
Parallel Monte-Carlo Tree Search

Guillaume M.J-B. Chaslot, Mark H.M. Winands, and H. Jaap van den Herik

Games and AI Group, MICC, Faculty of Humanities and Sciences,
Universiteit Maastricht, Maastricht, The Netherlands
{g.chaslot,m.winands,herik}@micc.unimaas.nl

Abstract. Monte-Carlo Tree Search (MCTS) is a new best-first search
method that started a revolution in the field of Computer Go. Paral-
lelizing MCTS is an important way to increase the strength of any Go
program. In this article, we discuss three parallelization methods for
MCTS: leaf parallelization, root parallelization, and tree parallelization.
To be effective tree parallelization requires two techniques: adequately
handling of (1) local mutexes and (2) virtual loss. Experiments in 13×13
Go reveal that in the program Mango root parallelization may lead to
the best results for a specific time setting and specific program parame-
ters. However, as soon as the selection mechanism is able to handle more
adequately the balance of exploitation and exploration, tree paralleliza-
tion should have attention too and could become a second choice for
parallelizing MCTS. Preliminary experiments on the smaller 9×9 board
provide promising prospects for tree parallelization.

1 Introduction

For decades, the standard method for two-player games such as chess and check-
ers has been αβ search. Nevertheless, in 2006 Monte-Carlo Tree Search (MCTS)
[7, 4, 12, 8, 10, 6] started a revolution in the field of Computer Go. At this mo-
ment (January 2008) the best MCTS 9× 9 Go programs are ranked 500 rating
points higher than the traditional programs on the Computer Go Server [2]. On
the 19×19 Go board, MCTS programs are also amongst the best programs. For
instance, the MCTS program Mogo won the Computer Olympiad 2007 [9], and
the MCTS program Crazy Stone has the highest rating amongst programs on
the KGS Go Server [1].

MCTS is not a classical tree search followed by a Monte-Carlo evaluation, but
rather a best-first search guided by the results of Monte-Carlo simulations. Just
as for αβ search [11], it holds for MCTS that the more time is spent for selecting
a move, the better the game play is. Moreover, the law of diminishing returns
that nowadays has come into effect for many αβ chess programs, appears to be
less of an issue for MCTS Go programs. Hence, parallelizing MCTS seems to be a
promising way to increase the strength of a Go program. Pioneer work has been
done by Cazenave and Jouandeau [3] by experimenting with two parallelization
methods: leaf parallelization and root parallelization (original called single-run
parallelization).

Parallel Monte-Carlo Tree Search 61

In this article we introduce a third parallelization method, called tree par-
allelization. We compare the three parallelization methods (leaf, root, and tree)
by using the Games-Per-Second (GPS) speedup measure and strength-speedup
measure. The first measure corresponds to the improvement in speed, and the
second measure corresponds to the improvement in playing strength. The three
parallelization methods are implemented and tested in our Go program Mango
[5] (mainly designed and constructed by Guillaume Chaslot), running on a multi-
core machine containing 16 cores. An earlier version of the program - using more
modest hardware - participated in numerous international competitions in 2007,
on board sizes 13× 13 and 19× 19. It was ranked in the first half of the partici-
pants at all these events [9, 1].

The article is organized as follows. In Sect. 2 we present the basic structure of
MCTS. In Sect. 3, we discuss the different methods used to parallelize an MCTS
program. We empirically evaluate the three parallelization methods in Sect. 4.
Section 5 provides the conclusions and describes future research.

2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [7, 12] is a best-first search method that does
not require a positional evaluation function. It is based on randomized explo-
rations of the search space. Using the results of previous explorations, the algo-
rithm gradually grows a game tree in memory, and successively becomes better
at accurately estimating the values of the most promising moves.

MCTS consists of four strategic phases, repeated as long as there is time left.
The phases are as follows. (1) In the selection step the tree is traversed from the
root node until it selects a leaf node L that is not added to the tree yet.1 (2)
Subsequently, the expansion strategy is called to add the leaf node L to the tree.
(3) A simulation strategy plays moves in a self-play mode until the end of the
game is reached. The result R of such a “simulated” game is +1 in case of a win
for Black (the first player in Go), 0 in case of a draw, and −1 in case of a win for
White. (4) A backpropagation strategy propagates the results R through the tree,
i.e., in each node traversed the average result of the simulations is computed.
The four phases of MCTS are shown in Fig. 2.

When all the time is consumed, the move played by the program is the root
child with the highest visit count. It might be noticed that MCTS can be stopped
anytime. However, the longer the program runs, the stronger the program plays.
We show in Sect. 4 that the rating of our program increases nearly linearly with
the logarithm of the time spent.

1 Examples of such a strategy are UCT, OMC, BAST, etc. [4, 7, 12, 6]. All experiments
have been performed with the UCT algorithm [12] using a coefficient Cp of 0.35.

62 G.M.J-B. Chaslot, M.H.M. Winands, and H.J. van den Herik

Selection Expension Simulation Backpropagation

The selection function is applied
recursively

One (or more) leaf
nodes are created

The result of this game is
backpropagated in the tree

One simulated
game is played

Selection Expansion Simulation Backpropagation

The selection function is
applied recursively until

the end of the tree

One (or more) leaf nodes
are created

The result of this game is
backpropagated in the tree

One simulated
game is played

 Repeated X times

Fig. 1. Scheme of Monte-Carlo Tree Search

3 Parallelization of Monte-Carlo Tree Search

In this article, we consider parallelization for a symmetric multiprocessor (SMP)
computer. We always use one processor thread for each processor core. One
of the properties of a SMP computer is that any thread can access the cen-
tral (shared) memory with the same (generally low) latency. As a consequence,
parallel threads should use a mutual exclusion (mutex) mechanism in order to
prevent any data corruption, due to simultaneous memory access. This could
happen when several threads are accessing the MCTS tree (i.e., in phase 1, 2 or
4). However, the simulation phase (i.e., phase 3) does not require any information
from the tree. There, simulated games can be played completely independently
from each other. This specific property of MCTS is particularly interesting for
the parallelization process. For instance, it implies that long simulated games
make the parallelization easier. We distinguish three main types of paralleliza-
tion, depending on which phase of the Monte-Carlo Tree Search is parallelized:
leaf parallelization, root parallelization, and tree parallelization.

3.1 Leaf Parallelization

Leaf parallelization introduced by Cazenave and Jouandeau [3] is one of the easi-
est ways to parallelize MCTS. To formulate it in machine-dependent terms, only
one thread traverses the tree and adds one of more nodes to the tree when a leaf
node is reached (phase 1 and 2). Next, starting from the leaf node, independent
simulated games are played for each available thread (phase 3). When all games
are finished, the result of all these simulated games is propagated backwards
through the tree by one single thread (phase 4). Leaf parallelization is depicted
in Fig. 2a.

Leaf parallelization seems interesting because its implementation is easy and
does not require any mutexes. However, two problems appear. First, the time
required for a simulated game is highly unpredictable. Playing n games using n

Parallel Monte-Carlo Tree Search 63

Fig. 2. (a) Leaf parallelization (b) Root parallelization (c) Tree parallelization with
global mutex (d) and with local mutexes

different threads takes more time in average than playing one single game using
one thread, since the program needs to wait for the longest simulated game.
Second, information is not shared. For instance, if 16 threads are available, and
8 (faster) finished games are all losses, it will be highly probable that most games
will lead to a loss. Therefore, playing 8 more games is a waste of computational
power. To decrease the waiting time, the program might stop the simulations that
are still running when the results of the finished simulations become available.
This strategy would enable the program to traverse the tree more often, but
some threads would be idle. Leaf parallelization can be performed inside an
SMP environment, or even on a cluster using MPI (Message Passing Interface)
communication.

3.2 Root Parallelization

Cazenave proposed a second parallelization under the name “single-run” par-
allelization [3]. In this article we will call it root parallelization to stress the
part of the tree for which it applies. The method works as follows. It consists of
building multiple MCTS trees in parallel, with one thread per tree. Similar to
leaf parallelization, the threads do not share information with each other. When
the available time is spent, all the root children of the separate MCTS trees
are merged with their corresponding clones. For each group of clones, the scores
of all games played are added. The best move is selected based on this grand
total. This parallelization method only requires a minimal amount of commu-
nication between threads, so the parallelization is easy, even on a cluster. Root
parallelization is depicted in Fig. 2b.

64 G.M.J-B. Chaslot, M.H.M. Winands, and H.J. van den Herik

3.3 Tree Parallelization

In this article we introduce a new parallelization method called tree paralleliza-
tion. This method uses one shared tree from which several simultaneous games
are played. Each thread can modify the information contained in the tree; there-
fore mutexes are used to lock from time to time certain parts of the tree to
prevent data corruption. There are two methods to improve the performance of
tree parallelization: (1) mutex location and (2) “virtual loss”.

Mutex location. Based on the location of the mutexes in the tree, we distin-
guish two mutex location methods: (1) using a global mutex and (2) using several
local mutexes.

The global mutex method locks the whole tree in such a way that only one
thread can access the search tree at a time (phase 1, 2, and 4). In the meantime
several other processes can play simulated games (phase 3) starting from different
leaf nodes. This is a major difference with leaf parallelization where all simulated
games start from the same leaf node. The global mutex method is depicted
in Fig. 2c. The potential speedup given by the parallelization is bounded by
the time that has to be spent in the tree. Let x be the average percentage of
time spent in the tree by one single thread. The maximum speedup in terms of
games per second is 100/x. In most MCTS programs x is relatively high (say
between 25 to 50%), limiting the maximum speedup substantially. This is the
main disadvantage of this method.

The local mutexes method makes it possible that several threads can access
the search tree simultaneously. To prevent data corruption because two (or more)
threads access the same node, we lock a node by using a local mutex when it is
visited by a thread. At the moment a thread departs the node, it is unlocked.
Thus, this solution requires to frequently lock and unlock parts of the tree. Hence,
fast-access mutexes such as spinlocks have to be used to increase the maximum
speedup. The local mutexes method is depicted in Fig. 2d.

Virtual loss. If several threads start from the root at the same time, it is
possible that they traverse the tree for a large part in the same way. Simulated
games might start from leaf nodes, which are in the neighborhood of each other.
It can even happen that simulated games begin from the same leaf node. Because
a search tree typically has millions of nodes, it may be redundant to explore
a rather small part of the tree several times. Coulom2 suggests to assign one
“virtual loss” when a node is visited by a thread (i.e., in phase 1). Hence, the
value of this node will be decreased. The next thread will only select the same
node if its value remains better than its siblings’ values. The virtual loss is
removed when the thread that gave the virtual loss starts propagating the result
of the finished simulated game (i.e., in phase 4). Owing to this mechanism,
nodes that are clearly better than others will still be explored by all threads,
while nodes for which the value is uncertain will not be explored by more than
2 Personal Communication

Parallel Monte-Carlo Tree Search 65

Fig. 3. Scalability of the strength of Mango with time

one thread. Hence, this method keeps a certain balance between exploration and
exploitation in a parallelized MCTS program.

4 Experiments

In this section we compare the different parallelization methods with each other.
Subsection 4.1 discusses the experimental set-up. We show the performance of
leaf parallelization, root parallelization, and tree parallelization in Subsection
4.2, 4.3, and 4.4, respectively. An overview of the results is given in Subsection
4.5. Root parallelization and tree parallelization are compared under different
conditions in Subsection 4.6.

4.1 Experimental Set-up

The aim of the experiments is to measure the quality of the parallelization pro-
cess. We use two measures to evaluate the speedup given by the different par-
allelization methods. The first measure is called the Games-Per-Second (GPS)
speedup. It is computed by dividing the number of simulated games per second
performed by the multithreaded program, by the number of games per second
played by a single-threaded program. However, the GPS speedup measure might
be misleading, since it is not always the case that a faster program is stronger.
Therefore, we propose a second measure: called strength-speedup. It corresponds
to the increase of time needed to achieve the same strength. For instance, a mul-
tithreaded program with a strength-speedup of 8.5 has the same strength as a
single-threaded program, which consumes 8.5 times more time.

In order to design the strength-speedup measurement, we proceed in three
steps. First, we measure the strength of our Go program Mango on the 13× 13
board against GNU Go 3.7.10, level 0, for 1 second, 2 seconds, 4 seconds, 8

66 G.M.J-B. Chaslot, M.H.M. Winands, and H.J. van den Herik

Fig. 4. Scalability of the rating of Mango vs. GNU Go with time. The curve represents
the data points, and the line is a trend-line for this data

seconds, and 16 seconds. For each time setting, 2, 000 games are played. Figure
3 reports the strength of Mango in terms of percentage of victory. In Fig. 4,
the increase in strength in term of rating points as a function of the logarithmic
time is shown. This function can be approximated accurately by linear regression,
using a correlation coefficient R2 = 0.9922. Second, the linear approximation is
used to give a theoretical Go rating for any amount of time. Let us assume that
Et is the level of the program in rating points, T is the time in seconds per
move. Linear regression gives us Et(T) = A · log2T + B with A = 56.7 and
B = −175.2. Third, the level of play of the multithreaded program is measured
against the same version of GNU Go, with one second per move. Let Em be
the rating of this program against GNU Go. The strength-speedup S is defined
by: S ∈ R|Et(S) = Em.

The experiments were performed on the supercomputer Huygens, which has
120 nodes, each with 16 cores POWER5 running at 1.9 GHz and having 64
Gigabytes of memory per node. Using this hardware the single-threaded version
of Mango was able to perform 3, 400 games per second in the initial board
position of 13 × 13 Go. The time setting used for the multithreaded program
was 1 second per move.

4.2 Leaf Parallelization

In the first series of experiments we tested the performance of plain leaf paral-
lelization. We did not use any kind enhancement to improve this parallelization
method as discussed in Subsection 3.1. The results regarding winning percent-
age, GPS speedup, and strength-speedup for 1, 2, 4, and 16 threads are given

Parallel Monte-Carlo Tree Search 67

Table 1. Leaf parallelization

Number of Winning Number Confidence GPS Strength
threads percentage of games interval Speedup speedup

1 26.7 % 2000 2.2 % 1.0 1.0
2 26.8 % 2000 2.0 % 1.8 1.2
4 32.0 % 1000 2.8 % 3.3 1.7

16 36.5 % 500 4.3 % 7.6 2.4

in Table 1. We observed that the GPS speedup is quite low. For instance, when
running 4 simulated games in parallel, finishing all of them took 1.15 times longer
than finishing just 1 simulated game. For 16 threads, it took two times longer
to finish all games compared by finishing just one. The results show that the
strength-speedup obtained is rather low as well (2.4 for 16 processors). So, we
may conclude that plain leaf parallelization is not a good way for parallelizing
MCTS.

4.3 Root Parallelization

In the second series of experiments we tested the performance of root paralleliza-
tion. The results regarding winning percentage, GPS speedup, and strength-
speedup for 1, 2, 4, and 16 threads are given in Table 2.

Table 2 indicates that root parallelization is a quite effective way of par-
allelizing MCTS. One particularly interesting result is that, for four processor
threads, the strength-speedup is significantly higher than the number of threads
used (6.5 instead of 4). This result implies that, in our program Mango, it is
more efficient to run four independent MCTS searches of one second than to run
one large MCTS search of four seconds. It might be that the algorithm stays
for quite a long time in local optima. This effect is caused by the UCT coeffi-
cient setting. For small UCT coefficients, the UCT algorithm is able to search
more deeply in the tree, but also stays a longer time in local optima. For high
coefficients, the algorithm escapes more easily from the local optima, but the
resulting search is shallower. The optimal coefficient for a specific position can
only be determined experimentally. The time setting also influences the scalabil-
ity of the results. For a short time setting, the algorithm is more likely to spend
too much time in local optima. Hence, we believe that with higher time settings,
root parallelization will be less efficient. In any case, we may conclude that root
parallelization is a simple and effective way to parallelize MCTS.

Table 2. Root parallelization

Number of Winning Number Confidence GPS Strength
threads Percentage of games interval speedup speedup

1 26.7 % 2000 2.2 % 1 1.0
2 38.0 % 2000 2.2 % 2 3.0
4 46.8 % 2000 2.2 % 4 6.5

16 56.5 % 2000 2.2 % 16 14.9

68 G.M.J-B. Chaslot, M.H.M. Winands, and H.J. van den Herik

Table 3. Tree parallelization with global mutex

Number of Percentage Number Confidence GPS strength
threads of victory of games interval speedup speedup

1 26.7 % 2000 2.2 % 1.0 1.0
2 31.3 % 2000 2.2 % 1.8 1.6
4 37.9 % 2000 2.2 % 3.2 3.0

16 36.5 % 500 4.5 % 4.0 2.6

4.4 Tree Parallelization

In the third series of experiments we tested the performance of tree paralleliza-
tion. Below, we have a closer look at the mutexes location and virtual loss.

Mutexes location. First, the global mutex method was tested. The results are
given in Table 3. These results show that the strength-speedup obtained up to 4
threads is satisfactory (i.e., strength-speedup is 3). However, for 16 threads, this
method is clearly insufficient. The strength-speedup drops from 3 for 4 threads
to 2.6 for 16 threads. So, we may conclude that the global mutex method should
not be used in tree parallelization.

Next, we tested the performance for the local mutexes method. The results
are given in Table 4. Table 4 shows that for each number of threads the local
mutexes has a better strength-speed than global mutex. Moreover, by using
local mutexes instead of global mutex the number of games played per second
is doubled when using 16 processor threads. However, the strength-speedup for
16 processors threads is just 3.3. Compared to the result of root parallelization
(14.9 for 16 threads), this result is quite disappointing.

Using virtual loss. Based on the previous results we extended the global
mutexes tree parallelization with the virtual loss enhancement. The results of
using virtual loss are given in Table 5.

Table 5 shows that the effect of the virtual loss when using 4 processor
threads is moderate. If we compare the strength-speedup of Table 4 we see an
increase from 3.0 to 3.6. But when using 16 processor threads, the result is
more impressive. Tree parallelization with virtual loss is able to win 49.9% of
the games instead of 39.9% when it is not used. The strength-speedup of tree

Table 4. Tree parallelization with local mutex

Number of Percentage Number Confidence GPS Strength
threads of victory of games interval speedup speedup

1 26.7 % 2000 2.2 % 1.0 1.0
2 32.9 % 2000 2.2 % 1.9 1.9
4 38.4 % 2000 2.2 % 3.6 3.0

16 39.9 % 500 4.4 % 8.0 3.3

Parallel Monte-Carlo Tree Search 69

Table 5. Using virtual loss for tree parallelization

Number of Winning Number Confidence GPS Strength
threads percentage of games interval speedup speedup

1 26.7 % 2000 2.2 % 1.0 1.0
2 33.8 % 2000 2.2 % 1.9 2.0
4 40.2 % 2000 2.2 % 3.6 3.6

16 49.9 % 2000 2.2 % 9.1 8.5

Fig. 5. Performance of the different parallelization methods

parallelization increases from 3.3 (see Table 4) to 8.5. Thus, we may conclude
that virtual loss is important for the performance of tree parallelization when
the number of processor threads is high.

4.5 Overview

In Fig. 5 we have depicted the performance of leaf parallelization, root paral-
lelization, and tree parallelization with global mutex or with local mutexes. The
x-axis represents the logarithmic number of threads used. The y-axis represents
the winning percentage against GNU Go. For comparison reasons, we have plot-
ted the performance of the default (sequential) program when given more time
instead of more processing power. We see that root parallelization is superior
to all other parallelization methods, performing even better than the sequential
program.

4.6 Root Parallelization vs. Tree Parallelization Revisited

In the previous subsection we saw that on the 13× 13 board root parallelization
outperformed all other parallelization methods, including tree parallelization. It

70 G.M.J-B. Chaslot, M.H.M. Winands, and H.J. van den Herik

Table 6. 9× 9 results for root and tree parallelization using 4 threads

Time (s) Winning percentage
Root parallelization Tree parallelization

0.25 60.2 % 63.9 %
2.50 78.7 % 79.3 %
10.0 87.2 % 89.2 %

appears that the strength of root parallelization lies not only in an more effective
way of parallelizing MCTS, but also in preventing that MCTS stays too long in
local optima. The results could be different for other board sizes, time settings,
and parameter settings. Therefore, we switched to a different board size (9× 9)
and three different time settings (0.25, 2.5, and 10 seconds per move). Using 4
processor threads, root, and tree parallelization played both 250 games against
the same version of GNU Go for each time setting. The results are given in
Table 6. For 4 threads, we see that root parallelization and tree parallelization
perform equally well now. Nevertheless, the number of games played and the
number of threads used is not sufficient to give a definite answer which method
is better.

5 Conclusions and Future Research

In this article we discussed the use of leaf parallelization and root parallelization
for parallelizing MCTS. We introduced a new parallelization method, called tree
parallelization. This method uses one shared tree from which games simultane-
ously are played. Experiments were performed to assess the performance of the
parallelization methods in the Go program Mango on the 13×13 board. In order
to evaluate the experiments, we propose the strength-speedup measure, which
corresponds to the time needed to achieve the same strength. Experimental re-
sults indicated that leaf parallelization was the weakest parallelization method.
The method led to a strength-speedup of 2.4 for 16 processor threads. The sim-
ple root parallelization turned out to be the best way for parallelizing MCTS.
The method led to a strength-speedup of 14.9 for 16 processor threads. We saw
that tree parallelization requires two techniques to be effective. First, using local
mutexes instead of global mutex doubles the number of games played per second.
Second, virtual loss increases both the speed and the strength of the program
significantly. By using these two techniques, we obtained a strength-speedup of
8.5 for 16 processor threads.

Despite the fact that tree parallelization is still behind root parallelization,
it is too early to conclude that root parallelization is the best way of paralleliza-
tion. It transpires that the strength of root parallelization lies not only in an
more effective way of parallelizing MCTS, but also in preventing that MCTS
stays too long in local optima. Root parallelization repairs (partially) a problem
in the UCT formula used by the selection mechanism, namely handling the issue
of balancing exploitation and exploration. For now, we may conclude that root
parallelization lead to excellent results for a specific time setting and specific
program parameters. However, as soon as the selection mechanism is able to
handle more adequately the balance of exploitation and exploration, we believe

Parallel Monte-Carlo Tree Search 71

that tree parallelization could become the choice for parallelizing MCTS. Pre-
liminary experiments on the smaller 9×9 board suggest that tree parallelization
is at least as strong as root parallelization.

In this paper we limited the tree parallelization to one SMP-node. In future
research, we will focus on tree parallelization and determine under which circum-
stances tree parallelization outperforms root parallelization. We believe that the
selection strategy, the time setting, and the board size are important factors.
Finally, we will test tree parallelization for a cluster with several SMP-nodes.

Acknowledgments. The authors thank Bruno Bouzy for providing valuable
comments on an early draft of this paper. This work is financed by the Dutch
Organization for Scientific Research (NWO) for the project Go for Go, grant
number 612.066.409. The experiments were run on the supercomputer Huygens
provided by the Nationale Computer Faciliteiten (NCF).

References

1. KGS Go Server Tournaments. http://www.weddslist.com/kgs/past/index.html.
2. Computer Go Server. http://cgos.boardspace.net, 2008.
3. T. Cazenave and N. Jouandeau. On the parallelization of UCT. In H.J. van den

Herik, J.W.H.M. Uiterwijk, M.H.M. Winands, and M.P.D. Schadd, editors, Pro-
ceedings of the Computer Games Workshop 2007 (CGW 2007), pages 93–101. Uni-
versiteit Maastricht, Maastricht, The Netherlands, 2007.

4. G.M.J-B. Chaslot, J-T. Saito, B. Bouzy, J.W.H.M. Uiterwijk, and H.J. van den
Herik. Monte-Carlo Strategies for Computer Go. In P.-Y. Schobbens, W. Van-
hoof, and G. Schwanen, editors, Proceedings of the 18th BeNeLux Conference on
Artificial Intelligence, pages 83–90, 2006.

5. G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, and
B. Bouzy. Progressive strategies for Monte-Carlo Tree Search. New Mathematics
and Natural Computation, 4(3):343–357, 2008.

6. P.-A. Coquelin and R. Munos. Bandit algorithms for tree search. In To appear in
the proceedings of Uncertainty in Artificial Intelligence, Vancouver, Canada, 2007.

7. R. Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search.
In H.J. van den Herik, P. Ciancarini, and H.H.L.M. Donkers, editors, Proceedings of
the 5th International Conference on Computer and Games, volume 4630 of Lecture
Notes in Computer Science (LNCS), pages 72–83. Springer-Verlag, Heidelberg,
Germany, 2007.

8. S. Gelly and Y. Wang. Exploration Exploitation in Go: UCT for Monte-Carlo Go.
In Twentieth Annual Conference on Neural Information Processing Systems (NIPS
2006), 2006.

9. S. Gelly and Y. Wang. Mogo wins 19×19 go tournament. ICGA Journal, 30(2):111–
112, 2007.

10. S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modifications of UCT with Patterns
in Monte-Carlo Go. Technical Report 6062, INRIA, 2006.

11. D.E. Knuth and R.W. Moore. An analysis of alpha-beta pruning. Artificial Intel-
ligence, 6(4):293–326, 1975.

12. L. Kocsis and C. Szepesvári. Bandit Based Monte-Carlo Planning. In J. Fürnkranz,
T. Scheffer, and M. Spiliopoulou, editors, Machine Learning: ECML 2006, volume
4212 of Lecture Notes in Artificial Intelligence, pages 282–293, 2006.

