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Abstract. In this paper a new method is described for move ordering,
called the relative history heuristic. It is a combination of the history
heuristic and the butterfly heuristic. Instead of only recording moves
which are the best move in a node, we also record the moves which are
applied in the search tree. Both scores are taken into account in the
relative history heuristic. In this way we favour moves which on average
are good over moves which are sometimes best. Experiments in LOA
show that our method gives a reduction between 10 and 15 per cent of
the number of nodes searched. Preliminary experiments in Go confirm
this result. The relative history heuristic seems to be a valuable element
in move ordering.

1 Introduction

Most modern game-playing computer programs successfully use αβ search [10].
The efficiency of αβ search is dependent on the enhancements used [4]. Move
ordering is one of the main techniques to reduce the size of the search tree.
There exist several move-ordering techniques, which can be qualified by their
dependency on the search algorithm [11]. Static move ordering is independent on
the search. These techniques rely on game-dependent knowledge. The ordering
can be acquired by using expert knowledge (e.g., favouring capture moves in
Chess) or by learning techniques (e.g., the Neural MoveMap Heuristic [12]).
Dynamic move ordering is dependent on the search. These techniques rely on
information gained during the search. The transposition-table move [3], the killer
moves [1], and the history heuristic [15] are well-known examples.

The history heuristic is a popular choice for ordering moves dynamically, in
particular when other techniques are not applicable. In the past the butterfly
heuristic [8] was proposed to replace the history heuristic, but it did not suc-
ceed. In this paper we propose a new dynamic move-ordering variant, called the
relative history heuristic, to replace the history heuristic. The idea is that be-
sides the number of times a move was chosen as a best move, we also record the
number of times a particular move was explored.

This paper is organised as follows. In Section 2 we review the history heuristic
and the butterfly heuristic. Next, the relative history heuristic is introduced in
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Section 3. The test environment is described in Section 4. Subsequently, the
results of the experiments are given in Section 5. Finally, in Section 6 we present
our conclusion and propose topics for future research.

2 The History Heuristic and the Butterfly Heuristic

The history heuristic is a simple, inexpensive way to reorder moves dynamically
at interior nodes of search trees. It was invented by Schaeffer [15] and has been
adopted in several game-playing programs. Unlike the killer heuristic, which only
maintains a history of the one or two best killer moves at each ply, the history
heuristic maintains a history for every legal move seen in the game tree. Since
there is only a limited number of legal moves, it is possible to maintain a score
for each move in two (black and white) tables. At every interior node in the
search tree the history-table entry for the best move found is incremented by a
value (e.g., 2d, where d is the depth of the subtree searched under the node). The
best move is in this case defined as the move which either causes an alpha-beta
cut-off, or which causes the best score. When a new interior node is examined,
moves are re-ordered by descending order of their scores. The scores in the tables
can be maintained during the whole game. Each time a new search is started the
scores are decremented by a factor (e.g., divided by 2). They are only reset to
zero or to some default values at the beginning of a complete new game. Details
on the effectiveness or the strategy to maintain history scores during the whole
game are dependent on the domain or game program.

The history heuristic does not cost much memory. The history tables are
defined as two tables with 4096 entries (64 from squares × 64 to squares), where
each entry is 4 or 8 bytes large. These tables can be easily indexed by a 12-bit
key representing the origin and destination. In the history table we have also
defined moves which are illegal.

Hartmann [8] called attention to two disadvantages of the history heuristic.
(A) Quite some space for the history table is wasted, because space for illegal
moves is reserved too. For instance, in the game of Chess 44 per cent of the
possible moves are legal. In LOA, this number is even lower because knight
moves are not allowed. This gives that 1456 of the 4096 moves are legal, meaning
that only 36 per cent of the entries in the table are used. Although this waste
of memory is not a problem for games with a small dimensionality of moves, it
can be a problem for games with a larger dimensionality of moves (for instance
Amazons). (B) Moreover, Hartmann pointed out that some moves are played
less frequently than others. There are two reasons for this. (B1) The moves are
less frequently considered as good moves. (B2) The moves occur less frequently
as legal moves in a game. The disadvantage of the history heuristic is that it is
biased towards moves that occur more often in a game than others. However,
the history heuristic has as implicit assumption that all the legal moves occur
roughly with the same frequency in the game (tree). So, in games where this
condition approximately holds an absolute measure seems appropriate. But in
other games where some moves occur more frequently than other moves, we
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should resort to other criteria. For instance, assume we have a move which is
quite successful when applicable (e.g., it then causes a cut-off) but it does not
occur so often as a legal move in the game tree. This move will not obtain a high
history score and is therefore ranked quite low in the move ordering. Therefore
a different valuation of such a move may be considered.

To counter some elements of the two disadvantages Hartmann [8] proposed
an alternative for the history heuristic, the butterfly heuristic. This heuristic
takes the move frequencies in search trees into account. Two tables are needed
(one for Black and one for White), called butterfly boards. They are defined in
the same way as in the history heuristic (i.e., 64 from squares × 64 to squares).
Any move that is not cut is recorded. Each time a move is executed in the
search tree, its corresponding entry in the butterfly board (for each side) is also
incremented by a value. Moves are now reordered by their butterfly scores. The
butterfly heuristic was denied implementation by its inventor, since he expected
that it would be far less effective than the history heuristic.

3 The Relative History Heuristic

We believe that we can considerably improve the performance of the history
heuristic in some games by making it relative instead of absolute. The score
used to order the moves (movescore) is given by the following formula:

movescore =
hhscore

bfscore
(1)

where hhscore is the score found in the history table and bfscore is the score
found in the butterfly board. We call this move ordering the relative history
heuristic. We remark that we only update the entries of moves seen in the regular
search, not in the quiescence search, because some (maybe better) moves are
not investigated in the quiescence search. We apply the relative history heuristic
everywhere in the tree (including in the quiescence search) for move ordering.

In some sense this heuristic is related to the realization-probability search
method [19]. In that scheme the move frequencies gathered offline are used to
limit or extend the search.

4 Test Environment

In this section the test environment is described which is used for the experi-
ments. First, we briefly explain the game of Lines of Action (LOA). Next, we
give some details about the search engine MIA.

4.1 Lines of Action

Lines of Action (LOA) [14] is a two-person zero-sum chess-like connection game
with perfect information. It is played on an 8× 8 board by two sides, Black and
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White. Each side has twelve pieces at its disposal. The black pieces are placed
in two rows along the top and bottom of the board, while the white pieces are
placed in two files at the left and right edge of the board. The players alternately
move a piece, starting with Black. A move takes place in a straight line, exactly
as many squares as there are pieces of either colour anywhere along the line of
movement. A player may jump over its own pieces. A player may not jump over
the opponent’s pieces, but can capture them by landing on them. The goal of
a player is to be the first to create a configuration on the board in which all
own pieces are connected in one unit. In the case of simultaneous connection,
the game is drawn. The connections within the unit may be either orthogonal
or diagonal. If a player cannot move, this player has to pass. If a position with
the same player to move occurs for the third time, the game is drawn.

Fig. 1. (a) Rare move; (b) Blocked move.

LOA is a nice test bed for the relative history heuristic. Dependent on the
position some moves occur more often than others in the search tree. For ex-
ample, moves going seven squares far are possible if and only if there are seven
pieces of the same colour side by side on that line. In Figure 1a it is possible to
move a1-h8, but it is very rare that in a real game a position occurs where seven
pieces of the same colour occupy a diagonal. In contrast, consider a move like
a8-d5 which occurs regularly in a game, but in the position depicted in Figure
1b it will not often be applied in the corresponding search tree, since most of
the time Black will not consider to move its piece on b7.

4.2 MIA IV

MIA IV is a LOA-playing tournament program, which won the 8th Computer
Olympiad. It performs an αβ depth-first iterative-deepening search. Several tech-
niques are implemented to make the search efficient. The program uses PVS
(Principal Variation Search) to narrow the αβ window as much as possible [13].
A transposition table with 221 double entries (using the two-deep replacement
scheme [3]) is applied to prune a subtree or to narrow the αβ window. At all
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interior nodes which are more than 2 ply away from the leaves, the program
generates all the moves to perform the Enhanced Transposition Cutoffs (ETC)
scheme [18]. Next, a null move [7] is performed before any other move and it is
searched to a lower depth (reduced by R) than other moves. In the search tree
we distinguish three types of nodes, namely PV nodes, CUT nodes, and ALL
nodes [10, 13]. The null move is done at CUT nodes and at ALL nodes. At a
CUT node a variable scheme, called adaptive null move [9], is used to set R. If
the remaining depth is more than 6, R is set to 3. When the number of pieces of
the side to move is lower than 5 the remaining depth has to be more than 8 to set
R to 3. In all other cases R is set to 2. For ALL nodes R = 3 is used. If the null
move does not cause a β cut-off, multi-cut [2] is performed. Experiments showed
that using multi-cut is not only beneficial at CUT nodes but also at ALL nodes
[22]. For move ordering, the move stored in the transposition table, if applicable,
is always tried first. Next, two killer moves [1] are tried. These are the last two
moves, which were best or at least caused a cut-off at the given depth. There-
after follow: (1) capture moves going to the inner area (the central 4× 4 board)
and (2) capture moves going to the middle area (the 6 × 6 rim). All the other
moves are ordered decreasingly according to their scores in the (relative) history
table [15]. If a cut-off occurs because of multi-cut, transposition table or ETC,
its corresponding entry in the history table or butterfly board is also updated
with the depth used for exploration. In the leaf nodes of the tree a quiescence
search is performed. This quiescence search looks at capture moves that form or
destroy connections [21] and at capture moves going to the central 4× 4 board.

5 Experiments

In this section we show the results of various experiments with the relative his-
tory heuristic. This is done on a test set of 171 LOA positions.1 We performed
six series of experiments. In the first and second series, we tested the standard
history heuristic and the relative history heuristic with different increments, re-
spectively (Subsection 5.1). In the third, fourth, and fifth series, we compared the
performance of the relative history heuristic with the standard history heuristic
under different configurations (Subsection 5.2). Finally, in the sixth series of ex-
periments, we tested the performance of the relative history heuristic in another
domain, namely for 24 test positions for 6×6 Go (Subsection 5.3).

5.1 Increment Settings

In the following two series of experiments we tried to find the optimal increment
setting for the history table and the butterfly board, which gave the largest node
reduction. Using our set of 171 LOA positions, the program was tested for depth
14 using its normal enhancements as described in the previous subsection.

In the first series of experiments we tested the increments of the history
table in a configuration where we used the standard history heuristic. Initially

1 The test set can be found at http://www.cs.unimaas.nl/m.winands/loa/TMP.zip.
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Table 1. Performance of the history heuristic with different increments on a test set
of 171 positions.

History Increment Total Nodes
depth 5 depth 9 depth 14

0 2,480,001 188,717,928 30,997,625,767

1 1,901,956 113,163,113 14,478,291,866

d 1,896,429 111,283,177 14,064,388,392

d2 1,900,055 111,673,124 13,915,673,199

2d 1,878,114 111,471,652 13,925,222,389

the history heuristic was developed for programs that were searching to a depth
much less than 14. Considering the nature of a search tree, it might be that the
best increment to be used depends on the search depth. Therefore we performed
experiments for the original depths 5 and 9 used as test depths by Schaeffer
[15, 17]. The following increments were used: 1, d, d2, and 2d, where d is the
explored depth of the move causing the cut-off. The increment 2d is the standard
increment of the history table. The result of the search without history heuristic
(increment 0) is given for comparison. Table 1 shows that there is not much
difference between the size of the search tree using increments d, d2 and 2d. For
depth 14, the history heuristic gives in all the cases a reduction of approximately
55 per cent of the number of nodes searched. Unlike data for Chess, reported
in [17], we see a steady growth of the reduction with increasing search depth
in LOA. Surprisingly, the increment of 1 is generating for the various depths a
search tree that is only slightly larger than other increments. Apparently, the
depth of the move explored is not so important in the history heuristic. Hence
we may conclude that, unlike some data so far available for chess [16], the choice
of the increment is of little value in the test environment we studied.

In the second series of experiments we looked at various increment parameter
settings of the history table and the butterfly board (h,b) in our engine using the
relative history heuristic and using a search depth of 14 ply. In Table 2 the total
number of nodes searched for each combination of parameters is given. In the
process of parameter tuning we found that (d2, 2d) is the most efficient. However,
the difference with several other parameter configurations is not significant (e.g.,
(1,1), (d2, d) or (2d,1)). The difference between the best and worst parameter
setting is 6 per cent in nodes searched. Hence, we may conclude that the exact
choice of parameters seems to be not very critical.

5.2 Performance in LOA

In the third series of experiments we tested the added value of the relative history
heuristic, using the optimal parameter setting of the previous subsection, against
the same set of 171 LOA positions for several depths in our original search engine
under different conditions.
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Table 2. Performance of the relative history heuristic with different increments on a
test set of 171 positions.

History Increment Butterfly Increment Total Nodes

1 1 12,261,241,807

1 d 12,544,923,748

1 d
2 12,936,458,114

1 2d 12,741,580,747

d 1 12,654,462,037

d d 12,433,892,630

d d
2 12,914,014,566

d 2d 13,075,535,903

d
2 1 12,501,473,310

d
2 d 12,238,059,952

d
2

d
2 12,509,830,417

d
2 2d 12,234,575,562

2d 1 12,354,762,028

2d d 13,081,065,785

2d
d
2 12,928,253,841

2d 2d 12,954,976,931

In Figure 2 we plot the relative performance of the two heuristics defined
as the size of the search tree investigated using the relative history heuristic
divided by that of the standard history heuristic, as a function of the search
depth. We observe that until depth 8 there is no significant difference between
the two move-ordering schemes. From depth 9 onwards the difference increases
with the depth to some 12 per cent at depth 14. We see that the search enhanced
with the relative history heuristic searches fewer nodes than the one enhanced
with the standard setting.

Since we have tuned our heuristic with this particular test set (Subsection
5.1), we performed a fourth series of experiments on a set consisting of 156
different positions2 to validate the result. The positions were searched up to
depth 15. In Figure 3 we see the relative performance of the two heuristics on
the validation set. If we compare Figure 2 with Figure 3, we see that similar
results are achieved.

Since the performance of many search enhancements may to some extent
depend on the search engine, we modified the search engine in the fifth series of
experiments by switching the multi-cut forward-pruning mechanism off. Because
of the diminished forward pruning the sizes of our search trees increased and we
were not able to conduct experiments at depth 13 and further. Looking at Figure
4 we see that the relative history heuristic decreases the search with 11 per cent
at depth 12. Hence, we may conclude that the same pattern as in the previous

2 The test set can be found at http://www.cs.unimaas.nl/m.winands/loa/VMP.zip.
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Fig. 2. Performance of the Relative History Heuristic.
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Fig. 3. Validating the Relative History Heuristic.
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Fig. 4. Relative History Heuristic without using multi-cut.

experiments has started. We expect that this pattern will continue, which is to
be confirmed in the future by more powerful machines.

5.3 Performance in Go

The relative history heuristic was designed for LOA. To investigate whether the
relative history heuristic would be interesting for other domains too, we tested its
performance on the small-board games of Go in the sixth series of experiments,
for which we used the program Migos that recently had solved Go on the 5×5
board [20].

Migos uses an iterative-deepening PVS with a transposition table with 224

double entries (using the two-deep replacement scheme), enhanced transposi-
tion cut-offs, symmetry lookups in the transposition table, internal uncondi-
tional bounds, and an enhanced move ordering in which the history heuristic
is an important component. The implementation of the history heuristic em-
ploys one shared table for both the black and white moves which exploits the
game-dependent property in Go that moves on the same intersection are often
good for both sides. After some parameter tuning for the relative history heuris-
tic increments, which we optimised for solving the empty 5×5 board, we found
that using d3 for both the history and the butterfly board gave quite promising
results3.

The current challenge in small-board Go is solving the 6×6 board (5×5 is
the largest square board solved by a computer). Therefore we decided to test the
performance of the relative history heuristic on a set of 24 problems for the 6×6

3 We tested this combination on the LOA test set, too. Our experiments showed that
this combination belongs to the better ones.
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Fig. 5. Performance of the Relative History Heuristic in 6 × 6 Go.

board published in Go World by James Davies [5, 6]. Figure 5 shows the average
relative performance of the relative history heuristic compared to the standard
settings without a butterfly table. Since we only used a small number of test
positions we also plotted the standard deviations. They tend to increase with
the search depth. The reasons for this are (1) the exponential effect of changes in
the move ordering, and (2) a reduction in the number of positions because some
positions are already solved at smaller depths. The results indicate again that
for shallow searches not much should be expected of using the relative history
heuristic. However, after about 10 ply the first improvements become noticeable
and at about 15 ply the relative history heuristic achieves a reduction of roughly
13 per cent. However, we remark that the test set is too small to draw strong
conclusions. So far the results are favourable for the relative history heuristic
and they indicate that the relative history heuristic is worth investigating in
other domains as well.

6 Conclusion and Future Research

Combining the ideas of the history heuristic and the butterfly heuristic resulted
in the relative history heuristic. This heuristic does not suffer from underesti-
mating less frequently occurring moves in the search tree as the history heuristic
does. We favour moves which are the good moves on average instead of moves
which are the best move in absolute terms. Both the history heuristic and the
relative history heuristic show a steady growth of the reduction with increas-
ing search depth. Using the relative history heuristic our LOA program MIA

searches even between 10 and 15 per cent fewer nodes (see Subsection 5.2). The
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results were confirmed by the Go program Migos. Hence, we may conclude that
the relative history heuristic is a valuable technique to order the moves in a game
tree of considerable depth (more than 12 plies).

It is remarkable that the utility of increments other than 1 does not show
much better performance in the (relative) history heuristic for our LOA program
MIA. The good performance of the increment of 1 could be the result of some
domain-dependent properties.

Finally, it would be interesting for future research to test our heuristic in still
more different games, especially in Chess, since the original history heuristic was
developed for Chess.
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