 2001, 2002). Experiments show that the current MIA
IV defeats them all with large margins. At all search depths investigated MIA
IV wins at least 75 per cent of the games. We remark that many features in the
evaluation function do not consume much time. By using precomputed tables and
caching, they can be evaluated quite straightforwardly. The most important feature
is concentration, followed by the mobility feature. All features are essential and con-
tribute to the playing strength. There exist much interconnectedness and overlap
between the features, which influence their performance. Therefore, all features have
to be simultaneously fine-tuned (or heuristically optimised) in a careful way. The
combination of the nine features mentioned has resulted in an evaluation function
that significantly increased the playing strength of our LOA program compared to
programs with less-sophisticated evaluation functions. With the present evaluator
we gained first places at the 8th and 9th Computer Olympiad (2003, 2004).

Chapter 4 investigates several Proof-Number (PN) search algorithms. The de-
scription helps to formulate our second research question. The chapter starts by
providing a short description of the original PN-search method, and two main suc-
cessors of the original PN search, i.e., PN2 search and depth-first variants of PN
search such as Proof-number and Disproof-number Search (PDS). The original PN-
search method is formulated as a best-first search algorithm. It has the drawback
that the whole search tree has to be stored in memory. The search can end pre-
maturely because of memory exhaustion. Recently, some PN variants have been
constructed as depth-first search algorithms; yet they still behave as their corre-
sponding best-first search algorithms. The advantage is that there is no longer a
need to store the whole tree in memory. The disadvantage is that the PN variants
have to re-generate the tree in each iteration. The PN-search algorithms can be
applied in two different ways: offline and online. First, we concentrate on the of-
fline application of the PN-search algorithms. The number of positions they can
solve (i.e., the post-mortem analysis quality) is tested on a set of endgame positions.
Besides establishing the number of solutions, we investigate to what extent the al-
gorithms are restricted by their working memory or by the speed of the searching
process. We observe that mobility and deleting (dis)proved pn2 subtrees speed up
PN and PN2, and increase their ability of solving endgame positions. A compari-
son of the performance between PN, PN2, PDS, and αβ is given. It is shown that
PN-search algorithms clearly outperform αβ in solving endgame positions in LOA.
However, the memory problems make the plain PN search a weaker solver for the
harder problems. PDS and PN2 are able to solve significantly more problems than
PN and αβ. But PN2 is restricted by its working memory, and PDS is three times
slower than PN2. Second, we briefly investigate the online application of PN search.



Summary 121

In particular, the real-time application of PN search during a game is examined.
Finally, we conclude that our method (called PN-αβ), which combines PN search
and αβ, outperforms plain αβ search as implemented in the tournament program
MIA.

When reducing the need for memory at the cost of additional searching, we arrive
at a crucial memory characteristic of knowledge in an informed-search process. The
memory problem of PN2 and the speed problem of PDS shown in the previous
chapter have guided us to the second research question.

Research question 2: How can we develop a proof-number search
algorithm, which is competitive in speed and not restricted in working
memory?

Chapter 5 answers the second research question and presents a new proof-number
search algorithm, called PDS-PN. It is a two-level search (like PN2), which performs
at the first level a depth-first PDS, and at the second level a best-first PN search.
Hence, PDS-PN selectively exploits the power of both PN2 and PDS. Results of ex-
periments with PDS-PN on a set of endgame positions are given. The experiments
show that within an acceptable time frame PDS-PN is more effective for really hard
endgame positions than αβ and any other PN-search algorithm.

As stated before, we define informed search as search which applies a regular
search process and uses directing knowledge. Therefore, we would like to investigate
whether it is beneficial to improve forward-pruning methods, such as null move and
multi-cut, in the Principal-Variation-Search (PVS) framework. This idea has guided
us to the third research question.

Research question 3: How can we improve forward-pruning methods
in the Principal-Variation-Search framework?

Chapter 6 answers the third research question. Forward-pruning methods, such
as multi-cut and null move, are tested at so-called ALL nodes. PVS is improved
by four small but essential additions. The new PVS algorithm guarantees that for-
ward pruning is safe at ALL nodes. Experiments show that multi-cut at ALL nodes
(MC-A) when combined with other forward-pruning mechanisms gives a significant
reduction of the number of nodes searched. Multi-cut at expected ALL nodes gives
a safe reduction of approximately 40 per cent of the number of nodes searched at
depth 14 in combination with null move and the regular multi-cut at CUT nodes
(MC-C). Experiments suggest that parameters more aggressively chosen than MC-
C lead to an additional improvement. In comparison, a (more) aggressive version
of the null move (variable null-move bound) gives less reduction at expected ALL
nodes than our algorithm. We observe that MC-A still searches 22 per cent fewer
nodes than variable null-move bound at expected ALL nodes. Moreover, MC-A was
able to increase significantly the playing strength of the program MIA. From these
observations we may conclude that MC-A is a valuable enhancement of PVS.



122 Summary

Move ordering is an instance of directing knowledge in an informed-search pro-
cess. In particular in αβ search, move ordering is one of the main techniques to
reduce the size of the search tree. Of these techniques dynamic move ordering is
most successful. It is characterised by its dependence on information gained during
the search. This has led us to the fourth research question.

Research question 4: How can we use information gained during the
search to improve move ordering?

Chapter 7 answers the fourth research question by describing a new method for
move ordering, called the relative history heuristic. It is a combination of the his-
tory heuristic and the butterfly heuristic. Instead of only recording moves which are
the best move in a node, we also record the moves which are applied in the search
tree. Both scores are taken into account in the relative history heuristic. The rel-
ative history heuristic favours moves which are the good moves on average instead
of moves which are the best move in absolute terms. When replacing the history
heuristic by the relative history heuristic, experiments show that this method gives a
reduction between 10 and 15 per cent of the number of nodes searched. The results
were confirmed by the Go program Migos. Hence, we may conclude that the rela-
tive history heuristic is a valuable dynamic move-ordering technique in a game tree
of considerable depth (more than 12 plies). Finally, we remark that the utility of
increments other than 1 does not show a much better performance in the (relative)
history heuristic for our LOA program MIA. The good performance of the increment
of 1 could be the result of some domain-dependent properties. The relative history
heuristic seems to be a valuable element in move ordering.

The last chapter of the thesis returns to the four research questions and the
problem statement as formulated in Chapter 1. Taking the answers to the research
questions above into account we see that there are several successful ways to improve
the performance of informed-search methods. Our improvements of the evaluation
function, proof-number search, forward pruning, and move ordering have given sig-
nificant results in our LOA test domain. Yet, we were able to provide additional
promising directions for future research. Finally, the question whether it is possible
to solve the game of LOA is still open.



Samenvatting

Dit proefschrift onderzoekt op welke manier een zoekproces door aanwezige kennis
zodanig gestuurd kan worden dat de zoekruimte efficiënt en effectief doorlopen wordt.
Voor het beantwoorden van deze onderzoekstaak richten we ons op de vraag hoe
we relevante kennis met intelligent zoeken kunnen combineren. Hoe handzamer de
kennis is, des te beter gaat het zoeken.

Hoofdstuk 1 geeft een korte inleiding op het gebied van spelen en Artificiële Intel-
ligentie (AI). Het introduceert het begrip van gëınformeerd zoeken. Het is algemeen
bekend dat regulier zoeken tenminste terminale kennis nodig heeft om een probleem
op te lossen. Als het zoekproces daarenboven gebruik maakt van sturende kennis,
dan spreekt men van gëınformeerd zoeken. Dit leidt tot de volgende formulering van
onze probleemstelling.

Probleemstelling: Hoe kunnen we gëınformeerde zoekmethoden ont-
wikkelen op zo’n manier dat programma’s hun prestaties in een gegeven
domein significant zien verbeteren?

Om de probleemstelling te beantwoorden hebben we vier onderzoeksvragen geformu-
leerd over complexe onderwerpen op het gebied van gëınformeerd zoeken. Ze gaan
over (1) de evaluatiefunctie, (2) concurrerende proof-number search algoritmen, (3)
voorwaarts snoeien, en (4) de volgorde van te onderzoeken zetten.

Hoofdstuk 2 beschrijft de testomgeving die gebruikt wordt om de probleem-
stelling en de vier onderzoeksvragen te beantwoorden. De voorwaarden voor een
geschikte testomgeving worden geformuleerd met nadruk op de begrippen spel en
spelprogramma. We beschouwen het spel Lines of Action (LOA). Het hoofdstuk geeft
enige achtergrond informatie, de regels, verscheidene spelkarakteristieken, zeven ba-
sisprincipes en een beschouwing over de rol van LOA in het AI-domein. Vervolgens
wordt het zoekproces van het LOA-programma MIA (Maastricht In Actie) beschre-
ven. In deze thesis wordt het gebruikt als testmechanisme.

Gëınformeerd zoeken kan niet zonder een geschikte evaluatiefunctie bestaan. In
het geval van LOA is het een uitdaging om zo’n evaluatiefunctie samen te stellen.
Immers, het moet de basisprincipes van het spel bevatten en tegelijkertijd moet het
de winstgevendheid van de stelling die onderzocht wordt verhogen. Deze uitdaging
heeft ons gebracht tot de eerste onderzoeksvraag.



124 Samenvatting

Onderzoeksvraag 1: Hoe kunnen we een sterke evaluatiefunctie op-
stellen voor Lines of Action?

Hoofdstuk 3 beantwoordt de eerste onderzoeksvraag door te onderzoeken welke
kenniselementen belangrijk zijn voor een LOA-evaluatiefunctie. De kenniselementen
zijn gebaseerd op de basisprincipes beschreven in hoofdstuk 2. Het blijkt dat de vol-
gende negen kenniselementen belangrijk zijn: concentratie, centralisatie, positie van
het zwaartepunt, quads, mobiliteit, muren, verbondenheid, uniforme verdeling, en
speler aan zet. De kenniselementen hebben geresulteerd in de evaluatiefunctie MIA
IV, die getest wordt in een toernooi tegen zijn voorgangers MIA I, MIA II en MIA
III. De laatstgenoemde drie evaluatiefuncties hebben goed gepresteerd op de vroege-
re Computer Olympiades (2000, 2001 en 2002). Experimenten laten evenwel zien dat
de huidige MIA IV ze verslaat met ruime marges. Op alle onderzochte zoekdieptes
wint MIA IV tenminste 75 procent van de partijen. We merken op dat veel kennis-
elementen in de evaluatiefunctie niet veel computertijd kosten. Aangezien gedeelten
van de kenniselementen al van tevoren berekend zijn en vervolgens opgeslagen zijn
in tabellen (caching), zijn de volledige kenniselementen snel te evalueren. Het meest
belangrijke kenniselement is concentratie, op de voet gevolgd door mobiliteit. Alle
kenniselementen zijn essentieel en dragen bij aan de speelsterkte. Er bestaat veel
onderlinge verbondenheid en overlap tussen de kenniselementen, wat betekent dat
ze elkaars prestatie bëınvloeden. Daarom zijn alle kenniselementen zorgvuldig en
simultaan op elkaar afgesteld (heuristisch geoptimaliseerd). De combinatie van de
negen kenniselementen heeft geresulteerd in een evaluatiefunctie die significant de
speelsterkte van ons LOA-programma heeft vergroot in vergelijking met andere min-
der geavanceerde evaluatiefuncties. Met de huidige evaluatiefunctie heeft MIA twee
eerste plaatsen veroverd, namelijk op de 8ste en 9de Computer Olympiade (2003,
2004).

Hoofdstuk 4 onderzoekt verscheidene (Proof-Number) PN zoekalgoritmen. De
beschrijving helpt ons om onze tweede onderzoeksvraag te formuleren. Het hoofd-
stuk begint met het geven van een beschrijving van de originele PN-zoekmethode,
en twee opvolgers van PN-search, namelijk PN2-search en depth-first search vari-
anten van PN-search zoals Proof-number and Disproof-number Search (PDS). Het
originele PN-search algoritme is geformuleerd als best-first search methode. Dit
heeft het nadeel dat de gehele boom in het geheugen opgeslagen moet worden. Het
zoekproces kan voortijdig eindigen vanwege een tekort aan geheugen. Er zijn recen-
telijk enige PN-varianten geconstrueerd als depth-first zoekalgoritmen; zij gedragen
zich echter wel als hun corresponderende best-first zoekalgoritmen. Het voordeel is
dat de gehele boom niet in het geheugen opgeslagen behoeft worden. Het nadeel
is dat de gehele boom in principe elke keer opnieuw opgebouwd moet worden. De
PN zoekalgoritmen kunnen op twee manieren worden toegepast: offline en online.
Eerst concentreren we ons op de offline applicatie van PN zoekalgoritmen. Het
aantal posities dat ze kunnen oplossen (wat de kwaliteit van post-mortem analyse
aangeeft) wordt op een verzameling eindspelposities getest. Behalve het vaststel-
len van het aantal oplossingen, onderzoeken we in hoeverre de algoritmen beperkt
worden door hun werkgeheugen of door de snelheid van het zoekproces. We zien



Samenvatting 125

dat de mobiliteit en het verwijderen van bewezen subbomen op het tweede niveau
van het PN2-algoritme ertoe leiden dat PN en PN2 meer eindspelposities oplossen
en dit bovendien sneller doen. De prestaties van PN, PN2, PDS en αβ worden met
elkaar vergeleken. Er wordt aangetoond dat de PN zoekalgoritmen αβ overtuigend
overtreffen in het oplossen van eindspelposities. De geheugenproblemen maken de
normale PN-search echter een matige oplosser voor moeilijke problemen. PDS en
PN2 lossen significant meer problemen op dan PN en αβ. Maar PN2 wordt beperkt
door het werkgeheugen en PDS is drie keer langzamer dan PN2. Na deze vergelij-
kingen onderzoeken we de online toepassing van PN-search. In het bijzonder wordt
de real-time toepassing van PN-search gedurende het spel onderzocht. Uiteindelijk
concluderen we dat onze methode (PN-αβ) de reguliere αβ overtreft zoals deze in
ons toernooi programma MIA is gëımplementeerd.

Wanneer we de behoefte aan geheugen minder maken door het toetsen van ex-
tra zoekprocessen, ontdekken we een cruciale geheugeneigenschap van kennis in het
gëınformeerd zoekproces. Het geheugenprobleem van PN2 en het snelheidsprobleem
van PDS – besproken in hoofdstuk 4 – heeft ons tot de tweede onderzoeksvraag
geleid.

Onderzoeksvraag 2: Hoe kunnen we een proof-number search algorit-
me ontwikkelen dat concurrerend is in snelheid en niet beperkt wordt in
werkgeheugen?

Hoofstuk 5 beantwoordt de tweede onderzoeksvraag en presenteert een nieuw
proof-number search algoritme, PDS-PN. Het is een tweelaags zoekproces (zoals
PN2), die op de eerste laag een depth-first PDS toepast en op de tweede laag een
best-first PN search toepast. Dus PDS-PN maakt selectief gebruik van de kracht
van PN2 en PDS. Resultaten van de experimenten met PDS-PN op een verzameling
van eindspelposities worden gegeven. De experimenten laten zien dat in een aan-
vaardbare tijd PDS-PN effectiever is voor echte moeilijke problemen dan αβ en enig
ander PN zoekalgoritme.

We hebben gëınformeerd zoeken gedefinieerd als een zoekproces dat een regulier
zoekproces toepast in samenhang met sturende kennis. Daarom onderzoeken we
of het nuttig is om voorwaarts snoeimethoden, zoals multi-cut en null move, in
het Principal-Variation-Search (PVS)-raamwerk te verbeteren. Dit heeft ons tot de
derde onderzoeksvraag gebracht.

Onderzoeksvraag 3: Hoe kunnen we voorwaarts snoeimethoden in het
Principal-Variation-Search raamwerk verbeteren?

Hoofdstuk 6 beantwoordt de derde onderzoeksvraag. Voorwaarts snoeimetho-
den, zoals multi-cut en null move, worden getest op zogenaamde ALL-knopen. PVS
wordt verbeterd met vier kleine essentiële toevoegingen. Het nieuwe PVS-algoritme
garandeert dat voorwaarts snoeien veilig is in ALL-knopen. Experimenten laten
zien dat multi-cut in ALL-knopen (MC-A) een significante besparing geeft in het
aantal doorzochte knopen mits het gecombineerd wordt met een andere voorwaarts



126 Samenvatting

snoeiing. MC-A geeft een veilige besparing van ongeveer 40 procent in het aan-
tal doorzochte knopen op diepte 14 in combinatie met null move en de reguliere
multi-cut in CUT-knopen (MC-C). Experimenten suggereren dat parameters agres-
siever gekozen kunnen worden dan in MC-C. Dit leidt tot een extra verbetering.
Een meer agressieve null move (variable null-move bound) geeft minder reductie in
ALL-knopen dan ons algoritme. We zien dat MC-A nog altijd 22 procent minder
knopen doorzoekt dan variable null-move bound in ALL-knopen. Het toepassen van
MC-A leidt ook tot een significante verbetering van de speelsterkte van MIA. Uit
deze observaties concluderen we dat MC-A een waardevolle verbetering is van PVS.

Het ordenen van zetten is een goed voorbeeld van sturende kennis in een gëınfor-
meerd zoekproces. In αβ-search is het ordenen van zetten één van de hoofdtechnieken
om de grootte van de zoekboom te verkleinen. Een belangrijke techniek is het
dynamische ordenen van zetten, waarbij de ordening afhankelijk is van de informatie
die verkregen wordt gedurende het zoekproces. Dit heeft ons gebracht tot de vierde
onderzoeksvraag.

Onderzoeksvraag 4: Hoe kunnen we informatie die verkregen is tijdens
het zoeken gebruiken om het ordenen van de zetten te verbeteren?

Hoofdstuk 7 beantwoordt de vierde onderzoeksvraag door een nieuwe methode
te beschrijven voor het ordenen van zetten, de relatieve historie-heuristiek. Het is
een combinatie van de historie- en vlinder-heuristiek. In plaats van alleen zetten te
registreren die de (een) beste zet zijn in een bepaalde knoop, registreren we ook hoe
vaak een zet gespeeld wordt in de zoekboom. Beide statistieken worden gebruikt in
de relatieve historie-heuristiek. Op deze manier begunstigen we zetten die gemid-
deld goed zijn boven zetten die soms goed zijn. Wanneer we de historie-heuristiek
vervangen door de relatieve historie-heuristiek, tonen experimenten aan dat deze
methode een reductie geeft van 10 à 15 procent in het aantal doorzochte knopen.
De resultaten zijn bevestigd in het Go programma Migos. Derhalve mogen we
concluderen dat de relatieve historie-heuristiek een waardevolle techniek is om dy-
namische zetten te ordenen in een spelboom van een aanzienlijke diepte (meer dan
12 plies). Tenslotte merken we op dat het nut van de incrementen anders dan 1 niet
veel aantoonbare verbetering laat zien in de (relatieve) historie-heuristiek voor ons
LOA-programma MIA. De goede prestatie van het increment 1 kan ook het resul-
taat zijn van domeinspecifieke eigenschappen. De relatieve historie-heuristiek lijkt
een waardevol element te zijn bij het ordenen van zetten.

In het laatste hoofdstuk keren we terug naar de vier onderzoeksvragen en de
probleemstelling zoals die in hoofdstuk 1 zijn geformuleerd. Als we rekening houden
met de antwoorden zien we dat er verscheidene succesvolle manieren zijn om de
prestaties van gëınformeerde zoekmethoden te verbeteren. Onze verbeteringen van
de evaluatiefunctie, proof-number search, voorwaarts snoeien en het ordenen van
zetten hebben significante resultaten opgeleverd in ons LOA testdomein. Hierna
geven we veelbelovende richtingen van vervolgonderzoek aan. Of het mogelijk is om
LOA op te lossen blijft evenwel een open vraag.



Curriculum Vitae

Mark Winands was born in Valkenburg, in the province of Limburg (the most south-
ern part of the Netherlands) on April 5, 1978. He attended secondary school, Stella
Maris, in Meerssen from 1990 until 1996 and received the diploma Gymnasium. Im-
mediately thereafter, he started a study Knowledge Engineering at the Universiteit
Maastricht. In 1998 he received his B.Sc. degree. Then he left Maastricht for a
while and continued his study first at the Baylor University, Waco, Texas (Septem-
ber 1998) and thereafter at the LUC, Diepenbeek, Belgium (1998–1999). In 2000, he
received his M.Sc. degree in Knowledge Engineering, majoring in Artificial Intelli-
gence, at the Universiteit Maastricht. In the same year he was chosen to participate
in the Excellent Student Program 2000. As a prizewinner he received a study trip to
Silicon Valley. After graduation, he worked as a Ph.D. student (AIO) at the Depart-
ment of Computer Science (Institute for Knowledge and Agent Technology – IKAT),
Universiteit Maastricht, The Netherlands. From the middle of June 2003 until the
middle of September 2003 he worked as a visiting researcher at the Computer Games
Research Institute (CGRI) of the Shizuoka University, Hamamatsu, Japan. The re-
search resulted in several publications and this thesis. Besides performing scientific
tasks, he was engaged in teaching, in representing the Ph.D. students in the council
of the transnational University of Limburg (tUL), and in the organisation of several
Computer Olympiads.





SIKS Dissertation Series

1998

1 Johan van den Akker (CWI1) DEGAS - An Active, Temporal Database of Autonomous
Objects

2 Floris Wiesman (UM) Information Retrieval by Graphically Browsing Meta-Information

3 Ans Steuten (TUD) A Contribution to the Linguistic Analysis of Business Conversa-
tions within the Language/Action Perspective

4 Dennis Breuker (UM) Memory versus Search in Games

5 Eduard W. Oskamp (RUL) Computerondersteuning bij Straftoemeting

1999

1 Mark Sloof (VU) Physiology of Quality Change Modelling; Automated Modelling of
Quality Change of Agricultural Products

2 Rob Potharst (EUR) Classification using Decision Trees and Neural Nets

3 Don Beal (UM) The Nature of Minimax Search

4 Jacques Penders (UM) The Practical Art of Moving Physical Objects

5 Aldo de Moor (KUB) Empowering Communities: A Method for the Legitimate User-
Driven Specification of Network Information Systems

6 Niek J.E. Wijngaards (VU) Re-Design of Compositional Systems

7 David Spelt (UT) Verification Support for Object Database Design

8 Jacques H.J. Lenting (UM) Informed Gambling: Conception and Analysis of a Multi-
Agent Mechanism for Discrete Reallocation

2000

1 Frank Niessink (VU) Perspectives on Improving Software Maintenance

2 Koen Holtman (TU/e) Prototyping of CMS Storage Management

3 Carolien M.T. Metselaar (UvA) Sociaal-organisatorische Gevolgen van Kennistech-
nologie; een Procesbenadering en Actorperspectief

1Abbreviations: SIKS – Dutch Research School for Information and Knowledge Systems; CWI
– Centrum voor Wiskunde en Informatica, Amsterdam; EUR – Erasmus Universiteit, Rotterdam;
KUB – Katholieke Universiteit Brabant, Tilburg; KUN – Katholieke Universiteit Nijmegen; RUL
– Rijksuniversiteit Leiden; TUD – Technische Universiteit Delft; TU/e – Technische Universiteit
Eindhoven; UL – Universiteit Leiden; UM – Universiteit Maastricht; UT – Universiteit Twente,
Enschede; UU – Universiteit Utrecht; UvA – Universiteit van Amsterdam; UvT – Universiteit van
Tilburg; VU – Vrije Universiteit, Amsterdam.



130 SIKS Dissertation Series

4 Geert de Haan (VU) ETAG, A Formal Model of Competence Knowledge for User
Interface Design

5 Ruud van der Pol (UM) Knowledge-Based Query Formulation in Information Retrieval

6 Rogier van Eijk (UU) Programming Languages for Agent Communication

7 Niels Peek (UU) Decision-Theoretic Planning of Clinical Patient Management

8 Veerle Coupé (EUR) Sensitivity Analyis of Decision-Theoretic Networks

9 Florian Waas (CWI) Principles of Probabilistic Query Optimization

10 Niels Nes (CWI) Image Database Management System Design Considerations, Algo-
rithms and Architecture

11 Jonas Karlsson (CWI) Scalable Distributed Data Structures for Database Manage-
ment

2001

1 Silja Renooij (UU) Qualitative Approaches to Quantifying Probabilistic Networks

2 Koen Hindriks (UU) Agent Programming Languages: Programming with Mental Mod-
els

3 Maarten van Someren (UvA) Learning as Problem Solving

4 Evgueni Smirnov (UM) Conjunctive and Disjunctive Version Spaces with Instance-
Based Boundary Sets

5 Jacco van Ossenbruggen (VU) Processing Structured Hypermedia: A Matter of Style

6 Martijn van Welie (VU) Task-Based User Interface Design

7 Bastiaan Schonhage (VU) Diva: Architectural Perspectives on Information Visualiza-
tion

8 Pascal van Eck (VU) A Compositional Semantic Structure for Multi-Agent Systems
Dynamics

9 Pieter Jan ’t Hoen (RUL) Towards Distributed Development of Large Object-Oriented
Models, Views of Packages as Classes

10 Maarten Sierhuis (UvA) Modeling and Simulating Work Practice BRAHMS: a Mul-
tiagent Modeling and Simulation Language for Work Practice Analysis and Design

11 Tom M. van Engers (VU) Knowledge Management: The Role of Mental Models in
Business Systems Design

2002

1 Nico Lassing (VU) Architecture-Level Modifiability Analysis

2 Roelof van Zwol (UT) Modelling and Searching Web-based Document Collections

3 Henk Ernst Blok (UT) Database Optimization Aspects for Information Retrieval

4 Juan Roberto Castelo Valdueza (UU) The Discrete Acyclic Digraph Markov Model in
Data Mining

5 Radu Serban (VU) The Private Cyberspace Modeling Electronic Environments In-
habited by Privacy-Concerned Agents

6 Laurens Mommers (UL) Applied Legal Epistemology; Building a Knowledge-based
Ontology of the Legal Domain

7 Peter Boncz (CWI) Monet: A Next-Generation DBMS Kernel For Query-Intensive
Applications

8 Jaap Gordijn (VU) Value Based Requirements Engineering: Exploring Innovative E-
Commerce Ideas



SIKS Dissertation Series 131

9 Willem-Jan van den Heuvel (KUB) Integrating Modern Business Applications with
Objectified Legacy Systems

10 Brian Sheppard (UM) Towards Perfect Play of Scrabble

11 Wouter C.A. Wijngaards (VU) Agent Based Modelling of Dynamics: Biological and
Organisational Applications

12 Albrecht Schmidt (UvA) Processing XML in Database Systems

13 Hongjing Wu (TU/e) A Reference Architecture for Adaptive Hypermedia Applications

14 Wieke de Vries (UU) Agent Interaction: Abstract Approaches to Modelling, Program-
ming and Verifying Multi-Agent Systems

15 Rik Eshuis (UT) Semantics and Verification of UML Activity Diagrams for Workflow
Modelling

16 Pieter van Langen (VU) The Anatomy of Design: Foundations, Models and Applica-
tions

17 Stefan Manegold (UvA) Understanding, Modeling, and Improving Main-Memory Data-
base Performance

2003

1 Heiner Stuckenschmidt (VU) Ontology-Based Information Sharing in Weakly Struc-
tured Environments

2 Jan Broersen (VU) Modal Action Logics for Reasoning About Reactive Systems

3 Martijn Schuemie (TUD) Human-Computer Interaction and Presence in Virtual Re-
ality Exposure Therapy

4 Petkovic (UT) Content-Based Video Retrieval Supported by Database Technology

5 Jos Lehmann (UvA) Causation in Artificial Intelligence and Law – A Modelling Ap-
proach

6 Boris van Schooten (UT) Development and Specification of Virtual Environments

7 Machiel Jansen (UvA) Formal Explorations of Knowledge Intensive Tasks

8 Yong-Ping Ran (UM) Repair-Based Scheduling

9 Rens Kortmann (UM) The Resolution of Visually Guided Behaviour

10 Andreas Lincke (UT) Electronic Business Negotiation: Some Experimental Studies on
the Interaction between Medium, Innovation Context and Cult

11 Simon Keizer (UT) Reasoning under Uncertainty in Natural Language Dialogue using
Bayesian Networks

12 Roeland Ordelman (UT) Dutch Speech Recognition in Multimedia Information Re-
trieval

13 Jeroen Donkers (UM) Nosce Hostem – Searching with Opponent Models

14 Stijn Hoppenbrouwers (KUN) Freezing Language: Conceptualisation Processes across
ICT-Supported Organisations

15 Mathijs de Weerdt (TUD) Plan Merging in Multi-Agent Systems

16 Menzo Windhouwer (CWI) Feature Grammar Systems - Incremental Maintenance of
Indexes to Digital Media Warehouse

17 David Jansen (UT) Extensions of Statecharts with Probability, Time, and Stochastic
Timing

18 Levente Kocsis (UM) Learning Search Decisions



132 SIKS Dissertation Series

2004

1 Virginia Dignum (UU) A Model for Organizational Interaction: Based on Agents,
Founded in Logic

2 Lai Xu (UvT) Monitoring Multi-party Contracts for E-business

3 Perry Groot (VU) A Theoretical and Empirical Analysis of Approximation in Symbolic
Problem Solving

4 Chris van Aart (UvA) Organizational Principles for Multi-Agent Architectures

5 Viara Popova (EUR) Knowledge Discovery and Monotonicity

6 Bart-Jan Hommes (TUD) The Evaluation of Business Process Modeling Techniques

7 Elise Boltjes (UM) VoorbeeldIG Onderwijs; Voorbeeldgestuurd Onderwijs, een Opstap
naar Abstract Denken, vooral voor Meisjes

8 Joop Verbeek (UM) Politie en de Nieuwe Internationale Informatiemarkt, Grensre-
gionale Politiële Gegevensuitwisseling en Digitale Expertise

9 Martin Caminada (VU) For the Sake of the Argument; Explorations into Argument-
based Reasoning

10 Suzanne Kabel (UvA) Knowledge-rich Indexing of Learning-objects

11 Michel Klein (VU) Change Management for Distributed Ontologies

12 The Duy Bui (UT) Creating Emotions and Facial Expressions for Embodied Agents

13 Wojciech Jamroga (UT) Using Multiple Models of Reality: On Agents who Know how
to Play

14 Paul Harrenstein (UU) Logic in Conflict. Logical Explorations in Strategic Equilib-
rium

15 Arno Knobbe (UU) Multi-Relational Data Mining

16 Federico Divina (VU) Hybrid Genetic Relational Search for Inductive Learning

17 Mark Winands (UM) Informed Search in Complex Games


