
Learning to Predict Life and Death from Go Game Records

Erik C.D. van der Werf, Mark H.M. Winands, H. Jaap van den Herik and Jos W.H.M. Uiterwijk
�

Institute for Knowledge and Agent Technology, Department of Computer Science, Universiteit Maastricht,
P.O. Box 616, 6200 MD Maastricht, The Netherlands.

Abstract

This paper presents a learning system for predicting life
and death in the game of Go. Learning examples are
extracted from game records. On average our system
correctly predicts life and death for 88% of all blocks.
Towards the end of a game the performance increases up
to 99%. Clearly, such a predictor will be an important
component for building a full-board evaluation function.

1 Introduction

Evaluating Go positions is one of the hardest tasks in Ar-
tificial Intelligence (AI). In the last decade Go has re-
ceived significant attention from AI research [1, 9]. Yet,
despite all efforts, the best computer Go programs are
still weak compared to human players. Partially this is
due to the complexity of

���������
Go. However, even on

the
���	�

board, which has a complexity between Chess
and Othello [1], the current Go programs perform nearly
as bad. The main reason lies in the lack of good posi-
tional evaluation functions. Many (if not all) of the cur-
rent top programs rely on (huge) static knowledge bases
conceived by the programmers as they understand the Go
skills and Go knowledge of a Go player. As a conse-
quence the top programs are extremely complex and dif-
ficult to improve. In principle a learning system should
be able to overcome this problem.

Over centuries humans have acquired extensive
knowledge of Go. Since that knowledge is implicitly
available in the games of human experts, it should be
possible to apply machine-learning techniques to extract
that knowledge from game records. One of the best
sources of game records on the Internet is the NNGS
archive [10]. Although the NNGS game records con-
tain a wealth of information, the automated extraction
of knowledge from these games is a non-trivial task at
least because of incomplete scoring information, unfin-
ished games, and bad moves during the game.

Recently, we have set the first step towards making
the knowledge in the game records accessible. We have

Email: � e.vanderwerf,m.winands,herik,uiterwijk � @cs.unimaas.nl

built a learning system that is able to score automatically
98.9% of the final positions correct without any human
intervention [12]. The reliable scores were obtained by
a highly accurate classification of life and death for fi-
nal positions (99.7% of all blocks correct). As a result
we now have a database containing 18,222 9

�
9 games

with reliable and complete score information. From this
database we intend to learn relevant Go skills which en-
able us to build a strong positional evaluation function.
In this paper we present our latest work towards this end,
which focusses on learning to predict life and death dur-
ing the game. We believe that predicting life and death
is a skill which is pivotal for strong play and an essential
ingredient in any strong positional evaluation function.

The rest of this paper is organised as follows: Section
2 presents the learning task. Section 3 introduces the rep-
resentation. Section 4 provides details about the dataset.
Sections 5 and 6 report our experiments. Finally, Section
7 presents our conclusions.

2 The learning task

Predicting life and death can be learned from a set of
labelled game records, for which the labels contain the
colour controlling each point at the end of the game. An
intuitively straightforward implementation would clas-
sify each block as the (majority of) occupied labelled
points. Unfortunately this does not necessarily provide
correct information for classification of life or death, for
which at least two conflicting definitions exist.

The Japanese Go rules state: “Stones are said to be
‘alive’ if they cannot be captured by the opponent, or if
capturing them would enable a new stone to be played
that the opponent could not capture. Stones which are
not alive are said to be ‘dead’.”

The Chinese Go rules state: “At the end of the game,
stones which both players agree could inevitably be cap-
tured are dead. Stones that cannot be captured are alive.”

A consequence of both rules is shown in Figure 1a:
the marked black stones are considered alive by the
Japanese rules, and dead by the Chinese rules. Since the
white stones are dead under all rule sets, scoring such a

������������
������ ���� ��
������ �� �� ��
������ �� ����� �������

(a)

�������� ��!"�#�$% �% %�&'�# % % %�&'�#�'% '%�(�&
) &�&�&�&

(b)

Figure 1: Alive or dead?

position is not a problem. However, whether the black
stones should be considered alive or dead is unclear.

Another problematic position is shown in Figure 1b.
If this position is scored under the Japanese rules all
marked stones are alive. However, if the position would
be played out the most likely result (which may be dif-
ferent if one side can win a ko-fight) is that the empty
point in the corner, the marked white stone and the black
stone marked with a triangle become black, and the three
black stones marked with a square become white. Fur-
thermore, all marked stones are captured and therefore
dead under the Chinese rules.

In this paper we choose the Chinese rules for defin-
ing life and death. The learning task therefore becomes
the task of predicting whether blocks of stones can be
captured. When replaying the game backwards the fol-
lowing four classes of blocks can be identified (in order
of decreasing domination):

1. Blocks that are captured during the game.

2. Blocks that occupy points ultimately controlled by
the opponent.

3. Blocks that occupy points on the edge of regions
ultimately controlled by their own colour.

4. Blocks that occupy points in the interior of regions
ultimately controlled by their own colour.

Blocks of class 1 and 2 should be classified as dead.
Blocks of class 3 should be classified as alive. Class 4
blocks cannot be classified based on the labelling and are
therefore not used in training.

Obviously, perfect classification is not possible in
non-final positions. Therefore the goal is to approxi-
mate the Bayesian a posteriori probability or at least
the Bayesian discriminant function, for deciding whether
the block will be alive or dead at the end of the game.
In pattern recognition there are several ways to do this.
A popular choice is the use of a multi-layer perceptron
(MLP) classifier. It has been shown [6] that minimising
the mean-square error (MSE) on binary targets, for an
MLP with sufficient functional capacity, adequately ap-
proximates the Bayesian a posteriori probability.

3 Representation of the block

Many representations for characterising blocks are pos-
sible and used in the Computer-Go field. The most prim-
itive representations typically employ the raw board di-
rectly. Although such representations are complete, in
the sense of containing all relevant information, they are
known to be inefficient because of their high dimension-
ality and lack of topological structure. Our representa-
tion employs features based on simple measurable geo-
metric properties, some elementary Go knowledge and
some hand-crafted specialised features. Several of our
features are typically used in Go programs to evaluate
positions [2, 4]. The features are calculated for single
friendly and opponent blocks, multiple blocks in chains,
and colour-enclosed regions (CERs).

For each block we include the following features:
Size, Perimeter, Adjacent opponent stones, Number of
first-, second-, and third-order liberties, Protected liber-
ties, Auto-atari liberties, Adjacent opponent blocks, Lo-
cal majority, Centre of mass, and Bounding box.

Adjacent to each block are CERs consisting of con-
nected empty and occupied points, surrounded by stones
of one colour or the edge. It is important to know whether
an adjacent CER is fully accessible, because a fully ac-
cessible CER provides at least one sure liberty. To detect
fully accessible regions we use so-called miai strategies
as applied by Müller [8]. In contrast to Müller’s origi-
nal implementation we also add miai accessible interior
empty points to the set of accessible liberties, and also
use protected liberties for the chaining.

For fully accessible CERs we include: Number of re-
gions, Size, Perimeter, and Split points.

For partially accessible CERs we include: Number
of regions, Accessible size, Accessible perimeter, Unac-
cessible size, Unaccessible perimeter, and Unaccessible
split points.

The size, perimeter, and number of split points are
summed for all regions. We do not address individ-
ual regions because the representation must have a fixed
length, whereas the number of regions is not fixed.

Another way to analyse CERs is to look for possible
eyespace. Points forming the eyespace should be empty
or contain capturable opponent stones. Empty points di-
rectly adjacent to opponent stones are not part of the eye-
space. Points on the edge with one or more diagonally
adjacent opponent stones and points with two or more di-
agonally adjacent opponent stones are false eyes. False
eyes are not part of the eyespace (we ignore the unlikely
case where a big loop upgrades false eyes to true eyes).
For directly adjacent eyespace of the block we include:
Size and Perimeter.

In many positions blocks of the same colour with
shared liberties will be connected at the end of the
game. An optimistic scenario therefore may assume that
all blocks with shared liberties can form a chain. For
this, so-called, optimistic chain we include: Number of
blocks, Size, Perimeter, Split points, Adjacent CERs, Ad-
jacent CERs with eyespace, Fully accessible adjacent
CERs, Size of adjacent eyespace, Perimeter of adjacent
eyespace, and External opponent liberties.

Adjacent to the block in question there may be oppo-
nent blocks. For the weakest (measured by the number
of liberties) directly adjacent opponent block we include:
Perimeter, Liberties, Shared liberties, Split points, and
Perimeter of adjacent eyespace. The same features are
also included for the second-weakest directly adjacent
opponent block, and the weakest opponent block directly
adjacent to or sharing liberties with the optimistic chain
of the block in question.

By comparing a flood fill starting from Black with a
flood fill starting from White we can find unsettled empty
regions which are disputed territory. If the block is ad-
jacent to disputed territory we include: Direct liberties,
Liberties of all friendly blocks, and Liberties of all enemy
blocks in the disputed territory.

Finally, we include the following global features:
Player to move, Ko, Distance to ko, Number of friendly
stones, and Number of opponent stones.

4 The data set

In the experiments we use 9
�

9 game records played be-
tween 1995 and 2002 on NNGS [10]. We only use games
which are played to the end and scored. Since NNGS
game records only contain a single numeric value for the
score, the fate of all points had to be labelled by an exter-
nal program. For this we used GNUGO [5], some man-
ual labelling, and our own learning system for scoring
final positions [12]. Since automatic labelling is still im-
perfect, all games where the score based on the labelling
was not identical to the numeric score in the game record,
or where the final positions contained unsettled interior
points, were inspected manually. Finally, an additional
inspection of a few hundred randomly selected final po-
sitions revealed that none were labelled incorrectly.

In all experiments test examples were extracted from
games played in 1995, training examples were extracted
from games played between 1996 and 2002. Since the
games provide a huge amount of blocks with little or
no variation (large regions remain unchanged per move)
only a small fraction of blocks were randomly selected
for training (*,+.- per game).

5 Choosing a classifier

An important choice is selecting a good classifier. Our
previous work on scoring final positions showed that the
MLP classifier provides good performance with a rea-
sonable training time [12]. The performance of the MLP
mainly depends on the architecture, the number of train-
ing examples, and the training algorithm. In the exper-
iments reported here we tested architectures with 1 and
with 2 hidden layers containing various numbers of neu-
rons per hidden layer. For training we compared: (1)
gradient descent with momentum and adaptive learning
(GDXNC) with (2) RPROP backpropagation (RPNC)
[11]. For comparison we also present results obtained for
the Nearest Mean Classifier (NMC), the Linear Discrim-
inant Classifier (LDC), and the Logistic Linear Classifier
(LOGLC). More information on these classifiers can be
found in [3] and [7].

Classifier Test error (%)
Training examples 1000 5000 25000
NMC 21.5 21.0 21.0
LDC 14.2 13.7 13.6
LOGLC 14.8 13.3 13.1
GDXNC-5 13.8 12.9 12.2
GDXNC-15 13.9 12.9 12.2
GDXNC-25 13.7 12.8 12.0
GDXNC-25-5 13.8 12.9 12.1
GDXNC-25-25 13.9 12.8 12.0
GDXNC-50 13.8 12.8 12.0
RPNC-5 14.7 13.4 12.4
RPNC-15 14.4 13.2 12.4
RPNC-25 14.7 13.3 12.4
RPNC-25-5 14.3 13.4 12.6
RPNC-25-25 14.3 13.5 12.8
RPNC-50 15.0 13.3 12.5

Table 1: Performance of classifiers. The numbers in the
names indicate the number of neurons per hidden layer.

The results, shown in table 1, indicate that GDXNC
performs slightly better than RPNC. Although RPNC us-
ing RPROP provides faster training (2 3 times faster
than GDXNC) and a lower error on the training data, the
performance on the test data seems to be worse because
of overfitting. Using one hidden layer with 25 neurons
is sufficient at least for training with 25,000 examples.
Adding a second hidden layer with 5 or 25 neurons does
not improve performance.

6 Performance over the game

In the previous section we calculated the average classi-
fication performance over whole games. Although this is
an interesting measure, it does not tell us how the perfor-
mance changes as the game develops. We believe that for
standard opening moves the best choice is pure guessing
based on the highest a priori probability (always alive).
Final positions, however, can (at least in principle) be
classified perfectly. Given these extremes it is interesting
to see how the performance of our system changes over
the game, either looking forward from the beginning or
backward from the end.

Figure 2a shows that pure guessing performs equal
for roughly the first 10 moves. As the length of games
increases the a priori probability of blocks on the board
ultimately being captured also increases (which makes
sense because the best points are occupied first and there
is only limited space on the board).

Good evaluation functions aim at predicting the final
result of the game as soon as possible. It is therefore en-
couraging to see in Figure 2b that towards the end the
error goes down rapidly, predicting about 95% correct
when 10 moves before the end of the game. For final po-
sitions our system classifies over 99% of all blocks cor-
rectly. Our previous work [12] showed that this perfor-
mance is at least comparable to that of the average rated
NNGS player. Whether this performance is similar for
non-final positions is difficult to say.

7 Conclusions and future research

We have developed a system that learns to predict life and
death from labelled examples. On unseen game records
our system, averaged over the whole game, classifies
around 88% of all blocks correctly. Ten moves before
the end of the game it predicts around 95% correct, and
for final positions over 99% are classified correctly.

To obtain more insight into the importance of this
work, life-and-death prediction will be incorporated in a
full-board evaluation function for predicting the outcome
of games. Testing the full-board evaluation function on
non-final positions and resigned games (which were not
played to completion) will be an important measure.

Acknowledgements

We gratefully acknowledge financial support by the Uni-
versiteitsfonds Limburg / SWOL.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

Moves from the start

E
rr

or
 (

%
)

NN prediction
a priori

(a)

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

Moves before the end

E
rr

or
 (

%
)

NN prediction
a priori

(b)

Figure 2: Performance over the game

8 References

[1] B. Bouzy and T. Cazenave. Computer Go: An AI ori-
ented survey. Artificial Intelligence, 132(1):39–102, Oc-
tober 2001.

[2] K. Chen and Z. Chen. Static analysis of life and death
in the game of Go. Information Sciences, 121:113–134,
1999.

[3] R.P.W. Duin. PRTools, a Matlab Toolbox for Pattern
Recognition, 2000.

[4] D. Fotland. Static eye analysis in ‘THE MANY FACES OF

GO’. ICGA Journal, 25(4):201–210, 2002.

[5] GNUGO, 2003. http://www.gnu.org/software/gnugo/.

[6] J. B. Hampshire II and B. A. Perlmutter. Equiva-
lence proofs for multilayer perceptron classifiers and the
Bayesian discriminant function. In Proceedings of the
1990 Connectionist Models Summer School, 1990. D.
Touretzky, J. Elman, T. Sejnowski, and G. Hinton, eds.
Morgan Kaufmann, San Mateo, CA., 1990.

[7] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pat-
tern recognition: A review. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(1):4–37, 2000.

[8] M. Müller. Playing it safe: Recognizing secure territo-
ries in computer Go by using static rules and search. In
H. Matsubara, editor, Proceedings of the Game Program-
ming Workshop in Japan ’97, pages 80–86. Computer
Shogi Association, Tokyo, Japan, 1997.

[9] M. Müller. Computer Go. Artificial Intelligence, 134(1-
2):145–179, January 2002.

[10] NNGS. The no name go server game archive, 2002.
http://nngs.cosmic.org/gamesearch.html.

[11] M. Riedmiller and H. Braun. A direct adaptive method
for faster backpropagation: the RPROP algorithm. In
Proceedings of the IEEE Int. Conf. on Neural Networks
(ICNN), pages 586–591, 1993.

[12] E. C. D. van der Werf, H. J. van den Herik, and J. W.
H. M. Uiterwijk. Learning to score final positions in the
game of Go, 2003. Submitted for publication.

