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Abstract

This article presents a new learning system for predicting life and death in the game
of Go. It is called GONE. The system uses a multi-layer perceptron classifier which
is trained on learning examples extracted from game records. Blocks of stones are
represented by a large amount of features which enable a rather precise prediction
of life and death. On average, GONE correctly predicts life and death for 88% of
all the blocks that are relevant for scoring. Towards the end of a game the perfor-
mance increases up to 99%. A straightforward extension for full-board evaluation is
discussed. Experiments indicate that the predictor is an important component for
building a strong full-board evaluation function.

Key words: Go, learning, game records, neural net, life and death

1 Introduction

Evaluating Go positions is one of the hardest tasks in Artificial Intelligence
(AI). In the last decade the game of Go! has received significant attention
from AT research [2,3]. Yet, despite all efforts, the best Go programs are still
weak compared to human players. Partially this is due to the complexity of
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19 x 19 Go. However, even on the 9 x 9 board, which has a complexity between
Chess and Othello [2], the current Go programs perform nearly as bad. The
main reason lies in the lack of adequate evaluation functions. Many (if not all)
of the current top programs rely on (huge) static knowledge bases conceived by
the programmers as they understand the Go skills and Go knowledge of a Go
player. As a consequence the hand-coded knowledge in the top programs tends
to become extremely complex and difficult to improve. In principle a learning
system should be able to overcome this problem by reducing the dependence
on hand-coded knowledge.

Over centuries humans have acquired extensive knowledge of Go. Since much
of this knowledge is implicitly available in the games of human experts, it
is tempting to apply machine-learning techniques to extract that knowledge
from game records. One of the best sources of game records on the Internet
is the NNGS archive [4]. Although the NNGS game records contain a wealth
of information, the automated extraction of knowledge from these games is a
non-trivial task at least for the following three reasons.

(1) Missing Information. Life-and-death status of blocks is not available. In
scored games only a single numeric value representing the difference in
points is available.

(2) Unfinished Games. Not all games are scored. Human games often end by
one side resigning or abandoning the game without finishing it, which
may leave the status of large parts of the board unclear.

(3) Bad Mowves. During the game mistakes are made which may be hard
to detect. Since mistakes break the chain(s) of optimal moves it can be
misleading (and incorrect from a game-theoretical point of view) to relate
positions before the mistake to the final outcome of the game.

Recently, we have set the first step towards making the knowledge in the
game records accessible. We built a system that is able to score automatically
98.9% of the final positions correctly without any human intervention [5]. The
reliable scores were obtained by a highly accurate classification of life and
death for final positions (~99.7% of all blocks correct). As a result we now
have a database containing 18,222 9x9 games with reliable and complete score
information. From this database we intend to learn relevant Go skills which
enable us to build a strong evaluation function.

In this article we present our latest work towards this purpose. It is a new
learning system, called GONE (Go is Not Easy), for predicting life and death
in the game of Go. Unlike in [5] where we only used final positions, this article
focuses on predictions during the game. We believe that predicting life and
death is a skill which is pivotal for strong play and an essential ingredient in
any strong positional evaluation function.



The rest of this article is organised as follows: Section 2 presents the learning
task in more detail. Section 3 introduces the representation and exhaustively
lists all features. Section 4 provides information about the dataset. Sections
5, 6 and 7 report our experiments. Finally, Section 8 presents our conclusions.

2 The learning task

In order to learn to predict life and death we use a set of labelled game
records, of which the labels contain the colour controlling each point at the
end of the game. An intuitively straightforward implementation would classify
each block? as the (majority of) occupied labelled points. Unfortunately this
does not necessarily provide correct information for classification of life and
death, for which at least two conflicting definitions exist.

The Japanese Go rules state: “Stones are said to be ‘alive’ if they cannot be
captured by the opponent, or if capturing them would enable a new stone to
be played that the opponent could not capture. Stones which are not alive are
said to be ‘dead’.”

The Chinese Go rules state: “At the end of the game, stones which both players
agree could inevitably be captured are dead. Stones that cannot be captured
are alive.”

Fig. 1. Alive or dead?

A consequence of both rules is shown in Figure 1la: the marked black stones
can be considered alive by the Japanese rules, and dead by the Chinese rules.
Since the white stones are dead under all rule sets, and the whole region is
controlled by Black, the choice whether these black stones are alive or dead is
irrelevant for scoring the position. However, whether the marked black stones
should be considered alive or dead in training is unclear.

A more problematic position, known as ‘3 points without capturing’, is shown
in Figure 1b. If this position is scored under the Japanese rules all marked
stones are considered alive (because after capturing some new stones would

2 Following the nomenclature as used by Miiller [3] we call connected stones of the
same colour a block. The reader should however note that other authors sometimes
use the terms string, unit, worm or even chain for the same thing.



eventually be played that cannot be captured). However, if the position would
be played out the most likely result (which may be different if one side can
win a ko-fight) is that the empty point in the corner, the marked white stone,
and the black stone marked with a triangle become black, and the three black
stones marked with a square become white. Furthermore, all marked stones
are captured and can therefore be considered dead under the Chinese rules.

In this article we choose the Chinese rules for defining life and death. The
learning task therefore becomes the task of predicting whether blocks of stones
can or will be captured. When replaying the game backward from the labelled
final position the following four types of blocks can be identified (in order of
decreasing domination):

(1) Blocks that are captured during the game.

(2) Blocks that occupy points ultimately controlled by the opponent.

(3) Blocks that occupy points on the edge of regions ultimately controlled by
their own colour.

(4) Blocks that occupy points in the interior of regions ultimately controlled
by their own colour.

Blocks of type 1 and 2 should be classified as dead. Blocks of type 3 should
be classified as alive. Type-4 blocks cannot be classified based on the labelling
and are therefore not used in training. (As an example, the marked block in
Figure la typically ends up as type 4, and the marked blocks in Figure 1b
end up as type 2. However, if any of the marked blocks are actually captured
during the game they will of course be of type 1.)

Obviously, perfect classification is not possible in non-final positions. Therefore
the goal is to approximate the Bayesian a posterior: probability given a set of
features or at least the Bayesian discriminant function, for deciding whether
the block will be alive or dead at the end of the game. In pattern recognition
there are several ways to do this. A popular choice is the use of a multi-layer
perceptron (MLP) classifier. It has been shown [6] that minimising the mean-
square error (MSE) on binary targets, for an MLP with sufficient functional
capacity, adequately approximates the Bayesian a posterior: probability.

3 Representation of the block

Many representations for characterising blocks are possible and used in the
computer-Go domain. The most primitive representations typically employ
the raw board directly. Although such representations are complete, in the
sense of containing all relevant information, they are known to be inefficient
because of their high dimensionality and lack of topological structure. Our



representation employs a carefully selected set of features based on simple
measurable geometric properties, some elementary Go knowledge, and some
hand-crafted specialised features. Many of our features are typically used in
Go programs to evaluate positions [7,8]. The features are calculated for single
blocks (friendly and opponent), multiple blocks in chains, and colour-enclosed
regions (CERs).

For each block we include the following features:

— Size measured in occupied points,

— Perimeter measured in number of adjacent points, including points over the
edge,

— Opponents: the occupied adjacent points,

— (Flirst-order) liberties: the free adjacent points,

— Second-order liberties: the liberties of (first-order) liberties (excluding the
first-order liberties),

— Third-order liberties: the liberties of second-order liberties (excluding first-
and second-order liberties),

— Protected liberties: the liberties which cannot be played by the opponent,
because of suicide or being directly capturable,

— Auto-atari liberties: the liberties which reduce the liberties of the block from
2 to 1 if they are played on; it means that the blocks would become directly
capturable (such liberties are protected for an adjacent opponent block),

— Adjacent opponent blocks,

— Local magority: the number of opponent stones minus the number of friendly
stones within a Manhattan distance of 2 from the block,

— Centre of mass represented by the distance to the closest and second-closest
edge,

— Bounding box size: the number of points in the smallest rectangular box
that can contain the block.

Adjacent to each block are CERs consisting of connected empty and occupied
points, surrounded by stones of one colour or the edge. It is important to know
whether an adjacent CER is fully accessible, because a fully accessible CER
surrounded by safe blocks provides at least one sure liberty. To detect fully
accessible regions we use so-called miai strategies as applied by Miiller [9]. In
contrast to Miiller’s original implementation we also add miai accessible inte-
rior empty points to the set of accessible liberties, and use protected liberties
for the chaining too.

An example of a fully accessible CER is shown in Figure 2. Here the idea
is that if White plays on a marked empty point, Black replies on the other
empty point marked by the same letter. By following this miai strategy Black
is guaranteed to be able to occupy or become adjacent to all points in the
region. Often it is not possible to find a miai strategy for the full region, in



which case we call the CER partially accessible. In Figure 3 an example of a
partially accessible CER is shown. In this case the 3 points marked z form the
inaccessible interior for the given miai strategy.
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Fig. 2. Fully accessible CER. Fig. 3. Partially accessible CER.

For fully accessible CERs we include:

— Number of regions,

- Size,

— Perimeter,

— Split points: crucial points for preserving connectedness in the local 3 x 3
window around the point. (The region could still be connected by a big loop
outside the local 3 x 3 window.) Examples are shown in Figure 4.

T

Fig. 4. Split points marked with x.

For partially accessible CERs we include:

— Number of partially accessible regions,
— Accessible size,

— Accessible perimeter,

— Size of the inaccessible interior,
Perimeter of the inaccessible interior,
Split points of the inaccessible interior.

The size, perimeter, and number of split points are summed for all regions.
We do not address individual regions because the representation must have a
fixed length, whereas the number of regions is not fixed. (Although one might
think that summing over all regions harms performance, the alternative of
treating a large number of regions separately actually tends to do more harm
than good because of the increased dimensionality.)

Another way to analyse CERs is to look for possible eyespace. Points forming
the eyespace should be empty or contain capturable opponent stones. Empty
points directly adjacent to opponent stones are not part of the eyespace. Points
on the edge with one or more diagonally adjacent alive opponent stones and
points with two or more diagonally adjacent alive opponent stones are false
eyes (opponent blocks which are directly adjacent to enough empty space for
at most one eye are here assumed dead, and do not make eyes false). False



eyes are not part of the eyespace (we ignore the unlikely case where a big loop
upgrades false eyes to true eyes). For directly adjacent eyespace of the block
we include:

— Size,
— Perimeter.

In many positions, blocks of the same colour with shared liberties will be
connected at the end of the game. An optimistic scenario therefore may assume
that all blocks with shared liberties can form a chain. Examples of a black and
a white optimistic chain are shown in Figure 5. For this so-called optimistic
chain we include:

— Number of blocks,

— Size,

— Perimeter,

— Split points,

— Adjacent CERs,

— Adjacent CERs with eyespace,

— Adjacent CERs, fully accessible from at least one block,

— Size of adjacent eyespace,

— Perimeter of adjacent eyespace,

— External opponent liberties: liberties of adjacent opponent blocks which are
not accessible from the optimistic chain.

olas

Fig. 5. Marked optimistic chains.

The reader may have noticed that our optimistic chain has some similarity
with what human players call a group. Our current representation does not
use groups. The reason is that the human notion of a group is not well defined.
It typically relies on virtual connections between blocks which are more than
one empty space apart (such connections can be non-transitive), and may
even rely on an underlying notion of life and death. However, if heuristic
group information is available in a program it could of course be used trivially
with similar features as used for our optimistic chain.

Adjacent to the block under investigation there may be opponent blocks. For
the weakest (measured by the number of liberties) directly adjacent opponent
block we include:

Perimeter,
Liberties,
Shared liberties,
Split points,



— Perimeter of adjacent eyespace.

The same features are also included for the second-weakest directly adjacent
opponent block, and the weakest opponent block directly adjacent to or shar-
ing liberties with the optimistic chain of the block in question.

Regions of connected empty intersections adjacent to black and to white stones
are disputed territory. (We ignore the fact that some blocks may already be
considered dead for one side, which could resolve some disputes.) If the block
is adjacent to disputed territory we include:

— Durect liberties of the block in disputed territory,
— Liberties of all friendly blocks in disputed territory,
— Liberties of all enemy blocks in disputed territory.

Finally, we include the following global features:

— Player to move relative to the block’s colour,
— Ko indicates if an active ko is on the board,
— Distance to ko from the block,

— Number of friendly stones on the board,

— Number of opponent stones on the board.

4 The data set

In all experiments presented in this article we used 9x9 game records played
between 1995 and 2002 on NNGS [4]. For the experiments reported in Sections
5 and 6 we used training and test examples obtained from 18,222 9x9 games
that were played to the end and scored. In total, all positions from these games
contain about 10 million blocks of which 8.5% are of type 1, 11.5% are of type
2, 65.5% are of type 3, and 14.5% are of type 4. Leaving out type-4 blocks
gives as a priori probabilities that 76.5% of the blocks are alive and 23.5% of
the blocks are dead.

Since NNGS game records only contain a single numeric value for the score, the
fate of all points had to be labelled. For this we used GNUGO [10], some manual
labelling, and our own system for scoring final positions [5]. Since automatic
labelling is still imperfect, all games where the score based on the labelling
was not identical to the numeric score in the game record, or where the final
positions contained unsettled interior points, were inspected manually. Finally,
an additional inspection of a few hundred randomly selected final positions
revealed none that were labelled incorrectly.

In all experiments the test examples were extracted from games played in



1995, and the training and the validation examples from games played between
1996 and 2002. Since the games provide a huge amount of blocks with little
or no variation (large regions remain unchanged per move) and because of
constraints on time and working memory only a small fraction of blocks was
randomly selected for training (<5% per game).

5 Choosing a classifier

An important choice is selecting a good classifier. In pattern recognition there
is a variety of classifiers to choose from. A popular choice is the use of artificial
neural networks, which have already been applied to other Go-related tasks
at least with some degree of success [11-13]. Our previous work on scoring
final positions showed that the Multi-Layer Perceptron (MLP) provides good
performance with a reasonable training time [5]. The performance of the MLP
mainly depends on the architecture, the number of training examples, and the
training algorithm. In the experiments reported below we tested architectures
with 1 and with 2 hidden layers containing various numbers of neurons per
hidden layer. For training we compared: (1) gradient descent with momentum
and adaptive learning (GDXNC) with (2) RPROP backpropagation (RPNC).
For comparison we also present results for the Nearest Mean Classifier (NMC),
the Linear Discriminant Classifier (LDC), and the Logistic Linear Classifier
(LOGLC). More information on these classifiers can be found in [14-16].

Since the performance of the classifiers may be influenced by random initiali-
sations each classifier was trained 10 times with respectively 1,000, 5,000, and
25,000 training examples. A validation set of equal size or at most 15,000 ex-
amples was used to stop training. In Table 1 the average performance of the
various classifiers is shown on a test set of 22,632 blocks extracted from 920
games played in 1995 (to speed up this experiment we used only ~ 5% of all
blocks available from the 1995 games). It is noted that the standard devia-
tions over the 10 runs were around 0.1%. The results indicate that GDXNC
performed slightly better than RPNC. Although RPNC trains 2 to 3 times
faster than GDXNC, and converges at a lower error on the training data,
the performance on the test data seems to be worse because of overfitting.
For both GDXNC and RPNC it appeared that using one hidden layer with
25 neurons is sufficient at least for training with 25,000 examples. Adding a
second hidden layer with 5 or 25 neurons did not improve performance.



Table 1
Performance of classifiers on a test set. The numbers in the names indicate the
number of neurons per hidden layer.

Classifier Test error (%)
Training examples | 1,000 | 5,000 | 25,000
NMC 215 | 21.0 21.0
LDC 14.2 | 13.7 13.6
LOGLC 14.8 | 13.3 13.1
GDXNC-5 13.8 | 12.9 12.2
GDXNC-15 13.9 | 129 12.2
GDXNC-25 13.7 | 12.8 12.0
GDXNC-25-5 13.8 | 129 12.1
GDXNC-25-25 13.9 | 12.8 12.0
GDXNC-50 13.8 | 12.8 12.0
RPNC-5 14.7 | 134 124
RPNC-15 144 | 13.2 124
RPNC-25 14.7 | 13.3 12.4
RPNC-25-5 14.3 | 134 12.6
RPNC-25-25 14.3 | 13.5 12.8
RPNC-50 15.0 | 13.3 12.5

6 Performance over the game

In the previous section we calculated the average classification performance
over whole games. Although this is an interesting measure, it does not tell
us how the performance changes as the game develops. We believe that for
standard opening moves the best choice is pure guessing based on the highest
a priori probability (always alive). Final positions, however, can (at least in
principle) be classified perfectly. Given these extremes it is interesting to see
how the performance changes over the game, either looking forward from the
start position or backward from the final position.

To test the performance over the game we trained a new GDXNC classifier
using one hidden layer with 25 neurons on 175,000 training examples. A valida-
tion set of 25,000 examples was used to stop training. Training was performed
3 times with different random initialisations after which the best classifier was
selected based on the performance on the validation set. This classifier achieved
a prediction error of 11.7% on the complete test set (containing 443,819 blocks

10



from 920 games).

In Figure 6a it is shown that pure guessing performs equally well for roughly
the first 10 moves. As the length of games increases the a priori probability
of blocks on the board ultimately being captured also increases (which makes
sense because the best points are occupied first and there is only limited space
on the board). It should be noted that although the plots extend only up to
80 moves this does not mean that there were no longer games. However, the
number of games with a length of over 80 moves is too low for meaningful
results (too much noise).
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Fig. 6. Performance over the game.

Good evaluation functions typically aim at predicting the final result at the
end of the game as soon as possible. It is therefore encouraging to see in Figure
6b that towards the end of the game the error goes down rapidly, predicting
about 95% correctly when 10 moves before the end. For final positions our
system classifies over 99% of all blocks correctly. Our previous work [5] showed
that this performance is at least comparable to that of the average rated
NNGS player (for scored 9x9 games such a player has a rating of 7 kyu).
Furthermore, scaling up to 19x19 seems to be possible without significant loss
in performance. Whether this performance is similar for non-final positions is
difficult to say.

7 Towards a full-board evaluation function

In Go, full-board evaluation functions typically aim at predicting the number
of intersections controlled by each player at the end of the game. By predicting
life and death for all occupied intersections GONE provides the basis for such

11



a full-board evaluation function. A straightforward extension® of GONE to
classify all intersections is implemented by assigning each intersection to the
colour of the nearest living block. An example is presented in Figure 7. Here the
left board shows the predictions of GONE, the middle board shows all blocks
which are assumed to be alive, and the right board shows the territory which
is calculated by assigning each intersection to the colour of the nearest living
block. (Notice that even though our system failed to detect one white dead
block the estimated territory is still sufficient to predict the correct winner.)
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Fig. 7. An example of a full-board evaluation.

For final positions (where both sides have completely sealed off their territory)
our straightforward extension suffices to predict the correct winner with over
99% certainty [5]. However, since we are interested in predictions during the
game, it is probably more informative to test the performance on non-final
positions. Since players make mistakes during the game, the most reliable
non-final test positions which can be extracted from game records occur when
one player resigns. We tested our straightforward extension of GONE on 2,786
resigned 9x9 games played between 1995 and 2002 by rated players on NNGS
[4]. On average it predicts the correct winner for 87% of all positions. For
comparison, if GONE is not used to remove dead blocks, and all empty points
are assigned to the colour of the nearest stone, the performance drops to 69%
correct.

The strength of players is a factor influencing the difficulty of positions and
the reliability of the results. Therefore, we calculated statistics for all rank
categories between 20 kyu and 2 dan. Figure 8 shows the relation between
the rank of the player that resigned and the average error at predicting the
winner, the average estimated difference in points, as well as the number of
game records available. It is shown that predicting the winner tends to become
more difficult with increasing strength of the players. This makes sense because
strong players usually resign earlier and tend to create more difficult positions.
It is also no surprise that the estimated difference in points (when one player
resigns) tends to decrease with playing strength.

3 More knowledgeable approaches to extend GONE are possible. These are, however,
beyond the scope of this article.
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Fig. 8. Predicting the outcome of resigned games.

8 Conclusions and future research

Our system GONE learned to predict life and death from labelled examples
quite accurately. On unseen game records and averaged over the whole game,
it classified around 88% of all blocks correctly. Ten moves before the end of
the game it classified around 95% correctly, and for final positions it classified
over 99% correctly.

Moreover, we presented a straightforward extension of GONE towards a full-
board evaluation function which gave quite promising results. To obtain more
insight into the importance of this work, GONE should be incorporated into a
more advanced full-board evaluation function. Testing this full-board evalua-
tion function on non-final positions, resigned games, and in a full go-playing
engine will be an important next step.

Although training with more examples still has some impact on performance,
we believe that most can be gained by improving the representation of blocks.
Some features, such as those for loosely defined groups, have not yet been
characterised and implemented, whereas some other features may be correlated
or could even be redundant. Most likely, automatic feature extraction and
feature selection methods have to be employed to improve the representation.
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