
Algorithms for Computing Strategies in Two-Player

Simultaneous Move Games

Branislav Bošanský1a, Viliam Lisýa, Marc Lanctot2b, Jǐŕı Čermáka,
Mark H.M. Winandsb

aAgent Technology Center, Department of Computer Science,
Faculty of Electrical Engineering, Czech Technical University in Prague

Technicka 2, 166 27 Prague 6, Czech Republic
{branislav.bosansky,viliam.lisy,jiri.cermak}@agents.fel.cvut.cz

1Corresponding author; phone: +420 22435 7581
bGames and AI Group, Department of Data Science and Knowledge Engineering,

Maastricht University,
P.O. Box 616, 6200 MD, Maastricht, The Netherlands
{marc.lanctot,m.winands}@maastrichtuniversity.nl

Abstract

Simultaneous move games model discrete, multistage interactions where
at each stage players simultaneously choose their actions. At each stage, a
player does not know what action the other player will take, but otherwise
knows the full state of the game. This formalism has been used to express
games in general game playing and can also model many discrete approxima-
tions of real-world scenarios. In this paper, we describe both novel and exist-
ing algorithms that compute strategies for the class of two-player zero-sum
simultaneous move games. The algorithms include exact backward induction
methods with efficient pruning, as well as Monte Carlo sampling algorithms.
We evaluate the algorithms in two different settings: the offline case, where
computational resources are abundant and closely approximating the opti-
mal strategy is a priority, and the online search case, where computational
resources are limited and acting quickly is necessary. We perform a thor-
ough experimental evaluation on six substantially different games for both
settings. For the exact algorithms, the results show that our pruning tech-
niques for backward induction dramatically improve the computation time
required by the previous exact algorithms. For the sampling algorithms, the

2This author has a new affiliation: Google DeepMind, London, United Kingdom.

Preprint submitted to Artificial Intelligence March 23, 2016

results provide unique insights into their performance and identify favorable
settings and domains for different sampling algorithms.

Keywords: simultaneous move games, Markov games, backward induction,
Monte Carlo Tree Search, alpha-beta pruning, double-oracle algorithm,
regret matching, counterfactual regret minimization, game playing, Nash
equilibrium

1. Introduction

Strategic decision-making in multiagent environments is an important
problem in artificial intelligence. With the growing number of agents in-
teracting with humans and with each other, the need to understand these
strategic interactions at a fundamental level is becoming increasingly impor-
tant. Today, agent interactions occur in many diverse situations, such as
e-commerce, social networking, and general-purpose robotics, each of which
creates complex problems that arise from conflicting agent preferences.

Much research has been devoted to developing algorithms that reason
about or learn in sequential (multi-step) interactions. As an example, adver-
sarial search has been a central topic of artificial intelligence since the incep-
tion of the field itself, leading to very strong rational behaviors in Chess [1]
and Checkers [2]. Advances in machine learning for multi-step interactions
(e.g., reinforcement learning) have led to self-play learning of evaluation func-
tions achieving master level play in Backgammon [3] and super-human level
in Atari [4].

The most common model for these multistage environments is one with
strictly sequential interactions. This model is sufficient in many settings [5],
such as in the examples used above. On the other hand, it is not a good
representation of the environment when agents are allowed to act simulta-
neously. These situations occur in many real-world scenarios such as auc-
tions (e.g., [6]), autonomous driving, and many video and board games in
the expanding gaming industry (e.g., [7, 8], including games we use for
our experiments). In all of these scenarios, the simultaneity of the decision-
making is crucial and we have to include it directly into the model when
computing strategies. One of the fundamental differences of simultaneous
move games versus strictly sequential games is that the agents may need to
use randomized (or mixed) strategies in order to play optimally [9], i.e., to
maximize their worst-case expected utility. This means that agents may need

to randomize over several actions in some states of the game to guarantee the
worst-case expected utility, even though the only information that is hidden
is each player’s action as they play it.

This paper focuses specifically on algorithms for decision-making in si-
multaneous move games. We cover the offline case, where the computation
time is abundant and the optimal strategies are computed and stored, as
well as the online case, where the computation time is limited and agents
must choose an action quickly. We are concerned both with the quality
of strategies based on their worst-case expected performance in theory and
their observed performance in practice. We compare and contrast the algo-
rithms and parameter choices in the offline and the online cases, and thor-
oughly evaluate each algorithm on a suite of games. Our collection covers
Biased Rock-Paper-Scissors, Goofspiel, Oshi-Zumo, Pursuit-Evasion Games,
and Tron, all of which have been used for benchmark purposes in previous
work. We also perform experiments on randomly generated games. These
games differ in the number of possible actions, the number of moves before
the game ends, the variance of the utility values, and the proportion of states
in which mixed strategies are required for optimal play.

Our experimental comparison shows that the algorithms perform differ-
ently in each case. The exact algorithms based on the backward induction
are significantly better in the offline setting, where they are able to find the
optimal strategy very quickly compared to the sampling algorithms. In some
cases, our novel algorithm (DOαβ) solves the game in less than 2% of the
time required by the standard backward induction algorithm. However, the
exact algorithms are less competitive in the online setting. In contrast, the
approximative sampling algorithms can perform very well in the online set-
ting and find good strategies to play within a few seconds, however, they are
not well-suited for offline solving of games.

The paper is structured as follows. First, we make explicit the contri-
butions of the paper in Subsection 1.1. In Section 2, we present a formal
introduction of the simultaneous move games that we will use throughout
the paper. Section 3 follows with a list and discussion of the existing algo-
rithms in the related work. In Section 4, we describe in detail selected exact
and approximative algorithms. We first describe the algorithms in the of-
fline setting, followed by the necessary modifications used in the online case
described in Section 5. In Section 6, we present our experimental results
comparing the algorithms. Finally, we conclude in Section 7.

1.1. Novel Contributions

This paper presents detailed descriptions and analysis of recent state-
of-the-art exact [10] and approximative algorithms [11, 12, 13] that compute
strategies for the class of two-player simultaneous move games. Furthermore,
it presents the following original contributions:

• We present the latest variants of state-of-the-art algorithms under a sin-
gle unified framework and combine the offline and online computation
perspectives that have been previously analyzed separately.

• We describe the first adaptation of backward induction and the double-
oracle algorithm with serialized bounds (DOαβ) [10] to the online
search setting in simultaneous move games using iterative deepening
and heuristic evaluation functions.

• We describe a novel variant of Online Outcome Sampling [13] tailored
for two-player simultaneous move games (SM-OOS) and provide its
formal analysis.

• We provide a wide experimental analysis and a comparison of these
and other algorithms on five different specific games and on randomly
generated games.

• We replicate an experimental convergence analysis for approximative
algorithms that is often used in the literature as a demonstration that
sampling-based algorithms are not guaranteed to converge to an opti-
mal solution [14], and we identify the sensitivity of the existing approx-
imative algorithms to tie-breaking rules.

Our algorithms thus allow computing offline strategies in larger games than
previously possible (using DOαβ). In online game-playing, our algorithms
are less sensitive to chosen parameters (SM-MCTS-RM) or guarantee to
closely approximate the optimal strategies given enough time (SM-OOS).
Since we describe each algorithm in a domain-independent manner, they can
be further tailored to specific domains to achieve additional improvements in
the scalability and/or game-playing performance.

Figure 1: An example of a two-player simultaneous move game. Each white matrix cor-
responds to a state of the game where both players (a maximizing player with actions
in rows and a minimizing player with actions in columns) act simultaneously. The dark
squares are terminal states. The values shown in the matrices correspond to the values of
subgames (e.g., calculated by backward induction).

2. Simultaneous Move Games

A finite two-player game with simultaneous moves and chance events (also
called Markov games, or stacked matrix games) is a tuple (N ,S,A, T ,∆?, ui, s0),
where S = D ∪ C ∪ Z. The player set N = {1, 2, ?} contains player labels,
where ? denotes the chance player, and by convention a player is denoted
i ∈ N . S is a set of states, with Z denoting the terminal states, D the states
where players make decisions, and C the possibly empty set of states where
chance events occur. A = A1 × A2 is the set of joint actions of individual
players. We denote by Ai(s) the actions available to player i in state s ∈ S.
The number of actions available to player i, |Ai(s)|, is called the branch-
ing factor for player i. When the player is not specified, we mean the joint
branching factor |A(s)|. The transition function T : S × A1 × A2 7→ S is
a partial function that defines the successor state given a current state and
actions for both players. ∆? : C 7→ ∆(S) describes a probability distribution
over possible successor states of the chance event. Induced by ∆?, we also
define P?(s, r, c, s′) as the probability of transitioning to s′ after choosing
joint action (r, c) from s, or simply 1 when T (s, r, c) 6∈ C. The utility func-
tion ui : Z 7→ [vmin, vmax] ⊆ R gives the utility of player i, with vmin and
vmax denoting the minimum and maximum possible utility respectively. We
assume zero-sum games: ∀z ∈ Z, u1(z) = −u2(z). The game begins in an

H T
H 1 0
T 0 1

A B
a 0 1
b -1 0

Figure 2: Matrix games of Matching Pennies (left), and one with a pure Nash equilibrium
(right). Payoffs for the row player are shown.

initial state s0 and a subset of a game that starts in some node s is called a
subgame. An example of such a game is depicted in Figure 1, more examples
can be found in [15, Chapter 5].

In two-player zero-sum games, a (subgame perfect) Nash equilibrium
strategy is often considered to be optimal (the formal definition follows).
It guarantees an expected payoff of at least V against any opponent. Any
non-equilibrium strategy has its nemesis, which makes it gain less than V
in expectation. Moreover, a subgame perfect Nash equilibrium strategy can
earn more than V against weak opponents. After the opponent makes a sub-
optimal move, the strategy will never allow it to gain the loss back. The value
V is known as the value of the game and it is the same for every equilibrium
strategy profile by von Neumann’s minimax theorem [16].

A matrix game is a single step simultaneous move game with action sets
A1 andA2 (see Figure 2). Each entry in the matrix Arc where (r, c) ∈ A1×A2

corresponds to a utility value reached if row r is chosen by player 1 and
column c by player 2. For example, in Matching Pennies in the left side
of Figure 2, each player has two actions (heads or tails). The row player
receives a payoff of 1 if both players choose the same action and 0 if they
do not match. In simultaneous move games, at every decision state s ∈ D
there is a joint action set A1(s) × A2(s). Each joint action (r, c) leads to
another state T (s, r, c) that is either a terminal state or a subgame which is
itself another simultaneous move game. A chance event is a state s ∈ C with
a fixed set of outcomes, each of which leads to a possible successor state. In
simultaneous move games, Arc refers to the value of the subgame rooted in
state T (s, r, c).

A behavioral strategy for player i is a mapping from states s ∈ S to a
probability distribution over the actions Ai(s), denoted σi(s). We denote
by σi(s, a) the probability that strategy σi assigns to a in s. These strate-
gies are often called randomized, or mixed because they represent a mixture
over pure strategies, each of which is a point in the Cartesian product space

∏
s∈S Ai(s).1 Let H be a global set of histories (sequences of actions from

the start of the game). Given a strategy profile σ = (σ1, σ2), we define the
probability of reaching a history h under σ as πσ(h) = πσ1 (h)πσ2 (h)πσ? (h),
where each πσi (h) is a product of probabilities of the actions taken by player
i along the path to h (π? being chance’s probabilities). Finally, we define Σi

to be the set of all behavioral strategies for player i. We adopt a standard
convention that the index −i refers to the opponent of player i.

In order to define optimal behavior for this class of games, we now provide
definitions of some fundamental concepts.

Definition 2.1 (Strictly Dominated Action). In a matrix game, an ac-
tion ai ∈ Ai is strictly dominated if ∀a−i ∈ A−i, ∃a′i ∈ Ai\{ai} : ui(ai, a−i) <
ui(a

′
i, a−i).

No rational player would want to play a strictly dominated action, because
there is always a better action to play independent of the opponent’s action.
The concept also extends naturally to behavioral strategies. For example, in
the game on the right of Figure 2, both b and B are strictly dominated. In
this paper we refer to the dominance always in this strict sense.

Definition 2.2 (Best Response). Suppose σ−i ∈ Σ−i is a fixed strategy of
player −i. Define the set of best response strategies BRi(σ−i) = {σi | ui(σi, σ−i) =
maxσ′i∈Σi

ui(σ
′
i, σ−i)}. A single strategy in this set, e.g., σi ∈ BRi(σ−i), is

called a best response strategy to σ−i.

Note that a best response can be a mixed strategy, but a pure best re-
sponse always exists [9] and it is often easier to compute.

Definition 2.3 (Nash Equilibrium). A strategy profile (σi, σ−i) is a Nash
equilibrium profile if and only if σi ∈ BRi(σ−i) and σ−i ∈ BR−i(σi).

In other words, in a Nash equilibrium profile each strategy is a best
response to the opponent’s strategy. In two-player zero-sum games, the set

1Notice that a pure strategy is also a mixed strategy that assigns probability 1 to a
single pure strategy and probability 0 to every other pure strategy. However, as it is
common in the literature, we sometimes refer to a mixed strategy to specifically mean not
a pure strategy. This is mostly clear from the context, but we clarify where necessary.

of Nash equilibria corresponds to the set of minimax-optimal strategies. That
is, a Nash equilibrium profile is also a pair of behavioral strategies optimizing

V = max
σ1∈Σ1

min
σ2∈Σ2

Ez∼σ[u1(z)] = max
σ1∈Σ1

min
σ2∈Σ2

∑
z∈Z

πσ(z)u1(z). (1)

None of the players can improve their utility by deviating unilaterally. For
example, the game of Rock, Paper, Scissors (depicted in Figure 3) modeled as
a matrix game has a single state and the only equilibrium strategy is to mix
equally between all actions, i.e., both players play with a mixed strategy σi =
σ−i = (1/3, 1/3, 1/3) giving the expected payoff of V = 0. Note that using
a mixed strategy is necessary in this game to achieve the guaranteed payoff
of V . Any pure strategy of one player can be exploited by the opponent; so
while a pure best response to a fixed strategy always exists, it is not always
possible to find a Nash equilibrium for which both strategies are pure. For
the same reason, randomized strategies are often necessary also in the multi-
step simultaneous move games. If the strategies also optimize Equation (1)
in every subgame, the equilibrium strategy is termed subgame perfect.

Finally, a two-player simultaneous move game is a specific type of two-
player extensive-form game with imperfect information. In imperfect infor-
mation games, states are grouped into information sets: two states s, s′ are in
an information set I if the player to act at I cannot distinguish whether she
is in s or s′. Any simultaneous move game can be modeled using information
sets to represent half-completed transitions, i.e., T (s, a1, ?) or T (s, ?, a2). The
matrix game of Rock, Paper, Scissors can also be thought of as a two-step
process where the first player commits to a choice, writing it on a face-down
piece of paper, and then the second player responds. Figure 3 shows this
transformation, which can generally be applied to every state in a simulta-
neous move game. Therefore, algorithms intended for two-player zero-sum
imperfect information games may also be applied to the simultaneous move
game using this equivalent form.

3. Related Work

There has been a number of algorithms designed for simultaneous move
games. They can be classified into three categories: (1) iterative learning al-
gorithms, (2) exact backward induction algorithms, (3) approximative sam-
pling algorithms. The first type computes strategies through iterated self-
play. The second type computes strategies in a game state recursively based

R

P

S

r p s

0

0

0

−1

−1

−1

1

1

1

Figure 3: The matrix game of Rock, Paper, Scissors (left) and its equivalent extensive-
form game representation (right). The extensive game has four states, two information
sets (I1 and I2), and nine terminal histories: {Rr,Rp,Rs, Pr, Pp, Ps, Sr, Sp, Ss}.

on the values of its successors. The third type computes strategies by ap-
proximating utilities using sampling.

3.1. Iterative Learning Algorithms

A significant amount of interest in simultaneous move games was gen-
erated by initial work on multiagent reinforcement learning. In multiagent
reinforcement learning, each agent acts simultaneously and the joint action
determines how the state changes. Littman introduced Markov games to
model these interactions as well as a variant of Q-learning called Minimax-Q
to compute strategies [17, 18]. Minimax-Q modifies the learning rule so that
the value of the next state (the subgame) is obtained by solving a linear
program using the estimated values of that subgame’s root. As it is common
in these settings, the goal of each agent is to maximize their expected utility.
In two-player zero-sum Markov games, an optimal policy corresponds to a
Nash equilibrium strategy, which assures the agent the highest worst-case
expected payoff. Initial results provided conditions under which approxi-
mate dynamic programming could be used to guarantee convergence to the
optimal value function and policies [19]. Later, in [20], Lagoudakis and Parr
provided stronger bounds and convergence guarantees for least squares tem-
poral difference learning using linear function approximation. Bounds on the
approximation error for sampling techniques in discounted Markov games are
presented in [21], and new bounds for approximate dynamic programming
have also been recently shown [22].

In early 2000s, gradient ascent methods were introduced for playing re-
peated games [23, 24]. These algorithms update strategies in a direction of

the strategy space that increases the expected payoff with respect to the op-
ponent’s strategy. These were then generalized and combined, and shown to
minimize regret over time [25, 26], leading to strong convergence guarantees
in multiagent learning. More no-regret algorithms followed and were applied
to imperfect information games in sequence-form (One-Card Poker) [27].
Later, counterfactual regret (CFR) minimization was introduced for large
imperfect information games [28]. CFR has gained much attention due to
its success in computing Poker AI strategies, and recently an application of
CFR has solved Heads Up Limit Texas Hold’em Poker [29]. In this paper we
analyze the effectiveness of a specific form of Monte Carlo CFR for the first
time in simultaneous move games.

As we focus on zero-sum simultaneous move games in this paper, the work
on multiagent learning in general-sum and cooperative games has been omit-
ted. For surveys of the relevant previous work in multiagent reinforcement
learning and game theory (including the zero-sum case), see [30, 31, 32].

3.2. Exact Backward Induction Algorithms

The techniques in this section are based on the backward induction al-
gorithm (cf. [33]), a form of dynamic programming [34] often presented for
purely sequential games. A modified variant of the algorithm can also be
applied to simultaneous move games (e.g., see [35, 36, 37]). The algorithm
enumerates states of the game tree in a depth-first manner and after com-
puting the values of all the succeeding subgames of state s ∈ S, it solves
the normal-form game corresponding to s (i.e., computes a NE of the matrix
game in s), and propagates the calculated game value to the predecessor.
Backward induction then outputs a subgame perfect NE.

There are two notable algorithms that improve the standard backward
induction in simultaneous move games. First is an algorithm by Saffidine et
al. [38] termed simultaneous move alpha-beta algorithm (SMAB). The main
idea of the algorithm is to reduce the number of the recursive calls of the
backward induction algorithm by removing dominated actions in every state
of the game. The algorithm keeps bounds on the utility value for each suc-
cessor in a game state. The lower and upper bounds represent the threshold
values, for which neither of the actions of the player is dominated by any
other action in the current matrix game. These bounds are calculated by lin-
ear programs in the state given existing exact values (or appropriate bounds)
of the utility values of all the other successors of the state. If they form an
empty interval (the lower bound is greater than the upper bound), pruning

takes place and the dominated action is no longer considered in this state
afterward.

While SMAB outperforms classical backward induction, the speed-up
is less significant in comparison to the second exact algorithm introduced
in [10], a description of which is given in detail in Subsection 4.3.1. The
main idea is to integrate two key components: (1) instead of evaluating all
successors in each state of the game and solving a normal-form game, the
algorithm exploits the iterative framework known in game theory as double-
oracle algorithm [39]; (2) the algorithm computes bounds on the utility values
of the successors by serializing the subgames and running the classic alpha-
beta algorithm.

Finally, since simultaneous move games can be seen as extensive-form
games with imperfect information, one can use techniques designed for large
imperfect information games. An algorithm that is also built on double-
oracle is the Range-of-Skill algorithm [40]. However, the number of iterations
required by this algorithm in the worst case can be large [41]. There are
also state-of-the-art algorithms for solving generic extensive-form games with
imperfect information, based on sequence-form optimization problems [42,
43, 44]. However, these algorithms do not exploit the specific structure of
simultaneous move games and could require memory that is linear in the size
of the game tree. In practice, this prohibits scaling to larger games (see,
e.g., [38]) and causes weak performance compared to tailored algorithms.

3.3. Approximative Sampling Algorithms

Monte Carlo Tree Search (MCTS) is a simulation-based state space search
technique often used in extensive-form games [45, 46]. Having first seen prac-
tical success in computer Go [47, 48], MCTS has since been applied success-
fully to simultaneous move games and to imperfect information games [49,
50, 13]. Most of the successful applications use the Upper Confidence Bounds
(UCB) formula [51] as a selection strategy. These variants of MCTS are also
known as UCT (UCB applied to trees). The first application of MCTS to
simultaneous move games was in general game playing (GGP) [52] programs:
CadiaPlayer [53, 54] uses UCB selection strategy for each player in a sin-
gle game tree. The success of MCTS was demonstrated by the success of
CadiaPlayer which was the top-ranked player of the GGP competition
between 2007 and 2009, and also in 2012.

Despite this success, Shafiei et al. in [14] provide a counter-example show-
ing that this straightforward application of UCT does not converge to an

equilibrium even in the simplest simultaneous move games and that a player
playing a NE can exploit this strategy. Another variant of UCT, which has
been applied to Tron [55], builds the tree as if the players were moving sequen-
tially giving one of the players an informational advantage. This approach
also cannot converge to an equilibrium in general. For this reason, other vari-
ants of MCTS were considered for simultaneous move games. Teytaud and
Flory describe a search algorithm for games with short-term imperfect infor-
mation [8], which are a generalization of simultaneous move games. Their
algorithm uses a different selection strategy, called Exp3 [56], and was shown
to work well in the Internet card game Urban Rivals. We provide details of
these two main existing selection functions in Subsections 4.4.1 and 4.4.2.
A more thorough experimental investigation of different selection policies in-
cluding UCB, UCB1-Tuned, UCB1-greedy, Exp3, and more is reported in the
game of Tron [57]. The work by Lanctot et al. [11] compares some of these
variants and proposes Online Outcome Sampling, a search version of Monte
Carlo CFR [58], which computes an approximate equilibrium strategy with
high probability. We describe a new formulation of this algorithm in Subsec-
tion 4.5.1. Finally, [12, 59] present variants of MCTS that provably converge
to Nash equilibria in simultaneous move games, using any regret-minimizing
algorithm at each stage. We elaborate on these results in Subsection 4.4.4.

There have been two recent studies that examine the head-to-head perfor-
mance of these variants in practice. The first [60] builds on previous work in
Tron by varying the shape of the initial board, comparing previous serialized
variants of simultaneous move MCTS. The authors found that UCB1-Tuned
worked particularly well in Tron when using knowledge-based playout poli-
cies. The success of UCB1-Tuned differed in a similar study of the same
variants across nine domains [61] without domain knowledge. In this work,
the chosen games were ones inspired by previous work in general game playing
and did not include chance elements. Results indicate that parameter-tuning
landscapes do not seem as smooth as in the purely sequential case.

3.3.1. Simulation-Based Search in Real-time Games

Real-time games are not turn-based and represent realistic physical sit-
uations where agents can move freely in space. The state of the game is
a continuous function of time and the effect of some actions may only be
realized some time after the decision is made. These games are often ap-
propriately modeled as a simultaneous move game with very short delays
(e.g., 40 milliseconds) between frames.

MCTS has enjoyed some success in these types of games, in the single-
agent setting [62, 63] and multiagent setting [64]. Much of this work is
inspired by video games [65, 66, 67]. Few of these works have considered
MCTS in the simultaneous move game directly. In one of the first papers on
real-time strategy games, the authors used a randomized serialization of the
game [68], or a strategy simulation from scripts was used to build a single
matrix of values from which an equilibrium strategy was computed using
linear programming [69]. This method can be extended to multiple nodes
where internal nodes would correspond to scripts being interrupted to replan,
similarly to [70]. MCTS-style multistage replanning was also applied to a
real-time battle scenario which was also accurately represented as a discrete
simultaneous move game [7]. Results of this work show that the multistage
forward replanning can improve upon the single-stage forward planning, and
can produce approximate Nash equilibrium strategies when mixed strategies
are computed at each stage during the search. Around the same time, a
serialized (sequential) version of the alpha-beta algorithm was proposed for
simultaneous move games and run on combat scenarios [71]. This algorithm
is described in greater detail in Subsection 4.2 as it forms the basis of the
follow-up algorithm enhanced by double-oracle, presented in Subsection 4.3.

In this paper, we focus on the analysis of different algorithms for two-
player simultaneous move games. Therefore, the problems arising from dis-
crete modeling of continuous time and space remain outside the scope of this
paper.

4. Offline Strategy Computation

This section focuses on algorithms that compute strategies for simulta-
neous move games. The baseline algorithm for solving simultaneous move
games exactly is backward induction (BI) (Subsection 4.1). Afterwards we
present a modification that exploits a fast computation of upper and lower
bounds in a simultaneous move game (Subsection 4.2). Then, we further
improve the algorithm by speeding up the computation of NE in matrix
games, exploiting the iterative framework of double-oracle algorithms (Sub-
section 4.3). In Subsection 4.4 we describe Monte Carlo Tree Search for
simultaneous move games. Finally, we present counterfactual regret mini-
mization and its adaptation Online Outcome Sampling in Subsection 4.5.

input : s – current matrix game; i – searching player
if s ∈ Z then1

return ui(s)2

for r ∈ A1(s) do3

for c ∈ A2(s) do4

Arc ←
∑

s′∈S : P?(s,r,c,s′)>0 P?(s, r, c, s′) · BI(s′, i)5

〈vs, σi(s)〉 ← solve matrix game A6

return vs7

Algorithm 1: Backward Induction algorithm (BI).

4.1. Backward Induction

The standard backward induction algorithm, first described for simulta-
neous move games in [35], enumerates the states in depth-first order. At each
state of the game, it creates a matrix game for the current state using child
subgame values, solves the matrix game, and propagates back the value of
the matrix game. The pseudocode of the algorithm is given in Algorithm 1.
If the successor node T (s, r, c) is a chance node, the algorithm directly eval-
uates all successors of this chance node and computes an expected utility:
the value of each subgame rooted in node s′ computed by the recursive call is
weighted by the probability of the stochastic transition P?(s, r, c, s′) (line 5).

Once the algorithm computes the value of each possible subgame following
the current state s, matrix game A is well-defined and the algorithm solves
matrix game A by solving the standard linear program (LP) for normal-form
games2:

max vs (2)

s.t.
∑

ai∈Ai
Aai,a−i

· σi(s, ai) ≥ vs ∀a−i ∈ A−i(s) (3)∑
ai∈Ai

σi(s, ai) = 1 (4)

σi(s, ai) ≥ 0 ∀ai ∈ Ai(s) (5)

A linear programming algorithm computes both the value vs of the matrix
game A, as well as the optimal strategy to play in this matrix game (vari-
ables σi(s, ai)). Value vs is then propagated to the predecessor (line 7 of
Algorithm 1) and the optimal strategy σi(s, ai) is stored for this state. If the

2By solving a game we mean computing both the optimal value and the strategy that
achieves it.

algorithm evaluates a terminal state, it directly returns the utility value of
the state (line 1).

Evaluating each successor and solving an LP in each state of the game
is the main computational bottleneck of the backward induction algorithm.
The following algorithms try to prune some of the branches of the game tree
in order to reduce this bottleneck even at the cost of multiple traversals of
the game tree.

4.2. Backward Induction with Serialized Alpha-Beta Bounds

Solving computationally expensive linear programs in the backward in-
duction algorithm is necessary in game states that require mixed strategies.
However, many realistic games include subgames where it is sufficient to use
only pure strategies. These subgames can be found efficiently by transform-
ing the simultaneous move game into a perfect information extensive-form
game with sequential moves and subsequently using some of the algorithms
developed for this more standard setting. We call this purely alternating
form a serialization of the original simultaneous move game. Consider a ma-
trix game representing a single joint action of both players. This matrix can
be serialized by discarding the notion of information sets; hence, letting one
player play first, followed by the second player. The difference between a
serialized and a simultaneous move matrix game is that the second player to
move has an advantage of knowing what action the first player chose.

Given this advantage, the value of a serialized game consisting of a single
simultaneous move where player i is second to move is greater than or equal
to the value of the original simultaneous move game from the perspective of
player i, formally shown by the following lemma.

Lemma 4.1. Let A be a single step simultaneous move game for state s with
value vs for player i. Let vis be the value of the serialized game created from
game A by letting player −i move first and player i move second with the
knowledge of the move played by the first player. Then

vs ≤ vis.

Proof

vs = min
σ−i∈Σ−i

max
σi∈Σi

∑
ai∈Ai(s)

∑
a−i∈A−i(s)

σi(s, ai)σ−i(s, a−i)Aaia−i

= min
a−i∈A−i(s)

max
σi∈Σi

∑
ai∈Ai(s)

σi(s, ai)Aaia−i

≤ min
a−i∈A−i(s)

max
ai∈Ai(s)

Aaia−i
= vis.

The first equality is the definition of the value of a zero-sum game. The
second equality is from the fact that a best response can always be found in
pure strategies: if there was a mixed strategy best response with expected
utility vs and some of the actions from its support would have lower expected
utility, removing those actions from the support would increase the value of
the best response, which is a contradiction. The inequality is due to the
fact that a maximization over each action of player −i can only increase the
value. �

We can now generalize this lemma to game trees with multiple simulta-
neous moves.

Lemma 4.2. Consider a simultaneous move subgame defined by state s and
a serialized variant of this subgame, where in each state player i is second to
move. The value of the serialized game is an upper bound on the value of the
simultaneous move subgame for player i.

Proof We use Lemma 4.1 inductively. Let s be the current state of the
game and let A be the exact matrix game corresponding to s with utilities
of player i. By induction we assume that the algorithm computes for state s
some A′ so that each value in matrix A′ is greater than or equal to A:

∀ai ∈ Ai(s)∀a−i ∈ A−i(s) A′aia−i
≥ Aaia−i

.

Therefore, the value of matrix game vA′ ≥ vA. Finally, by Lemma 4.1 the
algorithm returns value viA′ ≥ vA′ ≥ vA. �

An example of this serialization is depicted in Figure 4. There is a simple
matrix game for two players (the circle and the box player; the utility values
are depicted for the circle player; the box player in the column is minimizing

b1 b2

a1 2 0
a2 3 4

Figure 4: Different serializations of a simple simultaneous move game. Utility values are
in the leaf nodes, the grey values correspond to the value propagation when solving the
serialized game.

this value). There are two ways this game can be transformed into a serialized
extensive-form game with perfect information. If the circle player moves first
(the left game tree), then the value of this serialized game is the lower bound
of the value of the game. If this player moves second (the right game tree),
then the value of this serialized game is the upper bound of the value of the
game. Since the serialized games are zero-sum perfect information games in
the extensive form, they can be solved quite quickly by using some of the
classic AI algorithms such as alpha-beta or negascout [72]. If the values of
both serialized games are equal, then this value is also equal to the value of
the original simultaneous move game. This situation occurs in our example
in Figure 4, where both serialized games have value V = 3.

We can speed up the backward induction algorithm using bounds that are
computed by the alpha-beta algorithm (denoted BIαβ). Algorithm 2 depicts
the pseudocode. The BIαβ algorithm first serializes the game and solves the
serialized games using the standard alpha-beta algorithm; if the bounds are
equal then this value is returned directly (line 3). Note that in Algorithm 2
the call alpha-beta(s,i), i is the second player to move in the serialized game
rooted at s. If the bounds are not equal, the algorithm starts evaluating
successors of the current state. As before, the algorithm computes upper
and lower bounds using the alpha-beta algorithm on serialized variants of
the subgame rooted at the successor s′ (lines 9-10). Then, the algorithm uses
the value directly if the bounds are equal (line 14), or performs a recursive

input : s – current matrix game; i – searching player
if s ∈ Z then1

return ui(s)2

if (s is root) and (alpha-beta(s, i) = alpha-beta(s,−i)) then3

return alpha-beta(s,−i)4

for r ∈ A1(s) do5

for c ∈ A2(s) do6

Arc ← 07

for s′ ∈ S : P?(s, r, c, s′) > 0 do8

vis′ ← alpha-beta(s′, i)9

v−is′ ← alpha-beta(s′,−i)10

if v−is′ < vis′ then11

Arc ← Arc + P?(s, r, c, s′) · BIαβ(s′, i)12

else13

Arc ← Arc + P?(s, r, c, s′) · vis′14

〈vs, σi〉 ← solve matrix game A15

return vs16

Algorithm 2: Backward Induction with Serialized Bounds (BIαβ).

call otherwise (line 12).
We distinguish two cases when extracting equilibrium strategies from the

BIαβ algorithm. In the first case, when a state is fully evaluated by the
algorithm (i.e., an LP was built and solved for this state), we proceed as
before and keep the pair of equilibrium strategies in this state. However, in
the other case, the algorithms prunes certain branches and does not create
an LP in some of the subgames. The algorithm then keeps the strategy
computed by the serialized alpha-beta algorithm in those subgames. More
precisely, for player i the algorithm keeps the pure strategy computed by
alpha-beta(s, −i), where the opponent has an advantage of knowing the
moves of player i. Such a strategy provides a guarantees for player i (it is
not exploitable) and due to the alpha-beta cut-offs we know that there is no
better strategy for player i with a higher expected utility.

Theorem 4.3. The algorithm BIαβ(s, i) computes the value of the subgame
from state s for player i.

Proof The correctness of the algorithm follows immediately from the cor-
rectness of the standard BI algorithm and the correctness of using the values

computed by serialized alpha-beta (Lemma 4.2). Moreover, values computed
by the serialized alpha-beta algorithm are used only if the upper bound equals
the lower bound. �

The performance of BIαβ depends on the existence of a pure NE in the
simultaneous move game. In the best case (i.e., there exists a pure NE), the
algorithm finds the solution by solving each serialization exactly once starting
from the root state. In the worst case, all NE require mixed strategies in
every state of the game. In this case, the algorithm not only solves the LP
in each state similarly to BI, but also repeatedly attempts to solve serialized
subgames by calling the alpha-beta algorithm. However, this case was very
rarely encountered during our experiments.

4.3. Backward Induction with Double-Oracle and Serialized Bounds

The computational complexity of solving a matrix game by linear pro-
gramming can be reduced by their incremental construction using the itera-
tive double-oracle algorithm [39]. The following algorithm incorporates this
idea to BIαβ, which leads to additional pruning of the game tree. First of
all, we describe the main principles of the double-oracle algorithm for matrix
games, followed by the description of the integration of the double-oracle
algorithm in simultaneous move games [10] (denoted DOαβ).

4.3.1. Double-Oracle Algorithm for Matrix Games

The goal of the double-oracle algorithm is to find a solution of a matrix
game without necessarily constructing the complete LP that solves the game.
The main idea is to create a restricted game where the players can choose only
from a limited set of actions. The algorithm iteratively expands the restricted
game by allowing the players to choose from new actions. The new actions
are added incrementally: in each iteration, a best response (chosen from the
unrestricted action set) to an optimal strategy of the opponent in the current
restricted game, is added to restricted game.

Figure 5 shows a visualization of the main structure of the algorithm,
where the following three steps repeat until convergence:

1. Create a restricted matrix game by limiting the set of actions that each
player is allowed to play.

2. Compute a pair of Nash equilibrium strategies in this restricted game
using linear programming.

Figure 5: Schematic of the double-oracle algorithm for a normal-form game.

3. For each player, compute a pure best response strategy against the
equilibrium strategy of the opponent; pure best response can be any
action from the original unrestricted game.

The best response strategies computed in step 3 are added to the restricted
game, the game matrix is expanded by adding new rows and columns, and the
algorithm follows with the next iteration. The algorithm terminates if neither
of the players can improve the outcome of the game by adding a new strategy
to the restricted game; hence, both players play best response strategies to
the strategy of the opponent. The algorithm maintains the values of the best
expected utilities of the best-response strategies for each player throughout
the iterations of the algorithm. These values provide bounds on the value of
the original game V (from Equation 1), and their sum represents the error
of the algorithm which converges to zero.

4.3.2. Integrating Double-Oracle with Backward Induction

The double-oracle algorithm for matrix games can be directly incorpo-
rated into the backward induction algorithm: instead of immediately evalu-
ating each of the successors of the current game state and solving the linear
program, the algorithm can exploit the double-oracle algorithm. Pseudocode
in Algorithm 3 details this integration.

Similarly to BIαβ, the algorithm first tests, whether the whole game can
be solved by using the serialized variants of the game (line 3). If not, then
in each state of the game the algorithm initializes the restricted game with
an arbitrary action (line 5)3 – A′ represents the restricted matrix game, A′i
represents the restricted set of available actions to player i. The algorithm

3In practice we use the first action of a shuffled ordered set Ai for each player i. This
initialization step can be improved with domain knowledge and by adding more actions.

then starts the iterations of the double-oracle algorithm. First, the algorithm
needs to compute the value for each of the successors of the restricted game,
for which the current value is not known (lines 8-16). This evaluation is
the same as in the case of BIαβ. Once all values for restricted game A′

are known, the algorithm solves the restricted game and keeps the optimal
strategies σ′ of the restricted game (line 17). Next, the algorithm computes
best responses for each of the player (lines 18,19) using Algorithm 4 below,
and updates the lower and upper bounds (line 20). Finally, the algorithm
expands the restricted game with the new best response actions (line 21) until
the lower and upper bound are equal. Once the bounds are equal, neither of
the best responses improves the current solution from the restricted game;
hence, the algorithm has found an equilibrium of the complete unrestricted
matrix game corresponding to state s.

Now we describe the algorithm for computing the best responses on lines
18 and 19. The pseudocode of this step is depicted in Algorithm 4. The goal
of the best response algorithm is to find the best action from the original unre-
stricted game against the current strategy of the opponent σ′−i. Throughout
the algorithm we use, as before, vis′ to denote the upper bound of the value
of the subgame rooted in state s′ computed using alpha-beta(s′, i). These
values are computed on demand, i.e., they are computed once needed and
cached until the game for state s is solved. Moreover, once the algorithm
computes the exact value of a particular subgame, both upper and lower
bounds are updated to be equal to the exact value of the game.

The best response algorithm iteratively examines all actions of player i
from the unrestricted game (line 3). Every action ai is evaluated against
the actions of the opponent that are used in the optimal strategy from the
restricted game (line 5). Before evaluating the successors, the algorithm
determines whether the current action ai of the searching player i can still
be the best response action against the strategy of the opponent σ′−i. In
order to determine this, the algorithm computes value λai that represents the
lower bound on the expected utility this action must gain against the current
action of the opponent a−i in order for action ai to be a best response. λai
is calculated (line 7) by subtracting the upper bound of the expected value
against all other actions of the opponent (viT (s,ai,a′−i)

) from the current best

response value (vBRi) and normalizing with the probability that the action
a−i is played by the opponent (σ′−i(a−i)). This calculation corresponds to a
situation where player i achieves the best possible utility by playing action

input : s – current matrix game; i – searching player; αs, βs – bounds for
the game value rooted in state s

if s ∈ Z then1

return ui(s)2

if (s is root) and (alpha-beta(s, i) = alpha-beta(s,−i)) then3

return alpha-beta(s,−i)4

initialize A′i, A′−i with arbitrary actions from Ai,A−i5

repeat6

for r ∈ A′i, c ∈ A′−i do7

if A′rc is not initialized then8

A′rc ← 09

for s′ ∈ S : P?(s, r, c, s′) > 0 do10

vis′ ← alpha-beta(s′, i)11

v−is′ ← alpha-beta(s′,−i)12

if v−is′ < vis′ then13

A′rc ← A′rc + P?(s, r, c, s′) ·DOαβ(s′, i, v−is′ , v
i
s′)14

else15

A′rc ← A′rc + P?(s, r, c, s′) · vis′16

〈vs, σ′〉 ← solve matrix game A′17 〈
vBRi , aBRi

〉
← BR(s, i, σ′−i, βs)18 〈

vBR−i , a
BR
−i
〉
← BR(s,−i, σ′i,−αs)19

αs ← max(αs,−vBR−i), βs ← min(βs, v
BR
i)20

A′i ← A′i ∪ {aBRi }, A′−i ← A′−i ∪ {aBR−i }21

until αs = βs22

return vs23

Algorithm 3: Double-Oracle with Serialized Bounds (DOαβ).

ai against all other actions from the strategy of the opponent and it needs to
achieve at least λai against a−i so that the expected value for playing ai is at
least vBRi . If λai is strictly higher than the upper bound on the value of the
subgame rooted in the successor (i.e., viT (s,ai,a−i)

) then the algorithm knows
that the action ai can never be the best response action, and can proceed
with the next action (line 9). Note that λai is recalculated for each action
of the opponent since the upper bound values can become tighter when the
exact values are computed for successor nodes s′ (line 13).

If the currently evaluated action ai can still be a best response, the value
of the successor is determined (first by comparing the bounds). Once the
expected outcome against all actions of the opponent is known, the expected

input : s – current matrix game; i – best-response player; σ′−i – strategy
of the opponent; λ – bound for the best-response value

vBRi ← λ1

aBRi ← null2

for ai ∈ Ai do3

vai ← 04

for a−i ∈ A′−i : σ′−i(a−i) > 0 do5

vai,a−i ← 06

λai ←
vBR
i −

∑
a′−i
∈A′−i

\{a−i}
σ′−i(a

′
−i)·viT (s,ai,a

′
−i

)

σ′−i(a−i)7

if λai > viT (s,ai,a−i)
then8

continue from line 3 with next ai9

else10

for s′ ∈ S : P?(s, ai, a−i, s′) > 0 do11

if v−is′ < vis′ then12

vai,a−i ← vai,a−i + P?(s, ai, a−i, s′)· DOαβ(s′, i, v−is′ , v
i
s′)13

else14

vai,a−i ← vai,a−i + P?(s, ai, a−i, s′) · vis′15

vai ← vai + σ′−i(a−i) · vai,a−i16

if vai ≥ vBRi then17

vBRi ← vai18

aBRi ← ai19

return 〈vBRi , aBRi 〉20

Algorithm 4: Best Response with Serialized Bounds (BR)

value of action ai is compared against the current best response value (line 17)
and saved if the expected utility is higher (line 19). These best response
actions are allowed in the next iteration of the double-oracle algorithm and
the algorithm progresses further as described.

When extracting strategies from DOαβ, we proceed exactly as in the
case of BIαβ: either a double-oracle is initialized and solved for a certain
matrix game and we keep the equilibrium strategies from the final restricted
game, or the strategy is extracted from the serialized alpha-beta algorithms
as before.

Theorem 4.4. The DOαβ(s, i, αs, βs) algorithm computes the value of the
subgame defined by state s for player i.

Proof The correctness of the algorithm follows from the correctness of the

standard BI algorithm, Lemma 4.2, and the correctness of the double-oracle
algorithm for matrix games [39]. We use them inductively for state s and
assume DOαβ for all the children of s returned correct values when called.
Since we are using the classical double-oracle on a matrix game corresponding
to state s with correct values, we only need to show that the best-response
algorithm with serialized bounds cannot return null action due to setting
the bounds incorrectly.

Without loss of generality, consider a lower bound −αs for state s to be
λ in the best response algorithm. Value λ thus corresponds either to a value
calculated by serialized alpha-beta and propagated via bounds when calling
DOαβ(s, i, αs, βs), or it was updated during the iterations of the double-
oracle algorithm for state s (line 20). In either case there exists a pure best
response strategy corresponding to this value; hence, the best response has
to find the strategy that achieves this value and cannot return null. �

Similarly to BIαβ, the performance of DOαβ also depends on the ex-
istence of a pure NE in the simultaneous move game. The best case is
identical to BIαβ and the algorithm finds the solution by solving each serial-
ization exactly once starting from the root state. In the worst case, neither
of the serialized games yield useful bounds and the algorithm needs to call
the double-oracle algorithm in every state. Moreover, the worst case for the
double-oracle algorithm occurs when all actions in this state must be added
and an action for only a single player is added in each iteration causing the
largest number of iterations repeatedly resolving the linear program. Again
in practical games used for benchmark purposes, or in real-world applications
this is rarely the case. Moreover, the computational overhead from repeat-
edly solving a LP is relatively small. This is due to the size of each LP that is
determined by the number of actions in each state (the number of constraints
and variables is bounded by the number of actions in each state). Therefore,
the size of each LP is small compared to the number of states DOαβ can
prune out, especially if the pruning occurs close to the root of the game tree.

4.4. Simultaneous Move Monte Carlo Tree Search (SM-MCTS)

In the following subsections we move to the approximative algorithms.
Monte Carlo Tree Search (MCTS) is a simulation-based state space search
algorithm often used in game trees. In its simplest form, the tree is initially
empty and a single leaf is added each iteration. Each iteration starts by

ns′ = 1

3 2

Xs′ = 3

ns′ = 1

ns′ = 1 ns′ = 1

Xs′ = 2

ns′ = 1

Node s
t

l r

Player 1
Xs,t = 5

ns,t = 2

Player 2
ns,l = 2 ns,r = 2

ns,b = 2

b

Xs,b = 1

At s:

Max

Min

Xs′ = 0

ns′ = 1

Xs′ = 1

0 1

Xs′ = 3

ns′ = 1

Xs′ = 2

ns′ = 1

Xs′ = 0 Xs′ = 1

Xs,l = 3 Xs,r = 3

Figure 6: Simultaneous Move MCTS example. Here, Xs′ represents the cumulative payoff
of all simulations that have passed through the cell, while ns′ represents the number of
simulations that have passed through the cell.

visiting nodes in the tree, selecting which actions to take based on a selec-
tion function and information maintained in the node. Consequently, the
algorithm transitions to a successor state. When a node is visited whose
immediate children are not all in the tree, the node is expanded by adding a
new leaf to the tree. Then, a rollout policy (e.g., random action selection) is
applied from the new leaf to a terminal state. The outcome of the simulation
is then returned as a reward to the new leaf and the information stored in
the tree is updated.

Consider again the game depicted in Figure 1. We demonstrate how
Monte Carlo Tree Search could progress in this game using the example
shown in Figure 6. This game has a root state, two subgames that are
simple matrix games, and two arbitrarily large subgames. In the root state,
player 1 (Max) has two actions: top (t) and bottom (b), and player 2 also
has two actions: left (l) and right (r). The tree is initialized with a single
empty state, s. On the first iteration, the first child corresponding to (t, l)
is added to the tree, giving a payoff u1 = 3 at the terminal state which is

input : s – current state of the game
if s ∈ Z then1

return u1(s)2

if s ∈ C is a chance node then3

Sample s′ ∼ ∆?(s)4

return SM-MCTS(s′)5

if s is in the MCTS tree then6

(a1, a2)← Select(s)7

s′ ← T (s, a1, a2)8

vs′ ← SM-MCTS(s′)9

Update(s, a1, a2, vs′)10

return vs′11

else12

Add s as a new child in the MCTS tree13

vs ← Rollout(s)14

return vs15

Algorithm 5: Simultaneous Move Monte Carlo Tree Search (SM-MCTS)

backpropagated to each state visited on the simulation. Similarly, on the
second iteration the second child corresponding to (b, l) is added to the tree,
giving a payoff u1 = 1, which is backpropagated up to all of its parents. After
four simulations, every cell in the root state has a value estimate.

There are many possible ways to select actions based on the estimates
stored in each cell which lead to different variants of the algorithm. We
therefore first formally describe a generic template of MCTS algorithms for
simultaneous move games (SM-MCTS) and then explain different instantia-
tions derived from this template. Algorithm 5 describes a single iteration of
SM-MCTS. The “MCTS tree” is an explicit tree data structure that stores
the nodes of the search tree maintained in memory, e.g., the five-node tree
shown in Figure 6. Every node s in the tree maintains algorithm-specific
statistics about the iterations that previously visited this node. The tem-
plate can be instantiated by specific implementations of the updates of the
statistics on line 10 and the selection based on these statistics on line 7. In
the terminal states, the algorithm returns the value of the state for the first
player (line 2). At chance nodes, the algorithm samples one of the possible
next states based on its distribution (line 4). If the current state has a node
in the current MCTS tree, the statistics in the node are used to select an
action for each player (line 7). These actions are executed (line 8) and the

algorithm is called recursively on the resulting state (line 9). The result of
this call is used to update the statistics maintained for state s (line 10). If
the current state is not stored in the tree, it is added to the tree (line 13)
and its value is estimated using the rollout policy (line 14).

Several different algorithms (e.g., UCB [51], Exp3 [56], and regret match-
ing [73]) can be used as the selection function. We now present the variants of
SM-MCTS that were consistently the most successful in the previous works,
though more variants can be found in [57, 60, 61].

4.4.1. Decoupled Upper-Confidence Bound Applied to Trees

The most common selection function for SM-MCTS is the decoupled
Upper-Confidence Bound applied to Trees (UCT). For the selection and up-
dates, it executes the well-known UCT [46] algorithm independently for each
of the players in each nodes. The statistics stored in the tree nodes are in-
dependently computed for each action of each player. For player i ∈ N and
action ai ∈ Ai(s) the reward sums Xai and the number of times the action
was used nai are maintained. When a joint action needs to be selected by the
Select function, an action that maximizes the UCB value over their util-
ity estimates is selected for each player independently (therefore it is called
decoupled):

ai = argmax
ai∈Ai(s)

{
X̄ai + Ci

√
log ns
nai

}
, where X̄ai =

Xai

nai
and ns =

∑
bi∈Ai(s)

nbi .

(6)
The Update function increases the visit count and rewards for each player
i and its selected action ai using Xai ← Xai + ui and nai ← nai + 1.

Consider again the example shown in Figure 6. Decoupled UCT now
groups together all the payoffs obtained for an action. Therefore, at the root
Max has X̄t = 5/2 = 2.5, X̄b = 1/2 = 0.5 and the exploration term for both is
Ci
√

(log 4)/2, and so top action is selected. For Min, X̄l = 3/2 = 1.5 = X̄r,
so both actions have the same value. Therefore, Min must use a tie-breaking
rule in this situation to decide which action to take. As we discuss later,
the specific tie-breaking rule used here can lead to a significant effect on the
quality of the strategy that UCT produces.

After all the simulations are done, there are two options for how to de-
termine the resulting action to play. The more standard option is to choose
for each state the action ai that maximizes nai for each player i. This is

suitable mainly for games, in which using mixed strategy is not necessary.
Alternatively, the action to play in each state can be determined based on
the mixed strategy obtained by normalizing the visit counts of each action

σi(ai) =
nai∑

bi∈Ai(s)
nbi

. (7)

Using the first method certainly makes the algorithm not converge to a Nash
equilibirum, because the game may require a mixed strategy. Therefore,
unless stated otherwise, we only use the mixed form in Equation 7, which
was called DUCT(mix) in [11, 61].

Note, that it was shown that this latter variant also might not converge
to a Nash equilibrium (a well-known counter-example in Rock, Paper, Scis-
sors with biased payoffs [14]). However, one of the issues when using UCT
in game trees is an unspecified behavior in case there are multiple actions
with identical value in the maximization described in the UCT formula in
Equation 6. This may have a significant impact on the performance of the
UCT in simultaneous move games. Consider the matrix game at the right of
Figure 2. This game has only one NE: (a,A). However, if UCT selects the
first or the last action among the options with the same value, it will always
get only the utility 0 and the bias term will cause the players to round-robin
over the diagonal indefinitely. This is clearly not optimal, as each player
can than improve by playing first action with probability 1. However, if we
choose the action to play randomly among the tied actions (where “tied”
could be defined as being within a small tolerance gap), UCT will quickly
converge to the optimal solution in this game. We experimentally analyze
the impact of this randomization on the example used in [14] and show that
if a randomized variant of UCT is used, the algorithm still does not con-
verge to a NE but does converge to a strategy that is much closer to a NE
than without randomization (see Subsection 6.3). Therefore, unless stated
otherwise, we use the randomized variant in our implementation.

Even though UCT is not guaranteed to converge to the optimal solution,
it is often very successful in practice. It has been used in general game
playing [54], in the card game Urban Rivals [8], and in Tron [57].

4.4.2. Exponential-Weight Algorithm for Exploration and Exploitation

Another common choice of a selection function is to use the Exponential-
weight algorithm for Exploration and Exploitation (Exp3) [56] independently
for each of the players. Unlike with UCT, two players using Exp3 in a single

stage matrix game are guaranteed to converge to a Nash equilibrium [56];
hence, we can expect a good performance of this selection function even in
multi-stage games. In Exp3, each player maintains an estimate of the sum of
rewards for each action, denoted X̂ai . The joint action produced by Select
is composed of an action independently selected for each player. An action
is selected by sampling from a probability distribution over actions. Define
γ to be the probability of exploring, i.e., choosing an action uniformly. The
probability of selecting action ai is proportional to the exponential of the
reward estimates:

σi(ai) =
(1− γ) exp(ηX̂ai)∑
bi∈Ai(s)

exp(ηX̂bi)
+

γ

|Ai(s)|
, where η =

γ

|Ai(s)|
. (8)

This standard formulation of Exp3 is suitable for deriving its properties,
but a straightforward implementation of this formula leads to problems with a
numerical stability. Both the numerator and the denominator of the fraction
can quickly become too large. For this reason, other formulations have been
suggested, e.g., in [11] and [50] that are more numerically stable. We use the
following equivalent formulation from [50]:

σi(ai) =
(1− γ)∑

bi∈Ai(s)
exp(η(X̂bi − X̂ai))

+
γ

|Ai(s)|
. (9)

The update after selecting actions (a1, a2) and obtaining a simulation
result v1 normalizes the result to the unit interval for each player by

u1 ←
(v1 − vmin)

vmax − vmin
; u2 ← (1− u1), (10)

and adds to the corresponding reward sum estimates the reward divided by
the probability that the action was played by the player using

X̂ai ← X̂ai +
ui

σi(ai)
. (11)

Dividing the value by the probability of selecting the corresponding action
makes X̂ai estimate the sum of rewards over all iterations, not only the ones
where ai was selected.

As the final strategy, after all iterations are executed, the algorithm com-
putes the average strategy of the Exp3 algorithm over all iterations for each

player. Let σti be the strategy used at time t. After T iterations in a partic-
ular node, the average strategy is

σ̄Ti (ai) =
1

T

T∑
t=1

σti(ai). (12)

In our implementation, we maintain the cumulative sum and normalize it to
obtain the average strategy.

Previous work [8] suggests removing the samples caused by the explo-
ration first. This modification proved to be useful also in our experiments
and it has been shown not to reduce the performance substantially in the
worst case [59], so as the resulting final mixed strategy, we use

σ̄i(ai)← max

(
0, σ̄i(ai)−

γ

|Ai(s)|

)
, (13)

normalized to sum to one.

4.4.3. Regret Matching

The last selection function we propose is inspired by regret matching
[73], which forms the bases of the successful algorithms for solving imperfect
information games [28]. This variant applies regret matching to the current
estimated matrix game at each stage and was first used in [11]. The statistics
stored by this algorithm in each node are the visit count of each joint action
(na1a2) and the sum of rewards for each joint action (Xa1a2).

4 Furthermore,
the algorithm for each player i maintains a cumulative regret riai for having
played σti instead of ai ∈ Ai(s) on iteration t, initially set to 0. The regret
values riai are maintained separately by each player. However, the updates
use a value that is a function of the joint action space.

On iteration t, function Select first builds each player’s current strate-
gies from the cumulative regrets. Define x+ = max(x, 0),

σi(ai) =
ri+ai
R+
sum

if R+
sum > 0 oth.

1

|Ai(s)|
, where R+

sum =
∑

bi∈Ai(s)

ri+bi . (14)

The main idea is to adjust the strategy by assigning the probability to actions
proportionally to the regret of having not taken them over the long-term. To

4Note that na1a2
and Xa1a2

correspond to ns′ and Xs′ from Figure 6.

ensure exploration, a sampling procedure similar to Equation 8 is used to
select action ai with probability γ/|Ai(s)|+ (1− γ)σi(ai).

Update adds the regret accumulated at the iteration to the regret tables
ri. Suppose joint action (a1, a2) is sampled from the selection policy and
utility u1 is returned from the recursive call on line 9. Label reward(b1, b2) =
Xb1b2

nb1b2
if (b1, b2) 6= (a1, a2), or u1 otherwise. The updates to the regret are:

∀b1 ∈ A1(s), r1
b1
← r1

b1
+ (reward(b1, a2)− u1), (15)

∀b2 ∈ A2(s), r2
b2
← r2

b2
− (reward(a1, b2)− u1). (16)

After all simulations, the strategy to play in state s is defined by the
mean strategy used in the corresponding node (Equation 12).

4.4.4. Theoretical Properties

While the completeness of the exact algorithms is based on the Markov
property and backward induction, the concept of the completeness is less clear
for the sampling algorithms due to the randomization. Instead, we discuss
a form of a probabilistic completeness. Unfortunately, none of the variants
of this algorithm introduced above has been proven to eventually converge
to a Nash equilibrium. If the algorithm is instantiated by UCT, Shafiei
et al. [14] have shown that the algorithm converges to a stable strategy,
which is not close to a Nash equilibrium. We replicate the experiment below
and note that this is the case only for the deterministic version of UCT.
A randomized version of UCT with a well selected exploration parameter
empirically converges close to the equilibrium strategy, but then in some
games oscillates and does not converge further.

The only known theoretical result about SM-MCTS directly applicable
to the algorithms in this paper is negative, and it has been proven in [59].

Theorem 4.5. There are games, in which SM-MCTS instantiated by any
regret minimizing selection function with a constant exploration γ cannot
converge to a strategy that would be an ε-Nash equilibrium for an ε < γD,
where D is the depth of the game tree.

The main idea of the proof is to define a specific class of games (see
Example 2 in [59]), in which the exploration in a greater depth of the game
tree causes a bias in the values observed in the higher levels of the tree,
consequently leading to an incorrect decision in the root.

In order to obtain positive formal results about the convergence of SM-
MCTS-like algorithms, the authors in [59] either add an additional averaging
step to the algorithm (that makes it significantly slower in practical games
used in benchmarks), or assume additional non-trivial technical properties
about the selection function, which are not known to hold for any of the
selection functions above.

As for computational complexity, the time cost per node is linear in |Ai|
for UCT and RM. The time cost per node is quadratic in the case of Exp3 due
to the numerically stable update rule (Equation 9). The memory required
per node is linear for UCT and Exp3, and quadratic in |Ai| for RM due
to storing estimates of each child subgame. This can be easily avoided by
storing the mean estimates directly in the children.

4.5. Counterfactual Regret Minimization and Outcome Sampling

Finally, we describe algorithms based directly on Counterfactual Regret
(CFR, a notion of regret at the information set level), first designed for
extensive-form games with imperfect information [28].

Recall from Section 2 the set of histories H. Here we also use Z defined
previously as the set of terminal states, to refer to the set of terminal his-
tories since there is a one-to-one correspondence between them. A history
is a sequence of actions taken by all players (including chance) that starts
from the beginning of the game. A history h′ is a prefix of another history h,
denoted h′ @ h, if h contains h′ as a prefix sequence of actions. The counter-
factual value of reaching information set I is the expected payoff given that
player i played to reach I, the opponent played σ−i and both players played
σ after I was reached:

vi(I, σ) =
∑

(h,z)∈ZI

πσ−i(h)πσ(h, z)ui(z), (17)

where ZI = {(h, z) | z ∈ Z, h ∈ I, h @ z}, πσ−i(h) is the product of prob-
abilities to reach h under σ excluding player i’s (i.e., including chance) and
πσ(h, h′), where h @ h′, is the probability of all actions taken along the
path from h to h′. Suppose, at time t, players play with strategy profile σt.
Define σtI→a as identical to σti except at I action a is taken with probabil-
ity 1. Player i’s counterfactual regret of not taking a ∈ A(I) at time t is
rti(I, a) = vi(I, σ

t
I→a)− vi(I, σt). The CFR algorithm maintains the cumula-

tive regret RT
i (I, a) =

∑T
t=1 r

t
i(I, a), for every action at every information set.

Then, the distribution at each information set for the next iteration σT+1(I)
is obtained individually using regret-matching [73]. The distribution is pro-
portional to the positive portion of the individual actions’ regret:

σT+1(I, a) =

{
RT,+
i (I, a)/RT,+

i,sum(I) if RT,+
i,sum(I) > 0

1/|A(I)| otherwise,

where x+ = max(0, x) for any term x, and RT,+
i,sum(I) =

∑
a′∈A(I) R

T,+
i (I, a′).

Furthermore, the algorithm maintains for each information set the average
strategy profile

σ̄T (I, a) =

∑T
t=1 π

σt

i (I)σt(I, a)∑T
t=1 π

σt

i (I)
, (18)

where πσ
t

i (I) =
∑

h∈I π
σt

i (h). The combination of the counterfactual regret
minimizers in individual information sets also minimizes the overall average
regret [28], and hence due to the Folk Theorem the average profile is a 2ε-
equilibrium, with ε→ 0 as T →∞.

Monte Carlo Counterfactual Regret Minimization (MCCFR) applies CFR
to sampled portions of the games [58]. In the outcome sampling (OS) variant,
a single terminal history z ∈ Z is sampled in each iteration. The algorithm
updates the regret in the information sets visited along z using the sampled
counterfactual value,

ṽi(I, σ) =

{ 1
q(z)

πσ−i(h)πσ(h, z)ui(z) if (h, z) ∈ ZI
0 otherwise,

(19)

where q(z) is the probability of sampling z. As long as every z ∈ Z has
a non-zero probability of being sampled, ṽi(I, σ) is an unbiased estimate of
v(I, σ) due to the importance sampling correction (1/q(z)). For this reason,
applying CFR updates using these sampled counterfactual regrets r̃ti(I, a) =
ṽi(I, σ

t
I→a)− ṽi(I, σt) on the sampled information sets values also eventually

converges to the approximate equilibrium of the game with high probability.
The required number of iterations for convergence is much larger, but each
iteration is much faster.

4.5.1. Online Outcome Sampling

We now present Online Outcome Sampling for simultaneous move games
(SM-OOS). Note, importantly, that SM-OOS is different from the general

SM-MCTS algorithms presented in Subsection 4.4. SM-OOS is an adap-
tation of a more general algorithm which has been proposed for search in
imperfect information games [13]. However, since simultaneous move games
are decomposable into subgames, the typical problems encountered in the
fully imperfect information search setting are not present here. Hence, we
present a simpler OOS specifically intended for simultaneous move games.

Online Outcome Sampling resembles MCTS in that it builds its tree incre-
mentally. However, the algorithm is based on MCCFR, from Subsection 4.5,
rather than on stochastic and adversarial bandit algorithms, such as UCB
and Exp3. A previous version of this algorithm for simultaneous move games
was presented by Lanctot et al. [11]. The version presented here is simpler for
implementation and it further reduces the variance of the regret estimates,
which leads to a faster convergence and better game play. The main novelty
in this version is that in any state s, it defines the counterfactual values as if
the game actually started in s. This is possible in simultaneous move games,
because the optimal strategy in any state depends only on the part of the
game below the state.

The pseudo-code is given in Algorithm 6. The game tree is incrementally
built, starting only with one node for the root game state. Each node stores
for each player: Ri(s, a) the cumulative regret (denoted RT

i (I, a) above) of
player i in state s and action a, and average strategy table Si(s), which stores
the cumulative average strategy contribution for each action. Normalizing
Si gives the resulting strategy of the algorithm for player i.

The algorithm runs iterations from a starting state until it uses the given
time limit. A single iteration is depicted in Algorithm 6, which recursively
descends down the tree. In the root of the game, the function is run as
SM-OOS(root, i), alternating player i ∈ {1, 2} in each iteration. If the func-
tion reaches a terminal history of the game (line 1), it returns the utility of
the terminal node for player i, and 1 for both the tail and sample proba-
bility contribution of i. If it reaches a chance node, it recursively continues
after a randomly selected chance outcome (lines 3-4). If none of the first
two conditions holds, the algorithm reaches a state where the players make
decisions. If this state is already included in the incrementally built tree
(line 5), the following state is selected based on the cumulative regrets stored
in the tree by regret matching with ε-on-policy sampling strategy for player i
(lines 6-8) and the exact regret matching strategy for player −i (lines 9-11).
The recursive call on line 11 then continues the iteration until the end of
the game tree. If the reached node is not in the tree, it is added (line 13)

input : s – current state of the game; i – regret updating player
output: (xi, qi, ui): xi – i’s contribution to tail probability (πσ(h, z)); qi –

i’s contribution to sample probability (q(z)); ui – utility of the
sampled leaf

if s ∈ Z then return (1, 1, ui(s))1

else if s ∈ C is a chance node then2

Sample s′ from ∆?(s)3

return SM-OOS(s′, i)4

if s is already in the OOS tree then5

σi ← RegretMatching(Ri(s))6

∀a ∈ Ai(s) : σ′i(s, a)← (1− ε)σi(s, a) + ε
|Ai(s)|7

Sample action ai from σ′i8

σ−i ← RegretMatching(R−i(s))9

Sample action a−i from σ−i10

(xi, qi, ui)← SM-OOS(T (s, ai, a−i), i)11

else12

Add s to the tree13

∀a ∈ Ai(s) : σi(s, a)← 1
|Ai(s)|14

Sample action ai from σi15

∀a ∈ A−i(s) : σ−i(s, a)← 1
|A−i(s)|16

Sample action a−i from σ−i17

(xi, qi, ui)← OOS-Rollout(T (s, ai, a−i))18

W ← ui · xi/qi19

Ri(s, ai)← Ri(s, ai) + 1−σi(s,ai)
σ′i(ai)

W20

∀a ∈ Ai(s) \ {ai} : Ri(s, a)← Ri(s, a)− σi(s,ai)
σ′i(s,ai)

W21

S−i(s)← S−i(s) + σ−i22

return (x · σi(s, ai), q · σ′i(s, ai), ui)23

Algorithm 6: Simultaneous Move Online Outcome Sampling (SM-OOS)

and an action for each player is selected based on the uniform distribution
(lines 14-16). Afterwards, a random rollout of the game until a terminal node
is initiated on line 18. The rollout is similar to the MCTS case, but in addi-
tion, it has to compute the tail probability xi and the sampling probability
qi required to compute the sampled counterfactual value. For example, if
in the rollout player i acts ni times, and each time samples uniformly from
exactly b actions, then xi = 1

bni
. Regardless of whether the current node was

in the tree, the algorithm updates the regret table of player i based on the

simplified definition of sampled counterfactual regret for simultaneous move
games (lines 19-21) and the mean strategy of player −i (line 22). Finally,
the function returns the updated probabilities to the upper level of the tree.

SM-OOS appears similar to SM-MCTS using the RM selection mecha-
nism (Subsection 4.4.3). However, there are a number of differences: SM-
OOS uses importance sampling of a sequence of probabilities to keep its
estimate unbiased, but will suffer a higher variance than RM which uses only
a one-step correction. RM does not distinguish whether its utility comes from
exploration or otherwise, whereas SM-OOS separates the two into the tail
probabilities of the strategy for the sequence sampled (xi) and the sampling
probability of the sequence (qi); when σi(s, a) = 0, due to exploration, then
xi = 0 and the value of the update increments are also 0. RM uses the means
from the subgames as estimates of utility for those subgames, which could
introduce some bias in the estimators. We further discuss the comparison in
Subsection 6.6.

4.5.2. Theoretical Properties

SM-OOS, contrary to the MCTS-based algorithms, has finite-time prob-
abilistic convergence guarantees. Since SM-OOS is designed to update each
node of the game in the same way as the root of the game, we present the
following theorem from the perspective of the root of the entire game. It
holds also for starting the algorithm in non-root nodes, but the values of |S|
and δ can be adapted to represent the subgame.

Theorem 4.6. When SM-OOS is run from the root of the game, with prob-

ability (1− p) an ε-NE is reached after O(
(|A||S|2∆2

u,i

pδ2ε2
) iterations, where |A| =

maxs∈S,i∈{1,2} |Ai(s)|, ∆u,i = maxz,z′∈Z |ui(z′) − ui(z)|, and δ is the smallest
probability of sampling any single leaf in the subtree of the root node.

Proof The proof is composed of two observations. First, the whole game
tree is eventually built by the algorithm. A direct consequence of [59, Lemma
40] is that the tree of depth D is built with probability (1− p1) in less than

16D

(|A|
γ

)2D

max(D, 4 log p−1
1 + 4) (20)

iterations by an algorithm with a fixed exploration γ. This is the number of
iterations needed for each leaf in the game to be visited at least D times.

Second, during these and the following iterations, the algorithm performs
exactly the same updates in the nodes contained in memory, as the Outcome
Sampling (OS) MCCFR [58]. If some nodes below a state were not added
to the tree yet, a uniform strategy is assumed in these states for the regret
updates. Since CFR minimizes the counterfactual regret in an individual
information set regardless of the strategies in other information sets, the
samples acquired during the tree building cannot have a negative impact on
the rate of regret minimization in individual states. Therefore, we can use
[74, Theorem 4] that bounds the number of iterations needed for OS as an
offline solver with the complete game in the memory, starting after the tree
has been built with a high probability. It states that with probability (1−p2)

an ε-NE is reached after O(
(|A||S|2∆2

u,i

p2δ2ε2
) iterations.

We can see that the OS bound dominates the time required to build
the tree. A single explorative action is taken with probability γ/|A|, and

when sampling a terminal z only due to exploration, 1
δ

= (|A|
γ

)2D, and D2 <

|A|2D ∈ O(|S|) for anyA, and we can set p1 = p2 = p/2. Then the probability
that both the tree will be built and the convergence will be achieved can be
bounded by (1− p1)(1− p2) ≥ (1− p). �

As for computational complexity, the time cost as well as the memory re-
quired per node is linear in |Ai| in SM-OOS.

5. Online Search

In this section, we describe online adaptations of the algorithms described
in the previous section and their application to any-time search given a lim-
ited time budget.

5.1. Iterative Deepening Backward Induction Algorithms

Minimax search [5] has been used with much success in sequential per-
fect information games, leading to super-human chess AI, one of the key
advances of artificial intelligence [1]. Minimax search is an online application
of backward induction run on a heuristically approximated game. The game
is approximated by searching to a fixed depth limit d, treating the states at
depth d as terminal states, evaluating their values using a heuristic evalua-
tion function, eval(s). The main focus is to compute an optimal strategy for
this heuristic approximation of the original game.

Similarly to the perfect information case, we can modify our algorithms
based on backward induction for simultaneous move games. Under the lim-
ited time settings, a search algorithm is given a fixed time budget to compute
a strategy. We use the classic approach of iterative deepening [5] that runs
several depth-limited searches, starting at a low depth and iteratively in-
creasing the depth of each successive search. Note that the depth limit of d
means that the algorithm evaluates d joint actions (i.e., pairs of simultaneous
actions) possibly preceded by a chance outcome if present.

In iterative deepening, the algorithm by default starts at depth d = 1
and gradually increases d until there is no more time. In our implementa-
tion of iterative deepening we follow a natural observation that saves the
computation time between different searches: a solution computed in state s
by player i to depth d contains an optimal solution on d− 1 approximation
of subgames starting in possible next states T (s, r, c), where r is the action
selected for the player performing the search and c is the action of the oppo-
nent. Therefore, when the iterative deepening algorithm starts a new search
in state s′ ∈ T (s, r, c), it can often begin at depth d. This can require space
exponential in the depth d in the worst case, but it is beneficial in practical
experiments. When information is missing due to pruning, then a search
starts with the lowest possible depth d = 1.

5.2. Online Search using Sampling Algorithms

Using sampling algorithms in the online settings is simpler than with
the algorithms based on backward induction, since no significant changes
are needed and the algorithms do not need an evaluation function. The
algorithms are stopped after a given time limit and the move to play or the
complete strategy is extracted as described for each sampling algorithm in
Section 4.

There are two concepts that have to be discussed. First, the algorithms
can re-use all information and statistics gained in the previous iterations;
hence, after returning a move and advancing to a succeeding state of the
game s′, the subtree of the incrementally built tree rooted in s′ is preserved
and used in the next iterations. Note that reusing the previously gathered
statistics in the sub-tree rooted in s′ has no potentially negative effect on
any variant of the MCTS algorithms since the behavior of the algorithms is
exactly the same when the iteration is started in this node, and if this node
is reached from its predecessor. This is also true in SM-OOS because of the

structure of simultaneous move games; a similar adaptation of the algorithm
is not possible in more general imperfect information games [13].

Second, even though the sampling algorithms do not require the use of
domain-specific knowledge for online search, they often incorporate this type
of knowledge to better guide the sampling and thus to evaluate more rele-
vant parts of the state space [75, 76, 77, 78, 79]. When directly comparing
approximative sampling algorithms with the backward induction algorithms
using an evaluation function, the outcome of such a comparison strictly de-
pends on the quality of the evaluation function. In a very large game, an
accurate evaluation function greatly benefits the backward induction algo-
rithm. Therefore, we also use sampling algorithms combined with an eval-
uation function. The integration is done via replacing the random rollout
by directly using the value of the evaluation function in the current state
for MCTS and OOS algorithms; i.e., Rollout(s) in line 14 of Algorithm 5 or
line 18 of Algorithm 6 is replaced by eval(s). This has been commonly used
in several previous works in Monte Carlo search [76, 78, 79, 80, 81].

Again, such a modification does not generally affect theoretical properties
of the algorithms – the proofs of the convergence assume that a whole game
tree is eventually built and any statistics in the nodes collected before (either
by random rollouts or evaluation functions) can eventually be over-weighted.
For MCTS algorithms, there is no reason to believe that a good evaluation
function would give a worse estimate of the quality of a sub-tree using random
play-outs. The only complication could be with the way the probabilities are
computed in OOS. The weight of the sample in Equation 19 is multiplied by
the probability of reaching the terminal state z from some history h, πσ(h, z).
However, the “tail” probability is canceled because the rollout policy is fixed
and so its contribution to q(z) is identical to its contribution to πσ(h, z).

6. Empirical Evaluation

We now present a thorough experimental evaluation of the described al-
gorithms. We analyze both the offline and the online case on a collection
of games inspired by previous work, and randomly generated games. After
describing rules and properties of the games, we present the results for the
offline strategy computation and we follow with the online game playing.

6.1. Experimental Settings

We start with an experimental evaluation of a well-known example of Bi-
ased Rock, Paper, Scissors [14] that often serves as an example that MCTS
with UCT selection function does not converge to a Nash equilibrium. We
reproduce this experiment and show the differences in performance of the
sampling algorithms – primarily the impact of randomization in UCT. Then,
we compare the offline performance of the algorithms on other domains. For
each domain, we first analyze the exact algorithms and measure the compu-
tation time taken to solve a particular instance of the game. Afterward, we
analyze the convergence of the approximative algorithms. At a specified time
step the algorithm produces strategies (σ1, σ2). Using best responses we com-
pute error(σ1, σ2) = maxσ′1∈Σ1

Ez∼(σ′1,σ2)[u1(z)] + maxσ′2∈Σ2
Ez∼(σ1,σ′2)[u2(z)],

which is equal to 0 at a Nash equilibrium. In each offline convergence set-
ting, the reported values are means over at least 20 runs of each sampling
algorithm on a single instance of the game. We compared at least 3 different
settings for each exploration parameter and present the result only for the
best exploration parameter. For OOS, Exp3, and RM the best values for
the parameters were almost always 0.6, 0.1, and 0.1, respectively. The only
exception was Goofspiel with chance, where both Exp3 and RM converge
faster with the parameter set to 0.3. We give the optimal value for UCT
constant C in each setting.

Finally, we turn to the comparison of the algorithms in the online setting
and we present results from head-to-head tournaments in each game. Here,
we use larger instances of each game and compare the algorithms based on
actual game play with a limited time for each move. The algorithms based on
backward induction need to use a domain-specific evaluation function in the
online setting. This may give these algorithms an advantage if the evaluation
function is accurate. Therefore, we also run the sampling-based algorithms
with an evaluation function for selected domains to compare the algorithms
in a fairer setting. Moreover, we have also tuned parameters for the sampling
algorithms specifically for each domain. Reported results are means over at
least 1000 matches for each pair of algorithms.

Each of the described algorithms was implemented in a generic framework
for modeling and solving extensive-form games5. We are interested in the

5Source code is available at the web page of the authors. We use IBM CPLEX 12.5 to
solve the linear programs.

performance of the algorithms and their ability to find or approximate the
optimal behavior. Therefore, with the exception of the evaluation function
used in selected online experiments, no algorithm uses any domain-specific
knowledge.

6.2. Domains

In this subsection, we describe the six domains used in our experiments.
The games in our collection differ in characteristics, such as the number of
available actions for each player (i.e., the branching factor), the maximal
depth, and the number of possible utility values. Moreover, the games also
differ in the randomization factor – i.e., how often it is necessary to use
mixed strategies and whether this randomization occurs at the beginning of
the game, near the end of the game, or is spread throughout the whole course
of the game.

For each domain we also describe the evaluation function used in the
online experiments. Note that we are not seeking the best-performing algo-
rithm for a particular game; hence, we have not aimed for the most accurate
evaluation functions for each game. We intentionally use evaluation func-
tions of different quality that allow us to compare the differences between
the algorithms from this perspective as well.

Biased Rock, Paper, Scissors. BRPS is a payoff-skewed version of the
one-shot game Rock, Paper, Scissors shown in Figure 7. This game was
introduced in [14], and it was shown that the visit count distribution of UCT
converges to a fixed balanced situation, but not one that corresponds to the
optimal mixed strategy of (1

16
, 10

16
, 5

16
).

r p s
R 0 -25 50
P 25 0 -5
S -50 5 0

Figure 7: Biased Rock, Paper, Scissors matrix game from [14].

Goofspiel. Goofspiel is a card game that appears as a common example
of a simultaneous move game (e.g., [35, 37, 38, 11]). There are 3 identical
decks of d cards with values {0, . . . , (d− 1)}, one for chance and one for each

player, where d is a parameter of the game. Standard Goofspiel is played
with 13 cards. The game is played in rounds: at the beginning of each round,
chance reveals one card from its deck and both players bid for the card by
simultaneously selecting (and removing) a card from their hands. A player
that selects a higher card wins the round and receives a number of points
equal to the value of the chance’s card. In case both players select the card
with the same value, the chance’s card is discarded. When there are no more
cards to be played, the winner of the game is chosen based on the sum of
card values he received during the whole game.

There are two parameters of the game that can be altered to create four
different variants of Goofspiel. The first parameter determines whether or
not the chance player is included. We can use an assumption made in the
previous work that used Goofspiel as a benchmark for evaluation of the exact
offline algorithms [38], where the sequence of the cards is randomly chosen at
the beginning of the game and it is known to both players. We refer to this
setting as the fixed sequence of cards. Alternatively, we can treat chance in
the standard way, where chance nodes determine the card that gets drawn.
We refer to this setting as the stochastic sequence. The games are fairly
similar in terms of performance of the algorithms, however, the second variant
induces a considerably larger game tree. The second parameter relates to the
utility functions. Either we treat the game as a win-tie-lose game (i.e., the
players receive utility from {−1, 0, 1}), or the utility values for the players
are equal to the points they gain during the game.

Goofspiel forms game trees with interesting properties. First unique fea-
ture is that the number of actions for each player is uniformly decreasing by 1
with the depth. Secondly, algorithms must randomize in NE strategies, and
this randomization is present throughout the whole course of the game. As
an example, the following table depicts the number of states with pure strate-
gies and mixed strategies for each depth in a subgame-perfect NE calculated
by backward induction for Goofspiel with 5 cards and a fixed sequence of
cards:

Depth 0 1 2 3 4

Pure 0 17 334 3,354 14,400

Mixed 1 8 66 246 0

We can see that the relative number of states with mixed strategies slowly
decreases, however, players need to mix throughout the whole game. In the

last round, each player has only a single card; hence, there cannot be any
mixed strategy.

Our hand-tuned evaluation function used in Goofspiel takes into consider-
ation the remaining cards in the deck weighted by a chance of winning these
cards depending on the remaining cards on hand for each player. Moreover,
if the position is clearly winning for one of the players (there is not enough
cards to change the current score), the evaluation function is set to maximal
(or minimal) value. The formal definition follows (ci is the sum of values of
the remaining cards of player i):

eval(s) =

{
u1(s) if c1 + c2 = 0 ;

tanh
(
c1−c2
c1+c2

· c?
0.5·d(d+1)

)
otherwise.

For the win-tie-lose case we use tanh to scale the evaluation function into
the interval [−1, 1]; this function is omitted in the exact point case.

Oshi-Zumo. Oshi-Zumo (also called Alesia in [22]) is a board game that
has been analyzed from the perspective of computational game theory in
[36]. There are two players in the game, both starting with N coins, and
there is a board represented as a one-dimensional playing field with 2K +
1 locations (indexed 0, . . . , 2K). At the beginning, there is a stone (or a
wrestler) located in the center of the playing field (i.e., at positionK). During
each move, both players simultaneously place their bid from the amount of
coins they have (but at least M if they still have some coins). Afterward, the
bids are revealed, both bids are subtracted from the number of coins of the
players, and the highest bidder can push the wrestler one location towards
the opponent’s side. If the bids are the same, the wrestler does not move.
The game proceeds until the money runs out for both players, or the wrestler
is pushed out of the field. The winner is determined based on the position of
the wrestler – the player in whose half the wrestler is located loses the game.
If the final position of the wrestler is the center, the game is a draw. Again,
we have examined two different settings of the utility values: they are either
restricted to win-tie-lose values {−1, 0, 1}, or they correspond to the relative
position of the wrestler {wrestler−K,K −wrestler}. In the experiments we
varied the number of coins and parameter K.

Many instances of the Oshi-Zumo game have a pure Nash equilibrium.
With the increasing number of the coins the players need to use mixed strate-
gies, however, mixing is typically required only at the beginning of the game.

As an example, the following table depicts the number of states with pure
strategies and mixed strategies in a subgame-perfect NE calculated by back-
ward induction for Oshi-Zumo with N = 10 coins, K = 3, and minimal bid
M = 1. The results show that there are very few states where mixed strate-
gies are required, and they are present only at the beginning of the game
tree. Also note, that contrary to Goofspiel, not all branches have the same
length.

Depth 0 1 2 3 4 5 6 7 8 9

Pure 1 98 2,012 14,767 48,538 79,926 69,938 33,538 8,351 861

Mixed 0 1 4 17 8 0 0 0 0 0

The evaluation function used in Oshi-Zumo takes into consideration two
components: (1) the current position of the wrestler and, (2) the remaining
coins for each player. Formally:

eval(s) = tanh

(
b

2
+

1

3

(
coins1 − coins2

M
+ wrestler−K

))
,

where b = 1 if coins1 ≥ coins2 and wrestler ≥ K, and at least one of the
inequalities is strict; or b = −1 if coins1 ≤ coins2 and wrestler ≤ K, and at
least one of the inequalities is strict; b = 0 otherwise. Again, we use tanh to
scale the value into the interval [−1, 1] only in the win-tie-lose case.

Pursuit-Evasion Games. Another important class of games is pursuit-
evasion games (for example, see [82]). There is a single evader and a pursuer
that controls 2 pursuing units on a four-connected grid in our pursuit-evasion
game. Since all units move simultaneously, the game has larger branching
factor than Goofspiel (up to 16 actions for the pursuer). The evader wins
if she successfully avoids the units of the pursuer for the whole game. The
pursuer wins if her units successfully capture the evader. The evader is
captured if either her position is the same as the position of a pursuing
unit, or the evader used the same edge as a pursuing unit (in the opposite
direction). The game is win-loss and the players receive utility from the set
{−1, 1}. We use 3 different square four-connected grid-graphs (with the size
of a side 4, 5, and 10 nodes) for the experiments without any obstacles or
holes. In the experiments we varied the maximum length of the game d and
we altered the starting positions of the players (the distance between the

pursuers and the evader was always at most
⌊

2
3
d
⌋

moves, in order to provide
a possibility for the pursuers to capture the evader).

Similarly to Oshi-Zumo, many instances of pursuit-evasion games have a
pure Nash equilibrium. However, the randomization can be required towards
the actual end of the game in order to capture the evader. Therefore, de-
pending on the length of the game and the distance between the units, there
might be many states that do not require mixed strategies (the units of the
pursuers are simply going towards the evader). Once the units are close to
each other, the game may require mixed strategies for the final coordination.
This can be seen on our small example on a graph with 4 × 4 nodes and
depth 5:

Depth 0 1 2 3 4

Pure 1 12 261 7,656 241,986

Mixed 0 0 63 1,008 6,726

The evaluation function used in pursuit-evasion games takes into consid-
eration the distance between the units of the pursuer and the evader (denoted
distancej for the distance in moves of the game between the jth unit of the
pursuer and the evader). Formally:

eval(s) =
min(distance1, distance2) + 0.01 ·max(distance1, distance2)

1.01 · (w + l)
,

where w and l are dimensions of the grid graph.

Random/Synthetic Games. Finally, we also use randomly generated
games to be able to experiment with additional parameters of the game,
mainly larger utility values and their correlation. In randomly generated
games, we fixed the number of actions that the players can play in each
stage to 4 and 5 (the results were similar for different branching factors)
and we varied the depth of the game tree. We use 2 different methods for
randomly assigning the utility values to the terminal states of the game: (1)
the utility values are uniformly selected from the interval [0, 1]; (2) we ran-
domly assign either −1, 0, or +1 value to each joint action (pair of actions)
and the utility value in a leaf is a sum of all the values on the edges on the
path from the root of the game tree to the leaf. The first method produces
extremely difficult games for pruning using either alpha-beta, or the double-
oracle algorithm, since there is no correlation between actions and utility

values in sibling leaves. The latter method is based on random P-games [83]
and creates more realistic games using the intuition of good and bad moves.

Randomly generated games represent games that require mixed strategies
in most of the states. This holds even for the games of the second type with
correlated utility values in the leaves. The following table shows the number
of states depending on the depth for a randomly generated game of depth 5
with 4 actions available to both players in each state:

Depth 0 1 2 3 4

Pure 0 2 29 665 20,093

Mixed 1 14 227 3,431 45,443

Only the second type of randomly generated games is used in the online
setting. The evaluation function used in this case is computed similarly to
the utility value and it is equal to the sum of values on the edges from the
root to the current node.

Tron. Tron is a two-player simultaneous move game played on a discrete
grid, possibly obstructed by walls [55, 57, 60]. At each step, both players
move to adjacent nodes and a wall is placed to the original positions of the
players. If a player hits the wall or the opponent, the game ends. The goal
of both players is to survive as long as possible. If both players move into a
wall, off the board, or into each other on the same turn, the game ends in a
draw. The utility is +1 for a win, 0 for a draw, and −1 for a loss. In the
experiments, we used an empty grid with no obstacles and various sizes of
the grid.

Similarly to pursuit-evasion games, there are many instances of Tron that
have pure NE. However, even if mixed strategies are required, they appear in
the middle of the game once both players reach the center of the board and
compete over the advantage of possibly being able to occupy more squares.
Once this is determined, the endgame can be solved in pure strategies since
it typically consists of filling the available space in an optimal ordering one
square at a time. The following table comparing the number of states demon-
strates this characteristics of Tron on a 5× 6 grid:

Depth 0 1 2 3 4 5 . . .

Pure 1 4 14 100 565 2,598

Mixed 0 0 2 0 9 7

. . . 6 7 8 9 10 11 12 13

9,508 25,964 54,304 83,624 87,009 63,642 23,296 3,127

51 92 106 121 74 0 0 0

The evaluation function is based on how much space is “owned” by each
player, which is a more accurate version of the space estimation heuristic [84]
that was used in [60]. A cell is owned by player i if it can be reached by
player i before the opponent. These values are computed using an efficient
flood-fill algorithm whose sources start from the two players’ current posi-
tions:

eval(s) = tanh

(
owned1 − owned2

5

)
.

6.3. Non-Convergence and Random Tie-Breaking in UCT

We first revisit the counter-example given in [14] showing that UCT does
not converge to an equilibrium strategy in Biased Rock, Paper, Scissors when
using a mixed strategy created by normalizing the visit counts. We expand
on this result, showing the effect of the synchronization occurring when the
UCT selection mechanism is fully deterministic (see Subsection 4.4.1).

We run SM-MCTS with UCT, Exp3, and Regret Matching selection func-
tions on Biased Rock, Paper, Scissors for 100 million (108) iterations, measur-
ing the exploitability of the strategy recommended by each variant at regular
intervals. The results are shown in Figures 8 and 9.

The first observation is that deterministic UCT does not seem to converge
to a low-exploitability strategy (see Figure 8, top figure). The exploitability
of the strategies of Exp3 and RM variants do converge to low-exploitability
strategies (see Figure 9), and the resulting approximation depends on the
amount of exploration. If less exploration is used, then the resulting strategy
is less exploitable, which is natural in the case of a single state. RM does
seem to converge slightly faster than Exp3, as we will see in the remaining
domains as well.

We then tried adding a stochastic tie-breaking rule to the UCT selection
mechanism typically used in MCTS implementations, which chooses an ac-
tion randomly when the scores of the best values are “tied” (less than 0.01
apart). The bottom figure in Figure 8 shows the convergence. One partic-
ularly striking observation is that this simple addition leads to a large drop
in the resulting exploitability, where the exploitability ranges from [0.5, 0.8]

MCTS-UCT (fully deterministic)

0.00

0.25

0.50

0.75

1.00

1e+03 1e+05 1e+07
Iterations [−]

E
rr

or
 [−

] C
0
0.2
0.4
1.4
2

MCTS-UCT with stochastic tie-breaking

0.00

0.25

0.50

0.75

1.00

1e+03 1e+05 1e+07
Iterations [−]

E
rr

or
 [−

] C
0
0.2
0.4
1.4
2

Figure 8: Exploitability of strategies of recommended by MCTS-UCT over time in Biased
Rock, Paper, Scissors. Vertical axis represents exploitability.

in the deterministic case, compared to [0.01, 0.05] with the stochastic tie-
breaking. Therefore, the stochastic tie-breaking is enabled in all of our ex-
periments.

In summary, with this randomization UCT appears to be converging to
an approximate equilibrium in this game but not to an exact equilibrium,
which is similar to results of a variant of UCT in Kuhn poker [85].

6.4. Offline Equilibrium Computation

We now compare the offline performance of the algorithm on all the re-
maining games. We measure the overall computation time for each of the

MCTS-Exp3

0.00

0.25

0.50

0.75

1.00

1e+03 1e+05 1e+07
Iterations [−]

E
rr

or
 [−

] γ
0.001
0.05
0.1
0.2
0.5

MCTS-RM

0.00

0.25

0.50

0.75

1.00

1e+03 1e+05 1e+07
Iterations [−]

E
rr

or
 [−

] γ
0.001
0.01
0.1
0.2
0.5

Figure 9: Exploitability of strategies recommended by MCTS-Exp3 and MCTS-RM over
time in Biased Rock, Paper, Scissors. Vertical axis represents exploitability.

algorithms and the number of evaluated nodes – i.e., the nodes for which the
main method of the backward induction algorithm executed (nodes evalu-
ated by serialized alpha-beta algorithms are not included in this count, since
they may be evaluated repeatedly). Unless otherwise stated, each data point
represents a mean over at least 30 runs.

6.4.1. Goofspiel

We now describe the results for the card game Goofspiel. First, we analyze
the games with fixed sequences of the cards.

10−1

100

101

102

103

104

105

4 5 6 7 8
Depth [−]

T
im

e
[s

] Algorithm
BI

BIαβ
DO

DOαβ

(a)

10−1

100

101

102

103

104

105

4 5 6 7 8
Depth [−]

T
im

e
[s

] Algorithm
BI

BIαβ
DO

DOαβ

(b)

Figure 10: Running times of the exact algorithms on Goofspiel with fixed sequences of
cards for increasing size of the deck; subfigure (a) depicts the results with win-tie-lose
utilities, (b) depicts the results with point difference utilities.

Exact algorithms with fixed sequences. The results are depicted in Figure 10
(note the logarithmic vertical scale), where the left subfigure depicts the
results for win-tie-lose utilities and the right subfigure depicts the results for
point utilities. We present the mean results over 10 different fixed sequences.
The comparison on the win-tie-lose variant shows that there is a significant
number of subgames with a pure Nash equilibrium that can be computed
using the serialized alpha-beta algorithms. Therefore, the performance of
BIαβ and DOαβ is fairly similar and the gap only slowly increases in favor of
DOαβ with the increasing size of the game. Since serialized alpha-beta is able
to solve a large portion of subgames, both of these algorithms significantly
reduce the number of the states visited by the backward induction algorithm.
While BI evaluates 3.2× 107 nodes in the setting with 7 cards in more than
2.5 hours, BIαβ evaluates only 198, 986 nodes in less than 4 minutes. The
performance is further improved by DOαβ that evaluates on average 79, 105
nodes in less than 3 minutes. The overhead is slightly higher in case of
DOαβ; hence, the time difference between DOαβ and BIαβ is relatively
small compared to the difference in evaluated nodes. Finally, the results
show that even the DO algorithm without the serialized alpha-beta search
can improve the performance of BI. In the setting with 7 cards, DO evaluates
more than 6× 106 nodes which takes on average almost 30 minutes.

The results for the point utilities are the same for BI, while DO is slightly
worse. On the other hand, the success of serialized alpha-beta algorithms is
significantly lower and it takes both algorithms much more time to solve the

10−1

100

101

102

103

104

105

4 5 6
Depth [−]

T
im

e
[s

] Algorithm
BI

BIαβ
DO

DOαβ

(a)

10−1

100

101

102

103

104

105

4 5 6
Depth [−]

T
im

e
[s

] Algorithm
BI

BIαβ
DO

DOαβ

(b)

Figure 11: Running times of exact algorithms on Goofspiel with chance nodes for increasing
size of the deck; subfigure (a) depicts the results with win-tie-lose utilities, (b) depicts the
results with point utilities.

games of the same size. With 7 cards, BIαβ evaluates more than 2 × 106

nodes and it takes the algorithm on average 32 minutes to find the solution.
DOαβ is still the fastest and it evaluates more than 3 × 105 nodes in less
than 13 minutes on average.

The performance of algorithms BIαβ and DOαβ represent a significant
improvement over the results of the pruning algorithm SMAB presented in
[38]. In their work, the number of evaluated nodes was at best around 29%,
and the running time improvement was only marginal.

Exact algorithms with a stochastic sequence. Next we compare the exact al-
gorithms in the variant of Goofspiel with standard chance nodes. Introducing
another branching due to moves by chance causes a significant increase in the
size of the game tree. For 7 cards, the game tree has more than 1011 nodes,
which is 4 orders of magnitude more than in the case with fixed sequences
of cards. The results depicted in Figure 11 show that the games become
quickly too large to solve exactly and the fastest algorithms solved games
with at most 6 cards. Relative performance of the algorithms, however, is
similar to the case with fixed sequences. With win-tie-lose utilities, serialized
alpha-beta is again able to find pure NE in most of the subgames and prunes
out a large fraction of the states. For the game with 5 cards, BI evaluates
more than 2 × 106 nodes in almost 10 minutes, while BIαβ evaluates only
17, 315 nodes in 27 seconds and DOαβ evaluates 6, 980 nodes in 23 seconds.
As before, the serialized alpha-beta algorithm is less helpful in the case with
point utilities. Again with 5 cards, BIαβ evaluates 91, 419 nodes in more

0.0

0.5

1.0

1.5

2.0

0.5 1.0 10.0 100.0 500.0
Time [s]

E
rr

or
 [−

]
Algorithm

MCTS−UCT
MCTS−EXP3
MCTS−RM
OOS

BI
DO

BIαβ
DOαβ

0

1

2

3

4

5

0.5 1.0 10.0 100.0 500.0
Time [s]

E
rr

or
 [−

]

Algorithm
MCTS−UCT
MCTS−EXP3
MCTS−RM
OOS

BI
DO

BIαβ
DOαβ

Figure 12: Convergence of the sampling algorithms on Goofspiel with 5 cards and a fixed
sequence of cards. The vertical lines correspond to the computation times for the exact
algorithms. (Top) Goofspiel with win-tie-lose utility values; (Bottom) Goofspiel with point
utilities.

than 100 seconds and DOαβ evaluates 14, 536 nodes in almost 55 seconds.

Sampling algorithms with fixed sequences. We now turn to the analysis of the
convergence of the sampling algorithms – i.e., their ability to approximate
Nash equilibrium strategies of the complete game. Figure 12 depicts the
results for Goofspiel game with 5 cards with fixed sequence of cards (note
the logarithmic horizontal scale). We compare MCTS algorithms with three
different selection functions (UCT, Exp3, and RM), and OOS. The results
are means over 30 runs of each algorithm. Due to the different selection
and update functions, the algorithms differ in the number of iterations per

second. RM is the fastest with more than 2.6 × 105 iterations per second,
OOS has around 2× 105 iterations, UCT 1.9× 105, and Exp3 only 5.4× 104

iterations.
The results show that OOS converges the fastest out of all sampling

algorithms. This is especially noticeable in the point-utility settings, where
none of the other sampling algorithms were approaching zero error due to
the exploration. MCTS with RM selection function is only slightly slower
in the win-tie-lose case, however, the other two selection functions perform
worse. While Exp3 eventually converges close to 0 in the win-tie-lose case,
the exploitability of UCT decreases rather slowly and it was still over 0.35
at the time limit of 500 seconds. The best C constant for UCT was 5 in
the win-tie-lose setting, and 10 in the point utility setting. While setting
lower constant typically improves the convergence rate slightly during the
first iterations, the final error was always larger. The vertical lines represent
the times for the exact algorithms. In the win-tie-lose case, BIαβ is slightly
faster and finishes first in 0.64 seconds, followed by DOαβ (0.69 seconds),
DO (3.1 seconds), and BI (6 seconds). In the point case, DOαβ is the fastest
(0.97 seconds), followed by BIαβ (1.3 seconds), followed by DO and BI with
similar times as in the previous case.

Sampling algorithms with a stochastic sequence. We also performed the ex-
periments in the setting with chance nodes. Due to the size of the game tree,
we have reduced the number of cards to 4, since the size of this game tree is
comparable to the case with 5 cards and a fixed sequence of cards. The results
depicted in Figure 13 show a similar behavior of the sampling algorithms as
observed in the previous case. OOS converges the fastest, followed by RM,
and Exp3. The main difference is in the convergence of UCT, however, this
is mostly due to the fact that a pure NE exists in Goofspiel with 4 cards;
hence, UCT can better identify the best action to play and converges faster
to a less exploitable strategy than in the case with 5 cards. Surprisingly, the
convergence rates of the algorithms do not change that dramatically with
the introduction of point utilities as in the previous case. The main reason
is that the range of the utility values is smaller compared to the previous
case (there is one card less in the present setting and the missing cards has
the highest value). For comparison, we again use the vertical lines to denote
times of exact algorithms. BIαβ and DOαβ are almost equally fast, with
DOαβ being slightly faster, followed by DO and BI.

0.0

0.5

1.0

1.5

2.0

0.5 1.0 10.0 100.0 500.0
Time [s]

E
rr

or
 [−

]
Algorithm

MCTS−UCT
MCTS−EXP3
MCTS−RM
OOS

BI
DO

BIαβ
DOαβ

0

1

2

3

4

5

0.5 1.0 10.0 100.0 500.0
Time [s]

E
rr

or
 [−

]

Algorithm
MCTS−UCT
MCTS−EXP3
MCTS−RM
OOS

BI
DO

BIαβ
DOαβ

Figure 13: Convergence of the sampling algorithms on Goofspiel with 4 cards and chance
nodes. The vertical lines correspond to the computation times for the exact algorithms.
(Top) Goofspiel with win-tie-lose utility values; (Bottom) Goofspiel with point utilities.

6.4.2. Pursuit-Evasion Games

The results on pursuit-evasion games show more significant improvement
when comparing DOαβ and BIαβ (see Figure 14). In all settings, DOαβ
is significantly the fastest. When we compare the performance on a 5 × 5
graph with depth set to 6, BI evaluates more than 4.9 × 107 nodes taking
more than 13 hours. On the other hand, BIαβ evaluates on average 42, 001
nodes taking almost 10 minutes (584 seconds). Interestingly, the benefits of
a pure integration with alpha-beta search is not that helpful in this game.
This is apparent from the results of DO algorithm that evaluates less than
2× 106 nodes but it takes slightly over 9 minutes on average (547 seconds).

10−1

100

101

102

103

104

105

4 5 6 7 8
Depth [−]

T
im

e
[s

] Algorithm
BI

BIαβ
DO

DOαβ

(a)

10−1

100

101

102

103

104

105

4 5 6 7 8
Depth [−]

T
im

e
[s

] Algorithm
BI

BIαβ
DO

DOαβ

(b)

Figure 14: Running times of exact algorithms on pursuit-evasion games with an increasing
number of moves: subfigure (a) depicts the results on 4× 4 grid graph, (b) depicts results
for 5× 5 grid.

Finally, DOαβ evaluates only 6, 692 nodes and it takes the algorithm less
than 3 minutes.

Large parts of these pursuit-evasion games can be solved by the serialized
alpha-beta algorithms. These parts typically correspond to clearly winning,
or clearly losing positions for a player; hence, the serialized alpha-beta algo-
rithms are able to prune a substantial portion of the space. However, since
there are only two pursuit units, it is still necessary to use mixed strategies
for a final coordination (capturing the evader close to edge of the graph),
and thus mixing strategy occurs near the end of the game tree. Therefore,
serialized alpha-beta is not able to solve all subgames, while double-oracle
provides additional pruning since many of the actions in the subgames are
leading to the same outcome and not all of them required finding equilibrium
strategies. This leads to additional reductions in the computation time for
DOαβ compared to BIαβ and all the other algorithms.

We now turn to the convergence of the sampling algorithms. In terms
of the number of iterations per second, again RM was the fastest and OOS
the second fastest with similar performance as in Goofspiel. UCT achieved
slightly less (1.7× 105 iterations per second), and Exp3 only 2.6× 104 itera-
tions. The results are depicted in Figure 15 for the smaller, 4× 4 graph and
4 moves for each player (note again the logarithmic horizontal scale). The
starting positions were selected such that there does not exist a pure NE
strategy in the game. The results again show that OOS is overall the fastest
out of all sampling algorithms. During the first iterations, RM preforms sim-

0.0

0.5

1.0

1.5

2.0

0.5 1.0 10.0 100.0 500.0
Time [s]

E
rr

or
 [−

]
Algorithm

MCTS−UCT
MCTS−EXP3
MCTS−RM
OOS

BI
DO

BIαβ
DOαβ

Figure 15: Convergence of the sampling algorithms on a pursuit-evasion game, on a 4× 4
graph, with depth set to 4. The vertical lines correspond to the computation times for the
exact algorithms.

ilarly, however, OOS is able to maintain its convergence rate, and RM starts
converging more slowly. UCT again converges to an exploitable strategy with
error 1.16 at best in the time limit of 500 seconds (C = 2). Finally, Exp3
is converging even more slowly than in Goofspiel. The main difference be-
tween the games is the size of the branching factor for the second player (the
pursuer controls two simultaneously moving units), which can cause more
difficulties for the sampling algorithms to estimate good strategies.

As before, the vertical lines represent the times for the exact algorithms.
In a pursuit-evasion game of this setting, DOαβ is slightly faster and finishes
first in 2.77 seconds, following by BIαβ (2.89 seconds), DO (5.48 seconds),
and BI (12.5 seconds).

6.4.3. Oshi-Zumo

Many instances of the Oshi-Zumo game have Nash equilibria in pure
strategies regardless of the type of the utility function. Although this does
not hold for all the instances, the sizes of the subgames with pure NE are
rather large and cause a dramatic computation speed-up for both algorithms
using the serialized alpha-beta search. If the game does not have equilibria
in pure strategies, the mixed strategies are still required only near the root
node and large end-games are solved using alpha-beta search. Note that
this is different than in the pursuit-evasion games, where mixed strategies
were necessary close to the end of the game tree. Figure 16 depicts the

10−1

100

101

102

103

104

105

10 12 14 16 18
Coins [−]

T
im

e
[s

] Algorithm
BI

BIαβ
DO

DOαβ

(a)

10−1

100

101

102

103

104

105

10 12 14 16 18
Coins [−]

T
im

e
[s

] Algorithm
BI

BIαβ
DO

DOαβ

(b)

Figure 16: Running times of the exact algorithms on Oshi-Zumo with K set to 4 and an
increasing number of coins: subfigure (a) depicts the results for binary utilities, (b) depicts
the results with point utilities.

results with the parameter K set to 4 and for two different settings of the
utility function6; either win-tie-lose utilities (left subfigure) or point difference
utilities (right subfigure). In both cases, the graphs show the breaking points
when the game stops having an equilibrium in pure strategies (≥ 15 coins
for each player). The advantage of BIαβ and DOαβ algorithms that exploit
the serialized variants of alpha-beta algorithms is dramatic. We can see that
both BI and DO scale rather badly. The algorithms were able to scale up to
13 coins in a reasonable time. For setting with K = 4 and 13 coins, it takes
almost 2 hours for BI to solve the game (the algorithm evaluates 1.5 × 107

nodes) regardless of the utility values. DO improves the performance (the
algorithm evaluates 2.8×106 nodes in 17 minutes for win-tie-lose utilities; the
performance is slightly worse for point utilities: 5×106 nodes in 23 minutes).
Both BIαβ and DOαβ, however, solved a single alpha-beta search on each
serialization finding a pure NE. Therefore, their performance is identical
and it takes around 1.5 seconds to solve the game for both types of utilities.
Although with an increasing number of coins the algorithms BIαβ and DOαβ
need to find a mixed Nash equilibrium, their performance is very similar for
both types of utilities. As expected, the case with point utilities is more
challenging and the algorithms scale worse – for 18 coins both algorithms
solve the game with win-tie-lose utilities in approximately 1 hour (BIαβ in

6We have also performed the same experiments with K set to 3, but the conclusions
were the same as in case K = 4.

0.0

0.5

1.0

1.5

2.0

0.5 1.0 10.0 100.0 500.0
Time [s]

E
rr

or
 [−

]
Algorithm

MCTS−UCT
MCTS−EXP3
MCTS−RM
OOS

BI
DO

BIαβ
DOαβ

0

2

4

6

8

0.5 1.0 10.0 100.0 500.0
Time [s]

E
rr

or
 [−

]

Algorithm
MCTS−UCT
MCTS−EXP3
MCTS−RM
OOS

BI
DO

BIαβ
DOαβ

Figure 17: Convergence of the sampling algorithms on Oshi-Zumo game with 10 coins,
K = 3, and M = 1. The vertical lines correspond to the computation times for the exact
algorithms. (Top) Oshi-Zumo with win-tie-lose utility values; (Bottom) Oshi-Zumo with
point utilities.

50 minutes, DOαβ in 64). It takes the algorithms around 3 hours to solve
the case with point utilities (BIαβ in 191 minutes, DOαβ in 172 minutes).

Turning to the sampling algorithms reveals that the game is difficult to
approximate even in the win-tie-lose setting. Figure 17 depicts the results
for the observed convergence rates of the sampling algorithms for the game
with 10 coins, K set to 3 and the minimum bid set to 1. This is an easy
game for DOαβ and BIαβ with a pure NE and both of these algorithms
are able to solve the game in less than a second (0.73). However, due to a
large branching factor for both players (10 actions at the root node for each

100

101

102

103

104

4 5 6 7
Depth [−]

T
im

e
[s

] Algorithm
BI

BIαβ
DO

DOαβ

(a)

100

101

102

103

104

4 5 6 7
Depth [−]

T
im

e
[s

] Algorithm
BI

BIαβ
DO

DOαβ

(b)

Figure 18: Running times of the exact algorithms on randomly generated games with
increasing depth: subfigure (a) depicts the results with branching factor set to 4 actions
for each player, (b) depicts the results with branching factor 5.

player) all sampling algorithms converge extremely slowly. The performance
of the algorithms in terms of iterations per second is similar to the previous
games, however, OOS is slightly better in this case with 1.9× 105 iterations
per second compared to the RM with 1.6× 105 iterations per second.

As before, OOS is the best converging algorithm, however, in a given time
limit (500 seconds) the reached error was only slightly below 0.3 (0.29). On
the other hand, all of the other sampling algorithms perform significantly
worse – RM ends with error slightly over 1, UCT (C = 2) with 1.50, and
Exp3 with 1.88. This confirms our findings from the previous experiment that
increasing the branching factor slows down the convergence rate. Secondly,
since there is a pure Nash equilibrium in this particular game configuration,
the convergence of the algorithms is also slower since they essentially mix
the strategy during the iterations in order to explore the unvisited parts of
the game tree. Since none of the sampling algorithms can directly exploit
this fact, their performance in offline solving of games like Oshi-Zumo is
not compelling. On the other hand, the existence of pure NE explains the
better performance of UCT compared to Exp3 that is forced to explore more
broadly. Moreover, the convergence takes even more time in the point utility
case, since the range of the utility values is larger. OOS is again the fastest
and converges to error 0.45 within the time limit, RM to 1.41, UCT (C = 4)
to 3.1, and Exp3 to 3.7.

6.4.4. Random Games

In the first variant of the randomly generated games we used games with
utility values randomly drawn from a uniform distribution on [0, 1]. Such
games represent an extreme case, where neither alpha-beta nor the double-
oracle algorithm can save much computation time, since each action can lead
to arbitrarily good or bad terminal states. In these games, BI is typically the
fastest. Even though both BIαβ and DOαβ evaluate marginally fewer nodes
(less than 90%), the overhead of the algorithms (repeated computations of
the serialized alpha-beta algorithm, repeatedly solving linear programs, etc.)
causes a slower run time performance in this case.

However, completely random games are rarely instances that need to
be solved in practice. The situation changes, when we use the intuition of
good and bad moves and thus add correlation to the utility values. Fig-
ure 18 depicts the results for two different branching factors 4 and 5 for each
player and increasing depth. The results show that DOαβ outperforms all
remaining algorithms, although the difference is rather small (still statisti-
cally significant). On the other hand, DO without serialized alpha-beta is
not able to outperform BI. This is most likely caused by a larger number of
undominated actions that forces the double-oracle algorithm to enumerate
most of the actions in each state. Moreover, this is also demonstrated by the
performance of BIαβ that is only slightly better compared to BI.

The fact that serialized alpha-beta is less successful in randomly generated
games is noticeable also when comparing the number of evaluated nodes. For
the case with branching factor set to 4 for both players and depth 7, BI
evaluates almost 1.8 × 107 nodes in almost 3.5 hours, while BIαβ evaluates
more than 1× 107 nodes in almost 3 hours. DO evaluates even more nodes
compared to BIαβ (1.2 × 107) and it is slower compared to both BI and
BIαβ. Finally, DOαβ evaluates 2 × 106 nodes on average and it takes the
algorithm slightly over 80 minutes.

Figure 19 depicts the results for convergence of the sampling algorithms
for a random game with correlated utility values, branching factor set to 4
and depth 5. The number of iterations per second is similar to the situa-
tion in Goofspiel, with Exp3 being the exception able to achieve more than
6.5× 104 iterations per second, which is still the lowest number of iterations.
Interestingly, there is a much less difference between the performance of the
sampling algorithms in these games. Since these games are generally more
mixed (i.e., NE require to use mixed strategies in many states of the games),

0.0

2.5

5.0

7.5

10.0

12.5

0.5 1.0 10.0 100.0 500.0
Time [s]

E
rr

or
 [−

]
Algorithm

MCTS−UCT
MCTS−EXP3
MCTS−RM
OOS

BI
DO

BIαβ
DOαβ

Figure 19: Convergence of the sampling algorithms on a random game with branching
factor 4 and depth 5. The vertical lines correspond to the computation times for the exact
algorithms.

100

102

104

106

5 6 7 8 9
Width [−]

T
im

e
[s

] Algorithm
BI

BIαβ
DO

DOαβ

(a)

100

102

104

106

5 6 7 8 9
Width [−]

T
im

e
[s

] Algorithm
BI

BIαβ
DO

DOαβ

(b)

Figure 20: Running times of the exact algorithms on Tron with increasing width of the
grid graph: subfigure (a) depicts the results with height of the graph set to width− 1, (b)
depicts the results with height = width.

they are much more suitable for the sampling algorithms. OOS can be con-
sidered the winner in this setting, however, the performance of RM is very
similar. Again, since the game is more mixed, Exp3 outperforms UCT in the
longer run. The exploration constant for UCT was set to 12 due to a larger
utility variance in this setting.

0.0

0.5

1.0

1.5

2.0

0.5 1.0 10.0 100.0 500.0
Time [s]

E
rr

or
 [−

]
Algorithm

MCTS−UCT
MCTS−EXP3
MCTS−RM
OOS

BI
DO

BIαβ
DOαβ

Figure 21: Convergence comparison of different sampling algorithms on Tron on grid 5×6.
The vertical lines correspond to the computation times for the exact algorithms.

6.4.5. Tron

Performance of the exact algorithms in Tron is affected by the fact that
pure NE exist in all smaller instances (the results are depicted for two differ-
ent ratios of dimensions of the grid in Figure 20). Therefore, BIαβ and DOαβ
are essentially the same since serialized alpha-beta is able to solve the game.
Moreover, since the size of the game increases dramatically with the increas-
ing size of the grid (the longest branch of the game tree has (0.5 · w · l − 1)
joint actions, where w and l are the dimensions of the grid), the performance
of standard BI is very poor. While BI is able to solve the grid 5 × 6 in 96
seconds, it takes around 30 minutes to solve the 6× 6 grid. By comparison,
DO solves the 6 × 6 instance in 235 seconds, and both BIαβ and DOαβ in
0.6 seconds. BIαβ and DOαβ scale much better and the largest graph these
algorithms solved had size 9× 9 taking almost 2 days to solve.

The size of the game tree in Tron also causes a slow convergence for the
sampling algorithms. This is apparent also in the number of iterations that
is lower than before. OOS is the fastest performing 1.3 × 105 iterations per
second, RM achieves 1.2 × 105, UCT only 8 × 104, and Exp3 is again the
slowest with 7.8 × 104 iterations per second. Figure 21 depicts the results
for the grid 5 × 6. Consistently with the previous results, OOS performs
the best and it is able to converge very close to an exact solution in 300
seconds. Similarly, both RM and Exp3 are again eventually able to converge
to a very small error, however, it takes them more time and in the time limit

they achieve error 0.05, or 0.02 respectively. Finally, UCT (C = 5) performs
reasonably well during the first 10 seconds, where the exploitability is better
than both RM and Exp3. This is most likely due to the existence of pure
NE, however, the length of the game tree prohibits UCT from converging
and the best error the algorithm was able to achieve in the time limit was
equal to 0.68.

6.4.6. Summary of the Offline Equilibrium Computation Experiments

The offline comparison of the algorithms offer several conclusions. Among
the exact algorithms, DOαβ is clearly the best algorithm, since it typically
outperforms all other algorithms (especially in pursuit-evasion games and
random games). Although for smaller games (e.g., Goofspiel with 5 cards)
BIαβ can be slightly faster, this difference is not significant and DOαβ is
never significantly slower compared to BIαβ.

Among the sampling algorithms, OOS is the clear winner since it is often
able to quickly converge to a very small error and significantly outperforms
all variants of MCTS. On the other hand, comparing OOS and DOαβ, the
exact DOαβ algorithm is always faster and it is able to find an exact solu-
tion much faster compared to OOS. Moreover, DOαβ has significantly lower
memory requirements since it is a depth-first search algorithm and does not
use any form of global cache, while OOS iteratively constructs the game tree
in memory.

6.5. Online Search

We now compare the performance of the algorithms in head-to-head
matches in the same games as in the offline equilibrium computation ex-
periments, but we use much larger instances of these games. Each algorithm
has a strictly limited computation time per move set to 1 second. After
this time, the algorithm outputs an action to be played in the current game
state, receives information about the action selected by its opponent, and the
game proceeds to the next state. As described in Section 5, each algorithm
keeps results of previous computations and does not start from scratch in
the next state. We have also performed a large set of experiments with 5
seconds of computation time per move, however, the results are very similar
to the results with 1 second per move. Therefore, we presents the results
with 1 second in detail and only comment on the 5-second results where the
additional time leads to an interesting difference.

We compare all of the approximative sampling algorithms and DOαβ as
a representative of backward induction algorithms, because it was clearly the
fastest algorithm in all of the considered games. Finally, we also include a
random player (denoted RAND) into the tournament to confirm that the
algorithms choose much better strategies than the simple random game play.
We report expected rewards and win rates of the algorithms, in which a tie
counts as half of a win. The parameters of the algorithms are tuned for each
domain separately. We first present the comparison of different algorithms
and we discuss the influence of the parameters in Subsection 6.5.6.

In this subsection, we show cross tables of each algorithm (in each row)
matched up against each competitor algorithm (in each column). Each entry
represents a mean of at least 1000 matches with the half of the width of
the 95% confidence interval show in parentheses, e.g., 52.9(0.3) refers to
52.9% ± 0.3%. The result shown is the win rate for the row player, so as
an example in the standard game of Goofspiel (top of Table 1) DOαβ wins
67.2%±1.4% of games against the random player. All evaluated games except
the pursuit-evasion game are symmetric from the perspective of the first and
the second player. We made even the random games symmetric by always
playing matches on the same game instance in pairs with alternating players’
positions. However, for easier comparison of the algorithms, we mirror the
same results to both fields corresponding to a pair of players in the cross
tables.

6.5.1. Goofspiel

In the head-to-head comparisons, our focus is primarily on the standard
Goofspiel with 13 cards and chance nodes. Additionally, for the sake of
consistency with the offline results, we also evaluate the variant with a fixed
known sequence of cards. The full game has more than 2.4 × 1029 terminal
states and the variant with a fixed sequence has still more than 3.8 × 1019

terminal states. The results are presented in Table 1, where the top table
shows the win rates of the algorithms in the full game and the other two
tables show the win rates and the expected number of points gained by the
algorithms in the game with a fixed point card sequence. The results for
the fixed card sequence are means over 10 fixed random sequences. For
each table, the algorithms were set up to optimize the presented measure
(i.e., win rate or points) and the exploration parameters were tuned to the
values presented in the header of the table.

First, we can see that finding a good strategy in Goofspiel is difficult for

Goofspiel: 13 cards, stochastic sequence of cards, win rate
DOαβ OOS(0.2) UCT(0.6) EXP3(0.3) RM(0.1) RAND

DOαβ • 26.6(2.7) 36.0(2.9) 26.1(2.7) 25.9(2.7) 67.2(1.4)
OOS 73.4(2.7) • 51.2(2.1) 52.5(2.2) 47.5(3.0) 81.4(1.7)
UCT 64.0(2.9) 48.8(2.1) • 55.6(2.1) 49.7(3.0) 77.3(1.8)

EXP3 73.8(2.7) 47.5(2.2) 44.4(2.1) • 41.1(3.0) 86.1(1.5)
RM 74.1(2.7) 52.5(3.0) 50.3(3.0) 58.9(3.0) • 85.2(2.2)

RAND 32.8(1.4) 18.6(1.7) 22.7(1.8) 13.9(1.5) 14.8(2.2) •
Goofspiel: 13 cards, known sequence of cards, win rate

DOαβ OOS(0.3) UCT(0.8) EXP3(0.2) RM(0.1) RAND
DOαβ • 28.2(2.8) 35.0(2.9) 30.1(2.8) 31.5(2.8) 67.2(2.9)

OOS 71.8(2.8) • 46.2(3.0) 51.8(3.0) 49.6(3.0) 83.8(2.3)
UCT 65.0(2.9) 53.8(3.0) • 57.1(2.9) 48.6(2.9) 79.5(2.5)

EXP3 70.0(2.8) 48.2(3.0) 42.9(2.9) • 46.5(3.0) 85.8(2.1)
RM 68.5(2.8) 50.4(3.0) 51.4(2.9) 53.5(3.0) • 84.2(2.2)

RAND 32.8(2.9) 16.2(2.3) 20.5(2.5) 14.2(2.1) 15.8(2.2) •
Goofspiel: 13 cards, known sequence of cards, point utilities

DOαβ OOS(0.3) UCT(0.8) EXP3(0.2) RM(0.1) RAND
DOαβ • -7.74(0.94) -8.89(0.91) -6.45(0.94) -7.88(0.96) 6.67(0.99)

OOS 7.74(0.94) • 1.19(0.78) 3.27(0.82) 0.35(0.76) 14.42(0.96)
UCT 8.89(0.91) -1.19(0.78) • 1.72(0.80) -1.94(0.73) 13.30(1.00)

EXP3 6.45(0.94) -3.27(0.82) -1.72(0.80) • -5.02(0.79) 14.79(0.97)
RM 7.88(0.96) -0.35(0.76) 1.94(0.73) 5.02(0.79) • 14.20(0.98)

RAND -6.67(0.99) -14.42(0.96) -13.30(1.00) -14.79(0.97) -14.20(0.98) •

Table 1: Results of head-to-head matches in Goofspiel variants with exploration parameter
settings indicated in the table headers.

all the algorithms. This is noticeable from the results of the RAND player,
that performs reasonably well (RAND typically loses almost every match in
all the remaining game domains). Next, we analyze the results of the DOαβ
algorithm compared to the sampling algorithms. The results show that even
though DOαβ uses a domain-specific heuristic evaluation function, it does
not win significantly against any of the sampling algorithms that do not
use any domain knowledge. The difference is always statistically significant
with a large margin. When optimizing win percentage, DOαβ loses the least
against UCT while in optimizing the expected reward, UCT performs signifi-
cantly best. The performance of the other sampling algorithms is very similar
against DOαβ, with Exp3 winning the least in the reward optimization.

We compare the sampling algorithms in the game variants in the order
of the presented tables. The differences in the performance of the sampling
algorithms are relatively small between each other. They are more noticeable
mainly against the weaker players, which are outperformed by all sampling
algorithms. In the game with stochastic point card sequence, OOS, UCT and
RM make approximately 10× 103 iterations in the 1 second time limit in the
root of the game. Exp3 is slightly slower with 8 × 103 iterations. The best

algorithm in this game variant is RM, which wins against all other sampling
algorithms and wins most often against DOαβ and Exp3. The second best
algorithm is OOS, which loses only against RM and Exp3 is the weakest
algorithm losing against all other sampling algorithms.

The sampling algorithms in the second game variant (without chance)
perform the same number of samples as in the first variant, with the exception
of UCT, which performs 12× 103 iterations per second. However, they each
build a considerably deeper search tree, since the game tree is less wide. The
exploration parameters were tuned to slightly larger numbers, which indicate
that more exploration is beneficial in smaller games. The results are similar
to the previous game variant. RM is still winning against all opponents, but
it is not able to win more often against weaker players, which is consistent
with playing close to a Nash equilibrium. UCT loses only against RM in this
variant and it significantly outperforms OOS and Exp3. This indicates that
UCT was able to better focus on the relevant part of the smaller game, which
is supported also by a larger number of simulations, which can be caused by
shorter random simulations after leaving the part of the search tree stored in
memory.

When the players optimize the expected point difference, the differences
between the algorithms are larger. We can see that RM and OOS perform
significantly better than UCT and Exp3. OOS wins against all opponents
and RM loses only against OOS. An important reason behind the decrease
of the performance of Exp3 is that after normalizing the reward to unit
interval, the important differences in values for reasonably good strategies
become much smaller, which slows down the learning of the algorithm. UCT
compensates the range of the rewards by the choice of the exploration param-
eter, but different nodes would benefit from different exploration parameters,
which causes more inefficiencies with more variable rewards. An important
advantage of OOS and RM is that their behavior is practically independent
of the utility range.

In summary, RM is the only algorithm that did not lose significantly
against any other sampling algorithm in any of the game variants and it often
wins significantly. Exp3 is overall the weakest algorithm, losing to all other
algorithms in all Goofspiel variants. Interestingly, Exp3 always performs the
best against the random player, which indicates a slower convergence against
more sophisticated strategies.

Oshi-Zumo: 50 coins, K = 3, win rate
DOαβ OOS(0.2) UCT(0.4) EXP3(0.8) RM(0.1) RAND

DOαβ • 79.2(2.5) 77.6(2.6) 84.8(2.2) 84.0(2.3) 98.8(0.5)
OOS 20.9(2.5) • 27.7(2.6) 57.1(2.1) 51.2(2.1) 98.9(0.4)
UCT 22.4(2.6) 72.3(2.6) • 83.0(2.0) 70.3(2.6) 99.9(0.2)

EXP3 15.2(2.2) 42.9(2.1) 17.0(2.0) • 44.5(2.8) 98.5(0.5)
RM 16.0(2.3) 48.8(2.1) 29.6(2.6) 55.5(2.8) • 99.0(0.4)

RAND 1.2(0.5) 1.1(0.4) 0.1(0.2) 1.5(0.5) 1.0(0.4) •
Oshi-Zumo: 50 coins, K = 3, point utilities

DOαβ OOS(0.2) UCT(0.4) EXP3(0.8) RM(0.1) RAND
DOαβ • 2.33(0.19) 2.27(0.20) 3.62(0.10) 2.85(0.17) 3.65(0.09)

OOS -2.33(0.19) • -0.53(0.19) 3.46(0.10) 0.25(0.20) 3.87(0.05)
UCT -2.27(0.20) 0.53(0.19) • 3.68(0.07) 0.58(0.17) 3.93(0.02)

EXP3 -3.62(0.10) -3.46(0.10) -3.68(0.07) • -3.53(0.09) 1.31(0.17)
RM -2.85(0.17) -0.25(0.20) -0.58(0.17) 3.53(0.09) • 3.87(0.04)

RAND -3.65(0.09) -3.87(0.05) -3.93(0.02) -1.31(0.17) -3.87(0.04) •
Oshi-Zumo: 50 coins, K = 3, win rate, evaluation function

DOαβ OOS(0.3) UCT(0.8) EXP3(0.8) RM(0.1) RAND
DOαβ • 63.0(2.1) 11.8(1.3) 52.9(2.2) 61.7(2.1) 98.6(0.5)

OOS 37.0(2.1) • 24.8(1.9) 33.4(2.0) 43.6(2.1) 99.6(0.3)
UCT 88.2(1.3) 75.2(1.9) • 80.5(1.7) 71.1(2.0) 99.8(0.2)

EXP3 47.1(2.2) 66.6(2.0) 19.5(1.7) • 58.7(2.1) 98.7(0.5)
RM 38.3(2.1) 56.4(2.1) 28.9(2.0) 41.3(2.1) • 99.6(0.3)

RAND 1.4(0.5) 0.4(0.3) 0.2(0.2) 1.3(0.5) 0.4(0.3) •

Table 2: Results of head-to-head matches in Oshi-Zumo variants with exploration param-
eter settings indicated in the header. In the first two tables only DOαβ uses a heuristic
evaluation function and in the third table all algorithms use the evaluation function.

6.5.2. Oshi-Zumo

In Oshi-Zumo, we use the setting with 50 coins, 2 · 3 + 1 = 7 fields of the
board (i.e., K = 3), and the minimal bet of 1. The size of the game is large
with strictly more than 1015 terminal states and 50 actions for each player
in the root.

The results are depicted in Table 2. As in the case of Goofspiel, we show
the results for both the win rate as well as the point utilities. Moreover,
our evaluation function in Oshi-Zumo is much more accurate than the one in
Goofspiel and DOαβ is clearly outperforming all sampling algorithms when
they do not use any domain specific knowledge. Therefore we also run exper-
iments where the sampling algorithms also use an evaluation function instead
of random rollout simulations.

In the offline experiment (Figure 17), none of the sampling algorithms
were able to converge anywhere close to the equilibrium in a short time.
Moreover, the game used in the offline experiments was orders of magnitude
smaller (there were only 10 coins for each player). In spite of the negative
results in the offline experiments, all sampling algorithms are able to find a

DOαβ OOS(0.1) UCT(1.5) EXP3(0.6) RM(0.3) RAND
DOαβ • 57.4(2.9) 49.6(2.8) 53.4(2.8) 51.3(2.8) 88.8(1.8)

OOS 42.6(2.9) • 33.5(2.5) 43.5(2.7) 42.5(2.8) 85.0(2.4)
UCT 50.4(2.8) 66.5(2.5) • 67.4(2.5) 55.7(2.6) 95.9(1.2)

EXP3 46.6(2.8) 56.5(2.7) 32.6(2.5) • 42.9(2.7) 96.0(1.1)
RM 48.7(2.8) 57.5(2.8) 44.3(2.6) 57.1(2.7) • 93.1(1.5)

RAND 11.2(1.8) 15.0(2.4) 4.1(1.2) 4.0(1.1) 6.9(1.5) •

Table 3: Win-rate in head-to-head matches of Random games with 5 actions for each
player in each move and depth of 15 moves.

reasonably good strategy. UCT is clearly the strongest sampling algorithm
in all variants. In the win rate setting, the strongest opponent of UCT among
the sampling algorithms is RM (UCT wins 70.3% of games), followed by OOS
performing only slightly worse (UCT wins 72.3% of games). Finally, Exp3
is clearly the weakest of all sampling algorithms. A possible reason may be
that Exp3 manages to perform around 2.5× 103 iterations per second in the
root, while the other algorithms perform ten times more. This is caused by
the quadratic dependence of its computational complexity on the number of
actions, which is relatively high in this game. The situation remains similar
when the algorithms optimize the point utilities.

We now turn to the experiments with the evaluation function, the results
of which are presented in the third table of Table 2. The results show that
the quality of play of all sampling algorithms is significantly improved. With
this modification, UCT already significantly outperforms all algorithms in-
cluding DOαβ. DOαβ is the second best and still winning over the remaining
sampling algorithms. Exp3 benefits from the evaluation function more than
OOS and RM, which are relatively weaker with the evaluation function.

The reason why UCT performs well in this game is that the game mostly
requires pure strategies, rather than precise mixing between multiple strate-
gies (see Subsection 6.2). UCT is able to quickly disregard other actions, if
a single action is optimal. So, the evaluation function generally helps every
algorithm, but can make significant changes in ranking of the algorithms.

6.5.3. Random Games

The next set of matches was played on 10 different random games with
each player having 5 actions in each stage and depth 15. Hence, the game has
more than 9.3×1020 terminal states. In order to compute the win-rates as in
the other games, we use the sign of the utility value defined in Subsection 6.2.
The results are presented in Table 3.

Tron: 13x13 grid, win rate
DOαβ OOS(0.1) UCT(0.6) EXP3(0.5) RM(0.1) RAND

DOαβ • 78.2(2.0) 53.8(2.0) 66.6(2.3) 65.0(2.2) 98.6(0.5)
OOS 21.8(2.0) • 29.4(2.2) 46.1(1.8) 38.0(2.2) 97.2(0.5)
UCT 46.2(2.0) 70.6(2.2) • 64.8(2.2) 57.0(2.1) 98.0(0.6)

EXP3 33.4(2.3) 53.9(1.8) 35.1(2.2) • 44.3(2.3) 97.7(0.5)
RM 35.0(2.2) 62.0(2.2) 43.0(2.1) 55.7(2.3) • 97.6(0.9)

RAND 1.4(0.5) 2.9(0.5) 2.0(0.6) 2.3(0.5) 2.4(0.9) •
Tron: 13x13 grid, win rate, evaluation function

DOαβ OOS(0.1) UCT(2) EXP3(0.1) RM(0.2) RAND
DOαβ • 50.2(1.3) 42.7(1.5) 53.1(1.6) 46.3(1.6) 98.8(0.4)

OOS 49.8(1.3) • 53.0(0.9) 54.7(0.8) 52.2(0.8) 97.9(0.4)
UCT 57.3(1.5) 47.0(0.9) • 49.7(0.5) 46.7(0.6) 98.8(0.3)

EXP3 46.9(1.6) 45.3(0.8) 50.3(0.5) • 45.8(0.6) 98.2(0.4)
RM 53.7(1.6) 47.8(0.8) 53.3(0.6) 54.2(0.6) • 98.5(0.4)

RAND 1.2(0.4) 2.1(0.4) 1.2(0.3) 1.8(0.4) 1.5(0.4) •

Table 4: Win-rate in head-to-head matches of Tron with random simulations (top) and
evaluation function in the sampling algorithms (bottom).

The clearly best performing algorithm in this domain is UCT that sig-
nificantly outperforms the other sampling algorithms, and ties with DOαβ
that uses a rather strong evaluation function. This is true even though UCT
performs around 11 × 103 iterations per second, which is the least form all
sampling algorithms. DOαβ wins over all other sampling algorithms. OOS
has the weakest performance in spite of good convergence results in the of-
fline settings (see Figure 19). The reason is the quickly growing variance
and decreasing number of samples in longer games, which we discuss in more
details in Subsection 6.6. OOS performs 20× 103 iterations per second and
only around 3× 103 of them actually update the regrets in the root. All the
other iterations return with zero tail probability (xi) in the root, which leads
to no change in the regret values.

6.5.4. Tron

The large variant of Tron in our evaluation was played on an empty 13×13
board. The branching factor of this game is up to 4 for each player and its
depth is up to 83 moves. This variant of Tron has more than 1021 terminal
states7. The results are shown in Table 4.

The evaluation function in Tron approximates the situation in the game
fairly well; hence, DOαβ strongly outperforms all other algorithms when

7The number only estimates the number of possible paths when both players stay on
their half of the board.

they do not use the evaluation function (top). Its win-rates are even higher
with more time per move. UCT is the strongest opponent for DOαβ – UCT
loses 53.8% of matches and wins over all other sampling algorithms in mutual
matches. This is again because of the low need for mixed strategies in this
game (see Subsection 6.2). Again, OOS performs the worst despite its clearly
fastest convergence on the smaller game variant in the offline setting due to
the great depth of the game tree in this setting. It won only 21.8% matches
against DOαβ and 29.4% matches against UCT. In this game, the variance
of the regret updates is likely not the key factor, since it is between 20 and
40. However, only 1×103 out of 12×103 iterations per second update regrets
in the root.

The good performance of DOαβ is consistent with the previous analysis in
Tron where the best-performing algorithms, including the winner of the 2011
Google AI Challenge, were based on depth-limited minimax searches [84, 57].

As in the case of Oshi-Zumo, we also run the matches with the eval-
uation function in place of the random rollout simulation in the sampling
algorithms. We present the results in the second table of Table 4. Using
the evaluation function improves the performance of all sampling algorithms
against DOαβ and it decreases the differences in performance between each
algorithm. The difference is most notable for OOS, since using the evalua-
tion function strongly reduces the length of the game. In this setting, both
RM and UCT outperform DOαβ. Interestingly, while UCT performs quite
well against DOαβ and wins 57.3% of matches, it is not winning against
any other sampling algorithm. Even Exp3 which loses against all other algo-
rithms manages to slightly outperform it. OOS practically ties with DOαβ,
but it wins significantly against all sampling algorithms. RM loses to OOS,
but wins significantly against all other algorithms.

6.5.5. Pursuit-Evasion Game

Finally, we compare the algorithms on the pursuit-evasion game on an
empty 10 × 10 grid with 15 moves time limit and 10 different randomly
selected initial positions of the units. The branching factor is at most 12,
causing the number of terminal states to be less than 1016.

The results in Table 5 show that the game is strongly biased towards the
first player, which is the evader. The self-play results on the diagonal show
that DOαβ won over 81.5% matches against itself as the evader. Adding more
computational time typically improves the play of the pursuer in self-play.
This is caused by a more complex optimal strategy of the pursuer. This

DOαβ OOS(0.3) UCT(0.8) EXP3(0.5) RM(0.1) RAND
DOαβ 81.5(2.4) 89.1(1.9) 61.8(3.0) 91.2(1.8) 77.2(2.6) 100.0(0.0)

OOS(0.2) 77.5(2.6) 91.2(1.8) 57.8(3.1) 85.8(2.2) 79.3(2.5) 99.8(0.3)
UCT(1.5) 77.1(2.6) 94.2(1.4) 57.6(3.1) 88.9(1.9) 82.2(2.4) 100.0(0.0)

EXP3(0.2) 65.1(3.0) 92.1(1.7) 53.1(3.1) 83.9(2.3) 75.1(2.7) 99.8(0.3)
RM(0.1) 81.8(2.4) 92.7(1.6) 58.5(3.1) 86.7(2.1) 78.6(2.5) 99.8(0.3)

RAND 5.1(1.4) 28.8(2.8) 5.8(1.4) 1.7(0.8) 3.1(1.1) 71.1(2.8)

Table 5: Win-rate in head-to-head matches of pursuit-evasion games with time limit of 15
moves and 10 × 10 grid board. The evader is the row player and pursuer is the column
player.

optimal strategy is more difficult to find due to a larger branching factor
(recall that the pursuer controls two units) and the requirement for a more
precise execution (a single move played incorrectly can cause an escape of
the evader and can result in losing the game due to the time limit).

We first look at the differences in the performance of the algorithms on
the side of the pursuer, which are more consistent. We need to compare the
different columns, in which the pursuer tries to minimize the values. The
clear winner is UCT that generally captures the evaders in approximately
40% of the matches. The second best pursuer is DOαβ and the weakest is
OOS that captures the non-random opponents in less than 10% of the cases.

The situation is less clear for the evader. Different algorithms performed
best against different opponents. UCT was the best against OOS and RM,
but DOαβ was the best against UCT and Exp3. Exp3 is the weakest evader.

6.5.6. Parameter Tuning

The exploration parameters can have a significant influence on the per-
formance of the algorithm. We choose the parameters individually for each
domain by running mutual matches with a pre-selected fixed pool of oppo-
nents. This pool includes DOαβ and each of the sampling algorithms with
one setting of the parameter selected based on the results of the offline ex-
periments. These values are 0.6 for OOS, 2 for UCT, 0.2 for Exp3 and 0.1
for RM. For each domain, we created a table such as the two examples in
Table 6. We then picked the parameter for the final cross tables presented
above as the parameter with the best mean performance against all the fixed
opponents.

In the presented variant of Goofspiel, the choice of the exploration pa-
rameter has a rather large influence on the performance against DOαβ. This
is often the case for weaker players. The selection of the exploration param-
eter for OOS has little effect on the mean performance, with a noticeable

Goofspiel: 13 cards, stochastic point card sequence
DOαβ OOS(0.6) UCT(2) EXP3(0.2) RM(0.1) Mean

OOS 0.5 73.8(2.7) 50.2(3.0) 54.4(4.2) 54.9(3.0) 49.4(3.0) 56.54
OOS 0.4 72.0(2.8) 50.5(3.0) 56.4(4.2) 54.1(3.0) 47.5(3.0) 56.1
OOS 0.3 73.0(2.7) 47.6(3.0) 58.4(4.2) 54.3(3.0) 48.0(3.1) 56.26
OOS 0.2 73.5(2.7) 50.2(3.0) 58.7(4.2) 54.3(3.0) 47.9(3.0) 56.92
OOS 0.1 70.2(2.8) 47.4(3.1) 53.4(4.3) 48.6(3.0) 43.9(3.0) 52.7
UCT 1.5 52.2(3.1) 45.4(3.0) 52.4(3.2) 53.9(3.9) 39.4(4.6) 48.66
UCT 1 52.5(3.0) 49.9(3.0) 58.3(3.2) 56.1(3.8) 43.1(4.6) 51.98
UCT 0.8 52.5(3.0) 51.1(3.0) 60.8(3.2) 59.7(3.8) 46.8(4.7) 54.18
UCT 0.6 54.2(3.0) 53.9(3.0) 61.2(3.1) 62.3(3.8) 46.6(4.7) 55.64
UCT 0.4 58.6(3.0) 54.9(3.0) 61.6(3.1) 58.6(3.8) 49.5(4.8) 55.04
EXP3 0.5 77.1(2.6) 42.6(3.0) 44.4(3.0) 47.4(3.0) 40.1(3.0) 50.32
EXP3 0.4 76.2(2.6) 44.8(3.0) 48.4(3.0) 49.5(3.0) 39.5(3.0) 51.68
EXP3 0.3 73.2(2.7) 44.5(3.0) 51.8(3.0) 51.1(3.0) 41.0(3.0) 52.32
EXP3 0.2 73.5(2.7) 47.2(3.0) 47.6(3.0) 50.0(3.0) 41.3(3.0) 51.92
EXP3 0.1 71.2(2.8) 44.9(3.0) 48.9(3.0) 51.2(3.0) 40.9(3.0) 51.42
RM 0.5 77.7(2.5) 44.9(3.0) 43.9(3.0) 46.9(3.0) 42.4(3.0) 51.16
RM 0.3 73.2(2.7) 49.3(3.0) 57.9(2.9) 53.9(3.0) 48.5(3.0) 56.56
RM 0.2 70.8(2.8) 50.7(3.0) 63.8(2.9) 57.8(3.0) 48.2(3.0) 58.26
RM 0.1 74.0(2.7) 54.1(3.0) 61.2(2.9) 58.1(3.0) 51.2(3.0) 59.72
RM 0.05 74.5(2.7) 51.6(3.0) 60.1(2.9) 59.0(3.0) 49.0(3.1) 58.84

Oshi-Zumo: 50 coins, K = 3, win rate, evaluation function
DOαβ OOS(0.6) UCT(2) EXP3(0.2) RM(0.1) Mean

OOS 0.5 35.3(2.9) 50.9(3.6) 28.5(3.3) 54.9(3.6) 43.7(3.5) 42.66
OOS 0.4 35.0(2.9) 56.0(3.6) 26.6(3.2) 56.1(3.6) 42.6(3.6) 43.26
OOS 0.3 36.5(3.0) 57.8(3.5) 27.7(3.2) 55.7(3.6) 44.8(3.6) 44.5
OOS 0.2 35.0(2.9) 53.1(3.6) 26.8(3.2) 54.1(3.6) 41.4(3.5) 42.08
OOS 0.1 34.6(2.9) 55.6(3.6) 24.1(3.1) 56.2(3.6) 43.0(3.6) 42.7
UCT 1.5 83.2(2.2) 74.0(3.8) 79.1(2.9) 87.4(2.9) 70.6(3.9) 78.86
UCT 1 83.8(2.1) 74.8(3.7) 81.4(2.7) 89.8(2.6) 68.8(4.0) 79.72
UCT 0.8 86.5(2.0) 77.9(3.6) 77.1(3.0) 89.2(2.7) 74.1(3.8) 80.96
UCT 0.6 89.4(1.8) 75.7(3.7) 54.9(3.9) 90.0(2.6) 74.1(3.7) 76.82
UCT 0.4 75.8(2.6) 75.0(3.7) 31.4(3.7) 89.8(2.6) 70.6(3.9) 68.52
EXP3 0.9 47.8(3.1) 68.2(2.8) 23.1(2.4) 67.2(2.8) 55.2(2.8) 52.3
EXP3 0.8 46.9(3.1) 68.4(3.6) 23.0(3.1) 74.2(3.4) 61.5(3.7) 54.8
EXP3 0.6 42.5(3.1) 67.6(3.7) 20.4(3.1) 65.4(3.7) 59.4(3.8) 51.06
EXP3 0.5 38.7(3.0) 60.9(3.8) 15.1(2.7) 64.7(3.7) 52.9(3.9) 46.46
EXP3 0.4 35.9(3.0) 57.5(3.9) 17.5(3.0) 64.1(3.8) 54.9(3.9) 45.98
RM 0.5 44.5(3.0) 41.1(3.5) 31.7(3.3) 49.4(3.6) 34.3(3.3) 40.2
RM 0.3 42.8(3.0) 52.1(3.5) 33.8(3.4) 61.2(3.5) 43.7(3.5) 46.72
RM 0.2 41.8(3.0) 55.7(3.6) 30.7(3.3) 59.2(3.5) 46.4(3.6) 46.76
RM 0.1 37.0(2.9) 58.1(3.5) 34.9(3.4) 57.6(3.6) 54.1(3.6) 48.34
RM 0.05 36.4(3.0) 59.6(3.5) 29.7(3.3) 59.3(3.5) 51.1(3.6) 47.22

Table 6: Sample parameter tuning tables for Goofspiel with stochastic point cards sequence
and Oshi-Zumo.

drop in performance for 0.1. In UCT, less exploration is generally better,
but the sudden drop of performance against Exp3 causes the optimum to be
at 0.6. In Exp3, the optimal exploration parameter against DOαβ would be
even greater than 0.5, while the optimum against OOS would be 0.2. These
kinds of inconsistencies are common with the Exp3 algorithm. In the mean

over all opponents, the optimum is 0.3. With RM, the optimal exploration
parameter against individual opponents stays around 0.1 and it is clearly the
best value in the mean.

Parameter selection is generally more important when facing weaker play-
ers. The differences are more noticeable in matches against other algorithms,
but since the optimal parameters vary depending on the different opponents,
the mean performance presented in the last column does not vary much. OOS
is consistently the least sensitive to different parameter settings, while the
performance differences in the other algorithms from changing exploration
strongly depends on the specific domains.

The differences between various parameter settings are larger in smaller
games and mainly if an evaluation function is used. Consider the results for
Oshi-Zumo in Table 6. For OOS, the exploration parameter of 0.3 is consis-
tently the best against all opponents, with the exception of Exp3, which loses
slightly more to OOS with exploration 0.4. However, the difference is far from
significant even after 1000 matches. The differences in performance of UCT
with different parameters are more often statistically significant. Overall,
the best parameter is 0.8, even though the performance is significantly bet-
ter against DOαβ with smaller exploration and against UCT(2) with higher
exploration. The best performance for Exp3 was surprisingly achieved with
a very high exploration. The best of the tested values was 0.8, which means
that 80% of the time, the next action to sample is selected randomly re-
gardless of the collected statistics about move qualities. The higher values
were consistently better for all opponents. RM seems to be quite sensitive
to the parameter choice in this domain and the results for specific opponents
are more inconclusive than for the other algorithms. When playing DOαβ,
RM wins 7% more matches with parameter 0.3 than with the overall optimal
0.1. On the other hand, when playing OOS, an even smaller parameter value
would be preferable.

The presented parameter tuning tables are representative of the behavior
of the algorithms with different parameters. The choices of the optimal
parameters generally depend much more on the domain than the selected
opponent, but in some cases the optimal choice for one opponent is far from
the optimum for another opponent. Especially with Exp3 and UCT, very
different parameters are optimal for different domains. While in the presented
results in Oshi-Zumo with evaluation function, 0.8 is best for Exp3, in Tron
with evaluation function, the optimal parameter for Exp3 is 0.1. The range
of optimal parameters is much smaller for OOS and RM, which were always

between 0.1 and 0.3. This can be a notable advantage for playing previously
unknown games without a sufficient time to tune the parameters for the
specific domain.

6.5.7. Summary of the Online Search Experiments

Several conclusions can be made from the head-to-head comparisons of
the algorithms in larger games. First, the fast convergence and low ex-
ploitability of OOS in the smaller variants of the games is not a very good
predictor of its performance in the online setting. OOS was often not the
best algorithm in the online setting. In random games and Tron without the
evaluation function, it was the worst performing algorithm. We discuss the
possible reasons in detail in Subsection 6.6.

Second, DOαβ with a good evaluation function often wins over the sam-
pling algorithms without a domain specific knowledge. This is not the case
with a weaker evaluation function, as we can see in Goofspiel. Moreover,
when the sampling algorithms are allowed to use the evaluation functions,
DOαβ is outperformed by UCT in both domains tested with evaluation func-
tion and also by RM in Tron. Using a good evaluation function instead of
random simulations helps all sampling algorithms, but the amount of im-
provement is different for individual algorithms in different domains.

Third, the novel RM and OOS algorithms have proven efficient in a wider
range of domains. Besides Goofspiel used for evaluating earlier versions of
the algorithms in [11], RM showed strong performance in random games and
both RM and OOS were the best performing algorithms in Tron with the
evaluation function. These algorithms did not exploit the weaker opponents
the most but often won against all other competitors. A notable advantage
of these algorithms is a lower sensitivity for the parameter tuning, since they
perform well in a wide range of domains with similar exploration parameters.

Fourth, when the algorithms have five times more time for finding a move
to play, the differences between win rates of the sampling algorithms get
smaller. Longer thinking time also has the same effect on parameter tuning
and it also significantly improves the performance of the sampling algorithms
against backward induction. This is expected, since the difference is too small
for the DOαβ algorithm to reach a greater depth, while it is sufficient for the
sampling algorithms to execute five times more iterations improving their
strategy.

Finally, the performance of Exp3 is the weakest in general. Its main prob-
lems are its larger computational complexity and problematic normalization

for wider ranges of payoffs. Exp3 was significantly worse than other algo-
rithms in both domains where we evaluated the point difference optimization
and it performs an order of magnitude fewer iterations in Oshi-Zumo, com-
pared to all other sampling algorithms.

6.6. Online Outcome Sampling versus Regret Matching

Given the similar nature of OOS and RM, one might wonder why RM
typically performs better than OOS in online search, despite OOS being the
only algorithm with provable convergence properties and the fastest converg-
ing algorithm in the offline setting. In this subsection, we investigate this
phenomenon and present the results of additional experiments.

We need to look at the convergence properties of OOS, which is essentially
an application of outcome sampling MCCFR. From the convergence bound of
outcome sampling MCCFR presented in [86], after T iterations the strategy
produced by the algorithm is an ε-Nash equilibrium with probability 1 − p
and

ε ≤ O

(
∆̃i|S|√
T

+

√
Var

pT
+

Cov

p

)
,

where ∆̃i is determined by the structure of the game, and Var and Cov
are the maximal variance and covariance of the differences between the exact
value of a regret of an action and its estimate computed based on the selected
sample (rt(s, a)− r̃t(s, a)) over all states, actions, and time steps. Computing
these quantities exactly is prohibitively expensive, and since the scale of
the exact regrets is bounded by a relatively small range of utilities, we can
estimate the variance of the difference by the variance of the sampled regrets,
which has often a very large range due to the importance sampling correction
(see Section 4.5). We measure the estimate V̂ar = Var[maxa∈A(s) r̃

t(s, a)] in
the root of the games, since they have the largest range of possible values
of r̃t(s, a). Regret matching also computes a quantity similar to r̃t(s, a).
The only difference is that they are not counterfactual, i.e., they take into
account only the value of the current sample and not the expected value of
the strategy used throughout the entire game. We show these variances for
Goofspiel(13), OZ(50,3,1), and Tron(13, 13) in Table 7.

The results show that the variance of OOS is significantly higher than
in case of RM. As such, even though RM may be introducing some kind of
bias by bootstrapping value estimates from its own subgame, when there are
so few samples this trade-off may be worthwhile to avoid the uncertainty

Game Run TOOS V̂arOOS TRM V̂arRM

Goofspiel(13) 1 12, 582 32, 939.94 11, 939 283.03
Goofspiel(13) 2 13, 888 26, 737.95 7, 160 359.96
Goofspiel(13) 3 13, 906 27, 283.47 7, 897 552.24

OZ(50,3,1) 1 34, 900 1, 010.73 25, 654 9.19
OZ(50,3,1) 2 40, 876 1, 225.89 26, 719 7.93
OZ(50,3,1) 3 40, 306 1, 016.42 26, 121 7.99
Tron(13,13) 1 11, 222 40.23 11, 634 0.84
Tron(13,13) 2 12, 526 35.91 11, 134 0.83
Tron(13,13) 3 13, 000 22.23 10, 075 0.75

Table 7: Measure of variances of estimated regret quantities in OOS and Regret Matching
at the root of each game. T is the number of iterations each algorithm runs for, and Run
marks the run number (instance).

introduced by the variance. This problem is not apparent in the smaller
games, because the higher probability of sampling individual terminal his-
tories causes smaller variance and OOS performs enough samples to make
the regret estimates sufficiently close to the true values. For example, in
Goofspiel(5) used for offline convergence experiments, OOS performs ap-
proximately 2 × 105 iterations per second and the variance is only around
350.

7. Conclusion and Future Research

In this paper, we provide an extensive analysis of algorithms for solving
and playing zero-sum extensive-form games with perfect information and
simultaneous moves. We describe a collection of exact algorithms based
on backward induction as well as a collection of Monte Carlo tree search
algorithms including our novel algorithms DOαβ, BIαβ, SM-OOS and SM-
MCTS with regret matching selection function.

We empirically compare the performance of these algorithms on six sub-
stantially different games in two different settings. In the offline equilibrium
computation setting, we show that our novel algorithm based on backward
induction, DOαβ, is able to prune large parts of the search space. In most
games, DOαβ is several orders of magnitude faster than the classical back-
ward induction and it is never significantly outperformed by any of its com-
petitors. The only benefit of the sampling algorithms in the offline setting is
a to get a rough approximation of the equilibrium solution in a short time.
Their results are often inconsistent with short computation times. Given

enough time, the results clearly show that SM-OOS achieves the fastest
convergence to a Nash equilibrium. Finally, our offline experiments also
explained different behavior reported in variants of SM-MCTS with UCT
selection. We have shown that adding randomization to tie-breaking rules
can significantly improve the performance of this algorithm.

The success in the offline equilibrium computation is, however, not a
very good indicator of the game playing performance in the online setting
of head-to-head matches. First of all, the sizes of the games used for online
experiments are too large for exact algorithms to be applicable without a
domain-specific evaluation function. Performance of the representative of
the exact algorithms, DOαβ, depends heavily on the accuracy of the used
evaluation function. Secondly, in spite of the fastest convergence of SM-
OOS among the sampling algorithms, SM-OOS does not always perform
well in the online game playing. This is mainly due to the large variance of
the regret updates that increases significantly in these large games. Among
the remaining sampling algorithms, SM-MCTS based on regret matching is
often very good, but sometimes it was outperformed by SM-MCTS with UCT
selection, especially in games that require less randomized strategies.

Our work opens several interesting directions for future research. After
introducing a strong pruning algorithm, it is of interest to formally study
the limitations of pruning for this class of games, similarly to the theory
developed for games with sequential moves. Future work could show if these
pruning techniques can be substantially improved or if they are in some sense
optimal. The main prerequisite is, however, estimating the expected number
of iterations of the double-oracle algorithms for single step matrix games,
which still remains an open problem. Furthermore, running large head-to-
head tournaments for evaluating the game playing performance is time con-
suming, sensitive to setting correct parameters, and provides only limited
insights into the performance of the algorithms. Proximity to the Nash equi-
librium is not always a good indicator of game playing performance; hence,
it is interesting to study alternative measures of quality of the algorithms
that would better predict their game-playing performance in large games.

Acknowledgements. This work is funded by the Czech Science Foundation
(grant no. P202/12/2054 and 15-23235S) and the Netherlands Organisation
for Scientific Research (NWO) in the framework of the project Go4Nature,
grant number 612.000.938. Branislav Bošanský also acknowledges support
from the Danish National Research Foundation and The National Science

Foundation of China (under the grant 61361136003) for the Sino-Danish
Center for the Theory of Interactive Computation, and the support from
the Center for Research in Foundations of Electronic Markets (CFEM), sup-
ported by the Danish Strategic Research Council. The access to comput-
ing and storage facilities owned by parties and projects contributing to the
National Grid Infrastructure MetaCentrum, provided under the programme
“Projects of Large Infrastructure for Research, Development, and Innova-
tions” (LM2010005) is highly appreciated.

References

[1] M. Campbell, A. J. Hoane, F. Hsu, Deep Blue, Artificial Intelligence
134 (1-2) (2002) 57–83.

[2] J. Schaeffer, R. Lake, P. Lu, M. Bryant, Chinook: The world man-
machine checkers champion, AI Magazine 17 (1) (1996) 21–29.

[3] G. Tesauro, Temporal difference learning and TD-Gammon, Communi-
cations of the ACM 38 (3) (1995) 58–68.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, D. Hassabis, Human-level control through deep
reinforcement learning, Nature 518 (7540) (2015) 529–533.

[5] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd
Edition, Prentice Hall, 2009.

[6] A. Keuter, L. Nett, Ermes-auction in germany. first simultaneous
multiple-round auction in the european telecommunications market,
Telecommunications Policy 21 (4) (1997) 297 – 307.

[7] D. Beard, P. Hingston, M. Masek, Using Monte Carlo tree search for
replanning in a multistage simultaneous game, in: Proceedings of the
IEEE Congress on Evolutionary Computation (CEC), 2012.

[8] O. Teytaud, S. Flory, Upper confidence trees with short term partial
information, in: Applications of Evolutionary Computation (EvoGames
2011), Part I, Vol. 6624 of LNCS, 2011, pp. 153–162.

[9] H. Gintis, Game Theory Evolving, 2nd Edition, Princeton University
Press, 2009.

[10] B. Bošanský, V. Lisý, J. Čermák, R. Vı́tek, M. Pěchouček, Using
Double-oracle Method and Serialized Alpha-Beta Search for Pruning in
Simultaneous Moves Games, in: Proceedings of the 23rd International
Joint Conference on Artificial Intelligence (IJCAI), 2013, pp. 48–54.

[11] M. Lanctot, V. Lisý, M. H. M. Winands, Monte Carlo tree search in
simultaneous move games with applications to Goofspiel, in: Computer
Games Workshop at IJCAI 2013, Vol. 408 of Communications in Com-
puter and Information Science (CCIS), 2014, pp. 28–43.

[12] V. Lisý, V. Kovař́ık, M. Lanctot, B. Bošanský, Convergence of Monte
Carlo tree search in simultaneous move games, in: Advances in Neural
Information Processing Systems (NIPS), Vol. 26, 2013, pp. 2112–2120.

[13] V. Lisý, M. Lanctot, M. Bowling, Online Monte Carlo counterfactual
regret minimization for search in imperfect information games, in: Pro-
ceedings of the 14th International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), 2015, pp. 27–36.

[14] M. Shafiei, N. Sturtevant, J. Schaeffer, Comparing UCT versus CFR in
simultaneous games, in: Proceeding of the IJCAI Workshop on General
Game-Playing (GIGA), 2009, pp. 75–82.

[15] A. Saffidine, Solving games and all that, Ph.D. thesis, Université Paris-
Dauphine, Paris, France (2013).

[16] J. V. Neumann, Zur theorie der gesellschaftsspiele, Math Annalen 100
(1928) 295–320.

[17] M. L. Littman, Markov games as a framework for multi-agent reinforce-
ment learning, in: In Proceedings of the 11th International Conference
on Machine Learning (ICML), 1994, pp. 157–163.

[18] M. L. Littman, Value-function reinforcement learning in Markov games,
Journal of Cognitive Systems Research 2 (1) (2001) 55–66.

[19] M. L. Littman, C. Szepesvári, A generalized reinforcement-learning
model: Convergence and applications, in: Proceedings of the 13th Inter-
national Conference on Machine Learning (ICML), 1996, pp. 310–318.

[20] M. G. Lagoudakis, R. Parr, Value function approximation in zero-sum
markov games, in: Proceedings of the 18th Conference on Uncertainty
in Artificial Intelligence (UAI), 2002, pp. 283–292.

[21] U. Savagaonkar, R. Givan, E. K. P. Chong, Sampling techniques for
zero-sum, discounted Markov games, in: Proceedings of the 40th Annual
Allerton Conference on Communication, Control and Computing, 2002,
pp. 285–294.

[22] J. Perolat, B. Scherrer, B. Piot, O. Pietquin, Approximate dynamic
programming for two-player zero-sum Markov games, in: Proceedings of
the 32nd International Conference on Machine Learning (ICML), 2015.

[23] S. Singh, M. Kearns, Y. Mansour, Nash convergence of gradient dynam-
ics in general-sum games, in: Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence (UAI), 2000, pp. 541–548.

[24] M. Bowling, M. Veloso, Convergence of gradient dynamics with a vari-
able learning rate, in: Proceedings of the 18th International Conference
on Machine Learning (ICML), 2001, pp. 27–34.

[25] M. Zinkevich, Online convex programming and generalized infinitesimal
gradient ascent, in: Proceedings of 20th International Conference on
Machine Learning (ICML), 2003, pp. 928–936.

[26] M. Bowling, Convergence and no-regret in multiagent learning, in: Ad-
vances in Neural Information Processing Systems 17 (NIPS), 2005, pp.
209–216.

[27] G. Gordon, No-regret algorithms for online convex programs, in: Pro-
ceedings of the 20th Annual Conference on Neural Information Process-
ing Systems (NIPS), 2006, pp. 489–496.

[28] M. Zinkevich, M. Johanson, M. Bowling, C. Piccione, Regret minimiza-
tion in games with incomplete information, in: Advances in Neural In-
formation Processing Systems (NIPS), 2008, pp. 1729–1736.

[29] M. Bowling, N. Burch, M. Johanson, O. Tammelin, Heads-up limit
hold’em poker is solved, Science 347 (6218) (2015) 145–149.

[30] A. Nowé, P. Vrancx, Y.-M. D. Hauwere, Game theory and multi-agent
reinforcement learning, in: Reinforcement Learning: State-of-the-Art,
2012, Ch. 12, pp. 441–470.

[31] L. Buşoniu, R. Babuška, B. D. Schutter, A comprehensive survey of
multi-agent reinforcement learning, IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews 38 (2) (2008)
156–172.

[32] D. Bloembergen, K. Tuyls, D. Hennes, M. Kaisers, Evolutionary dynam-
ics of multi-agent learning: A survey”, Journal of Artificial Intelligence
Research (JAIR) 53 (2015) 659–697.

[33] Y. Shoham, K. Leyton-Brown, Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations, Cambridge University Press, 2009.

[34] R. Bellman, Dynamic Programming, Princeton University Press, 1957.

[35] S. M. Ross, Goofspiel — the game of pure strategy, Journal of Applied
Probability 8 (3) (1971) 621–625.

[36] M. Buro, Solving the Oshi-Zumo game, in: Advances in Computer
Games: Many Games, Many Challenges, Vol. 135 of IFIP—The In-
ternational Federation for Information Processing, 2003, pp. 361–366.

[37] G. C. Rhoads, L. Bartholdi, Computer solution to the game of pure
strategy, Games 3 (4) (2012) 150–156.

[38] A. Saffidine, H. Finnsson, M. Buro, Alpha-beta pruning for games with
simultaneous moves, in: Proceedings of the 32nd Conference on Artificial
Intelligence (AAAI), 2012, pp. 556–562.

[39] H. McMahan, G. Gordon, A. Blum, Planning in the presence of cost
functions controlled by an adversary, in: Proceedings of the 20th Inter-
national Conference on Machine Learning (ICML), 2003, pp. 536–543.

[40] M. Zinkevich, M. Bowling, N. Burch, A New Algorithm for Generating
Equilibria in Massive Zero-Sum Games, in: Proceedings of the 27th
Conference on Artificial Intelligence (AAAI), 2007, pp. 788–793.

[41] T. D. Hansen, P. B. Miltersen, T. B. Sørensen, On range of skill, in:
Proceedings of the 28th Conference on Artificial Intelligence (AAAI),
2008, pp. 277–282.

[42] D. Koller, N. Megiddo, B. von Stengel, Efficient computation of equi-
libria for extensive two-person games, Games and Economic Behavior
14 (2) (1996) 247–259.

[43] T. Sandholm, The state of solving large incomplete-information games,
and application to poker, AI Magazine 31 (4) (2010) 13–32.

[44] B. Bošanský, C. Kiekintveld, V. Lisý, M. Pěchouček, An Exact Double-
Oracle Algorithm for Zero-Sum Extensive-Form Games with Imperfect
Information, Journal of Artificial Intelligence Research 51 (2014) 829–
866.

[45] R. Coulom, Efficient selectivity and backup operators in Monte-Carlo
tree search, in: Proceedings of the 5th International Conference on Com-
puters and Games (CG), Vol. 4630 of LNCS, 2006, pp. 72–83.

[46] L. Kocsis, C. Szepesvári, Bandit-based Monte Carlo planning, in: 15th
European Conference on Machine Learning, Vol. 4212 of LNCS, 2006,
pp. 282–293.

[47] S. Gelly, D. Silver, Monte-Carlo tree search and rapid action value es-
timation in computer Go, Artificial Intelligence 175 (11) (2011) 1856–
1875.

[48] S. Gelly, L. Kocsis, M. Schoenauer, M. Sebag, D. Silver, C. Szepesvári,
O. Teytaud, The grand challenge of computer Go: Monte Carlo tree
search and extensions, Communications of the ACM 55 (3) (2012) 106–
113.

[49] P. Ciancarini, G. Favini, Monte Carlo tree search in Kriegspiel, Artificial
Intelligence 174 (11) (2010) 670–684.

[50] P. I. Cowling, E. J. Powley, D. Whitehouse, Information set Monte Carlo
tree search, IEEE Transactions on Computational Intelligence and AI
in Games 4 (2) (2012) 120–143.

[51] P. Auer, N. Cesa-Bianchi, P. Fischer, Finite-time analysis of the multi-
armed bandit problem, Machine Learning 47 (2-3) (2002) 235–256.

[52] M. Genesereth, N. Love, B. Pell, General game-playing: Overview of
the AAAI competition, AI Magazine 26 (2005) 73–84.

[53] H. Finnsson, Cadia-player: A general game playing agent, Master’s the-
sis, Reykjav́ık University (2007).

[54] H. Finnsson, Simulation-based general game playing, Ph.D. thesis,
Reykjav́ık University (2012).

[55] S. Samothrakis, D. Robles, S. M. Lucas, A UCT agent for Tron: Initial
investigations, in: Proceedings of the 2010 IEEE Conference on Com-
putational Intelligence and Games (CIG), 2010, pp. 365–371.

[56] P. Auer, N. Cesa-Bianchi, Y. Freund, R. E. Schapire, The nonstochastic
multiarmed bandit problem, SIAM Journal of Computing 32 (1) (2003)
48–77.

[57] P. Perick, D. L. St-Pierre, F. Maes, D. Ernst, Comparison of different
selection strategies in Monte-Carlo tree search for the game of Tron, in:
Proceedings of the IEEE Conference on Computational Intelligence and
Games (CIG), 2012, pp. 242–249.

[58] M. Lanctot, K. Waugh, M. Bowling, M. Zinkevich, Sampling for Regret
Minimization in Extensive Games, in: Advances in Neural Information
Processing Systems (NIPS), 2009, pp. 1078–1086.

[59] V. Kovař́ık, V. Lisý, Analysis of Hannan consistent selection for Monte
Carlo tree search in simultaneous move games, CoRR abs/1509.00149.

[60] M. Lanctot, C. Wittlinger, M. H. M. Winands, N. G. P. Den Teuling,
Monte Carlo tree search for simultaneous move games: A case study in
the game of Tron, in: Proceedings of the 25th Benelux Conference on
Artificial Intelligence (BNAIC), 2013, pp. 104–111.

[61] M. J. W. Tak, M. H. M. Winands, M. Lanctot, Monte Carlo tree search
variants for simultaneous move games., in: Proceedings of the IEEE
Conference on Computational Intelligence and Games (CIG), 2014, pp.
232–239.

[62] T. Pepels, M. H. M. Winands, M. Lanctot, Real-time Monte Carlo tree
search for Ms Pac-Man, IEEE Transactions on Computational Intelli-
gence and AI in Games 6 (3) (2014) 245–257.

[63] D. Perez, E. J. Powley, D. Whitehouse, P. Rohlfshagen, S. Samoth-
rakis, P. I. Cowling, S. M. Lucas, Solving the physical traveling sales-
man problem: Tree search and macro actions, IEEE Transanctions on
Computational Intelligence and AI in Games 6 (1) (2014) 31–45.

[64] R.-K. Balla, A. Fern, UCT for tactical assault planning in real-time
strategy games, in: Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), 2009, pp. 40–45.

[65] P. I. Cowling, M. Buro, M. Bida, A. Botea, B. Bouzy, M. V. Butz,
P. Hingston, H. Muñoz-Avila, D. Nau, M. Sipper, Search in real-time
video games, in: Artificial and Computational Intelligence in Games,
Vol. 6 of Dagstuhl Follow-Ups, 2013, pp. 1–19.

[66] M. G. Bellemare, Y. Naddaf, J. Veness, M. Bowling, The arcade learn-
ing environment: An evaluation platform for general agents, Journal of
Artificial Intelligence Research (JAIR) 47 (2013) 253–279.

[67] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill,
M. Preuss, A survey of real-time strategy game AI research and com-
petition in StarCraft, IEEE Transactions on Computational Intelligence
and AI in Games 5 (4) (2013) 293–311.

[68] A. Kovarsky, M. Buro, Heuristic search applied to abstract combat
games, Advances in Artificial Intelligence (2005) 55–77.

[69] F. Sailer, M. Buro, M. Lanctot, Adversarial planning through strategy
simulation, in: IEEE Symposium on Computational Intelligence and
Games (CIG), 2007, pp. 37–45.

[70] V. Lisý, B. Bošanský, M. Jakob, M. Pěchouček, Adversarial search with
procedural knowledge heuristic, in: Proceedings of the 8th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2009, pp. 899–906.

[71] D. Churchill, A. Saffidine, M. Buro, Fast heuristic search for RTS game
combat scenarios, in: 8th AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE), 2012, pp. 112–117.

[72] A. Reinefeld, An improvement to the scout tree-search algorithm, ICCA
Journal 6 (4) (1983) 4–14.

[73] S. Hart, A. Mas-Colell, A simple adaptive procedure leading to corre-
lated equilibrium, Econometrica 68 (5) (2000) 1127–1150.

[74] M. Lanctot, Monte Carlo sampling and regret minimization for equilib-
rium computation and decision-making in large extensive form games,
Ph.D. thesis, Department of Computing Science, University of Alberta,
Edmonton, Alberta, Canada (June 2013).

[75] S. Gelly, D. Silver, Combining online and offline learning in UCT, in:
Proceedings of the 24th International Conference on Machine Learning,
2007, pp. 273–280.

[76] R. Lorentz, Amazons discover Monte-Carlo, in: Proceedings of the 6th
International Conference on Computers and Games (CG), Vol. 5131 of
LNCS, 2008, pp. 13–24.

[77] M. H. M. Winands, Y. Björnsson, J.-T. Saito, Monte Carlo tree search
in Lines of Action, IEEE Transactions on Computational Intelligence
and AI in Games 2 (4) (2010) 239–250.

[78] R. Lorentz, T. Horey, Programming Breakthrough, in: Proceedings of
the 8th International Conference on Computers and Games (CG), Vol.
8427 of LNCS, 2013, pp. 49–59.

[79] M. Lanctot, M. H. M. Winands, T. Pepels, N. R. Sturtevant, Monte
Carlo tree search with heuristic evaluations using implicit minimax back-
ups, in: Proceedings of the IEEE Conference on Computational Intelli-
gence and Games (CIG), 2014, pp. 341–348.

[80] R. Ramanujan, B. Selman, Trade-offs in sampling-based adversarial
planning, in: Proceedings of the 21st International Conference on Au-
tomated Planning and Scheduling (ICAPS), 2011, pp. 202–209.

[81] M. Lanctot, A. Saffidine, J. Veness, C. Archibald, M. H. M. Winands,
Monte Carlo *-minimax search, in: Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence (IJCAI), 2013,
pp. 580–586.

[82] K. Q. Nguyen, R. Thawonmas, Monte Carlo tree search for collaboration
control of ghosts in Ms. Pac-Man, IEEE Transactions on Computational
Intelligence and AI in Games 5 (1) (2013) 57–68.

[83] S. Smith, D. Nau, An analysis of forward pruning, in: Proceedings of
the National Conference on Artificial Intelligence, 1995, pp. 1386–1386.

[84] N. G. P. Den Teuling, M. H. M. Winands, Monte-Carlo Tree Search for
the simultaneous move game Tron, in: Proceedings of Computer Games
Workshop (ECAI), 2012, pp. 126–141.

[85] M. Ponsen, S. de Jong, M. Lanctot, Computing approximate Nash equi-
libria and robust best-responses using sampling, Journal of Artificial
Intelligence Research (JAIR) 42 (2011) 575–605.

[86] R. Gibson, M. Lanctot, N. Burch, D. Szafron, M. Bowling, Generalized
sampling and variance in counterfactual regret minimization, in: Pro-
ceedings of the 26th Conference on Artificial Intelligence (AAAI), 2012,
pp. 1355–1361.

Vitae

Branislav Bošanský is an Assistant Professor at the Department of
Computer Science, at the Faculty of Electrical Engineering at the Czech
Technical University in Prague. He received his Ph.D. degree in Ar-
tificial Intelligence from the Department of Cybernetics at the same
faculty and was a post-doctoral research fellow at Aarhus University in
Denmark. His research focuses on algorithmic and computational game
theory, computing strategies in sequential games, and applications to
security.

Viliam Lisý reveived his Ph.D. degree in Artificial Intelligence from
Czech Technical University in Prague. He holds a master’s degree in
Technical Artificial Intelligence from VU University Amsterdam and a
master’s degree in Theoretical Computer Science from the Faculty of
Mathematics and Physics at Charles University in Prague. Currently, he
is a postdoctoral fellow at Department of Computing Science, University
of Alberta.

Marc Lanctot is a research scientist at Google DeepMind in London,
United Kingdom. He received his Ph.D. degree in Artificial Intelligence
from the Department of Computer Science, University of Alberta, Ed-
monton, Canada, in 2012. Previously, he was a post-doctoral research
fellow at the Department of Data Science and Knowledge Engineering,
Maastricht University. His work has focused on learning and search in
sequential games.

Jǐŕı Čermák is a PhD student at Agent Technology Center, Depart-
ment of Computer Science, Faculty of Electrical Engineering at Czech
Technical University in Prague. His research focuses on computational
game theory and sequential games.

Mark H.M. Winands received the Ph.D. degree in Artificial Intelli-
gence from the Department of Computer Science, Maastricht University,
Maastricht, The Netherlands, in 2004. Currently, he is an Assistant Pro-
fessor at the Department of Data Science and Knowledge Engineering,
Maastricht University. His research interests include heuristic search,
machine learning and games. Dr. Winands serves as a section editor of
the ICGA Journal and as an associate editor of IEEE Transactions on
Computational Intelligence and AI in Games.

