
Monte Carlo Tree Search for Simultaneous
Move Games: A Case Study in the Game of Tron

Marc Lanctot Christopher Wittlinger Mark H.M. Winands
Niek G.P. Den Teuling

Department of Knowledge Engineering, Maastricht University,
P.O. Box 616, 6200 MD Maastricht, The Netherlands

Abstract

MCTS has been successfully applied to many sequential games. This paper investigates Monte Carlo Tree
Search (MCTS) for the simultaneous move game Tron. In this paper we describe two different ways to
model the simultaneous move game, as a standard sequential game and as a stacked matrix game. Several
variants are presented to adapt MCTS to simultaneous move games, such as Sequential UCT, Decoupled
UCT, Exp3, and a novel stochastic method based on Regret Matching. Through the experiments in the
game of Tron on four different boards, it is shown that Decoupled UCB1-Tuned perform best, winning
62.3% of games overall. We also show that Regret Matching wins 53.1% of games overall and search
techniques that model the game sequentially win 51.4-54.3% of games overall.

1 Introduction
Games are important domains for investigating intelligent search techniques. Classic examples include
Chess, Checkers and Go, each of which are simple to learn yet hard to master. In classic game tree search,
game-specific knowledge is used to determine the strength of each position using a static evaluation function.
If the evaluation function is difficult to design then an alternative approach has to be chosen.

Monte Carlo Tree Search (MCTS) [4, 6, 10] builds up a search tree without requiring an evaluation
function. Instead, it builds a search tree gradually guided by Monte Carlo simulations. MCTS was initially
applied to the game of Go [6] but has since been applied to many different games and settings [3]. This paper
focuses on selection and backpropagation strategies in MCTS applied to two-player turn-based simultaneous
move games, such as Tron. Algorithms investigated in this paper, including sequential UCT [10], are:
UCB1-Tuned, Decoupled UCT, Decoupled UCB1-Tuned, Exp3 and Regret Matching.

In Tron, two players move simultaneously through a discrete grid and at each move create a wall behind
them. The first applications of MCTS to Tron [7, 15] applied standard (sequential) UCT while treating the
game as a turn-based alternating move game in the search tree. A comparison of selection and backpropa-
gation strategies in simultaneous move MCTS is presented in [13]. However, results are only presented for
a single map and there is no comparison to sequential UCT previously used in this domain. In addition, we
introduce a new variant based on Regret Matching, which performs relatively well in practice. Throughout
this paper, we investigate the impact of different selection and backpropagation strategies on the playing
performance of MCTS in Tron.

The paper is organized as follows. It starts with a brief description of Tron and MCTS in Section 2.
Section 3 deals with how MCTS handles the game specific principles of Tron. In Section 4 the different
selection strategies are explained. Afterwards experiments are shown in Section 5 and a conclusion is drawn
from the experiments in Section 6. Furthermore, possible future research is also discussed in Section 6.

Repeated X times

Selection Play out Expansion Backpropagation

The selection strategy is

applied recursively until an

One node is added

to the tree

One simulated

game is played

The result of this game

is backpropagated inapplied recursively until an

unknown position is reached

to the treegame is played is backpropagated in

the tree

Figure 1: (Left) A game in Tron; 41 moves are already played. Player 1 started in the top left corner and
Player 2 started in the bottom right corner. (Right) The four phases of the Monte Carlo Tree Search.

2 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) [6, 10] is a technique used for decision-making in turn-based, sequential
games. To make a decision, MCTS makes use of simulations combined with an incrementally-built search
tree. In the search tree, each node represents a state in the game. To evaluate a state, a game is simulated in
self-play from the current (root) state of the game until the game is finished. The first part of each simulation
will encounter states that are part of the search tree. Which states are encountered in this first part depends
on the moves selected during the simulation (the so-called selection strategy). When a state is not in the tree,
a play-out policy chooses successor states until the end of the game. MCTS then expands the tree by adding
the first state it encountered along its play-out. The result of the simulation is then backpropagated to every
node visited in the simulation up to the root where node statistics are updated accordingly. The right part of
Figure 1 illustrates the four different phases of a simulation [5].

2.1 Simultaneous Move MCTS
Standard MCTS applies to sequential turned-based games. However, in some games moves are chosen
simultaneously. There are two models to handle the simultaneous moves that occur in Tron.

The first model, used to implement Sequential UCT, ignores the presence of simultaneous moves and
treats the game as a sequential turn-based game inside the search tree. We call this the sequential tree
model. In practice, this worked well in Tron [7, 15], except it clearly favours one player which is especially
problematic when players are close to each other. In this model, the game is sequential inside the search
tree, until a leaf node is reached. The play-outs are then simulated as a simultaneous game [7]. In this paper,
the player running the search always moves first.

The second model, used to implement simultaneous move MCTS, stores a matrix at each node. We
call this the stacked matrix model. Each cell of the matrix corresponds to a joint move, i.e., a move chosen
by both players simultaneously, and a corresponding child node (successor state). This is a more accurate
representation of the underlying game since players are not able to influence their current decision after
having seen the other player’s current move choice. This is the model used in [11] and [13].

3 Tron & MCTS
Tron originates from the 1982 movie with the same name. It is a two-player game (see left part of Figure 1)
played on discrete grids possibly obstructed by walls. In addition, the maps are mostly symmetric so that
none of the players have an advantage. Unlike sequential turn-taking games where payers play consecutively,

at each step in Tron both players move simultaneously. The game is won if the opponent crashes into a wall
or moves off the board. If both players crash at the same turn into a wall, the game ends in a draw.

Tron is played in a grid-like environment and often the two players become separated from each other.
When this happens, each agent is essentially playing their own single-player game and the goal of the game
becomes to outlast the opponent. Therefore the play-out can be prematurely terminated by counting the
number of squares captured by each player and then assigning a win to whoever has claimed the most space.
The problem is that some positions might not offer a way back and therefore become suicide moves. For
that reason a greedy wall-following algorithm can be used, which tries to fill out the remaining space. When
both players have filled their space, the moves which were made are counted and the player with the higher
move count wins. This approach was proposed by Den Teuling [7].

Also, when players are separated, there is no need to let a play-out decide which player would win.
Instead, it can be predicted by the Predictive Expansion Strategy (PES) [7]. PES is used to avoid play-outs
when they are not necessary. Each time the non-root player tries to expand a node, the PES checks whether
the two players are separated from each other. If this is the case, space estimation is used to predict which
player would win. Finally, the expanded node becomes a leaf node and no more play-outs have to be done
when reaching this node again.

4 Selection and Backpropagation Strategies
In the following subsections, different selection and update strategies for MCTS are introduced including
deterministic strategies such as Sequential UCT and UCB1-Tuned, Decoupled UCT and Decoupled UCB1-
Tuned, as well as stochastic strategies, which include Exp3 and Regret Matching.

4.1 Sequential UCT
The most common selection strategy is the Upper Confidence Bounds for Trees (UCT) [10]. The UCT
strategy uses the Upper Confidence Bound (UCB1 [12]) algorithm. After each child has been at least selected
once, UCB1 is used to select a child. This algorithm maintains a good balance between exploration and
exploitation. UCB1 selects a child node k from a set of nodes K, from parent node j by using Equation 1:

k = argmax
i∈K

X̄i + C

√
ln(nj)

ni

 , (1)

where ni is the number of visits of child node i and X̄i is the sample mean of the rewards of child node i.
The parameter C is usually tuned to increase performance. Sequential UCT was first applied to Tron in [15].

An enhancement to the UCT selection strategy can be made by replacing the parameter C by an upper
bound of the variance of the rewards [13]. This is either 1

4 , which is an upper bound of the variance of
a Bernoulli random variable, or an upper confidence bound computed using Equation 2 which have the
parameters the parent node j and some child node i. This variant is referred to as UCB1-Tuned [12]. Then,
a child node k is selected from parent node j:

k = argmax
i∈K

X̄i +

√
min(1

4 ,VarUCB1 (j, i)) ln(nj)

ni

 , VarUCB1 (j, i) = s̄2k +

√
2 ln(nj)

ni
, (2)

where s̄2k is the sample variance of the observed rewards for child node k.

4.2 Decoupled UCT
Unlike standard sequential UCT and UCB1-Tuned used in the sequential tree model, Decoupled UCT
(DUCT) applies UCB1 selection in the stacked matrix model for each player separately. In DUCT, a node

U

u
rl l l u ru r

L R

L,l

U,r

R,u
R,l R,r

U,l

L,r

Figure 2: (Left) The sequential tree model. Each node represents the child node of the corresponding move.
The first level represents Player 1 moves (L, U, and R) and the second level represents Player 2 moves (l, u,
r). (Right) The stacked matrix model. Each joint move leads to a child node from a combination of moves
for Player 1 and Player 2 (only 7 of the 9 joint moves are shown).

stores both moves, the one from Player 1 and from Player 2. Two moves are selected, one for each player,
using separate instances of UCB, each independent of the other player’s choice. To better illustrate the
difference between these two concepts, see Figure 2. In the left figure, the sequential tree model is shown.
In the right figure, each node contains two moves, one belonging to Player 1 and one to Player 2. These
combinations are called joint moves. Because each level in the search tree represents now one step in the
game, the branching factor is nine instead of three.

When selecting a child node, DUCT applies the default UCB1 algorithm which was described in Equa-
tion 1 with the statistics from each player’s perspective independently. After a move is selected for Player
1, the selection process is repeated for Player 2 (without knowledge of the choice made by Player 1) using
the statistics from Player 2’s perspective. These two moves are combined to form a joint move. The final
move to be played, after many simulations, can be selected in two different ways. The first, DUCT(max),
selects the move with the most visits. DUCT(mix) normalizes the visit counts and samples a move according
to this distribution, i.e., using a mixed strategy [11]. DUCT(max) was first used in general game-playing
programs [8]. DUCT(mix) was first proposed by [16] and was also applied in a small Poker game [14].

Just as an enhancement can be made by replacing the parameter C by an upper bound of the variance of
the rewards in UCT, it can also be made to DUCT. Each time a node is selected and a joint move is chosen,
Equation 2 is used. We refer to this variant as Decoupled UCB1-Tuned (DUCB1T).

4.3 Exp3
To this point, except for the final move selection in DUCT(mix), policies for selecting moves have been
deterministic. Exp3 [1] belongs to the group of stochastic selection strategies, which means that there is a
random factor involved and instead moves are sampled according to some probability distribution. Exp3, as
DUCT, always uses the stacked matrix model and hence selects a joint move. Exp3 stores a list of estimated
sums of rewards X̂apk

, where apk refers to player p’s move k. From the list of payoffs, a policy P is created.
The probability of choosing move apk of policy P is shown in Equation 3,

Papk =
eηω(a

p
k)∑

i∈Kp

eηω(a
p
i)
, X̂apk

= X̂apk
+
rpak1

,ak2

σapk
, (3)

where Kp is the set of moves from player p, ω can be scaled by some constant η, rpak1
,ak2

is the reward
of the play-out when Player 1 player chose move k1 and Player 2 chose move k2 and is give in respect
to player p. As in [11], we set η = γ/|Kp|. In standard Exp3, ω(apk) = X̂apk

, but in practice we use
ω(apk) = X̂apk

−argmaxi∈Kp
X̂api

since it is equivalent and more numerically stable [11]. The move selected
is then sampled from the mixed strategy where move apk is selected with probability σapk = (1−γ)Papk + γ

|Kp| .

1 2
a

a

1
1

1
2

2

2
2

1a

a

Figure 3: Left: Different boards are used for the experiments in the round-robin tournament. Right: A
situation whose optimal strategies require mixing with probability distribution (0.5, 0.5).

Parameter γ can be optimized by tuning it. The update of X̂p(an) after selecting a joint move (a1, a2),
by using the probability σi(aj), which returned some simulation result of a play-out rpak1

,ak2
is given in

Equation 3. As in DUCT(mix), the final move is sampled from the normalized visit count distribution.

4.4 Regret Matching
Regret Matching (RM) [9], as Exp3 and DUCT, always selects a joint move. Opposed to the other strategies,
Regret Matching stores a matrix M with the estimated mean of the rewards (See Equation 4, where X̄m,n is
the mean of the rewards for Player 1 when the joint move (a1 = m, a2 = n) was selected):

M =

X̄1,1 X̄2,1 X̄3,1

X̄1,2 X̄2,2 X̄3,2

X̄1,3 X̄2,3 X̄3,3

 for all a1i ∈ K1, Ra1i ← Ra1i + (reward1i,n − r1am,an)

for all a2i ∈ K2, Ra2i ← Ra2i + (reward2m,i − r2am,an)
(4)

Additional to matrix M , two lists are stored which keep track of the cumulative regret for not taking
move apk, denoted Rapk . The regret is a value, which indicates how much the player regrets not having
played this move. A policy P is then constructed created by normalizing over the positive cumulative
regrets (e.g., if the regrets are Ra11 = 8.0, Ra12 = 5.0 and Ra13 = −4.0, then the policy is the probability
distribution (8

13 ,
5
13 , 0). As in Exp3, the selected move is sampled from σapk = (1 − γ)Papk + γ

|Kp| . where
the variable γ can be tuned to increase performance as in Exp3.

Initially, all values in matrix M and all values in the regret lists are set to zero. After the play-out is
finished and the result (rpam,an) for player p gets backpropagated, the cumulative reward values for each
cell are updated using Xm,n = Xm,n + rpa1m,a2n

and the regret values are updated using the right side of
Equation 4, where rewardpm′,n′ = rpam,an if (m′, n′) = (m,n) or X̄m,n otherwise. The final move is
selected using the average of all the mixed strategies used over all simulations as described in [11].

5 Experiments
In this section the MCTS variants are evaluated. In order to make it a fair comparison between the two
search tree models using a common implementation, each agent is allowed to simulate a fixed number of
simulations (100,000) which took roughly one second on an AMD Opteron 6174 running at 2.2 Ghz.

The experiments are run on four different boards, three with obstacles (see Figure 3 (a), (b), and (c)) and
an empty board (d), all with dimensions of 13×13. On each board 500 games are played per player matchup,
with sides swapped halfway. The play-out strategy, which is used in all experiments, is the random strategy
with play-out cut-offs enhancement mentioned in Section 3. However, to avoid slowing down playouts too
much, they are only applied every 10 steps. The predictive expansion strategy is also used.

Before running performance experiments, some parameters (C in UCT, γ in Exp3 and Regret Matching)
are tuned. As reference constants, values are used which were taken from different sources [7, 13]. Parame-
ters C and γ ∈ [0, 1] were tuned manually by playing several games against other variants. The tuned values
can be seen in Table 4.

Board a UCT UCB1T DUCT(max) DUCT(mix) DUCB1T(max) DUCB1T(mix) Exp3 RM

UCT - 44% 51% 58% 40% 45% 53% 41%
UCB1T 56% - 67% 68% 48% 55% 60% 51%

DUCT(max) 49% 33% - 53% 28% 32% 73% 35%
DUCT(mix) 42% 32% 47% - 28% 33% 58% 35%

DUCB1T(max) 60% 52% 72% 72% - 59% 78% 63%
DUCB1T(mix) 55% 45% 68% 67% 41% - 67% 48%

Exp3 47% 40% 27% 42% 22% 33% - 33%
RM 59% 49% 65% 65% 37% 52% 67% -

Board b UCT UCB1T DUCT(max) DUCT(mix) DUCB1T(max) DUCB1T(mix) Exp3 RM

UCT - 50% 51% 57% 49% 51% 72% 50%
UCB1T 50% - 53% 65% 50% 52% 70% 56%

DUCT(max) 49% 47% - 63% 41% 46% 79% 52%
DUCT(mix) 43% 35% 37% - 24% 32% 70% 38%

DUCB1T(max) 51% 50% 59% 76% - 55% 83% 62%
DUCB1T(mix) 49% 48% 54% 68% 45% - 80% 54%

Exp3 28% 30% 21% 30% 17% 20% - 23%
RM 50% 44% 48% 62% 38% 46% 77% -

Board c UCT UCB1T DUCT(max) DUCT(mix) DUCB1T(max) DUCB1T(mix) Exp3 RM

UCT - 64% 57% 56% 46% 54% 56% 50%
UCB1T 36% - 44% 60% 42% 47% 62% 52%

DUCT(max) 43% 56% - 55% 42% 49% 57% 41%
DUCT(mix) 44% 40% 45% - 28% 36% 57% 49%

DUCB1T(max) 54% 58% 58% 72% - 60% 75% 61%
DUCB1T(mix) 46% 53% 51% 64% 40% - 64% 55%

Exp3 44% 38% 43% 43% 25% 36% - 36%
RM 50% 48% 59% 51% 39% 45% 64% -

Board d UCT UCB1T DUCT(max) DUCT(mix) DUCB1T(max) DUCB1T(mix) Exp3 RM

UCT - 46% 47% 57% 44% 48% 52% 48%
UCB1T 54% - 51% 60% 50% 52% 57% 53%

DUCT(max) 53% 49% - 64% 35% 45% 58% 48%
DUCT(mix) 43% 40% 36% - 29% 35% 39% 30%

DUCB1T(max) 56% 50% 65% 71% - 55% 65% 56%
DUCB1T(mix) 52% 48% 55% 65% 45% - 56% 50%

Exp3 48% 43% 42% 61% 35% 44% - 42%
RM 52% 47% 52% 70% 44% 50% 58% -

Table 1: Results of the different variants playing on boards a, b, c and d. Percentages refer to the win rate of
the row player.

Total UCT UCB1T DUCT(max) DUCT(mix) DUCB1T(max) DUCB1T(mix) Exp3 RM

UCT - 50% 51% 55% 46% 49% 57% 48%
UCB1T 50% - 53% 61% 48% 51% 60% 52%

DUCT(max) 49% 47% - 58% 39% 45% 63% 45%
DUCT(mix) 45% 39% 42% - 31% 36% 55% 40%

DUCB1T(max) 54% 52% 61% 69% - 56% 70% 59%
DUCB1T(mix) 51% 49% 55% 64% 44% - 64% 51%

Exp3 43% 40% 37% 45% 30% 36% - 34%
RM 52% 48% 55% 60% 41% 49% 66% -

Table 2: Overall results of the different variants playing against each other over all boards. Percentages refer
to the win rate of the row player.

Variant a b c d Total
DUCB1T(max) 65% 62% 62% 59% 62.32± 0.56%
DUCB1T(mix) 56% 57% 53% 53% 54.82± 0.61%

UCB1T 58% 57% 49% 54% 54.32± 0.55%
RM 56% 52% 51% 53% 53.13± 0.62%
UCT 47% 54% 55% 49% 51.39± 0.55%

DUCT(max) 43% 54% 49% 50% 49.05± 0.61%
DUCT(mix) 39% 40% 43% 36% 39.51± 0.64%

Exp3 35% 24% 38% 45% 35.47± 0.61%

Table 3: Results of the different variants played against
each other; ± refers to 95% confidence intervals.

Parameter Reference constant(s) Tuned value

C 10 and 3.52 from [7, 13] 1.5
γ(Exp3) 0.36 [13] 0.3

γ(Regret Matching) 0.025 [11] 0.3

Table 4: Tuned parameter values.

6×6 Board UCT UCB1T DUCT(max) DUCT(mix) DUCB1T(max) DUCB1T(mix) Exp3 RM Total
UCT - 43% 50% 49% 50% 48% 50% 49% 48.3± 0.4%

UCB1T 57% - 50% 51% 50% 50% 51% 50% 51.2± 0.4%
DUCT(max) 50% 50% - 54% 50% 52% 51% 50% 51.0± 0.2%
DUCT(mix) 51% 49% 46% - 46% 47% 49% 48% 47.9± 0.5%

DUCB1T(max) 50% 50% 50% 54% - 51% 51% 50% 51.0± 0.2%
DUCB1T(mix) 52% 50% 48% 53% 49% - 51% 49% 50.5± 0.3%

Exp3 50% 49% 49% 51% 49% 49% - 38% 48.0± 0.4%
RM 51% 50% 50% 52% 50% 51% 62% - 52.2± 0.4%

Table 5: Results of the different variants playing against each other on a 6 × 6 board. Percentages refer to
the win rate of the row player, and ± refers to 95% confidence intervals.

5.1 Round-Robin Tournaments
In this subsection, the performance of several players using different selection and backpropagation strate-
gies are compared. This is done by playing matchups (of 500 games) of each player type against every other
player type. Table 1 presents the results of the games on all four maps and Table 2 presents the average
performance of all players. Table 3 presents the average performance of each agent over boards a-d.

From this, we see that the UCB1-Tuned variants perform best overall, with the decoupled version win-
ning significantly (at least 7.5 percentage points) more often than its next three competitors. Given that the
top three players use UCB1-Tuned, including DUCB1T(mix), it appears that a better way of performing ex-
ploration has a bigger impact on performance than the choice of the game model (sequential versus stacked
matrix). The relative rank of DUCB1T(max), DUCT(max), and Exp3 presented here on board (d) are con-
sistent with previous results on the open map [13]. Sequential UCT performed relatively well, winning
51.4-54.3% overall despite using a sequential model of the game. This could be because Sequential UCT
learns to play safely since it chooses the move that leads to a situation where the advantage of the opponent’s
best counter-move is minimized. In fact, in the classic minimax setting the value computed in this model is
a lower bound of the true optimal value [2].

As in Goofspiel [11], Regret Matching outperforms Exp3, DUCT(max), and DUCT(mix). However
unlike previous results in Goofspiel, Exp3 does not outperform DUCT(max), possibly because mistakes
caused by uncertainty in the final move selection are easy to recognize and exploit in Tron. Also, results of
the algorithms vary from board to board, which is consistent with previous experiments in Tron [7]. Board
(b), for instance, can lead to many situations where a mistake made is particular difficult to recover from. In
this situation, the deterministic strategies tend to perform better since they avoid mistakes.

The round-robin tournament was repeated on a smaller (6 × 6) board. From the tournament on the
smaller 6 × 6 board, Table 5, the relative performance differences are less extreme, possibly because each
one is acting closer to optimally and there is less opportunity to make mistakes. The deterministic strategies
decrease and the performance of the stochastic strategies increase, with Regret Matching performing best
in the small board, possibly because the stochastic strategies are finding more situations where mixing is
important. For example, in Figure 3 (right) both players have two possible moves. If both players choose ap1
(“Up”), Player 1 wins and if both players choose ap2 (“Down”), Player 1 also wins. The optimal strategy for
both players is to play with a mixed strategy, where each move is chosen with probability 0.5.

6 Conclusion and Future Research
In this paper, several selection and backpropagation strategies were introduced for MCTS in Tron. The
performance of these variants was studied for four different boards. Overall, the UCB1-Tuned variants
perform best. Furthermore deterministic strategies appear to perform generally better than the stochastic
strategies in Tron. Experiments also suggest that board layout can influence performance.

For future research, we aim to do more experiments with different boards. A hybrid selection strategy
could be tested which uses a deterministic strategy if both players are far away from each other and a
stochastic one as soon as both players come fairly close to each other. Also, one could try purifying the final
move distributions by setting the low-probability actions to 0 and renormalizing the remaining probabilities.

Acknowledgements. This work is partially funded by MARBLE: Maastricht Research Based Learning and the
Netherlands Organisation for Scientific Research (NWO) in the framework of the project Go4Nature, grant number
612.000.938.

References
[1] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged casino: The adver-

sarial multi-armed bandit problem. In Proceedings of the 36th Annual Symposium on Foundations of
Computer Science, pages 322–331, 1995.

[2] B. Bošanský, V. Lisý, J. Čermák, R. Vı́tek, and M. Pěchouček. Using double-oracle method and
serialized alpha-beta search for pruning in simultaneous moves games. In Proceedings of the 23rd
International Joint Conference on Artificial Intelligence (IJCAI), pages 48–54, 2013.

[3] C.B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis, and S. Colton. A survey of Monte Carlo tree search methods. IEEE Trans-
actions on Computational Intelligence and AI in Games, 4(1):1–43, 2012.

[4] G.M.J-B. Chaslot. Monte-Carlo Tree Search. PhD thesis, Department of Knowledge Engineering,
Maastricht University, Netherlands, 2010. Ph.D. dissertation.

[5] G.M.J-B. Chaslot, M.H.M. Winands, H.J. van den Herik, J.W.H.M. Uiterwijk, and B. Bouzy. Progres-
sive strategies for Monte-Carlo tree search. New Mathematics and Natural Computation, 4(3):343–
357, 2008.

[6] R. Coulom. Efficient selectivity and backup operators in Monte Carlo Tree Search. In CG 2006,
volume 4630 of LNCS, pages 72–83, 2007.

[7] N.G.P. Den Teuling and M.H.M. Winands. Monte-Carlo Tree Search for the simultaneous move game
Tron. In Proceedings of Computer Games Workshop (ECAI), pages 126–141, 2012.

[8] H. Finnsson. Cadia-player: A general game playing agent. Master’s thesis, Reykjavı́k University,
Reykjavı́k, Iceland, 2007.

[9] S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium. Economet-
rica, 68(5):1127–1150, 2000.

[10] L. Kocsis and C. Szepesvári. Bandit-based Monte Carlo planning. In Proceedings of the 15th European
Conference on Machine Learning (ECML), volume 4212 of LNCS, pages 282–293, 2006.

[11] M. Lanctot, V. Lisý, and M.H.M. Winands. Monte carlo tree search in simultaneous move games with
applications to Goofspiel. In Proceedings of IJCAI 2013 Workshop on Computer Games, 2013.

[12] N. Cesa-Bianchi P. Auer and P. Fischer. Finite-time analysis of the multiarmed bandit problem. Ma-
chine Learning, 47(3):235–256, 2002.

[13] P. Perick, D. L. St-Pierre, F. Maes, and D. Ernst. Comparison of different selection strategies in Monte-
Carlo Tree Search for the game of Tron. In Proceedings of the IEEE Conference on Computational
Intelligence and Games (CIG), pages 242–249, 2012.

[14] M. Ponsen, S. de Jong, and M. Lanctot. Computing approximate Nash equilibria and robust best-
responses using sampling. Journal of Artificial Intelligence Research, 42:575–605, 2011.

[15] S. Samothrakis, D. Robles, and S. Lucas. An UCT agent for Tron: Initial investigations. In Proceedings
of the 2010 IEEE Conference on Computational Intelligence and Games (CIG’10), pages 365–371,
2010.

[16] M. Shafiei, N. R. Sturtevant, and J. Schaeffer. Comparing UCT versus CFR in simultaneous games. In
Proceedings of the IJCAI Workshop on General Game-Playing (GIGA), pages 75–82, 2009.

