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ABSTRACT

In this article we investigate how three multi-player search policies, namely maxn, paranoid, and
Best-Reply Search, can be embedded in the MCTS framework. The performance of these search
policies is tested in four different deterministic multi-player games with perfect information by run-
ning self-play experiments. We show that MCTS with the maxn search policy overall performs best.

Furthermore, we introduce a multi-player variant of the MCTS-Solver. We propose three update rules
for solving nodes in a multi-player MCTS tree. The experimental results show that the multi-player
variant of the MCTS-Solver is a genuine improvement for MCTS in multi-player games.

1. INTRODUCTION

Monte-Carlo Tree Search (MCTS) is a best-first search technique that can easily be extended from two-player to
multi-player games (Sturtevant, 2008). Different search policies can be applied that indicate how the children are
selected and how the results are backpropagated in the tree. The basic multi-player MCTS algorithm applies a
search policy which is analogous to the maxn search tree. In a maxn tree, each player maximizes his own score
(Luckhardt and Irani, 1986). In the standard MCTS algorithm, a similar principle is applied. Each player tries to
maximize his own win rate, while not considering the win rates of the opponents. Similar to the classic minimax
framework, it is possible to apply the paranoid and BRS search policies to MCTS as well.

This article investigates the maxn (Luckhardt and Irani, 1986), paranoid (Sturtevant and Korf, 2000) and Best-
Reply Search (BRS) (Schadd and Winands, 2011) search policies in the MCTS framework. They are called
MCTS-maxn, MCTS-paranoid and MCTS-BRS, respectively. Their performance is tested in four different multi-
player games, namely Chinese Checkers, Focus, Rolit and Blokus. Furthermore, these MCTS variants are com-
pared to the minimax-based search techniques.

Next, MCTS-maxn is modified so that it is able to prove positions and therefore play tactical lines better. The
Monte-Carlo Tree Search Solver (MCTS-Solver) (Winands, Björnsson, and Saito, 2008) concept is applied in
MCTS-maxn. Experiments are performed in the sudden-death game Focus.

The article is structured as follows. First, in Section 2 related work on search techniques in multi-player games is
discussed. Section 3 explains how the paranoid and BRS search policies can be applied in the MCTS framework.
A brief overview of the test domains is given in Section 4. Next, Section 5 provides the experimental results of
the different search policies. A background of the MCTS-Solver is given in Section 6. MCTS-Solver for multi-
player games is introduced in Section 7. Subsequently, in Section 8 we provide the experimental results for the
multi-player MCTS-Solver. Finally, the conclusions and an overview of possible future research directions are
given in Section 9.

1This article is a revised and updated version of the following two contributions: (1) Nijssen, J.A.M. and Winands, M.H.M. (2012).
An Overview of Search Techniques in Multi-Player Games. Computer Games Workshop at ECAI 2012, pp. 50–61, Montpellier, France;
(2) Nijssen, J.A.M. and Winands, M.H.M. (2011). Enhancements for Multi-Player Monte-Carlo Tree Search. Computers and Games (CG
2010) (eds. H.J. van den Herik, H. Iida, and A. Plaat), Vol. 6515 of LNCS, pp. 238–249, Springer-Verlag, Berlin, Germany.

2Games and AI Group, Department of Knowledge Engineering, Faculty of Humanities and Sciences, Maastricht University, E-
mail:{pim.nijssen,m.winands}@maastrichtuniversity.nl
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2. SEARCH TECHNIQUES IN MULTI-PLAYER GAMES

In this section, we provide a background on search techniques for multi-player games. The minimax-based
algorithms maxn, paranoid and BRS are discussed in Subsection 2.1. The application of MCTS to multi-player
games is described in Subsection 2.2.

2.1 Minimax-Based Search Algorithms

The traditional algorithm for searching in trees for multi-player games is maxn (Luckhardt and Irani, 1986). This
technique is an extension of minimax search to multi-player games. In the leaf nodes of the search tree, each
player is awarded a value, based on a heuristic evaluation function. These values are stored in a tuple of size N ,
where N is the number of players. The sum of the values for all players may be constant. When backing up the
values in the tree, each player always chooses the move that maximizes his score. A disadvantage of maxn is that
αβ pruning is not possible. Luckhardt and Irani (1986) proposed shallow pruning, which is an easy and safe way
to achieve some cutoffs. It is only possible if the sum of the values for all players is bound to a fixed maximum.
With shallow pruning, the asymptotic branching factor is 1+

√
4b−3
2 . However, in the average case the asymptotic

branching factor is b, which means that O(bd) nodes are investigated (Korf, 1991). An example of a maxn tree
with shallow pruning is displayed in Figure 1. In this example, N = 3 and the sum of the values for all players is
10. Other pruning techniques include last-branch pruning and speculative pruning (Sturtevant, 2003b). Another
disadvantage of maxn lies in the fact that the assumption is made that opponents do not form coalitions to reduce
the player’s score. This can lead to too optimistic play. The optimism can be diminished by making the heuristic
evaluation function more paranoid or by using the paranoid tie breaker rule (Sturtevant, 2003a).
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Figure 1: A maxn search tree with shallow pruning.

Paranoid search was first mentioned by Von Neumann and Morgenstern (1944) and was later investigated by
Sturtevant and Korf (2000). It assumes that all opponents have formed a coalition against the root player. Using
this assumption, the game can be reduced to a two-player game where the root player is represented in the tree by
MAX nodes and the opponents by MIN nodes. The advantage of this assumption is that αβ-like deep pruning is
possible in the search tree, allowing deeper searches in the same amount of time. An example of a paranoid search
tree is provided in Figure 2. In the best case, O(b

N−1
N d) nodes are investigated in a paranoid search tree. This is

a generalization of the best case for two-player games. Because more pruning is possible than in maxn, paranoid
may outperform maxn because of the larger lookahead (Sturtevant, 2003a). The disadvantage of paranoid search
is that, because of the often incorrect paranoid assumption, the player may become too defensive. Furthermore,
if the complete game tree is evaluated, a paranoid player may find that all moves are losing, because winning is
often not possible if all opponents have formed a coalition. In general, the deeper a paranoid player searches, the
more pessimistic he becomes (Saito and Winands, 2010).

Recently, Schadd and Winands (2011) proposed a new algorithm for playing multi-player games, namely Best-
Reply Search (BRS). This technique is similar to paranoid search, but instead of allowing all opponents to make a
move, only one opponent is allowed to do so. This is the player with the best counter move against the root player.
Similar to paranoid, αβ pruning is possible in BRS. In the best case, BRS investigates O

(
(b(N − 1))d

2d
N e/2

)
nodes. The advantage of this technique is that more layers of MAX nodes are investigated, which leads to more
long-term planning. Furthermore, this algorithm is less pessimistic than the paranoid algorithm, and less opti-
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Figure 2: A paranoid search tree with αβ pruning.

mistic than the maxn algorithm. Compared to paranoid, only one opponent performs a counter move against the
root player, instead of all opponents, and compared to maxn, BRS does not use the optimistic assumption that the
opponents are only concerned with their own value. The disadvantage is that, if passing is not allowed, invalid
positions, i.e., illegal or unreachable positions, are taken into account. This is the reason why in some games,
such as trick-based card games like Bridge or Hearts, BRS cannot be applied. To overcome this disadvantage,
Esser (2012) and Gras (2012) proposed a modification of BRS, where the other opponents, rather than skip their
turn, play a move based on domain knowledge. Esser (2012) showed that, using this enhancement, the modified
version of BRS was able to outperform standard BRS in four-person chess. In this article, we only investigate
the performance of the standard BRS algorithm. An example of a BRS tree is provided in Figure 3. Note that the
moves of all opponents are compressed into one layer. The numbers next to the edges indicate to which players
the corresponding moves belong.
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Figure 3: A BRS search tree with αβ pruning.

2.2 Monte-Carlo Tree Search for Multi-Player Games

Monte-Carlo Tree Search (MCTS) (Kocsis and Szepesvári, 2006; Coulom, 2007) is a best-first search technique
that gradually builds up a search tree, guided by Monte-Carlo simulations.The MCTS algorithm consists of four
phases (Chaslot et al., 2008): selection, expansion, playout, and backpropagation. By repeating these four phases
iteratively, the search tree is constructed gradually. In the selection phase, the search tree is traversed, starting
from the root, using the UCT selection strategy (Kocsis and Szepesvári, 2006). In the expansion phase, one node
is added to the tree (Coulom, 2007). During the playout phase, moves are played, starting from the position
represented by the newly added node, until the game is finished. In the backpropagation phase, the result of the
playout is propagated back along the previously traversed path up to the root node.

Applying MCTS to multi-player games is quite straightforward (Sturtevant, 2008). The difference with the
application to two-player games is that, after each playout is finished, instead of a single value, a tuple of N
values, is backpropagated in the tree. Each value in the tuple corresponds to the score achieved by one player.
Each value is in [0, 1], where 1 corresponds to a win and 0 to a loss. In the case of a draw between several
players, 1 point is divided evenly among the winners. The selection strategy remains the same. Each player tries
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to maximize his own win rate using the standard UCT formula. The child i with the highest value vi is selected
as follows (Formula 1).

vi = x̄i + C

√
ln(np)

ni
(1)

In this formula, vi is the UCT value of child i, x̄i is the win rate of the current player, np is the number of visits
of the current node, and ni is the number of visits of child i. C is the exploration constant.

The search policy in this implementation is similar to maxn, where each player tries to maximize his own score.
In the next section we show that it is also possible to apply different search policies, such as paranoid or BRS, in
the multi-player MCTS framework.

MCTS was first applied to deterministic perfect information multi-player games by Sturtevant (2008) and Ca-
zenave (2008). Sturtevant (2008) provided an analysis of the MCTS algorithm in Chinese Checkers and perfect
information variants of Spades and Hearts. He showed that, in Chinese Checkers, MCTS wins over 90% of
the games against maxn and paranoid, and that paranoid significantly outperforms maxn. In these experiments,
all players were allowed 250,000 node expansions per move. He found that with fewer expansions there is not
enough data for UCT to form accurate estimates. For instance, MCTS only wins 16.7% of games against para-
noid when both algorithms are only allowed 1600 node expansions per move. In other domains, MCTS plays on
a par with existing programs in the game of Spades, and better than existing programs in Hearts. Furthermore,
Sturtevant (2008) proved that UCT is able to compute a mixed equilibrium in a multi-player game tree. Cazenave
(2008) applied MCTS to multi-player Go. He introduced a technique called Paranoid UCT. In his design of the
Paranoid UCT, the paranoia is modelled in the playouts, while the MCTS tree is traversed in the usual way. He
tested the performance of Paranoid UCT against a RAVE player in three-player Go, and found that Paranoid UCT
performs better.

3. ALTERNATIVE SEARCH POLICIES IN MULTI-PLAYER MCTS

In this section, we propose the application of the paranoid and BRS search policies in MCTS. First, MCTS-
paranoid is explained in more detail in Subsection 3.1. MCTS-BRS is discussed in Subsection 3.2.

3.1 MCTS-Paranoid

The idea of using a paranoid search policy in MCTS was suggested by Cazenave (2008), however he did not
implement or test it. When applying the paranoid search policy in MCTS, the structure of the tree remains
intact, however all nodes in the opponents’ layers are changed into MIN nodes. All nodes in the root player’s
layers remain MAX nodes and the standard UCT formula is applied. When using paranoid search in MCTS, the
opponents use a different UCT formula. Instead of maximizing their own win rate, they try to minimize the win
rate of the root player. In the MIN nodes of the tree, the following modified version of the UCT formula is used.
The child i with the highest value vi is selected as follows (Formula 2).

vi = (1− x̄i) + C

√
ln(np)

ni
(2)

Similar to the UCT formula (Formula 1), x̄i denotes the win rate of node i. ni and np denote the total number
of times child i and its parent p have been visited, respectively. C is a constant, which balances exploration and
exploitation.

The major difference with the standard UCT formula is that, at the MIN nodes, x̄i does not represent the win rate
at child i of the current player, but of the root player. Essentially, (1− x̄i) indicates the win rate of the coalition
of the opponents. Analogous to paranoid in the minimax framework, the opponents do not consider their own
win rate.
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Figure 4: Example of an MCTS-paranoid tree.

An example of a paranoid tree in the MCTS framework for a three-player game is provided in Figure 4. In this
example, 100 playouts have been simulated so far. For each node, n indicates how often the node has been visited
so far and s indicates the cumulative score of the root player. The value x̄i of node i is computed using x̄i = si

ni
.

The root player applies the standard UCT formula (Formula 1) to select a child. Assuming C = 0.2, the UCT
values for nodes B, C and D are:

vB =
14

61
+ 0.2

√
ln 100

61
≈ 0.284

vC =
5

27
+ 0.2

√
ln 100

27
≈ 0.268

vD =
1.5

12
+ 0.2

√
ln 100

12
≈ 0.249

In this iteration, the root player chooses node B. From this node, the first opponent can choose between nodes E, F
and G. Because the paranoid search policy is applied, the modified UCT formula is applied to select the next child.
The UCT values of the children of node B are calculated as follows.

vE = (1− 5

18
) + 0.2

√
ln 61

18
≈ 0.818

vF = (1− 2

6
) + 0.2

√
ln 61

6
≈ 0.832

vG = (1− 6

36
) + 0.2

√
ln 61

36
≈ 0.901

Even though the first opponent may have a higher win rate at node E or F, he chooses node G to try to minimize
the win rate of the root player. After selecting node G, the UCT values for the second opponent are calculated in
a similar way.

vH = (1− 3

17
) + 0.2

√
ln 36

17
≈ 0.915

vI = (1− 2

11
) + 0.2

√
ln 36

11
≈ 0.932

vJ = (1− 2

7
) + 0.2

√
ln 36

7
≈ 0.857
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For the second opponent, node I is chosen. If node I is fully expanded, then the next child is chosen using the
standard UCT formula. Once a leaf node is reached, the playout is performed in the standard way. When the
playout is finished, the value s of nodes A, B, G and I is increased with the score of the root player and n is,
similar to the standard MCTS algorithm, increased by 1.

3.2 MCTS-BRS

With the BRS policy in MCTS, all opponents’ layers are compressed into one layer, similar to BRS in the minimax
framework. The standard UCT formula is applied in the root player’s layers and the paranoid UCT formula is
used in the opponents’ layers.
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Figure 5: Example of an MCTS-BRS tree.

An example of an MCTS-BRS tree is given in Figure 5. Similar to MCTS-paranoid and MCTS-maxn, the root
player selects a move using the standard UCT formula as follows.

vB =
20

61
+ 0.2

√
ln 100

61
≈ 0.383

vC =
12

39
+ 0.2

√
ln 100

39
≈ 0.376

The root player selects node B. Next, the moves of the two opponents are compressed into one layer. Nodes D
and E represent positions that are reached after moves by Player 2, i.e., the first opponent, and nodes E and
F represent positions that are reached after moves by Player 3, i.e., the second opponent. The paranoid UCT
formula is applied to select a move for one of the opponents as follows.

vD = (1− 4

11
) + 0.2

√
ln 61

11
≈ 0.759

vE = (1− 6

17
) + 0.2

√
ln 61

17
≈ 0.745

vF = (1− 3

7
) + 0.2

√
ln 61

7
≈ 0.725

vG = (1− 8

25
) + 0.2

√
ln 61

25
≈ 0.761

Node G is selected, so the first opponent skips a move and only the second opponent plays a move at this point.
Next, the root player selects a move again using the standard UCT formula.
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vH =
0

1
+ 0.2

√
ln 25

1
≈ 0.358

vI =
1

5
+ 0.2

√
ln 25

5
≈ 0.360

vJ =
6

18
+ 0.2

√
ln 25

18
≈ 0.418

After selecting node J, this procedure continues until a leaf node is reached. Once a leaf node is reached, the tree
is expanded and the playout is performed in the standard way. The result of the playout is backpropagated in a
similar way as in MCTS-paranoid.

4. TEST DOMAINS

The experiments in this article are performed in four different deterministic perfect information multi-player
games: Chinese Checkers, Focus, Rolit, and Blokus.

Chinese Checkers is a board game that can be played by two to six players. The game was invented in 1893
and has since then been released by various publishers under different names. Chinese Checkers is a popular test
domain for multi-player search techniques. For instance, Sturtevant (2008) and Nijssen and Winands (2011) used
the game for investigating MCTS in multi-player games. Schadd and Winands (2011) used Chinese Checkers
to test the performance of BRS against paranoid and maxn. It is also frequently used as one of the test domains
in General Game Playing (Clune, 2007; Finnsson, 2012; Tak, Winands, and Björnsson, 2012). The initial board
position for six-player Chinese Checkers is provided in Figure 6(a).

Focus is a multi-player strategy board game, which was described by Sid Sackson in 1969. This game has also
been released under the name Domination. Focus has been used as a test bed for investigating the performance of
Progressive History and the Multi-Player MCTS-Solver by Nijssen and Winands (2011) and for comparing the
performance of BRS to paranoid and maxn by Schadd and Winands (2011). Figure 6(b) shows the initial position
for four-player Focus.

Rolit, published in 1997 by Goliath, is a multi-player variant of the two-player game Othello. This game was
introduced in 1975. It is similar to a game invented around 1880, called Reversi. This game was invented by
either Lewis Waterman or John W. Mollett. At the end of the 19th century it gained much popularity in England,
and in 1898 games publisher Ravensburger started producing the game as one of its first titles. Saito and Winands
(2010) applied Paranoid Proof-Number Search to solve the two-, three-, and four-player variants of Rolit on 4×4
and 6 × 6 boards, and the four-player variant on the 8 × 8 board. They used this technique to calculate the
minimum score each player is guaranteed, assuming optimal play and that all opponents have formed a coalition.
It was also used as one of the domains for testing the performance of BRS, paranoid and maxn by Schadd and
Winands (2011). The initial position for Rolit is given in Figure 6(c).

Blokus is a four-player tile placement game developed by Bernard Tavitian in 2000. Because Blokus is a relatively
new game, little research has been performed in this domain. Shibahara and Kotani (2008) used the two-player
variant of Blokus, Blokus Duo, as a test domain for combining final score and win rate in Monte-Carlo evalua-
tions. A finished game of Blokus is displayed in Figure 6(d).

5. EXPERIMENTAL RESULTS FOR SEARCH POLICIES

In this section, we describe the experiments for the search policies and their results. First, Subsection 5.1 gives
an overview of the experimental setup. Subsection 5.2 provides a comparison between the three minimax-based
search techniques for multi-player games: maxn, paranoid and BRS. Next, Subsection 5.3 investigates how the
paranoid and BRS search policies in MCTS compare against the maxn policy in the MCTS framework. A com-
parison between the strongest minimax-based technique and the different MCTS-based techniques is given in
Subsection 5.4. In the final set of experiments, the strongest MCTS-based technique are compared to the three
minimax-based techniques in Subsection 5.5.
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Figure 6: The four games investigated in this article.

5.1 Experimental Setup

For the MCTS-based players, the UCT exploration constant C is set to 0.2. The selection phase is enhanced
with Progressive History (Nijssen and Winands, 2011), which is a domain-independent technique for biasing
the selection strategy when the number of playouts is low. In this article, we set the influence factor W to 5.
Furthermore, ε-greedy playouts (Sutton and Barto, 1998; Sturtevant, 2008) are applied. For each move in the
playout, a random move is played with a probability of ε (here 0.05). Otherwise, static move ordering is applied
to select a move. These values were achieved by systematic testing.

All minimax-based players use a transposition table (Greenblatt, Eastlake, and Crocker, 1967) with the DEEP
replacement scheme (Breuker, Uiterwijk, and van den Herik, 1996), and static move ordering. Furthermore, the
paranoid and BRS players use killer moves (Akl and Newborn, 1977) and the history heuristic (Schaeffer, 1983).
Finally, for the maxn player, shallow pruning is applied (Sturtevant and Korf, 2000). To allow shallow pruning,
the scores retrieved from the heuristic evaluation function are normalized, such that the sum of the scores for all
players is 1.

A description of the applied domain knowledge for the static move ordering and the heuristic evaluation function
is given in Nijssen and Winands (2012).

The program is written in Java. The experiments were run on a server consisting of AMD OpteronT 2.2 GHz pro-
cessors. There are various ways to assign two or three types of players to the different seats in multi-player games
(Sturtevant, 2003a). Table 1 shows in how many ways the player types can be assigned. Only the configurations
where at least one instance of each player type is present are considered. There may be an advantage regarding
the order of play and the number of instances of each player type. Therefore, each assignment is played multiple
times until at least 1,000 games are played and each assignment was played equally often. All experiments are
performed with 250 ms, 1000 ms, and 5000 ms thinking time per move, unless stated otherwise. The results are
given with a 95% confidence interval.

Table 1: The number of ways two or three different player types can be assigned. The number between brackets
is the number of games that are played per match.

Number of players 2 player types 3 player types
3 6 (1050) 6 (1050)
4 14 (1050) 36 (1044)
6 62 (1054) 540 (1080)

5.2 Comparison of Minimax-based Techniques

Before testing the maxn, paranoid and BRS search policies in MCTS, we first investigate how they perform
when applied in the minimax framework. In the first set of experiments, we therefore match the three basic
minimax-based players against each other. The win rates and the average search depths of the players in the
different games are displayed in Table 2. In this series of experiments, we validate the results found by Schadd
and Winands (2011), and extend the experiments with one more game (Blokus) and more variation in the number
of players.
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Table 2: Results of maxn vs. paranoid vs. BRS.
Maxn Paranoid BRS

Game Players Time Win rate Depth Win rate Depth Win rate Depth
(ms) (%) (ply) (%) (ply) (%) (ply)
250 1.1±0.6 3.04 24.8±2.6 4.44 74.1±2.6 4.75

Chinese Checkers 3 1000 1.0±0.6 3.41 20.5±2.4 5.11 78.6±2.5 5.44
5000 1.4±0.7 4.15 21.6±2.5 5.75 76.9±2.5 6.72

250 5.3±1.4 2.95 11.7±1.9 3.52 83.0±2.3 4.09
Chinese Checkers 4 1000 4.0±1.2 3.57 23.0±2.5 4.83 72.9±2.7 5.04

5000 5.7±1.4 4.07 19.4±2.4 5.43 74.8±2.6 5.86
250 15.0±2.1 2.88 13.9±2.1 3.34 71.1±2.7 3.53

Chinese Checkers 6 1000 12.2±2.0 3.85 13.1±2.0 4.10 74.1±2.6 4.74
5000 16.9±2.2 4.13 12.8±2.0 4.59 69.5±2.7 5.12

250 4.4±1.2 3.58 35.7±2.9 4.27 59.9±3.0 4.34
Focus 3 1000 3.8±1.2 4.06 28.6±2.7 4.88 67.6±2.8 5.03

5000 3.8±1.2 4.63 27.3±2.7 5.26 69.0±2.8 5.93
250 9.4±1.8 3.34 17.5±2.3 3.55 73.1±2.7 4.15

Focus 4 1000 7.0±1.5 3.81 24.0±2.6 4.66 69.0±2.8 4.86
5000 6.7±1.5 4.39 27.9±2.7 5.23 65.4±2.9 5.36

250 8.1±1.7 5.29 38.6±2.9 5.72 53.3±3.0 5.56
Rolit 3 1000 8.9±1.7 6.12 39.7±3.0 6.74 51.3±3.0 6.65

5000 6.3±1.5 6.86 45.4±3.0 7.88 48.4±3.0 7.73
250 15.9±2.2 4.81 41.5±3.0 5.48 42.5±3.0 5.01

Rolit 4 1000 14.7±2.1 5.48 42.7±3.0 6.38 42.6±3.0 5.90
5000 14.9±2.2 6.39 42.2±3.0 7.28 42.9±3.0 7.08

250 17.8±2.3 2.21 30.4±2.8 3.11 51.8±3.0 2.80
Blokus 4 1000 15.4±2.2 2.66 29.6±2.8 3.70 55.1±3.0 3.65

5000 8.6±1.7 3.28 23.5±2.6 4.32 68.0±2.8 4.43

In Chinese Checkers, BRS is the best search technique by a considerable margin. In the variants with three, four
and six players, BRS wins between 69.5% and 83.0% of the games with any time setting. In three-player and
four-player Chinese Checkers, paranoid is significantly stronger than maxn. This is because paranoid can, on
average, search more than 1 ply deeper and can therefore search a second layer of MAX nodes more often. In six-
player Chinese Checkers, maxn is at least as strong as paranoid. In this variant, both maxn and paranoid usually
do not reach a second layer of MAX nodes, as this requires a 7-ply search. BRS has a considerable advantage
here, because this technique only requires a 3-ply search to reach a second layer of MAX nodes, which happens
quite often. We note that for Chinese Checkers, maxn does not normalize the heuristic evaluation function and, as
such, does not use shallow pruning. Empirical testing showed that this variant performs better in this game than
the default approach, where the evaluation scores are normalized and shallow pruning is applied.

In Focus, again BRS is the best search technique and, similar to Chinese Checkers, reaches on average the highest
search depth. Maxn performs quite poorly in Focus, where it never reaches a win rate of more than 10%.

In Rolit, the difference between BRS and paranoid is much smaller. In three-player Rolit, BRS is still significantly
better than paranoid for short time settings, but with 5 seconds thinking time BRS and paranoid are equally strong.
In the four-player variant, BRS and paranoid are on equal footing with any time setting. One of the possible
reasons is that, contrary to Chinese Checkers and Focus, BRS does not reach a higher search depth than paranoid.
This is true for all time settings.

Finally, in Blokus BRS achieves the highest win rate again. In this game the average search depth is lower than
in the other games. This is because Blokus has, especially in midgame, a high branching factor which can go up
to more than 500 legal moves. Furthermore, because the board is large, computing the legal moves for a player is
quite time-consuming, which reduces the number of nodes that are investigated per second.

General remarks

The results show that among the three tested search techniques, maxn performs the least. In every game with
any number of players and time setting, maxn has a significantly lower win rate that both paranoid and BRS.
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The exception is six-player Chinese Checkers. Because there is only little pruning possible using the paranoid
algorithm, maxn plays at least as strong as paranoid. We remark that if better pruning techniques are applied for
maxn, this search technique may perform better in other game variants as well. Maxn also plays relatively well in
Blokus, where all players have difficulty reaching a decent search depth. Only the BRS player can regularly reach
a second level of MAX nodes. In most games, BRS is the best search technique. Overall, the BRS players can
search slightly deeper than the paranoid players. The most notable exception is Rolit. In this game, the paranoid
players can generally search slightly deeper and perform on a similar level as BRS. Overall, the experimental
results are comparable with the results found by Sturtevant (2008) and Schadd and Winands (2011).

5.3 Comparison of MCTS-based Techniques

In the second set of experiments, the performance of the three different search policies in MCTS is tested. Each
player uses a different policy: maxn (MCTS-maxn), paranoid (MCTS-paranoid) or BRS (MCTS-BRS). They are
enhanced with ε-greedy playouts and Progressive History. The win rates and the median number of playouts per
move are summarized in Table 3.

Table 3: Results of MCTS-maxn vs. MCTS-paranoid vs. MCTS-BRS.
MCTS-maxn MCTS-paranoid MCTS-BRS

Game Players Time Win rate Playouts Win rate Playouts Win rate Playouts
(ms) (%) (median) (%) (median) (%) (median)
250 40.2±3.0 1,007 28.5±2.7 1,003 31.3±2.8 994

Chinese Checkers 3 1000 51.7±3.0 4,318 19.9±2.4 4,368 28.4±2.7 4,257
5000 62.1±2.9 22,693 10.8±1.9 22,765 27.0±2.7 22,163

250 47.8±3.0 791 28.9±2.7 786 23.3±2.6 767
Chinese Checkers 4 1000 52.8±3.0 3,520 19.0±2.4 3,546 28.3±2.7 3,396

5000 64.4±2.9 18,513 12.2±2.0 18,921 23.5±2.6 17,698
250 46.9±3.0 623 28.2±2.7 635 24.8±2.6 595

Chinese Checkers 6 1000 54.4±3.0 2,792 20.7±2.4 3,033 24.9±2.6 2,725
5000 61.2±2.9 14,948 14.1±2.1 18,787 24.7±2.6 14,151

250 40.8±3.0 1,629 29.1±2.7 1,642 30.2±2.8 1,609
Focus 3 1000 42.9±3.0 6,474 26.1±2.7 6,668 31.0±2.8 6,382

5000 48.7±3.0 32,987 18.8±2.4 34,446 31.7±2.8 31,990
250 37.3±2.9 1,416 33.3±2.9 1,405 29.4±2.8 1,350

Focus 4 1000 41.2±3.0 6,310 26.1±2.7 6,619 32.8±2.8 5,945
5000 52.3±3.0 33,618 18.8±2.4 37,693 28.9±2.7 31,299

250 50.6±3.0 1,460 28.9±2.7 1,465 20.5±2.4 1,428
Rolit 3 1000 57.3±3.0 5,933 24.6±2.6 5,905 18.1±2.3 5,787

5000 63.2±2.9 30,832 20.4±2.4 30,019 16.4±2.2 29,673
250 43.6±3.0 1,496 31.4±2.8 1,497 25.0±2.6 1,409

Rolit 4 1000 50.0±3.0 6,064 27.5±2.7 6,034 22.5±2.5 5,651
5000 56.5±3.0 31,689 20.8±2.5 30,977 22.7±2.5 28,818

250 36.7±2.9 325 34.5±2.9 320 28.8±2.7 295
Blokus 4 1000 36.0±2.9 1,406 35.3±2.9 1,344 28.8±2.7 1,231

5000 33.6±2.9 6,932 34.3±2.9 6,824 32.0±2.8 6,210

In Chinese Checkers, MCTS-maxn is with any number of players and with any time setting the strongest search
technique. Overall, MCTS-BRS performs better than MCTS-paranoid. If more time is provided, MCTS-maxn

performs relatively better than with lower time settings. With 250 ms thinking time, MCTS-maxn wins between
40.2% and 47.8% of the games, depending on the number of players. With 5 seconds of thinking time, the win
rate increases to between 61.2% and 64.4%. MCTS-paranoid performs relatively worse with higher time settings,
while MCTS-BRS remains stable. Furthermore, we note that there is overall no large difference between the
median number of playouts per move between the different search policies. This is not only true in Chinese
Checkers, but also in the three other games. Although, in Chinese Checkers, if the number of players increases,
the median number of playouts drops.

In Focus, MCTS-maxn is the best technique as well, though its win rate generally is lower than in Chinese
Checkers. With 250 ms thinking time, it performs only slightly better than MCTS-BRS and MCTS-paranoid in
the three- and four-player variants. Similar to Chinese Checkers, however, MCTS-maxn performs relatively better
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with higher time settings. Its win rate increases to around 50% with 5 seconds thinking time, while especially
MCTS-paranoid performs worse with this time setting.

In Rolit, MCTS-maxn is again the strongest of the three algorithms. In the three-player variant of Rolit, MCTS-
maxn appears to play relatively better than in the four-player variant, while MCTS-BRS appears to play relatively
better in four-player Rolit. Similar to Chinese Checkers and Focus, the performance of MCTS-maxn increases
with more thinking time, while the performance of MCTS-paranoid decreases.

Finally, in Blokus there is no clear winner. With 250 ms and 1 second of thinking time, MCTS-maxn and MCTS-
paranoid are equally strong, with MCTS-BRS slightly behind. With 5 seconds thinking time, the three players
are all on the same footing and there is no significant difference between the players. Similar to the results in the
previous set of experiments, in Blokus the smallest number of positions is explored. Again, this is caused by the
time-consuming generation of moves.

Experiments with Vanilla MCTS

Because ε-greedy playouts and Progressive History alter the selection and the playout phase of the MCTS algo-
rithm, we validate the previous experiments by rerunning them with Vanilla MCTS, i.e. with ε-greedy playouts
and Progressive History disabled for all players. Only the experiments with 1 second of thinking time are re-
peated. The results are given in Table 4.

Table 4: Results of MCTS-maxn vs. MCTS-paranoid vs. MCTS-BRS without ε-greedy playouts and Progressive
History.

MCTS-maxn MCTS-paranoid MCTS-BRS
Game Players Win rate Playouts Win rate Playouts Win rate Playouts

(%) (median) (%) (median) (%) (median)
3 36.7±2.9 1,709 30.7±2.8 1,714 32.7±2.8 1,702

Chinese Checkers 4 48.7±3.0 2,412 23.7±2.6 2,396 27.7±2.7 2,369
6 71.0±2.7 6,470 8.1±1.6 6,918 20.9±2.5 6,182

Focus
3 24.5±2.6 242 38.5±2.9 242 37.0±2.9 242
4 29.0±2.7 427 35.5±2.9 426 35.4±2.9 422

Rolit
3 48.5±3.0 5,983 27.1±2.7 6,022 24.4±2.6 5,827
4 49.1±3.0 6,443 26.5±2.7 6,473 24.3±2.6 5,970

Blokus 4 36.0±2.9 1,217 34.5±2.9 1,114 29.5±2.8 1,048

There are two striking results. First, the median number of playouts per move increases with the number of
players in Chinese Checkers. This is in contrast with the results found in Table 3. This phenomenon is caused by
the fact that the pieces move randomly on the board and that the game is finished when one of the home bases
is filled. With more players, there are more home bases and more pieces on the board. As a result it takes, on
average, less moves before one of the home bases is filled. Second, MCTS-maxn is outperformed by both MCTS-
paranoid and MCTS-BRS in Focus. This may be caused by the low number of playouts per move. Because the
moves in the playouts are chosen randomly, games can take a long time to finish. This result is in accordance with
the results in Subsection 5.3, where we found that MCTS-paranoid performs relatively better and MCTS-maxn

performs relatively worse if the number of playouts is lower. Also in Chinese Checkers, playouts take much
longer than with ε-greedy playouts, except in the six-player variant.

In Rolit and Blokus, the average length of the playouts is similar to the previous set of experiments. This is
because the length of these games is not dependent on the strategy of the players. A game of Rolit always takes
60 turns, and a game of Blokus never takes more than 84 turns. This may explain why the results in this set of
experiments are comparable to those in Table 3.

General remarks

Overall, the results reveal that MCTS clearly performs best using the standard maxn search policy. Only in
Blokus, MCTS-maxn is not significantly stronger than MCTS-paranoid and MCTS-BRS. Without ε-greedy play-
outs and Progressive History, MCTS-maxn is outperformed by MCTS-paranoid and MCTS-BRS in Focus.
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This is different to the minimax framework, where paranoid and BRS significantly outperform maxn. There are
two main reasons for this difference. First, paranoid and BRS perform well in the minimax framework because
they increase the amount of pruning. Because αβ pruning does not occur in MCTS, this advantage is non-
existent in the MCTS framework. Second, in the minimax framework, BRS reduces the horizon effect. It allows
more planning ahead because more layers of MAX nodes are investigated. In MCTS, the advantage of having
more layers of MAX nodes in the search tree is considerably smaller. The horizon effect in MCTS is already
diminished due to the playouts. An additional problem with MCTS-BRS is that, in the tree, invalid positions are
investigated, which may reduce the reliability of the playouts.

The results also show that MCTS-maxn performs relatively better than the other two techniques if more time is
provided. Especially MCTS-paranoid performs relatively worse with more thinking time. The reason for this
may be that the paranoid assumption causes the player to become too paranoid with larger search depths, similar
to paranoid in the minimax framework. In Blokus, the performance of the three different players is stable with
different time settings. Finally, the results reveal that there is overall no large difference in the median number
of playouts between the different players. This indicates that the different search policies do not produce a
significantly different amount of overhead.

5.4 MCTS-Based Techniques versus BRS

The experiments in Section 5.3 revealed that MCTS-maxn is the best among the different MCTS variants. In
the next series of experiments, this result is validated by comparing the three different search policies in MCTS
against the best minimax-based search technique, BRS (cf. Subsection 5.2). The results are displayed in Table 5.
The percentages indicate the win rate of each of the players against BRS.

Table 5: Win rates of the different MCTS-based techniques against BRS.
Game Players Time MCTS-maxn MCTS-paranoid MCTS-BRS

(ms) win rate (%) win rate (%) win rate (%)
250 18.4±2.3 15.0±2.2 14.6±2.1

Chinese Checkers 3 1000 42.4±3.0 29.4±2.6 35.5±2.9
5000 68.2±2.8 29.2±2.8 50.0±3.0

250 24.5±2.6 16.7±2.3 18.1±2.3
Chinese Checkers 4 1000 57.7±3.0 45.5±3.0 48.0±3.0

5000 77.6±2.5 47.1±3.0 65.8±2.9
250 33.3±2.8 25.5±2.6 24.1±2.6

Chinese Checkers 6 1000 72.1±2.7 56.4±3.0 64.5±2.9
5000 88.1±2.0 73.3±2.7 83.8±2.2

250 37.1±2.9 32.2±2.8 34.2±2.9
Focus 3 1000 53.8±3.0 37.7±2.9 48.1±3.0

5000 62.9±2.9 34.5±2.9 54.7±3.0
250 42.3±3.0 37.0±2.9 39.6±3.0

Focus 4 1000 54.3±3.0 39.7±3.0 50.5±3.0
5000 68.6±2.8 42.8±3.0 61.3±2.9

250 74.1±2.6 65.3±2.9 58.6±3.0
Rolit 3 1000 84.6±2.2 69.8±2.8 68.0±2.8

5000 87.0±2.0 68.7±2.8 69.0±2.8
250 71.2±2.7 66.6±2.9 60.9±3.0

Rolit 4 1000 80.2±2.4 66.0±2.9 64.5±2.9
5000 82.0±2.3 64.0±2.9 67.2±2.8

250 57.8±3.0 56.2±3.0 57.5±3.0
Blokus 4 1000 77.4±2.5 80.9±2.4 79.9±2.4

5000 90.5±1.8 89.1±1.9 88.0±2.0

In Chinese Checkers, the win rate of the MCTS players strongly depends on the thinking time. If 250 ms per move
are provided, MCTS-maxn wins between 18.4% and 33.3% of the games against BRS, dependent on the number
of players. With 5000 ms thinking time, the win rate lies between 68.2% and 88.1% against BRS. MCTS-
paranoid and MCTS-BRS win significantly fewer games against BRS, which indicates that MCTS-maxn is a
stronger player than MCTS-paranoid and MCTS-BRS. This is in accordance with the results found in Subsection
5.3.
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In Focus, similar results are found. With a lower time setting, all MCTS-based opponents are significantly
outperformed by BRS, while with 5000 ms of thinking time per move, the win rate increases to between 55%
and 70% for MCTS-maxn and MCTS-BRS. MCTS-paranoid wins around or less than 40% of the games against
BRS with most time settings.

In Rolit, the MCTS-based players perform well compared to BRS. In both the three- and four-player variant,
MCTS-maxn wins more than 70% of the games with any time setting against BRS. Also MCTS-paranoid and
MCTS-BRS win significantly more than 60% of the games against BRS. This again shows that Rolit is a difficult
domain for BRS.

Finally, in Blokus, BRS is outperformed by the MCTS-based players as well. This is likely because BRS can
only reach a limited search depth because of the high branching factor. The win rate of the three different MCTS
players is similar, which again shows that the three different MCTS-based players are on equal footing in Blokus.

General remarks

The results in Table 5 show that MCTS-maxn is the strongest player against BRS. This result is in accordance
with the results in Subsection 5.3. MCTS-paranoid and MCTS-BRS achieve a significantly lower win rate against
BRS, except in Blokus. When comparing BRS to MCTS-maxn, for the low time settings BRS significantly
outperforms MCTS-maxn in Focus and Chinese Checkers, while MCTS-maxn is stronger in Blokus and Rolit.
With a higher time setting, MCTS-maxn becomes stronger than BRS in all games. This is not true for MCTS-
paranoid, which performs worse than BRS in the three-player and four-player variants of Chinese Checkers and
Focus, even with high time settings. Similar to the results found in Subsection 5.3, MCTS-paranoid does not
benefit much from reaching larger search depths. MCTS-BRS does, however, benefit from higher time settings.
It outperforms BRS in all game variants, except in three-player Chinese Checkers, where the two players are
equally strong.

5.5 Minimax-based Techniques versus MCTS-maxn

In the next set of experiments we test the performance of the three minimax-based techniques against the strongest
MCTS-based technique, MCTS-maxn. The win rates of maxn, paranoid and BRS against MCTS-maxn are given
in Table 6. We note that the win rates in the column ‘BRS’ are the inverse of the win rates under ‘MCTS-maxn’
in Table 5, as these two columns both show the results of the matches between MCTS-maxn and BRS.

In Chinese Checkers, maxn and paranoid are much weaker than MCTS-maxn. This result was also found by
Sturtevant (2008). BRS wins more games against MCTS-maxn than maxn and paranoid. This validates the
results found in Table 2. Similar to the results found in Subsection 5.4, MCTS-maxn performs relatively better
with higher time settings. The win rate of the minimax-based players drops as the players receive more thinking
time. This is not only true for BRS, but also for maxn and paranoid. Similar to the experiments in Subsection 5.2,
maxn does not apply normalization of the heuristic evaluation function and shallow pruning in Chinese Checkers
in this set of experiments.

In Focus, the performance of the minimax-based techniques against MCTS-maxn decreases if more time is pro-
vided, as well. BRS wins approximately 60% of the games with a low time setting, but its win rate drops to
between 30% and 35% with 5000 ms of thinking time. Paranoid is on equal footing with MCTS-maxn in three-
player Focus with a low time setting, but if more time is provided, MCTS performs significantly better. Maxn

wins less than 25% of the games against MCTS-maxn with any time setting and any number of players.

In Rolit, the three different minimax-based players win around or less than 30% of the games against MCTS-
maxn. Paranoid wins slightly more games than BRS against MCTS-maxn, which validates that paranoid is at
least as strong as BRS in Rolit. In Subsections 5.2 and 5.4 we found that both paranoid and MCTS-maxn perform
at least as well as, or better than, BRS in Rolit. When comparing paranoid to MCTS-maxn, we find that the
MCTS-based player performs best. Paranoid wins around or less than 30% of the games against MCTS-maxn

with any number of players or time setting.

Finally, in Blokus, all minimax-based players are outperformed by MCTS-maxn for each time setting. In Subsec-
tion 5.2 we found that BRS is the strongest and maxn is the weakest minimax technique in Blokus. The results in
Table 6 reveal a similar result.
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Table 6: Win rates of the minimax-based techniques against MCTS-maxn.
Game Players Time Maxn Paranoid BRS

(ms) win rate (%) win rate (%) win rate (%)
3 250 20.8±2.5 57.7±3.0 81.6±2.3

Chinese Checkers 3 1000 4.0±1.2 22.6±2.5 57.6±3.0
3 5000 1.5±0.7 9.8±1.8 31.8±2.8
4 250 33.2±2.8 21.3±2.5 75.5±2.6

Chinese Checkers 4 1000 6.7±1.5 12.6±2.0 42.3±3.0
4 5000 3.0±1.0 3.9±1.2 22.4±2.5
6 250 36.2±2.9 24.6±2.6 66.7±2.8

Chinese Checkers 6 1000 9.3±1.8 4.5±1.3 29.9±2.7
6 5000 4.6±1.3 4.4±1.2 11.9±2.0
3 250 16.7±2.3 50.3±3.0 62.9±2.9

Focus 3 1000 8.9±1.7 31.0±2.8 46.2±3.0
3 5000 5.7±1.4 24.5±2.6 35.0±2.9
4 250 23.9±2.6 30.8±2.8 57.7±3.0

Focus 4 1000 15.6±2.2 27.4±2.7 45.7±3.0
4 5000 9.0±1.7 18.4±2.3 31.4±2.8
3 250 9.2±1.7 31.4±2.8 25.9±2.6

Rolit 3 1000 5.4±1.4 20.7±2.5 15.4±2.2
3 5000 4.4±1.2 16.7±2.3 13.0±2.0
4 250 20.1±2.4 29.3±2.8 28.8±2.7

Rolit 4 1000 13.0±2.0 26.1±2.7 19.8±2.4
4 5000 11.1±1.9 21.0±2.5 18.0±2.3
4 250 23.5±2.6 32.4±2.8 42.2±3.0

Blokus 4 1000 5.9±1.4 10.6±1.9 22.6±2.5
4 5000 1.2±0.7 2.1±0.9 9.5±1.8

General remarks

These experiments confirm the results found in Subsection 5.2. Maxn achieves the lowest win rate against MCTS-
maxn, showing that maxn is the weakest minimax-based algorithm. The highest win rate is achieved by BRS,
except in Rolit. In Rolit, paranoid has a slightly higher win percentage than BRS against the MCTS-maxn player,
which is comparable to the results in Subsection 5.2, where we found that paranoid and BRS perform on a
similar level. Furthermore, the results reveal that all three players perform worse against MCTS-maxn if more
time is provided. A similar result was found in Subsection 5.4, where the performance of the MCTS-based search
techniques increases against BRS if the amount of thinking time is increased.

6. BACKGROUND OF MCTS-SOLVER

The MCTS variants described in the previous sections are not able to solve positions. Winands et al. (2008)
proposed a new MCTS variant for two-player games, called MCTS-Solver, which has been designed to play
narrow tactical lines better in sudden-death games. A sudden-death game is a game that may end abruptly by the
creation of one of a prespecified set of patterns (Allis, 1994). The variant differs from the traditional MCTS in
respect to backpropagation and selection strategy. It is able to prove the game-theoretic value of a position given
sufficient time.

In addition to backpropagating the values {0, 12 , 1}, representing a loss, a draw and a win respectively, the search
also backpropagates the values∞ and −∞, which are assigned to a proven won or lost position, respectively. To
prove that a node is a win, it is sufficient to prove that at least one of the children is a win. In order to prove that a
node is a loss, it is necessary to prove that all children lead to a loss. If at least one of the children is not a proven
loss, then the current node cannot be proven.

Experiments showed that for the sudden-death game Lines of Action (LOA), an MCTS program using MCTS-
Solver defeats a program using MCTS by a winning percentage of 65%. Moreover, MCTS-Solver performs
much better than MCTS against the world-class αβ program MIA. They concluded that MCTS-Solver constitutes
genuine progress in solving and playing strength in sudden-death games, significantly improving upon MCTS-
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based programs. The MCTS-Solver has also been successfully applied in games such as Hex (Arneson, Hayward,
and Henderson, 2010; Cazenave and Saffidine, 2010), Shogi (Sato, Takahashi, and Grimbergen, 2010), and Tron
(Den Teuling and Winands, 2012).

Cazenave and Saffidine (2011) proposed to improve the MCTS-Solver using Score Bounded Monte-Carlo Tree
Search when a game has more than two outcomes, for example in games that can end in draw positions. It
significantly improved the MCTS-Solver to take into account bounds on the possible scores of a node in order to
select the nodes to explore. They applied this algorithm to solve Seki in the game of Go, and to Connect Four.
Score Bounded Monte-Carlo Tree Search has also been applied in simultaneous move games (Finnsson, 2012).

7. MULTI-PLAYER MCTS-SOLVER

The previous experiments revealed that MCTS-maxn is the strongest multi-player MCTS variant. Therefore,
for MCTS-maxn, we propose a multi-player variant of MCTS-Solver, called Multi-Player MCTS-Solver (MP-
MCTS-Solver). For the multi-player variant, MCTS-Solver has to be modified, in order to accommodate for
games with more than two players. This is discussed below.

Proving a win works similarly as in the two-player version of MCTS-Solver: if one of the children is a proven
win for the player who has to move in the current node, then this node is a win for this player. If all children lead
to a win for the same opponent, then the current node is also labelled as a win for this opponent. However, if the
children lead to wins for different opponents, then updating the game-theoretic values becomes a non-trivial task.
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Figure 7: An example of backpropagating game-theoretic values in a multi-player search tree.

An example is given in Figure 7. Here, node E is a terminal node where Player 1 has won. This means that
node B is a mate-in-one for Player 1, regardless of the value of node F. Node E is marked as solved and receives
a game-theoretic value of (1, 0, 0). Nodes G, H, and I all result in wins for Player 2. Parent node D receives a
game-theoretic value of (0, 1, 0), because this node always leads to a win for the same opponent of Player 1. The
game-theoretic value of node A cannot be determined in this case, because both Player 1 and Player 2 are able to
win and there is no win for Player 3.

Update rules have to be developed to take care of such situations. We propose three different update rules that
are briefly explained below.

(1) The normal update rule only updates proven wins for the same opponent. This means that only if all children
lead to a win for the same opponent, then the current node is also set to a win for this opponent. Otherwise, the
node is not marked as solved and the UCT value is used. A disadvantage of the normal update rule is that it is
quite conservative. We define two update rules that allow solving nodes that lead to different winners.

(2) The paranoid update rule uses the assumption that the opponents of the root player will never let him win.
This rule is inspired by the paranoid tie breaker rule for maxn (Sturtevant, 2003a). Again consider Figure 7.
Assuming that the root player is Player 1, using the paranoid update rule, we can determine the game-theoretic
value of node A. Because we assume that Player 3 will not let Player 1 win, the game-theoretic value of node A
becomes (0, 1, 0). If there are still multiple winners after removing the root player from the list of possible
winners, then no game-theoretic value is assigned to the node.
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The paranoid update rule may not always give the desired result. With the paranoid assumption, the game-
theoretic value of node A is (0, 1, 0) (i.e., a win for Player 2). This is actually not certain, because it is also
possible that Player 3 will let Player 1 win. However, because the game-theoretic value of node A denotes a win
for Player 2, and at the parent of node A Player 2 is to move, the parent of node A will also receive a game-
theoretic value of (0, 1, 0). This is actually incorrect, since choosing node A does not give Player 2 a guaranteed
win.

Problems may thus arise when a player in a given node gives the win to the player directly preceding him. In
such a case, the parent node will receive a game-theoretic value which is technically not correct. This problem
can be diminished by using (3) the first-winner update rule. When using this update rule, the player will give the
win to the player who is the first winner after him. In this way the player before him does not get the win and,
as a result, does not overestimate the position. When using the first-winner update rule, in Figure 7, node A will
receive the game-theoretic value (1, 0, 0).

Overestimation

Overestimation of a node is a phenomenon that occurs if one or more children of a node are proven to be a loss,
but the node itself is not solved (yet). Winands, Björnsson, and Saito (2010) provided a case where overestimation
may lead to wrong evaluations and showed how to tackle this problem by applying a threshold. If the number of
visits in a node is less than the threshold, the simulation strategy is used to select a node. In this way, children that
are proven to be a loss can be selected, as long as the number of visits is below the threshold. The UCT formula is
applied to value solved children if a node is not proven. For the win rate x̄i, the game-theoretic value of the child
is used, which is usually 0.3 Overestimation is abated by occasionally selecting nodes that are a proven loss, but
because the win rate is 0, non-proven nodes are favoured.

8. EXPERIMENTAL RESULTS FOR MULTI-PLAYER MCTS-SOLVER

In this section, we give the results of MP-MCTS-Solver with the three different update rules playing against
an MCTS player without MP-MCTS-Solver. These experiments are only performed in Focus, because MCTS-
Solver is only successful in sudden-death games (Winands et al., 2008). Chinese Checkers, Rolit and Blokus do
not belong to this category of games, and therefore MP-MCTS-Solver will not work well in these games. Focus,
however, is a sudden-death game and is therefore an appropriate test domain for MP-MCTS-Solver.

Table 7: Win rates for an MP-MCTS-Solver player with different update rules against the default MCTS player
in Focus.

2 players 3 players 4 players
Type win rate (%) win rate (%) win rate (%)
Standard 53.0±1.7 54.9±1.7 53.3±1.7
Paranoid 51.9±1.7 50.4±1.7 44.9±1.7
First-winner 52.8±1.7 51.5±1.7 43.4±1.7

In Table 7, we see that the standard update rule works well in Focus. The win rates for the different number of
players vary between 53% and 55%. The other update rules do not perform as well. For the two-player variant,
they behave and perform similar to the standard update rule. The win rates are slightly lower, which may be
caused by statistical noise and a small amount of overhead. In the three-player variant, MP-MCTS-Solver neither
increases nor decreases the performance significantly. In the four-player variant, the win rate of the player using
MP-MCTS-Solver is well below 50% for the paranoid and the first-winner update rules. Based on these results
we may conclude that only the standard update rule works well.

3If draws are allowed, the game-theoretic value may be non-zero. We remark that, in Focus, draws do not occur.
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9. CONCLUSIONS AND FUTURE RESEARCH

Among the three minimax-based search techniques we tested, BRS turns out to be the strongest one. Overall,
it reaches the highest search depth and, because of its tree structure, more MAX nodes are investigated than in
paranoid and maxn. BRS significantly outperforms maxn and paranoid in Chinese Checkers, Focus and Blokus.
Only in Rolit, paranoid performs at least as strong as BRS.

In the MCTS framework, the maxn search policy appears to perform best. The advantages of paranoid and BRS
in the minimax framework do not apply in MCTS, because αβ pruning is not applicable in MCTS. An additional
problem with MCTS-BRS may be that, in the tree, invalid positions are investigated, which may reduce the
reliability of the playouts as well. Still, MCTS-paranoid and MCTS-BRS overall achieve decent win rates against
MCTS-maxn. Furthermore, MCTS-paranoid is on equal footing with MCTS-maxn in Blokus and, in the vanilla
version of MCTS, MCTS-paranoid and MCTS-BRS significantly outperform MCTS-maxn in Focus. Although
the maxn search policy is the most robust, the BRS and paranoid search policies can still be competitive.

In a comparison between MCTS-maxn and BRS, MCTS-maxn overall wins more games than BRS. In Chinese
Checkers and Focus, BRS is considerably stronger with lower time settings, while in Rolit and Blokus MCTS-
maxn significantly outperforms BRS. With higher time settings, MCTS-maxn outperforms BRS in all games with
any number of players. From this we may conclude that with higher time settings, the MCTS-based player
performs relatively better.

Finally, we proposed MP-MCTS-Solver in MCTS-maxn with three different update rules, namely (1) standard, (2)
paranoid and (3) first-winner. This variant is able to prove the game-theoretic value of a position. We tested this
variant only in Focus, because MP-MCTS-Solver only works well in sudden-death games. A win rate between
53% and 55% was achieved in Focus with the standard update rule. The other two update rules achieved a win
rate up to 53% in the two-player variant, but were around or below 50% for the three- and four-player variants.
We may conclude that MP-MCTS-Solver performs well with the standard update rule. The other two update
rules, paranoid and first-winner, were not successful in Focus.

In this article we investigated three common search policies for multi-player games, i.e. maxn, paranoid and
BRS, in the MCTS framework. We did not consider algorithms derived from these techniques, such as the
Coalition-Mixer (Lorenz and Tscheuschner, 2006) or MP-Mix (Zuckerman, Felner, and Kraus, 2009). They use
a combination of maxn and (variations of) paranoid search. They also have numerous parameters that have to be
optimized. Tuning and testing such algorithms for multi-player MCTS is a first direction of future research.

A second possible future research direction is the application of BRS variants as proposed by Esser (2012) and
Gras (2012) in MCTS. The basic idea is that, beside the opponent with the best counter move, the other opponents
are also allowed to perform a move. These moves are selected using static move ordering. The advantage of these
variants is that no invalid positions are searched, while maintaining the advantages of the original BRS algorithm.

A third future research topic is the application of paranoid and BRS policies in the playouts of MCTS. Cazenave
(2008) applied paranoid playouts to multi-player Go and found promising results. BRS may be able to shorten the
playouts, because all but one opponents skip their turn. This may increase the number of playouts per second, and
thus increase the playing strength. Applying paranoid and BRS playouts requires developing and implementing
paranoid moves for the opponents.

MP-MCTS-Solver has proven to be a genuine improvement for the sudden-death game Focus, though more
research is necessary to improve its performance. As a fourth direction of future research, it may be interesting
to investigate the performance of MP-MCTS-Solver in different sudden-death games. Furthermore, MP-MCTS-
Solver is currently only applied in MCTS-maxn. It may be interesting to apply it to MCTS-paranoid and MCTS-
BRS as well.
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