
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 1

MCTS-Minimax Hybrids
Hendrik Baier and Mark H. M. Winands, Member, IEEE

Abstract—Monte-Carlo Tree Search (MCTS) is a sampling-
based search algorithm that is state of the art in a variety
of games. In many domains, its Monte-Carlo rollouts of entire
games give it a strategic advantage over traditional depth-limited
minimax search with αβ pruning. These rollouts can often detect
long-term consequences of moves, freeing the programmer from
having to capture these consequences in a heuristic evaluation
function. But due to its highly selective tree, MCTS runs a higher
risk than full-width minimax search of missing individual moves
and falling into traps in tactical situations.

This article proposes MCTS-minimax hybrids that integrate
shallow minimax searches into the MCTS framework. Three ap-
proaches are outlined, using minimax in the selection/expansion
phase, the rollout phase, and the backpropagation phase of
MCTS. Without assuming domain knowledge in the form of
evaluation functions, these hybrid algorithms are a first step
towards combining the strategic strength of MCTS and the
tactical strength of minimax. We investigate their effectiveness
in the test domains of Connect-4, Breakthrough, Othello, and
Catch the Lion, and relate this performance to the tacticality of
the domains.

I. INTRODUCTION

MONTE-CARLO TREE SEARCH (MCTS) [1], [2] is
a best-first tree search algorithm based on simulated

games as state evaluations. It samples moves instead of con-
sidering all legal moves from a given state, which allows it
to handle large search spaces with high branching factors. It
also uses Monte-Carlo simulations that make it independent of
a static heuristic evaluation function to compare non-terminal
states.

While MCTS has shown considerable success in a variety
of game domains, there are still a number of games such
as Chess and Checkers in which the traditional approach to
adversarial planning, minimax search with αβ pruning [3],
remains superior. This weakness of MCTS cannot always be
explained by the existence of effective evaluation functions for
these games, as evaluation functions have been successfully
combined with MCTS to produce strong players in games such
as Amazons and Lines of Action [4], [5].

Since MCTS builds a highly selective search tree, focus-
ing only on the most promising lines of play, it has been
conjectured that it could be less appropriate than traditional,
non-selective minimax search in domains containing a large
number of terminal states and shallow traps [6]. In trap
situations such as those frequent in Chess, precise tactical play
is required to avoid immediate loss. MCTS methods based on
sampling could easily miss a crucial move or underestimate the
significance of an encountered terminal state due to averaging
value backups. Conversely, MCTS could be more effective in

The authors are with the Games and AI Group, Department of Knowledge
Engineering, Maastricht University, Maastricht, The Netherlands.

e-mail: {hendrik.baier,m.winands}@maastrichtuniversity.nl

domains such as Go, where terminal states and potential traps
do not occur until the latest stage of the game. MCTS can
here fully play out its strategic and positional understanding
resulting from Monte-Carlo simulations of entire games.

This article explores ways of combining the strategic
strength of MCTS and the tactical strength of minimax in
order to produce more universally useful hybrid search algo-
rithms. We do not assume the existence of heuristic evaluation
functions, allowing the MCTS-minimax hybrids to be applied
in any domain where MCTS is used without such heuristics
(e.g. General Game Playing). The three proposed approaches
use minimax search in the selection/expansion phase, the
rollout phase, and the backpropagation phase of MCTS. We
investigate their effectiveness in the test domains of Connect-
4, Breakthrough, Othello, and Catch the Lion.

This article extends on [7]. It includes experiments in two
additional test domains, which also allows for further analysis
of the results. The tacticality of the domains is quantified by
measuring the density and difficulty of shallow traps, and the
performance of the MCTS-minimax hybrids is related to these
measures.

The article is structured as follows. Section II provides back-
ground on MCTS-Solver as the baseline algorithm. Section III
gives a brief overview of related work on the relative strengths
of minimax and MCTS, as well as attempts at combining
or nesting tree search algorithms. Section IV describes three
ways of incorporating shallow-depth minimax searches into
the different parts of the MCTS framework, and Section V
shows experimental results of these MCTS-minimax hybrids in
the four test domains. Conclusions and future research follow
in Section VI.

II. BACKGROUND

MCTS is the underlying framework of the algorithms in
this article. It works by repeating the following four-phase
loop until computation time runs out [8]. The root node of the
tree represents the current state of the game. Each iteration of
the loop represents one simulated game.

Phase one: selection. The tree is traversed starting from the
root, choosing the move to sample from each state with the
help of a selection policy. The selection policy should balance
the exploitation of states with high value estimates and the
exploration of states with uncertain value estimates. In this
article, the popular UCT variant of MCTS is used, with the
UCB1 policy as selection policy [9].

Phase two: expansion. When the selection policy leaves the
tree by sampling an unseen move, one or more of its successors
are added to the tree. In this article, we always add the one
successor chosen in the current iteration.

Phase three: rollout. A rollout (also called playout) policy
plays the simulated game to its end, starting from the state



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 2

represented by the newly added node. MCTS converges to the
optimal move in the limit even when rollout moves are chosen
randomly.

Phase four: backpropagation. The value estimates of all
states traversed during the simulation are updated with the
result of the finished game.

Many variants and extensions of this framework have been
proposed in the literature [10]. In this article, we are using
MCTS with the MCTS-Solver extension [11] as the baseline
algorithm. MCTS-Solver is able to backpropagate not only
regular simulation results such as losses and wins, but also
game-theoretic values such as proven losses and proven wins
whenever the search tree encounters a terminal state. The basic
idea is marking a move as a proven loss if the opponent has
a winning move from the resulting position, and marking a
move as a proven win if the opponent has only losing moves
from the resulting position. This avoids wasting time on the
re-sampling of game states whose values are already known.

III. RELATED WORK

The research of Ramanujan et al. [6], [12], [13] has
repeatedly dealt with characterizing search space properties
that influence the performance of MCTS relative to minimax
search. Shallow traps were identified in [6] as a feature of
domains that are problematic for MCTS, in particular Chess.
Informally, the authors define a level-k search trap as the
possibility of a player to choose an unfortunate move such
that after executing the move, the opponent has a guaranteed
winning strategy at most k plies deep. While such traps at
shallow depths of 3 to 7 are not found in Go until the latest
part of the endgame, they are relatively frequent in Chess
games even at grandmaster level [6], partly explaining the
problems of MCTS in this domain. A resulting hypothesis
is that in regions of a search space containing no or very few
terminal positions, shallow traps should be rare and MCTS
variants should make comparatively better decisions, which
was confirmed in [12] for the game of Kalah (called Mancala
by the authors). In [13] finally, an artificial game tree model
was used to explore the dependence of MCTS performance
on the density of traps in the search space. A similar problem
to shallow traps was presented in [14] under the name of
optimistic moves—seemingly strong moves that can be refuted
right away by the opponent, but take MCTS prohibitively
many simulations to find the refutation. One of the motivations
of the work in this article was to employ shallow-depth
minimax searches within MCTS to increase the visibility of
shallow traps and allow MCTS to avoid them more effectively.

In the context of General Game Playing, [15] compared
the performance of minimax with αβ pruning and MCTS.
Restricted to the class of turn-taking, two-player, zero-sum
games we are addressing here, the author identified a stable
and accurate evaluation function as well as a relatively low
branching factor as advantages for minimax over MCTS. In
this article, we explore the use of minimax within the MCTS
framework even when no evaluation function is available.

One method of combining different tree search algorithms
that was proposed in the literature is the use of shallow

minimax searches in every step of the MCTS rollout phase.
This was typically restricted to checking for decisive and anti-
decisive moves, as in [16] and [17] for the game of Havannah.
2-ply searches have been applied to the rollout phase in Lines
of Action [18], Chess [19], as well as various multi-player
games [20]. However, the existence of a heuristic evaluation
function was assumed here. For MCTS-Solver, a 1-ply looka-
head for winning moves in the selection phase at leaf nodes
has already been proposed in [11], but was not independently
evaluated. A different hybrid algorithm UCTMAXH was
proposed in [12], employing minimax backups in an MCTS
framework. However, again a strong heuristic evaluator was
assumed as a prerequisite. In our work, we explore the use
of minimax searches of various depths without any domain
knowledge beyond the recognition of terminal states. Minimax
in the rollout phase is covered in Subsection IV-A.

Furthermore, the idea of nesting search algorithms has been
used in [21] and [22] to create Nested Monte-Carlo Search and
Nested Monte-Carlo Tree Search, respectively. In this article,
we are not using search algorithms recursively, but nesting
two different algorithms in order to combine their strengths:
MCTS and minimax.

IV. HYBRID ALGORITHMS

In this section, we describe three different approaches
for applying minimax with αβ pruning within the MCTS
framework.

A. Minimax in the Rollout Phase

While uniformly random move choices in the rollout are
sufficient to guarantee the convergence of MCTS to the opti-
mal policy, more informed rollout strategies typically greatly
improve performance [23]. For this reason, it seems natural
to use fixed-depth minimax searches for choosing rollout
moves. Since we do not use evaluation functions in this article,
minimax can only find forced wins and avoid forced losses, if
possible, within its search horizon. If minimax does not find
a win or loss, we return a random move. The algorithm is
illustrated in Figure 1.

This strategy thus improves the quality of play in the rollouts
by avoiding certain types of blunders. It informs tree growth by
providing more accurate rollout returns. We call this strategy
MCTS-MR for MCTS with Minimax Rollouts.

B. Minimax in the Selection and Expansion Phases

Minimax searches can also be embedded in the phases
of MCTS that are concerned with traversing the tree from
root to leaf: the selection and expansion phases. This strategy
can use a variety of possible criteria to choose whether or
not to trigger a minimax search at any state encountered
during the traversal. In the work described in this article, we
experimented with starting a minimax search as soon as a
state has reached a given number of visits (for 0 visits, this
would include the expansion phase). Figure 2 illustrates the
process. Other possible criteria include e.g. starting a minimax
search for a loss as soon as a given number of moves from



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 3

(a) (b)

a b

w
in

(c)

b

(d)

Fig. 1. The MCTS-MR hybrid. (a) The selection phase. (b) The expansion phase. (c) A minimax search is started to find the first rollout move. Since the
opponent has a winning answer to move a, move b is chosen instead in this example. (d) Another minimax search is conducted for the second rollout move.
In this case, no terminal states are found and a random move choice will be made.

a state have already been proven to be losses, or starting a
minimax search for a loss as soon as average returns from
a node fall below a given threshold (or searching for a win
as soon as returns exceed a given threshold, conversely), or
starting a minimax search whenever average rollout lengths
from a node are short, suggesting proximity of terminal states.
According to preliminary experiments, the simple criterion
of visit count seemed most promising, which is why it was
used in the remainder of this article. Furthermore, we start
independent minimax searches for each legal move from the
node in question, which allows to store proven losses for
individual moves even if the node itself cannot be proven to
be a loss.

This strategy improves MCTS search by performing
shallow-depth, full-width checks of the immediate descendants
of a subset of tree nodes. It guides tree growth by avoiding
shallow losses, as well as detecting shallow wins, within or
close to the MCTS tree. We call this strategy MCTS-MS for
MCTS with Minimax Selection.

C. Minimax in the Backpropagation Phase
As mentioned in Subsection II, MCTS-Solver tries to prop-

agate game-theoretic values (proven win and proven loss) as
far up the tree as possible, starting from the terminal state
visited in the current simulation. It has to switch to regular
rollout returns (win and loss) as soon as at least one sibling
of a proven loss move is not marked as proven loss itself.
Therefore, we employ shallow minimax searches whenever
this happens, actively searching for proven losses instead of
hoping for MCTS-Solver to find them in future simulations.
If minimax succeeds at proving all moves from a given state
s to be losses, we can backpropagate a proven loss instead
of just a loss to the next-highest tree level—i.e. a proven win
for the opponent player’s move leading to s (see a negamax
formulation of this algorithm in Figure 3).

This strategy improves MCTS-Solver by providing the back-
propagation step with helpful information whenever possible,
which allows for quicker proving and exclusion of moves from
further MCTS sampling. Other than the strategies described
in IV-A and IV-B, it only triggers when a terminal position
has been found in the tree and the MCTS-Solver extension
applies. For this reason, it avoids spending computation time
on minimax searches in regions of the search space with
no or very few terminal positions. Minimax can also search
deeper each time it is triggered, because it is triggered less
often. We call this strategy MCTS-MB for MCTS with Minimax
Backpropagation.

V. EXPERIMENTAL RESULTS

We tested the MCTS-minimax hybrids in four different
domains: The two-player, zero-sum games of Connect-4,
Breakthrough, Othello, and Catch the Lion. In all experi-
mental conditions, we compared the hybrids against regular
MCTS-Solver as the baseline. UCB1-TUNED [9] is used as
selection policy. The exploration factor C of UCB1-TUNED
was optimized once for MCTS-Solver in all games and then
kept constant for both MCTS-Solver and the MCTS-minimax
hybrids during testing. Optimal values were 1.3 in Connect-
4, 0.8 in Breakthrough, 0.7 in Othello, and 0.7 in Catch the
Lion. Draws, which are possible in Connect-4 and Othello,
were counted as half a win for both players. We used minimax
with αβ pruning, but no other search enhancements. Unless
stated otherwise, computation time was 1 second per move.

Note that Figures 11 to 22 show the results of parameter
tuning experiments. The best-performing parameter values
found during tuning were tested with an additional 5000
games after each tuning experiment. The results of these
replications are reported in the text.

To ensure a minimal standard of play, the MCTS-Solver



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 4

(a) (b) (c)

if p
ro

ve
d

if n
ot p

ro
ve

d

(d)

Fig. 2. The MCTS-MS hybrid. (a) Selection and expansion phases. The tree is traversed in the usual fashion until a node satisfying the minimax trigger
criterion is found. (b) In this case, the marked node has reached a prespecified number of visits. (c) A minimax search is started from the node in question.
(d) If the minimax search has proved the node’s value, this value can be backpropagated. Otherwise, the selection phase continues as normal.

w
in

(a)

w
in

los
s

(b)

w
in

los
s

?

wi
n

loss

(c)

w
in

los
s

wi
n

loss

(d)

Fig. 3. The MCTS-MB hybrid. (a) Selection and expansion phases. The expanded move wins the game. (b) This implies the opponent’s previous move was
proven to be a loss. (c) A minimax search is triggered in order to check whether the move marked by “?” can be proven to be a win. In this example, all
opponent answers are proven losses, so it can. (d) This also implies the opponent’s previous move was proven to be a loss. The root state’s value is now
proven.

baseline was tested against a random player. MCTS-Solver
won 100% of 1000 games in all four domains.

A. Games

This section outlines the rules of the four test domains.
1) Connect-4: Connect-4 is played on a 7×6 board. At

the start of the game, the board is empty. The two players
alternatingly place white and black discs in one of the seven
columns, always filling the lowest available space of the
chosen column. Columns with six discs are full and cannot
be played anymore. The game is won by the player who
succeeds first at connecting four tokens of her own color either
vertically, horizontally, or diagonally. If the board is filled
completely without any player reaching this goal, the game
ends in a draw.

2) Breakthrough: The variant of Breakthrough used in this
article is played on a 6×6 board. The game was originally
described as being played on a 7×7 board, but other sizes
such as 8×8 are popular as well, and the 6×6 board preserves
an interesting search space.

At the beginning of the game, White occupies the first two
rows of the board, and Black occupies the last two rows of the
board. The two players alternatingly move one of their pieces
straight or diagonally forward. Two pieces cannot occupy the
same square. However, players can capture the opponent’s

pieces by moving diagonally onto their square. The game is
won by the player who succeeds first at advancing one piece
to the home row of the opponent, i.e. reaching the first row
as Black or reaching the last row as White.

3) Othello: Othello is played on an 8×8 board. It starts
with four discs on the board, two white discs on d5 and e4
and two black discs on d4 and e5. Each disc has a black side
and a white side, with the side facing up indicating the player
the disc currently belongs to. The two players alternatingly
place a disc on the board, in such a way that between the
newly placed disc and another disc of the moving player there
is an uninterrupted horizontal, vertical or diagonal line of one
or more discs of the opponent. All these discs are then turned
over, changing their color to the moving player’s side, and the
turn goes to the other player. If there is no legal move for a
player, she has to pass. If both players have to pass or if the
board is filled, the game ends. The game is won by the player
who owns the most discs at the end.

4) Catch the Lion: Catch the Lion is a simplified form of
Shogi (see [24] for an MCTS approach to Shogi). It is included
in this work as an example of Chess-like games, which tend
to be particularly difficult for MCTS [6].

The game is played on a 3×4 board. At the beginning of
the game, each player has four pieces: a Lion in the center of
the home row, a Giraffe to the right of the Lion, an Elephant



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 5

to the left of the Lion, and a Chick in front of the Lion. The
Chick can move one square forward, the Giraffe can move one
square in the vertical and horizontal directions, the Elephant
can move one square in the diagonal directions, and the Lion
can move one square in any direction. During the game, the
players alternatingly move one of their pieces. Pieces of the
opponent can be captured. As in Shogi, they are removed from
the board, but not from the game. Instead, they switch sides,
and the player who captured them can later on drop them
on any square of the board instead of moving one of her
pieces. If the Chick reaches the home row of the opponent, it
is promoted to a Chicken, now being able to move one square
in any direction except for diagonally backwards. A captured
Chicken, however, is demoted to a Chick again when dropped.
The game is won by either capturing the opponent’s Lion, or
moving your own Lion to the home row of the opponent.

B. Density and Difficulty of Shallow Traps

In order to measure an effect of employing shallow minimax
searches without an evaluation function within MCTS, termi-
nal states have to be present in sufficient density throughout
the search space, in particular the part of the search space
relevant at our level of play. We played 1000 self-play games
of MCTS-Solver in all domains to test this property, using 1
second per move. At each turn, we determined whether there
exists at least one trap at depth (up to) 3 for the player to
move. The same methodology was used in [6].

Figures 4, 5, 6, and 7 show that shallow traps are indeed
found throughout most domains, which suggests improving the
ability of MCTS to identify and avoid such traps is worthwhile.
Traps appear most frequently in Catch the Lion—a highly
tactical domain—followed by Breakthrough and Connect-4.
A game of Othello usually only ends when the board is
completely filled however, which explains why traps only
appear when the game is nearly over. Furthermore, we note
that in contrast to Breakthrough and Othello the density of
traps for both players differs significantly in Connect-4 and
in the early phase of Catch the Lion. Finally, we see that
Breakthrough games longer than 40 turns, Othello games
longer than 60 turns and Catch the Lion games longer than
50–60 moves are rare, which explains why the data become
more noisy.

0 10 20 30 40
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

turn

pe
rc

en
ta

ge
of

ga
m

es

positions with at least one trap
games that reach this turn

Fig. 4. Density of level-3 search traps in Connect-4.

0 10 20 30 40
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

turn

pe
rc

en
ta

ge
of

ga
m

es

positions with at least one trap
games that reach this turn

Fig. 5. Density of level-3 search traps in Breakthrough.

0 10 20 30 40 50 60 70
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

turn

pe
rc

en
ta

ge
of

ga
m

es

positions with at least one trap
games that reach this turn

Fig. 6. Density of level-3 search traps in Othello.

In order to provide a more condensed view of the data,
Figure 8 compares the average number of level-3 to level-7
search traps over all positions encountered in the test games.
These were 34187 positions in Catch the Lion, 28344 positions
in Breakthrough, 36633 positions in Connect-4, and 60723
positions in Othello. Note that a level-k trap requires a winning
strategy at most k plies deep, which means every level-k
trap is a level-(k + 1) trap as well. As Figure 8 shows,
Catch the Lion is again leading in trap density, followed by

0 20 40 60 80 100 120
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

turn

pe
rc

en
ta

ge
of

ga
m

es

positions with at least one trap
games that reach this turn

Fig. 7. Density of level-3 search traps in Catch the Lion.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 6

Breakthrough, Connect-4, and finally Othello with a negligible
average number of traps.

0 1 2 3 4 5

Othello

Connect-4

Breakthrough

Catch the Lion

Average number of search traps per position

level-1 traps
level-3 traps
level-5 traps
level-7 traps

Fig. 8. Comparison of trap density in Catch the Lion, Breakthrough, Connect-
4, and Othello.

In an additional experiment, we tried to quantify the average
difficulty of traps for MCTS. MCTS is more likely to “fall
into” a trap, i.e. waste much effort on exploring a trap
move, if rollouts starting with this move frequently return
a misleading winning result instead of the correct losing
result. Depending on the search space, trap moves might be
relatively frequent but still easy to avoid for MCTS because
they get resolved correctly in the rollouts—or less frequent but
more problematic due to systematic errors in rollout returns.
Therefore, 1000 random rollouts were played starting with
every level-3 to level-7 trap move found in the test games. No
tree was built during sampling. Any rollout return other than a
loss was counted as incorrect. Figure 9 shows the proportion
of rollouts that returned the incorrect result, averaged over all
traps.

We observe that in the set of four test domains, the domains
with the highest average number of traps are also the domains
with the highest expected difficulty of traps. Catch the Lion
is again followed by Breakthrough, Connect-4, and Othello in
last place with near-perfect random evaluation of traps. This
property of Othello can be explained with the fact that almost
all traps appear at the end of the game when the board is
filled, and the last filling move has no alternatives. Thus, the
opponent can make one mistake less than in other games when
executing the trap, and in many situations executing the trap
is the only legal path.

In conclusion, due to both the difference in trap density
as well as trap difficulty, we expect MCTS-minimax hybrids
to work relatively better in domains like Catch the Lion than
in domains like Othello. In Subsection V-H, the observations
of this section are related to the performance of the MCTS-
minimax hybrids presented in the following, and this expec-
tation is confirmed.

0 0.1 0.2 0.3 0.4 0.5

Othello

Connect-4

Breakthrough

Catch the Lion

Average proportion of random rollouts with incorrect result

level-1 traps
level-3 traps
level-5 traps
level-7 traps

Fig. 9. Comparison of trap difficulty in Catch the Lion, Breakthrough,
Connect-4, and Othello.

C. Connect-4

In this subsection, we summarize the experimental results
in the game of Connect-4. The baseline MCTS-Solver imple-
mentation performs about 91000 simulations per second when
averaged over an entire game.

1) Minimax in the Rollout Phase: We tested minimax at
search depths 1 ply to 4 plies in the rollout phase of a Connect-
4 MCTS-Solver player. Each resulting player, abbreviated as
MCTS-MR-1 to MCTS-MR-4, played 1000 games against
regular MCTS-Solver with uniformly random rollouts. Figure
11 presents the results.

Minimax is computationally more costly than a random
rollout policy. MCTS-MR-1 finishes about 69% as many simu-
lations per second as the baseline, MCTS-MR-2 about 31% as
many, MCTS-MR-3 about 11% as many, MCTS-MR-4 about
7% as many when averaged over one game of Connect-4.
This typical speed-knowledge trade-off explains the decreasing
performance of MCTS-MR for higher minimax search depths,
although the quality of rollouts increases. Remarkably, MCTS-
MR-1 performs significantly worse than the baseline. This also
held when we performed the comparison using equal numbers
of MCTS iterations (105) per move instead of equal time (1
second) per move for both players. In this scenario, we found
MCTS-MR-1 to achieve a win rate of 36.3% in 1000 games
against the baseline. We suspect this is due to some specific
imbalance in Connect-4 rollouts with depth-1 minimax—it has
been repeatedly found that the strength of a rollout policy as a
standalone player is not always a good predictor of its strength
when used within a Monte-Carlo search algorithm (see [25]
and [26] for similar observations in the game of Go using
naive Monte-Carlo and MCTS, respectively).

In order to illustrate this phenomenon, Figure 10 gives an
intuition for situations in which depth-1 minimax rollouts can
be less effective for state evaluation than uniformly random
rollouts. The figure shows the partial game tree (not the search



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 7

tree) of a position that is a game-theoretic win for the root
player. Only if the root player does not choose move a at the
root state can the opponent prevent the win. The building of a
search tree is omitted for simplification in the following. If we
start a uniformly random rollout from the root state, we will
get the correct result with a probability of 1

4 ·1+
3
4 ·

2
3 = 0.75.

If we use a depth-1 minimax rollout however, the root player’s
opponent will always be able to make the correct move choice
at states A, B, and C, leading to an immediate loss for the root
player. As a result, the correct result will only be found with a
probability of 1

4 · 1+
3
4 · 0 = 0.25. If similar situations appear

in sufficient frequency in Connect-4, they could provide an
explanation for systematic evaluation errors of MCTS-MR-1.

A B C

LL L

W W W W WW W W

a

Fig. 10. A problematic situation for MCTS-MR-1 rollouts. The figure
represents a partial game tree. “L” and “W” mark losing and winning states
from the point of view of the root player.

In the Connect-4 experiments, MCTS-MR-2 outperformed
all other variants. Over an entire game, it completed about
28000 simulations per second on average. In an additional
5000 games against the baseline, it won 72.1% (95% confi-
dence interval: 70.8%−73.3%) of games, which is a significant
improvement (p<0.001).

1 2 3 4
20%

30%

40%

50%

60%

70%

80%

minimax depth

w
in

ra
te

ag
ai

ns
t

th
e

ba
se

lin
e

Fig. 11. Performance of MCTS-MR in Connect-4.

2) Minimax in the Selection and Expansion Phases: The
variant of MCTS-MS we tested starts a minimax search from a
state in the tree if that state has reached a fixed number of visits
when encountered by the selection policy. We call this variant,
using a minimax search of depth d when reaching v visits,
MCTS-MS-d-Visit-v. If the visit limit is set to 0, this means
every tree node is searched immediately in the expansion phase
even before it is added to the tree.

We tested MCTS-MS-d-Visit-v for d ∈ {2, 4} and v ∈ {0,

1, 2, 5, 10, 20, 50, 100}. We found it to be most effective to
set the αβ search window such that minimax was only used
to detect forced losses (traps). Since suicide is impossible in
Connect-4, we only searched for even depths. Each condition
consisted of 1000 games against the baseline player. The
results are shown in Figure 12. Low values of v result in too
many minimax searches being triggered, which slows down
MCTS. High values of v mean that the tree below the node in
question has already been expanded to a certain degree, and
minimax might not be able to gain much new information.
Additionally, high values of v result in too few minimax
searches, such that they have little effect.

MCTS-MS-2-Visit-1 was the most successful condition. It
played about 83700 simulations per second on average over an
entire game. There were 5000 additional games played against
the baseline and a total win rate of 53.6% (95% confidence
interval: 52.2%−55.0%) was achieved, which is a significantly
stronger performance (p<0.001).

0 1 2 5 10 20 50 100
40%

50%

60%

visit limit v

w
in

ra
te

ag
ai

ns
t

th
e

ba
se

lin
e

MCTS-MS-2
MCTS-MS-4

Fig. 12. Performance of MCTS-MS in Connect-4.

3) Minimax in the Backpropagation Phase: MCTS-Solver
with minimax in the backpropagation phase was tested with
minimax search depths 1 ply to 6 plies. Contrary to MCTS-MS
as described in V-C2, we experimentally determined it to be
most effective to use MCTS-MB with a full minimax search
window in order to detect both wins and losses. We therefore
included odd search depths. Again, all moves from a given
node were searched independently in order to be able to prove
their individual game-theoretic values. The resulting players
were abbreviated as MCTS-MB-1 to MCTS-MB-6 and played
1000 games each against the regular MCTS-Solver baseline.
The results are shown in Figure 13.

MCTS-MB-1 as the best-performing variant played 5000
additional games against the baseline and won 49.9% (95%
confidence interval: 48.5%−51.3%) of them, which shows no
significant difference in performance. It played about 88500
simulations per second when averaged over the whole game.

D. Breakthrough

The experimental results in the Breakthrough domain are
described in this subsection. Our baseline MCTS-Solver im-
plementation plays about 45100 simulations per second on
average.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 8

1 2 3 4 5 6
30%

40%

50%

60%

minimax depth

w
in

ra
te

ag
ai

ns
t

th
e

ba
se

lin
e

Fig. 13. Performance of MCTS-MB in Connect-4.

1) Minimax in the Rollout Phase: As in Connect-4, we
tested 1-ply to 4-ply minimax searches in the rollout phase
of a Breakthrough MCTS-Solver player. The resulting players
MCTS-MR-1 to MCTS-MR-4 played 1000 games each against
regular MCTS-Solver with uniformly random rollouts. The
results are presented in Figure 14.

Interestingly, all MCTS-MR players were significantly
weaker than the baseline (p<0.001). The advantage of a 1-
to 4-ply lookahead in rollouts does not seem to outweigh the
computational cost in Breakthrough, possibly due to the larger
branching factor, longer rollouts, and more time-consuming
move generation than in Connect-4. MCTS-MR-1 searches
only about 15.8% as fast as the baseline, MCTS-MR-2 about
2.3% as fast, MCTS-MR-3 about 0.5% as fast, MCTS-MR-4
about 0.15% as fast when measured in simulations completed
in a one-second search of the empty Connect-4 board. When
comparing with equal numbers of MCTS iterations (10000)
per move instead of equal time (1 second) per move for
both players, MCTS-MR-1 achieved a win rate of 67.6% in
1000 games against the baseline. MCTS-MR-2 won 83.2% of
1000 games under the same conditions. It may be possible to
optimize our Breakthrough implementation. However, as the
following subsections indicate, application of minimax in other
phases of MCTS seems to be the more promising approach in
this game.

1 2 3 4
0%

10%

20%

30%

40%

minimax depth

w
in

ra
te

ag
ai

ns
t

th
e

ba
se

lin
e

Fig. 14. Performance of MCTS-MR in Breakthrough.

2) Minimax in the Selection and Expansion Phases: We
tested the same variants of MCTS-MS for Breakthrough as for
Connect-4: MCTS-MS-d-Visit-v for d ∈ {2, 4} and v ∈ {0, 1,
2, 5, 10, 20, 50, 100, 200, 500, 1000}. 1000 games against the
baseline player were played for each experimental condition.
Figure 15 shows the results.

MCTS-MS-2-Visit-2 appeared to be the most effective
variant. When averaged over the whole game, it performed
about 33000 simulations per second. 5000 additional games
against the baseline confirmed a significant increase in strength
(p<0.001) with a win rate of 67.3% (95% confidence interval:
66.0%− 68.6%).

0 1 2 5 10 20 50 100 200 500 1000
0%

10%

20%

30%

40%

50%

60%

70%

visit limit v
w

in
ra

te
ag

ai
ns

t
th

e
ba

se
lin

e

MCTS-MS-2
MCTS-MS-4

Fig. 15. Performance of MCTS-MS in Breakthrough.

3) Minimax in the Backpropagation Phase: MCTS-MB-1
to MCTS-MB-6 were tested analogously to Connect-4, playing
1000 games each against the regular MCTS-Solver baseline.
Figure 16 presents the results.

The best-performing setting MCTS-MB-2 played 5000 ad-
ditional games against the baseline and won 60.6% (95%
confidence interval: 59.2% − 62.0%) of them, which shows
a significant improvement (p<0.001). It played about 46800
simulations per second on average.

1 2 3 4 5 6
0%

10%

20%

30%

40%

50%

60%

70%

minimax depth

w
in

ra
te

ag
ai

ns
t

th
e

ba
se

lin
e

Fig. 16. Performance of MCTS-MB in Breakthrough.

E. Othello

This subsection describes the experimental results in Oth-
ello. Our baseline MCTS-Solver implementation plays about
8700 simulations per second on average in this domain.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 9

1) Minimax in the Rollout Phase: Figure 17 presents
the results of MCTS-MR-1 to MCTS-MR-4 playing 1000
games each against the MCTS-Solver baseline. None of the
MCTS-MR conditions tested had a positive effect on playing
strength. The best-performing setting MCTS-MR-1 played
5000 additional games against the baseline and won 43.7%
(95% confidence interval: 42.3%− 45.1%) of them, which is
significantly weaker than the baseline (p<0.001). MCTS-MR-
1 simulated about 6400 games per second on average.

When playing with equal numbers of MCTS iterations per
move, MCTS-MR-1 won 47.9% of 1000 games against the
baseline (at 5000 rollouts per move), MCTS-MR-2 won 54.3%
(at 1000 rollouts per move), MCTS-MR-3 won 58.2% (at
250 rollouts per move), and MCTS-MR-4 won 59.6% (at
100 rollouts per move). This shows that there is a positive
effect—ignoring the time overhead—of minimax searches in
the rollouts, even though these searches can only return useful
information in the very last moves of an Othello game. It could
be worthwhile in Othello and similar games to restrict MCTS-
MR to minimax searches only in these last moves.

1 2 3 4
0%

10%

20%

30%

40%

50%

minimax depth

w
in

ra
te

ag
ai

ns
t

th
e

ba
se

lin
e

Fig. 17. Performance of MCTS-MR in Othello.

2) Minimax in the Selection and Expansion Phases: Again,
MCTS-MS-d-Visit-v was tested for d ∈ {2, 4} and v ∈ {0, 1,
2, 5, 10, 20, 50, 100, 200, 500, 1000}. Each condition played
1000 games against the baseline player. Figure 18 presents the
results.

The best-performing version, MCTS-MS-2-Visits-50, won
50.8% (95% confidence interval: 49.4% − 52.2%) of 5000
additional games against the baseline. Thus, no significant
difference in performance was found. The speed was about
8200 rollouts per second.

3) Minimax in the Backpropagation Phase: MCTS-MB-1
to MCTS-MB-6 played 1000 games each against the regular
MCTS-Solver baseline. The results are shown in Figure 19.

MCTS-MB-2, the most promising setting, achieved a result
of 49.2% (95% confidence interval: 47.8%− 50.6%) in 5000
additional games against the baseline. No significant perfor-
mance difference to the baseline could be shown. The hybrid
played about 8600 rollouts per second on average.

In conclusion, no effect of the three tested MCTS-minimax
hybrids could be shown in Othello, the domain with the lowest
number of traps examined in this article.

0 1 2 5 10 20 50 100 200 500 1000
30%

40%

50%

60%

visit limit v

w
in

ra
te

ag
ai

ns
t

th
e

ba
se

lin
e

MCTS-MS-2
MCTS-MS-4

Fig. 18. Performance of MCTS-MS in Othello.

1 2 3 4 5 6
40%

50%

60%

minimax depth

w
in

ra
te

ag
ai

ns
t

th
e

ba
se

lin
e

Fig. 19. Performance of MCTS-MB in Othello.

F. Catch the Lion

In this subsection, the results of testing in the domain
of Catch the Lion are presented. In this game, the baseline
MCTS-Solver plays approximately 34700 simulations per sec-
ond on average.

1) Minimax in the Rollout Phase: Figure 20 presents the
results of MCTS-MR-1 to MCTS-MR-4 playing 1000 games
each against the MCTS-Solver baseline.

There is an interesting even-odd effect, with MCTS-MR
seemingly playing stronger at odd minimax search depths.
Catch the Lion is the only domain of the four where MCTS-
MR-3 was found to perform better than MCTS-MR-2. MCTS-
MR-1 played best in these initial experiments and was tested in
an additional 5000 games against the baseline. The hybrid won
94.8% (95% confidence interval: 94.1% − 95.4%) of these,
which is significantly stronger (p<0.001). It reached about
28700 rollouts per second.

2) Minimax in the Selection and Expansion Phases:
MCTS-MS-d-Visit-v was tested for d ∈ {2, 4, 6} and v ∈ {0,
1, 2, 5, 10, 20, 50, 100}. With each parameter setting, 1000
games were played against the baseline player. Figure 21
shows the results.

MCTS-MS-4-Visits-2 performed best of all tested settings.
Of an additional 5000 games against the baseline, it won
76.8% (95% confidence interval: 75.6% − 78.0%). This is
a significant improvement (p<0.001). It played about 14500



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 10

1 2 3 4
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

minimax depth

w
in

ra
te

ag
ai

ns
t

th
e

ba
se

lin
e

Fig. 20. Performance of MCTS-MR in Catch the Lion.

0 1 2 5 10 20 50 100
30%

40%

50%

60%

70%

80%

visit limit v

w
in

ra
te

ag
ai

ns
t

th
e

ba
se

lin
e

MCTS-MS-2
MCTS-MS-4
MCTS-MS-6

Fig. 21. Performance of MCTS-MS in Catch the Lion.

games per second on average.
3) Minimax in the Backpropagation Phase: MCTS-MB-

1 to MCTS-MB-6 were tested against the baseline in 1000
games per condition. Figure 22 presents the results.

MCTS-MB-4 performed best and played 5000 more games
against the baseline. It won 73.1% (95% confidence interval:
71.8%− 74.3%) of them, which is a significant improvement
(p<0.001). The speed was about 20000 rollouts per second.

1 2 3 4 5 6
40%

50%

60%

70%

80%

minimax depth

w
in

ra
te

ag
ai

ns
t

th
e

ba
se

lin
e

Fig. 22. Performance of MCTS-MB in Catch the Lion.

In conclusion, the domain with the highest number of traps
examined in this article, Catch the Lion, also showed the
strongest performance of all three MCTS-minimax hybrids.

G. Comparison of Algorithms

Sections V-C and V-D showed the performance of MCTS-
MR, MCTS-MS, and MCTS-MB against the baseline player in
both Connect-4 and Breakthrough. In order to facilitate com-
parison, we also tested the best-performing variants of these
MCTS-minimax hybrids against each other. In Connect-4,
MCTS-MR-2, MCTS-MS-2-Visit-1, and MCTS-MB-1 played
in each possible pairing; in Breakthrough, MCTS-MR-1,
MCTS-MS-2-Visit-2, and MCTS-MB-2 were chosen; in Oth-
ello, MCTS-MR-1, MCTS-MS-2-Visit-50, and MCTS-MB-2;
and in Catch the Lion, MCTS-MR-1, MCTS-MS-4-Visits-2,
and MCTS-MB-4. 2000 games were played in each condition.
Figure 23 presents the results.

0% 20% 40% 60% 80% 100%

MCTS-MR vs. -MS

MCTS-MR vs. -MB

MCTS-MS vs. -MB

win rate

Connect-4
Breakthrough
Othello
Catch the Lion

Fig. 23. Performance of MCTS-MR, MCTS-MS, and MCTS-MB against
each other in Connect-4, Breakthrough, Othello, and Catch the Lion.

Consistent with the results from the previous sections,
MCTS-MS outperformed MCTS-MB in Breakthrough and
Connect-4, while no significant difference could be shown
in Othello and Catch the Lion. MCTS-MR was significantly
stronger than the two other algorithms in Connect-4 and Catch
the Lion, but weaker than both in Breakthrough and Othello.

In a second experiment, the best-performing MCTS-
minimax hybrids played against the baseline at different time
settings from 250 ms per move to 5000 ms per move. 2000
games were played in each condition. The results are shown in
Figure 24 for Connect-4, Figure 25 for Breakthrough, Figure
26 for Othello, and Figure 27 for Catch the Lion.

We can observe that at least up to 5 seconds per move,
additional time makes the significant performance differences
between algorithms more pronounced in most domains. While
in Connect-4, it is MCTS-MR that profits most from additional
time, we can see the same effect for MCTS-MS and MCTS-
MB in Breakthrough. The time per move does not change
the ineffectiveness of hybrid search in Othello. Interestingly
however, MCTS-MR does not profit from longer search times
in Catch the Lion. It is possible that in this highly tactical
domain, the baseline MCTS-Solver scales better due to being
faster and building larger trees. The larger trees could help
avoid deeper traps than the MCTS-MR rollouts can detect.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 11

250 500 1000 2500 5000
40%

50%

60%

70%

80%

90%

time per move in milliseconds

w
in

ra
te

ag
ai

ns
t

th
e

ba
se

lin
e MCTS-MR-2

MCTS-MS-2-Visit-1
MCTS-MB-1

Fig. 24. Performance of MCTS-MR-2, MCTS-MS-2-Visit-1, and MCTS-MB-
1 at different time settings in Connect-4.

250 500 1000 2500 5000
20%

30%

40%

50%

60%

70%

80%

time per move in milliseconds

w
in

ra
te

ag
ai

ns
t

th
e

ba
se

lin
e

MCTS-MR-1
MCTS-MS-2-Visit-2
MCTS-MB-2

Fig. 25. Performance of MCTS-MR-1, MCTS-MS-2-Visit-2, and MCTS-MB-
2 at different time settings in Breakthrough.

250 500 1000 2500 5000
30%

40%

50%

60%

time per move in milliseconds

w
in

ra
te

ag
ai

ns
t

th
e

ba
se

lin
e

MCTS-MR-1
MCTS-MS-2-Visit-50
MCTS-MB-2

Fig. 26. Performance of MCTS-MR-1, MCTS-MS-2-Visit-50, and MCTS-
MB-2 at different time settings in Othello.

250 500 1000 2500 5000
60%

70%

80%

90%

100%

time per move in milliseconds

w
in

ra
te

ag
ai

ns
t

th
e

ba
se

lin
e

MCTS-MR-1
MCTS-MS-4-Visit-2
MCTS-MB-4

Fig. 27. Performance of MCTS-MR-1, MCTS-MS-4-Visit-2, and MCTS-MB-
4 at different time settings in Catch the Lion.

H. Comparison of Domains

In Subsections V-C to V-F, the experimental results were
ordered by domain. In this subsection, the data on the best-
performing hybrid variants are presented again, ordered by
the type of hybrid instead. Figures 28, 29, and 30 show
the performance of MCTS-MS, MCTS-MB, and MCTS-MR,
respectively.

0% 20% 40% 60% 80% 100%

Othello

Connect-4

Breakthrough

Catch the Lion

win rate against the baseline

Fig. 28. Comparison of MCTS-MS performance in Catch the Lion, Break-
through, Connect-4, and Othello. The best-performing parameter settings are
compared for each domain.

0% 20% 40% 60% 80% 100%

Othello

Connect-4

Breakthrough

Catch the Lion

win rate against the baseline

Fig. 29. Comparison of MCTS-MB performance in Catch the Lion, Break-
through, Connect-4, and Othello. The best-performing parameter settings are
compared for each domain.

Both MCTS-MS and MCTS-MB are most effective in Catch
the Lion, followed by Breakthrough, Connect-4, and finally
Othello, where no positive effect could be observed. The
parallels to the ordering of domains with respect to trap
density (Figure 8) and trap difficulty (Figure 9) are striking. As
expected, these factors seem to strongly influence the relative



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 12

0% 20% 40% 60% 80% 100%

Othello

Connect-4

Breakthrough

Catch the Lion

win rate against the baseline

Fig. 30. Comparison of MCTS-MR performance in Catch the Lion, Break-
through, Connect-4, and Othello. The best-performing parameter settings are
compared for each domain.

effectivity of MCTS-minimax hybrids in a given domain.
This order is different in MCTS-MR only due to the poor
performance in Breakthrough, which may be explained by this
domain having a higher average branching factor than the other
three. During the selection step of MCTS, there are on average
15.5 legal moves available in Breakthrough, but only 6.4 in
Connect-4, 8.1 in Othello, and 9.2 in Catch the Lion, measured
in self-play games of our MCTS-Solver implementation with
1 second per move.

I. Effect of Branching Factor

In order to shed more light on the influence of the average
branching factor mentioned above, the hybrids were also
tested on Breakthrough boards of larger widths. In addition
to the 6×6 board used in the previous experiments (average
branching factor 15.5), we included the sizes 9×6 (average
branching factor 24.0), 12×6 (average branching factor 37.5),
15×6 (average branching factor 43.7), and 18×6 (average
branching factor 54.2) in this series of experiments. While the
average game length also increases with the board width—
from about 30 moves on the 6×6 board to about 70 moves
on the 18×6 board—this setup served as an approximation
to varying the branching factor while keeping other game
properties as equal as possible (without using artificial game
trees). Figure 31 presents the results, comparing the best-
performing settings of MCTS-MS, MCTS-MB, and MCTS-
MR across the five board sizes. The hybrids were tuned for
each board size separately. Each data point represents 2000
games.

The branching factor has a strong effect on MCTS-MR,
reducing the win rate of MCTS-MR-1 from 30.8% (on 6×6)
to 10.2% (on 18×6). Deeper minimax searches in MCTS
rollouts scale even worse: The performance of MCTS-MR-
2 for example drops from 20.2% to 0.1% (not shown in the
Figure). The MCTS-minimax hybrids newly proposed in this
article, however, do not seem to be strongly affected by the
range of branching factors examined. Both MCTS-MS and
MCTS-MB were effective up to a branching factor of at least
50.

VI. CONCLUSION AND FUTURE RESEARCH

The strategic strength of MCTS lies to a great extent in
the Monte-Carlo simulations, allowing the search to observe

6 9 12 15 18
0%

20%

40%

60%

80%

board width (board height was kept at 6)

w
in

ra
te

ag
ai

ns
t

th
e

ba
se

lin
e

MCTS-MS
MCTS-MB
MCTS-MR

Fig. 31. Performance of MCTS-minimax hybrids across different board
widths in Breakthrough.

even distant consequences of actions, if only through the
observation of probabilities. The tactical strength of minimax
lies largely in its exhaustive approach, guaranteeing to never
miss a consequence of an action that lies within the search
horizon, and backing up game-theoretic values from leaves
with certainty and efficiency.

In this article, we examined three knowledge-free ap-
proaches of integrating minimax into MCTS: the application
of minimax in the rollout phase with MCTS-MR, the selection
and expansion phases with MCTS-MS, and the backpropa-
gation phase with MCTS-MB. The newly proposed variant
MCTS-MS significantly outperformed regular MCTS with the
MCTS-Solver extension in Catch the Lion, Breakthrough,
and Connect-4. The same holds for the proposed MCTS-MB
variant in Catch the Lion and Breakthrough, while the effect
in Connect-4 is neither significantly positive nor negative. The
only way of integrating minimax search into MCTS known
from the literature (although typically used with an evaluation
function), MCTS-MR, was quite strong in Catch the Lion
and Connect-4 but significantly weaker than the baseline in
Breakthrough, suggesting it might be less robust with regard
to differences between domains such as the average branching
factor. As expected, none of the MCTS-minimax hybrids had a
positive effect in Othello. The game of Go would be another
domain where we do not expect any success with MCTS-
minimax hybrids, because it has no trap states until the latest
game phase.

With the exception of the weak performance of MCTS-
MR in Breakthrough, probably mainly caused by its larger
branching factor, we observed that all MCTS-minimax hybrids
tend to be most effective in Catch the Lion, followed by
Breakthrough, Connect-4, and finally Othello. The density and
difficulty of traps, as discussed in Subsection V-B, thus seem
to predict the relative performance of MCTS-minimax hybrids
across domains well. In conclusion, MCTS-minimax hybrids
can strongly improve the performance of MCTS in tactical
domains, with MCTS-MR working best in domains with low
branching factors (up to roughly 10 moves on average), and
MCTS-MS and MCTS-MB being more robust against higher
branching factors. This was tested for branching factors of up
to roughly 50 in Breakthrough on different boards.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 13

Preliminary experiments with combinations of the three
hybrids seem to indicate that their effects are overlapping
to a large degree. Combinations do not seem to perform
significantly better than the best-performing individual hybrids
in the domain at hand. This could still be examined in more
detail.

According to our observations, problematic domains for
MCTS-minimax hybrids seem to feature a low density of traps
in the search space, as in Othello, or in the case of MCTS-
MR a relatively high branching factor, as in Breakthrough. In
future work, these problems could be addressed with the help
of domain knowledge. On the one hand, domain knowledge
could be incorporated into the hybrid algorithms in the form
of evaluation functions. This could make minimax potentially
much more useful in search spaces with few terminal nodes
before the latest game phase, such as that of Othello or Go. The
use of heuristic evaluation functions could make it possible for
MCTS-minimax hybrids to not only detect the type of traps
studied in this article—traps that lead to a lost game—but also
soft traps that only lead to a disadvantageous position [19].
The main challenge for this approach is properly combining
results of heuristic evaluation functions with the results of
rollout returns, their averages and confidence intervals, as
produced by MCTS. One could also conceive of hybrids using
the rollout returns themselves as evaluation function. On the
other hand, domain knowledge could be incorporated in the
form of a move ordering function. This could be effective
in games such as Breakthrough, where traps are relatively
frequent, but the branching factor seems to be too high for
MCTS-MR. Here, the embedded minimax searches could
only take the highest-ranked moves into account, reducing
their overhead. Such a k-best approach has successfully been
applied to MCTS-MR in other games [18], [20]. In domains
with low density of terminal nodes however, move ordering
could be potentially less effective for MCTS-minimax hybrids
without heuristic evaluation functions because most leaf nodes
of the embedded searches are non-terminal positions and
therefore equal in value.

Note that in all experiments except those of Subsections
V-D1 and V-C1, we used fast, uniformly random rollout
policies. On the one hand, the overhead of our techniques
would be proportionally lower for any slower, informed rollout
policies such as typically used in state-of-the-art programs.
On the other hand, improvement on already strong policies
might prove to be more difficult. Examining the influence of
such MCTS implementation properties is a possible second
direction of future research.

Third, while we have focused primarily on the game tree
properties of trap density and difficulty as well as the average
branching factor in this article, the impact of other properties
such as the game length or the distribution of terminal values
also deserve further study. Artificial game trees could be
used to study these properties in isolation—the large number
of differences between “real” games potentially confounds
many effects, such as Breakthrough featuring more traps
throughout the search space than Othello, but also having a
larger branching factor. Eventually, it might be possible to
learn from the success of MCTS-minimax hybrids in Catch

the Lion, and transfer some ideas to larger games of similar
type such as Shogi and chess.

ACKNOWLEDGMENT

This work is funded by the Netherlands Organisation for
Scientific Research (NWO) in the framework of the project
Go4Nature, grant number 612.000.938.

REFERENCES

[1] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search,” in 5th International Conference on Computers and Games
(CG 2006). Revised Papers, ser. Lecture Notes in Computer Science,
H. J. van den Herik, P. Ciancarini, and H. H. L. M. Donkers, Eds., vol.
4630. Springer, 2007, pp. 72–83.

[2] L. Kocsis and C. Szepesvári, “Bandit Based Monte-Carlo Planning,”
in 17th European Conference on Machine Learning, ECML 2006, ser.
Lecture Notes in Computer Science, J. Fürnkranz, T. Scheffer, and
M. Spiliopoulou, Eds., vol. 4212. Springer, 2006, pp. 282–293.

[3] D. E. Knuth and R. W. Moore, “An Analysis of Alpha-Beta Pruning,”
Artificial Intelligence, vol. 6, no. 4, pp. 293–326, 1975.

[4] R. J. Lorentz, “Amazons Discover Monte-Carlo,” in 6th International
Conference on Computers and Games, CG 2008, ser. Lecture Notes in
Computer Science, H. J. van den Herik, X. Xu, Z. Ma, and M. H. M.
Winands, Eds., vol. 5131. Springer, 2008, pp. 13–24.

[5] M. H. M. Winands, Y. Björnsson, and J.-T. Saito, “Monte Carlo Tree
Search in Lines of Action,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 2, no. 4, pp. 239–250, 2010.

[6] R. Ramanujan, A. Sabharwal, and B. Selman, “On Adversarial Search
Spaces and Sampling-Based Planning,” in 20th International Conference
on Automated Planning and Scheduling, ICAPS 2010, R. I. Brafman,
H. Geffner, J. Hoffmann, and H. A. Kautz, Eds. AAAI, 2010, pp.
242–245.

[7] H. Baier and M. H. M. Winands, “Monte-Carlo Tree Search and Mini-
max Hybrids,” in 2013 IEEE Conference on Computational Intelligence
and Games, CIG 2013, 2013, pp. 129–136.

[8] G. M. J.-B. Chaslot, M. H. M. Winands, H. J. van den Herik, J. W. H. M.
Uiterwijk, and B. Bouzy, “Progressive Strategies for Monte-Carlo Tree
Search,” New Mathematics and Natural Computation, vol. 4, no. 3, pp.
343–357, 2008.

[9] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-Time Analysis of the
Multiarmed Bandit Problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[10] C. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
Survey of Monte Carlo Tree Search Methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43,
2012.

[11] M. H. M. Winands, Y. Björnsson, and J.-T. Saito, “Monte-Carlo Tree
Search Solver,” in 6th International Conference on Computers and
Games, CG 2008, ser. Lecture Notes in Computer Science, H. J. van den
Herik, X. Xu, Z. Ma, and M. H. M. Winands, Eds., vol. 5131. Springer,
2008, pp. 25–36.

[12] R. Ramanujan and B. Selman, “Trade-Offs in Sampling-Based Adversar-
ial Planning,” in 21st International Conference on Automated Planning
and Scheduling, ICAPS 2011, F. Bacchus, C. Domshlak, S. Edelkamp,
and M. Helmert, Eds. AAAI, 2011.

[13] R. Ramanujan, A. Sabharwal, and B. Selman, “On the Behavior of UCT
in Synthetic Search Spaces,” in ICAPS 2011 Workshop on Monte-Carlo
Tree Search: Theory and Applications, 2011.

[14] H. Finnsson and Y. Björnsson, “Game-Tree Properties and MCTS
Performance,” in IJCAI’11 Workshop on General Intelligence in Game
Playing Agents (GIGA’11), 2011, pp. 23–30.

[15] J. E. Clune, “Heuristic Evaluation Functions for General Game Playing,”
Ph.D. dissertation, Department of Computer Science, University of
California, Los Angeles, USA, 2008.

[16] F. Teytaud and O. Teytaud, “On the huge benefit of decisive moves
in Monte-Carlo Tree Search algorithms,” in 2010 IEEE Conference on
Computational Intelligence and Games, CIG 2010, G. N. Yannakakis
and J. Togelius, Eds. IEEE, 2010, pp. 359–364.

[17] R. J. Lorentz, “Experiments with Monte-Carlo Tree Search in the Game
of Havannah,” ICGA Journal, vol. 34, no. 3, pp. 140–149, 2011.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 14

[18] M. H. M. Winands and Y. Björnsson, “Alpha-Beta-based Play-outs in
Monte-Carlo Tree Search,” in 2011 IEEE Conference on Computational
Intelligence and Games, CIG 2011, S.-B. Cho, S. M. Lucas, and
P. Hingston, Eds. IEEE, 2011, pp. 110–117.

[19] R. Ramanujan, A. Sabharwal, and B. Selman, “Understanding Sampling
Style Adversarial Search Methods,” in 26th Conference on Uncertainty
in Artificial Intelligence, UAI 2010, P. Grünwald and P. Spirtes, Eds.,
2010, pp. 474–483.

[20] J. A. M. Nijssen and M. H. M. Winands, “Playout Search for Monte-
Carlo Tree Search in Multi-player Games,” in 13th International Con-
ference on Advances in Computer Games, ACG 2011, ser. Lecture Notes
in Computer Science, H. J. van den Herik and A. Plaat, Eds., vol. 7168.
Springer, 2012, pp. 72–83.

[21] T. Cazenave, “Nested Monte-Carlo Search,” in 21st International Joint
Conference on Artificial Intelligence, IJCAI 2009, C. Boutilier, Ed.,
2009, pp. 456–461.

[22] H. Baier and M. H. M. Winands, “Nested Monte-Carlo Tree Search
for Online Planning in Large MDPs,” in 20th European Conference on
Artificial Intelligence, ECAI 2012, ser. Frontiers in Artificial Intelligence
and Applications, L. De Raedt, C. Bessière, D. Dubois, P. Doherty,
P. Frasconi, F. Heintz, and P. J. F. Lucas, Eds., vol. 242. IOS Press,
2012, pp. 109–114.

[23] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modification of UCT
with Patterns in Monte-Carlo Go,” HAL - CCSd - CNRS, France, Tech.
Rep., 2006.

[24] Y. Sato, D. Takahashi, and R. Grimbergen, “A Shogi Program Based
on Monte-Carlo Tree Search,” ICGA Journal, vol. 33, no. 2, pp. 80–92,
2010.

[25] B. Bouzy and G. M. J.-B. Chaslot, “Monte-Carlo Go Reinforcement
Learning Experiments,” in 2006 IEEE Symposium on Computational
Intelligence and Games, CIG 2006, G. Kendall and S. Louis, Eds., 2006,
pp. 187–194.

[26] S. Gelly and D. Silver, “Combining Online and Offline Knowledge in
UCT,” in 24th International Conference on Machine Learning, ICML
2007, ser. ACM International Conference Proceeding Series, Z. Ghahra-
mani, Ed., vol. 227, 2007, pp. 273–280.

Hendrik Baier holds a B.Sc. in Computer Sci-
ence (Darmstadt Technical University, Darmstadt,
Germany, 2006), an M.Sc. in Cognitive Science
(Osnabrück University, Osnabrück, Germany, 2010),
and is currently completing a Ph.D. in Artificial
Intelligence (Maastricht University, Maastricht, The
Netherlands).

Mark Winands received a Ph.D. degree in Artificial
Intelligence from the Department of Computer Sci-
ence, Maastricht University, Maastricht, The Nether-
lands, in 2004.

Currently, he is an Assistant Professor at the
Department of Knowledge Engineering, Maastricht
University. His research interests include heuristic
search, machine learning and games.

Dr. Winands serves as a section editor of the
ICGA Journal and as an associate editor of IEEE
Transactions on Computational Intelligence and AI

in Games.


