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Hendrik Baier and Mark H. M. Winands, Member, IEEE

Abstract—Monte Carlo Tree Search (MCTS) is a popular
approach for tree search in a variety of games. While MCTS
allows for fine-grained time control, not much has been published
on time management for MCTS programs under tournament
conditions. This article first investigates the effects of various
time-management strategies on playing strength in the challeng-
ing game of Go. A number of domain-independent strategies are
then tested in the domains Connect-4, Breakthrough, Othello, and
Catch the Lion. We consider strategies taken from the literature
as well as newly proposed and improved ones. Strategies include
both semi-dynamic strategies that decide about time allocation
for each search before it is started, and dynamic strategies that
influence the duration of each move search while it is already run-
ning. Furthermore, we analyze the effects of time management
strategies on the distribution of time over the moves of an average
game, allowing us to partly explain their performance. In the
experiments, the domain-independent strategy STOP provides a
significant improvement over the state of the art in Go, and is
the most effective time management strategy tested in all five
domains.

I. INTRODUCTION

IN tournament gameplay, time is a limited resource. Sudden
death, the simplest form of time control, allocates to each

player a fixed time budget for the whole game. If a player
exceeds this time budget, she loses the game immediately.
Since longer thinking times typically result in stronger moves,
the player’s task is to distribute her time budget wisely among
all moves in the game. This is a challenging task both
for human and computer players. Previous research on this
topic [1]–[5] has mainly focused on the framework of αβ
search with iterative deepening. In a number of game domains
however, this algorithm is more and more losing its appeal.

Compared to αβ search, less has been published on time
management for Monte Carlo Tree Search (MCTS) [6], [7].
MCTS however allows for much more fine-grained time-
management strategies due to its anytime property. It can be
stopped after every rollout and return a move choice that
makes use of the complete search time so far, while αβ
searchers can only make use of completely explored root
moves of a deepening iteration.

This article investigates and compares a variety of time-
management strategies for MCTS. We include newly pro-
posed strategies as well as strategies described in [7] or
independently proposed in [6], partly in enhanced form. These
strategies are tested in the domains of 13×13 and 19×19 Go,
and as far as possible in Connect-4, Breakthrough, Othello,
and Catch the Lion.

This article extends on the authors’ previous work in [8]. It
includes experiments in four additional test domains (Connect-
4, Breakthrough, Othello, and Catch the Lion), which also
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allows for further analysis of the results. The performance of
time-management strategies is compared across domains, and
a shift of available time towards either the opening or the
endgame is identified as an effect influencing the performance
of many strategies. Consequently, a methodology is developed
to isolate the effect of this shift and judge the effect of a
given strategy independently of it. These new contributions
are described in Section V.

The structure of this article is as follows. Section II gives
an overview of related work on time management for game-
playing programs. Section III outlines the approaches to time
management studied in this work—both domain-independent
techniques and techniques specific to Go. Section IV presents
experimental results of all strategies in Go, while Section
V gives the results of testing and analyzing the domain-
independent strategies in the games of Connect-4, Break-
through, Othello, and Catch the Lion. Conclusions and future
research follow in Section VI.

II. TIME MANAGEMENT

The first publication to address the topic of time man-
agement in computer games was by Hyatt [3]. He observed
that human chess grandmasters do not use an equal amount
of time per move, but play standard openings quickly, think
longest directly after coming out of the opening, and then
play increasingly fast towards the end of the game. He also
suggested a technique that lets αβ search explore a position
longer to find a better move if the best move of the last
deepening iteration turns out to lose material.

Donninger [2] gave four “golden rules” for the use of time
during a chess game, both for human and computer players:
“a) Do not waste time in easy positions with only one obvious
move. b) Use the opponent’s thinking time effectively. c)
Spend considerable time before playing a crucial move. d) Try
to upset the opponent’s timing.” Donninger considered rule c)
to be the most important one by far, but also the hardest. In
this article, we try to approach rules a) and c) simultaneously
by attempting to estimate the importance or difficulty of a
position and adjusting search time accordingly. Rule b) can be
addressed by MCTS engines with pondering, thinking during
the opponent’s turn, which allows to transfer a part of the
search tree into the next move search. If the opponent makes
an expected move, the relevant part of the search tree can be
large enough to make a move without much further thinking on
your own time, which takes away the opponent’s opportunity
to ponder (an example for rule d). Pondering is not considered
in this article.

The first systematic evaluation of time-management algo-
rithms for chess was published by Althöfer et al. [1]. Amongst
others, strategies were proposed to identify trivial moves that
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can be made quickly, as well as troublesome positions that
require more thinking. The time controls considered, typical
for chess, specify a given amount of time for a given number
of moves. They are insofar different from sudden death as used
in this article as it here does not refer to the number of moves
by the player, but only to the total amount of time per game.

The domain of checkers was used by Markovitch and Sella
[4] to automatically acquire a simple time-allocation strategy,
distributing a fixed number of deep searches among the moves
of a game. The authors divided time-management strategies
into three categories. (1) Static strategies decide about time
allocation to all future moves before the start of the game.
(2) Semi-dynamic strategies determine the computation time
for each move before the start of the respective move search.
(3) Dynamic strategies make “live” timing decisions while the
search process is running. This categorization is used in the
remainder of this article.

A number of time-management models for modern chess
engines were devised and tested by Šolak and Vučković [5].
Their model M2a involved the idea of estimating the remaining
number of moves, given the number of moves already played,
from a database of master games. We use a similar approach as
the basis for our time-management strategies (called EXP). In
more sophisticated models, the authors developed definitions
for the complexity of a position—based on the number of legal
moves—and allocated time accordingly.

Kocsis et al. [9] compared temporal difference learning and
genetic algorithms for training a neural network to make semi-
dynamic timing decisions in the game Lines of Action. The
network could set the underlying αβ program to one of three
predefined search depths.

For the framework of MCTS, only two publications exist
so far. A number of both dynamic and semi-dynamic time-
management heuristics for 19×19 Go were evaluated by
Huang et al. [7], assuming sudden-death time controls. We
implemented and optimized their heuristics as a baseline
for our approaches. The ideas of the “unstable evaluation”
heuristic (UNST) and the “think longer when behind” heuristic
(BEHIND) were first described and tested in [7]. UNST
continues searching if after the regular search time, the most-
visited move is not the highest-valued move as well. BEHIND
searches longer when the player’s winrate at the root is low.
Enhanced versions are described under the names UNST-L
and BEHIND-L in the next Section.

During the preparation of our experiments, Baudiš [6]
published brief descriptions of the dynamic and semi-dynamic
time management of the state-of-the-art MCTS Go pro-
gram PACHI. Variants similar to our “close second” heuristic
(CLOSE) and a special case of our “early stop” heuris-
tic (STOPA) were here formulated independently. CLOSE
searches longer if the best and second best move are too close
to each other. STOPA stops searching if the currently best
move cannot change anymore in the rest of the planned search
time. We evaluate these strategies and propose generalized
versions with the names CLOSE-L and STOP as well.

Independent from time management considerations, Huang
et al. [10] proposed two pruning conditions for MCTS: the
absolute pruning condition and the relative pruning condition.

These techniques are related to the STOP strategy and are
discussed in Section III-B.

III. TIME-MANAGEMENT STRATEGIES

In this section, we describe first the semi-dynamic (III-A),
and then the dynamic time-management strategies (III-B) for
the MCTS framework which were investigated in this article.

A. Semi-Dynamic Strategies

The following five strategies determine the search time for
each move before the search for this move is started. EXP,
OPEN and MID are domain-independent strategies, while
KAPPA-EXP and KAPPA-LM are specific to the game of Go.
EXP. The simple EXP strategy for time allocation, used as
the basis of all further enhancements in this article, divides
the remaining thinking time for the entire game (tremaining)
by the expected number of remaining moves for the player
(mexpected) and uses the result as the search time for the next
move (tnextmove). The formula is as follows:

tnextmove =
tremaining

mexpected
(1)

mexpected can be estimated in various ways. Three heuristics
are investigated in this article, two of them game-independent
and one game-specific to the game of Go. The first game-
independent heuristic (EXP-MOVES) estimates the number
of remaining moves given the number of moves already
played. An example would be an expectation of 71 remaining
moves for the player at the first turn, or an expectation of 27
remaining moves at turn 90. The second game-independent
heuristic (EXP-SIM) estimates the number of remaining
moves given the length of simulated games in the preceding
search. As an example, 63 more moves could be expected if
the average simulated game in the search for the preceding
move was 200 moves long, or an average simulation length
of 60 moves could lead to an expectation of 28 more moves
in the actual game. The third heuristic (EXP-STONES) is
specific to Go and uses the number of stones on the board
as an estimator of remaining game length. 40 stones on the
board could be mapped to an expected 50 more moves, while
140 stones on the board could map to an expectation of
12 more moves for the player. Other games may or may
not provide other indicators. The parameters for all three
heuristics, e.g. the precise mapping from played moves to
remaining moves for EXP-MOVES, are determined from a
set of 1000 games played in self-play.

OPEN. The OPEN strategy puts emphasis on the opening
phase of the game. Formula 2 modifies the search time for
every move in the game by multiplying it with a constant
“opening factor” fopening > 1.

tnextmove = fopening ·
tremaining

mexpected
(2)

This results in more time per move being used in the begin-
ning of the game than at the end. As opposed to the implicit
assumption of Formula 1 that equal time resources should
be allocated to every expected move, here it is assumed that
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the first moves of a game have greater influence on the final
outcome than the last moves and thus deserve longer search
times.

MID. Instead of moves in the opening phase, the MID
strategy increases search times for moves in the middle game,
which can be argued to have the highest decision complexity
of all game phases [7]. For this purpose, the time as given
by Formula 1 is increased by a percentage determined by a
Gaussian function over the set of move numbers, using three
parameters a, b, and c for height, position and width of the
“bell curve”. The formula for the bell curve is

fGaussian(x) = ae−
(x−b)2

2c2 (3)

tnextmove = (1 + fGaussian(current move number)) ·
tremaining

mexpected
(4)

KAPPA-EXP. In [11], the concept of criticality was sug-
gested for Go—as some intersections on the board are
more important for winning the game than others, these
should be recognized as “critical” or “hot”, and receive
special attention or search effort. To identify critical points,
statistics are collected during rollouts on which player owns
which intersections at the end of each simulation, and on
how strongly this ownership is correlated with winning the
simulated game [11], [12]. In the KAPPA-EXP strategy,
we use a related concept for identifying not only critical
intersections from the set of all intersections of a board, but
also critical move choices from the set of all move choices
in a game. A highly critical move choice is here understood
as a choice that involves highly critical intersections. The
KAPPA-EXP strategy distributes time proportional to the
expected maximum point criticality given the current move
number, as estimated from a database of 1000 games played
by the program itself. The idea is that the maximum point
criticality, taken over the set of all intersections I on the
board, indicates how crucial the current move choice is. We
chose Formula 5 to represent the criticality of an intersection
i in move m of game g—the kappa statistic, a chance-
corrected measure of agreement typically used to quantify
inter-rater reliability [13]. Here, it is employed to quantify
agreement between the variables “intersection i is owned by
the player at the end of a rollout during m’s move search”
and “the player wins a rollout during m’s move search”.

κmg (i) =
agreementmobserved − agreementmexpected

1− agreementmexpected

=

omwinner(i)
n − (

omwhite(i)w
m
white+o

m
black(i)w

m
black

n2 )

1− (
omwhite(i)w

m
white+o

m
black(i)w

m
black

n2 )

(5)

where n is the total number of rollouts, omwinner(i) is the
number of rollouts in which point i ends up being owned by
the rollout winner, omwhite(i) and omblack(i) are the numbers of
rollouts in which point i ends up being owned by White and
Black, respectively, and wmwhite and wmblack are the numbers of
rollouts won by White and Black, respectively. All numbers
refer to the search for move m.

For application at move number m during a given
game, the average maximum point criticality κmavg =
1
y

∑y
g=1 maxi∈I κ

m
g (i) is precomputed from a database of y

games, linearly transformed using parameters for slope and
intercept sκavg and iκavg , and finally multiplied with the search
time resulting in Formula 6.

tnextmove = (κmavg · sκavg + iκavg) ·
tremaining

mexpected
(6)

KAPPA-LM. Instead of using the expected criticality for
the current move number as defined above, the KAPPA-LM
strategy uses the observed criticality as computed during the
search for the player’s previous move in the game. While
KAPPA-EXP looks up κ from a table of values computed
offline, KAPPA-LM estimates it online using search statistics.
This value κlastmove = maxi∈I κ

m−2
current game(i) is again linearly

transformed using parameters sκlastmove and iκlastmove , and mul-
tiplied with the base search time. The formula is as follows:

tnextmove = (κlastmove · sκlastmove + iκlastmove) ·
tremaining

mexpected
(7)

For both KAPPA-EXP and KAPPA-LM, lower and upper
bounds for the κ factor ensure lower and upper bounds for the
total search time even in extreme positions. The algorithms
are not very sensitive to these parameters, but without them
games can be lost (in particular in the online version KAPPA-
LM) due to occasional searches receiving too much or almost
no time (extreme f values).

B. Dynamic Strategies

The following five strategies make time-allocation decisions
for a move search while the respective search process is being
carried out. BEHIND, UNST, CLOSE and STOP are domain-
independent strategies, while KAPPA-CM is specific to the
game of Go. Note that our implementations of CLOSE and
STOP are only valid if MCTS plays the most-visited move
after each move search, which is the case for all MCTS players
in this article. Other approaches to CLOSE and STOP are
imaginable if MCTS chooses for example the move with the
highest estimated value.
BEHIND. As suggested in [7] as the “think longer when
behind” heuristic, the BEHIND strategy prolongs the search
if the player is falling behind. It triggers if after the regular
search time—as computed by the semi-dynamic strategies
described above—the win rate of the best move at the
root is lower than a threshold vbehind. If this is the case,
the search is continued for a time interval determined by
multiplying the previously used search time with a factor
fbehind. The rationale is that by using more time resources,
the player could still find a way to turn the game around,
while saving time for later moves is less important in a losing
position. We have also modified this heuristic to check its
condition for search continuation repeatedly in a loop. The
maximum number of loops until the search is terminated is
bound by a parameter lbehind. The single-check heuristic is
called BEHIND, the multiple-check heuristic BEHIND-L (for
“loop”) in the following.
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UNST. The UNST strategy, called “unstable evaluation”
heuristic in [7], prolongs the search if after the regular search
time the most-visited move at the root is not the highest-
valued move as well. In this case, the search is continued
for the previously used search time multiplied with a factor
funstable. The idea is that by searching longer, the highest-
valued move could soon become the most-visited and thus
change the final move choice. Analogously to the BEHIND-
L technique, UNST-L was introduced as an enhancement of
UNST that repeatedly checks its trigger condition in a loop.
The parameter specifying the maximum number of loops is
lunstable.

CLOSE. The proposed CLOSE strategy prolongs the search
if after the regular search time the most-visited move and the
second-most-visited move at the root are “too close”, defined
by having a relative visit difference lower than a threshold
dclose. A similar strategy was developed independently in [6].
The search is then continued for the previously used search
time multiplied with a factor fclose. Like the UNST strategy,
CLOSE aims to identify difficult decisions that can make
efficient use of an increase in search time. We propose two
variants of this strategy. It can either be triggered only once
(CLOSE) or repeatedly (CLOSE-L) after the regular search
time is over. For CLOSE-L, a parameter lclose defines the
maximum number of loops.

KAPPA-CM. Unlike the three dynamic strategies described
above, the KAPPA-CM strategy does not wait for the regular
search time to end. Instead, it uses the first e.g. 100 millisec-
onds of the search process to collect criticality data. Then
it uses the maximum point criticality of the current move
κcurrentmove = maxi∈I κ

m
current game(i) to modify the remaining

search time. The formula is as follows:

tcurrentmove = (κcurrentmove ·sκcurrentmove +iκcurrentmove)·
tremaining

mexpected
(8)

The remaining search time can be either reduced or increased
by this strategy. Upper and lower limits to the total search
time apply.

STOP. The proposed “early stop” (STOP) strategy is based
on the idea of terminating the search process as early as
possible in case the best move cannot change anymore.
For STOP, the search speed in simulations per second is
measured, and in regular intervals (e.g. 50 rollouts) it is
checked how many rollouts are still expected in the remainder
of the total planned search time. If the number of simulations
required for the second-most-visited move at the root to catch
up to the most-visited one exceeds this expected number of
remaining simulations, the search can safely be terminated
without changing the final outcome.
However, not all of the remaining simulations in a search gen-
erally start with the second-most-visited move. Therefore, we
introduce a parameter pearlystop ≤ 1 representing an estimate
of the proportion of remaining rollouts that actually sample
the second-most-visited move. The search is terminated if
the number of rollouts needed for the second-most-visited
move at the root to catch up to the most-visited one exceeds
the expected number of remaining rollouts multiplied with

pearlystop. When setting this parameter to a value smaller
than 1, an unchanged final outcome is no longer guaranteed.
Optimal values of pearlystop have to be determined empirically.
The termination criterion of STOP is:

n · timeleftn
timespentn

· pearlystop < visitsbestn − visitssecondbestn (9)

where n is the number of rollouts so far, timeleftn is the
rest of the planned search time, timespentn is the search
time already spent, visitsbestn is the currently highest number
of visits of any move at the root, and visitssecondbestn is the
currently second-highest number of visits of any move at the
root. All numbers refer to the state of the search after n
rollouts.
If the expected time savings by the STOP strategy are not
considered when computing planned search times, savings
will accumulate throughout the game and early moves cannot
benefit from them. In order to achieve a different distribution
of the resulting time savings among all searches in the
game, planned search times are multiplied with a parameter
fearlystop ≥ 1 that is also determined empirically.
In order to test the effects of the two parameters pearlystop and
fearlystop independently of each other, we introduce the name
STOPB for the special case of STOP with pearlystop = 1 and
free parameter fearlystop. This variant can redistribute search
time, but never stops a search before the final outcome is
definitely known (it uses “safe” stopping). If pearlystop = 1
and fearlystop = 1 (stopping is “safe”, and the redistribution
of search time is deactivated as well), STOP is identical to
a strategy mentioned independently—but not evaluated—in
[6]. In the following, we call this special case STOPA.
The absolute pruning condition proposed by Huang et al. in
[10] can be seen as a weaker form of STOPA, only stopping
if one move has more than half the simulations planned
for the entire search. This does not take the visit difference
between the most-visited and second-most-visited move into
account. The authors also proposed an “unsafe” criterion for
pruning: Their relative pruning condition excludes individual
moves from the search as soon as they are not expected to
catch up with another move anymore. This expectation is
based on a formula for the upper bound of the remaining
simulations for a given move. However, the authors state
that their condition is strict and rarely triggers, making a
relaxed condition desirable. STOP allows to relax its stopping
condition through the pearlystop parameter.

IV. EXPERIMENTAL RESULTS IN GO

All time-management strategies were implemented in
OREGO [14] version 7.08. OREGO is a Go program using
a number of MCTS enhancements like a transposition table
[15], [16], RAVE [17], a simulation policy similar to that
proposed in [18], and LGRF-2 [19]. The simulation policy
takes domain-specific knowledge into account by trying to
save groups under attack (atari), attacking opponent groups,
and giving preference to moves that match a prespecified set
of 3×3 intersection patterns on the board. After each search,
the most-sampled move at the root is played. OREGO resigns
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if its win rate at the root falls below 10%. The program ran
on a CentOS Linux server consisting of four AMD Twelve-
Core OpteronT 6174 processors (2.2 GHz). Unless specified
otherwise, each experimental run involved 5000 games (2500
as Black and 2500 as White) of OREGO against the classic
(non-MCTS-based) program GNU GO 3.8 [20], played on the
13×13 board, using Chinese rules (area scoring), positional
superko, and 7.5 komi. The playing strength of a non-MCTS
program like GNU GO is difficult to measure since it has
weaknesses that can be relatively easily exploited by human
players, but it is estimated to play at amateur level (8-12 kyu
on the 19×19 board to 5-7 kyu on the 9×9 board). OREGO
plays at around 5-6 kyu with 30 minutes per game on the
19×19 board, and probably stronger on the 13×13 board. For
testing against GNU GO, OREGO’s strength was reduced here
by lowering the time to 30 seconds per game unless specified
otherwise. GNU GO ran at its default level of 10, with the
capture-all-dead option turned on. It had no time limit. OREGO
used a single thread and no pondering. The speed of OREGO
was about 1850 simulations per second when searching from
the initial position. Optimal parameter settings for the time
management strategies were found by manually testing a wide
range of parameter values, from around 10-20 for strategies
with a single parameter to hundreds of settings for strategies
with three parameters, with 500 or 1000 games each against
GNU GO.

The remainder of this section is structured as follows. In
IV-A, the strategies in [7] are tested as a baseline. Next, IV-B
presents results of experiments with semi-dynamic strategies.
Dynamic strategies are tested in IV-C. Finally, in IV-D the
best-performing strategy is compared to the baseline in self-
play, as well as to OREGO with fixed time per move. The
results of this section have largely been published before in [8].
However, some experiments were re-run. The only significant
difference to [8] is the better performance of an improved
version of EXP-SIM, and the addition of the BEHIND-L
strategy.

A. ERICA-BASELINE

In order to compare the results to a state-of-the-art baseline,
the strategies described in [7] were implemented and evalu-
ated. The thinking time per move was computed according to
the “basic formula”

tnextmove =
tremaining

C
(10)

where C = 30 was found to be optimal for OREGO, as well
as the “enhanced formula”

tnextmove =
tremaining

C + max(MaxPly − MoveNumber, 0)
(11)

with C = 20 and MaxPly = 40. The UNST heuristic, using
a single loop as proposed in [7], worked best with funstable =
0.5. The BEHIND heuristic was most successful in OREGO
with vbehind = 0.6 and fbehind = 0.75. Note that BEHIND had
not been found to be effective at first in [8]. This is because

TABLE I
PERFORMANCE OF ERICA’S TIME MANAGEMENT ACCORDING TO [7] IN

13×13 GO.

Player Win rate against GNU GO 95% conf. int.

Basic formula 28.6% 27.3%–29.9%
Enhanced formula 31.4% 30.1%–32.7%
ERICA-BASELINE 35.3% 34.0%–36.7%

only win rate thresholds up to 0.5 had been tested originally—
a player with a win rate of more than 0.5 cannot be called
“behind” after all. See subsection V-F for a discussion of the
effect of higher thresholds.

ERICA’s time-management strategies were tested against
GNU GO using the basic formula, using the enhanced for-
mula, and using the enhanced formula plus UNST and BE-
HIND heuristic (called ERICA-BASELINE from now on).
Table I presents the results—the enhanced formula is signifi-
cantly stronger than the basic formula (p<0.01), and ERICA-
BASELINE is significantly stronger than the enhanced formula
(p<0.001).

B. Semi-Dynamic Strategies

This subsection presents the results for the EXP, OPEN,
MID, KAPPA-EXP, and KAPPA-LM strategies in Go.
EXP-MOVES, EXP-SIM and EXP-STONES. As our ba-
sic time-management approach, EXP-MOVES, EXP-SIM
and EXP-STONES were tested. The first three rows of Table
II show the results. As EXP-STONES appeared to perform
best, it was used as the basis for all further experiments with
the game of Go. Note however that the differences were not
statistically significant. The average error in predicting the
remaining number of moves was 14.16 for EXP-STONES,
13.95 for EXP-MOVES, and 14.23 for EXP-SIM.

OPEN. According to preliminary experiments with OPEN,
the “opening factor” fopening = 2.5 seemed most promising. It
was subsequently tested with 5000 additional games against
GNU GO. Table II shows the result: EXP-STONES with
OPEN is significantly stronger than plain EXP-STONES
(p<0.001).

MID. Initial experiments with MID showed Formula 3 to
perform best with a = 2, b = 40 and c = 20. It was then
tested with 5000 additional games. As Table II reveals, EXP-
STONES with MID is significantly stronger than plain EXP-
STONES (p<0.001).

KAPPA-EXP. The best parameter setting for KAPPA-EXP
found in preliminary experiments was sκavg = 8.33 and
iκavg = −0.67. Lower and upper bounds for the kappa factor
were set to 0.5 and 10, respectively. Table II presents the re-
sult of testing this setting. EXP-STONES with KAPPA-EXP
is significantly stronger than plain EXP-STONES (p<0.001).

KAPPA-LM. Here, sκlastmove = 8.33 and iκlastmove = −0.67
were chosen for further testing against GNU GO as well.
Lower and upper bounds for the kappa factor were set to 0.25
and 10. The test result is shown in Table II. EXP-STONES
with KAPPA-LM is significantly stronger than plain EXP-
STONES (p<0.001).
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TABLE II
PERFORMANCE OF THE INVESTIGATED SEMI-DYNAMIC STRATEGIES IN

13×13 GO.

Player Win rate against GNU GO 95% conf. int.

EXP-MOVES 24.0% 22.9%–25.2%
EXP-SIM 23.5% 22.3%–24.7%
EXP-STONES 25.5% 24.3%–26.7%
EXP-STONES with OPEN 32.0% 30.8%–33.4%
EXP-STONES with MID 30.6% 29.3%–31.9%
EXP-STONES with KAPPA-EXP 31.7% 30.5%–33.0%
EXP-STONES with KAPPA-LM 31.1% 29.8%–32.4%

ERICA-BASELINE 35.3% 34.0%–36.7%

C. Dynamic Strategies

In this subsection the results for the BEHIND, UNST,
CLOSE, STOP, and KAPPA-CM strategies in the game of
Go are given.

BEHIND. Just like the “enhanced formula” of [7], EXP-
STONES was found to be significantly improved by BE-
HIND in OREGO only with a threshold vbehind of higher than
0.5. This is also true after the introduction of BEHIND-L,
and will be discussed in subsection V-F. The best parameter
settings in preliminary experiments were fbehind = 0.5 and
vbehind = 0.6 for BEHIND, and fbehind = 0.25, vbehind = 0.6,
and lbehind = 2 for BEHIND-L. Detailed results of an
additional 5000 games with these setttings are given in Table
III. EXP-STONES with BEHIND is significantly stronger
than plain EXP-STONES (p<0.001). EXP-STONES with
BEHIND-L, however, could not be shown to be significantly
stronger than EXP-STONES with BEHIND.

UNST. The best results in initial experiments with UNST
were achieved with funstable = 1.5. For UNST-L, funstable =
0.75 and lunstable = 2 turned out to be promising values.
These settings were tested in 5000 further games. Table III
shows the results. EXP-STONES with UNST is significantly
stronger than plain EXP-STONES (p<0.001). EXP-STONES
with UNST-L, in turn, is significantly stronger than EXP-
STONES with UNST (p<0.05).

CLOSE. The best-performing parameter settings in initial
experiments with CLOSE were fclose = 1.5 and dclose = 0.4.
When we introduced CLOSE-L, fclose = 0.5, dclose = 0.5 and
lclose = 4 appeared to be most successful. Table III presents
the results of testing both variants in 5000 more games. EXP-
STONES with CLOSE is significantly stronger than plain
EXP-STONES (p<0.001). EXP-STONES with CLOSE-L,
in turn, is significantly stronger than EXP-STONES with
CLOSE (p<0.001).

KAPPA-CM. The best parameter setting for KAPPA-CM
found in preliminary experiments was sκcurrentmove = 8.33 and
iκcurrentmove = −1.33. Lower and upper bounds for the kappa
factor were set to 0.6 and 10. Table III reveals the result
of testing this setting. EXP-STONES with KAPPA-CM is
significantly stronger than plain EXP-STONES (p<0.05).
However, it is surprisingly weaker than both EXP-STONES
using KAPPA-EXP and EXP-STONES with KAPPA-LM
(p<0.001). The time of 100 msec used to collect current
criticality information might be too short, such that noise

TABLE III
PERFORMANCE OF THE INVESTIGATED DYNAMIC STRATEGIES IN 13×13

GO.

Player Win rate against GNU GO 95% conf. int.

EXP-STONES with BEHIND 29.9% 28.7%–31.2%
EXP-STONES with BEHIND-L 30.5% 29.2%–31.8%
EXP-STONES with UNST 33.6% 32.3%–34.9%
EXP-STONES with UNST-L 35.8% 34.4%–37.1%
EXP-STONES with CLOSE 32.6% 31.3%–33.9%
EXP-STONES with CLOSE-L 36.5% 35.2%–37.9%
EXP-STONES with KAPPA-CM 27.3% 26.1%–28.6%
EXP-STONES with STOPA 25.3% 24.1%–26.5%
EXP-STONES with STOPB 36.7% 35.4%–38.0%
EXP-STONES with STOP 39.1% 38.0%–40.8%

EXP-STONES 25.5% 24.3%–26.7%
ERICA-BASELINE 35.3% 34.0%–36.7%

TABLE IV
PERFORMANCE OF EXP-STONES WITH STOP VS. ERICA-BASELINE

IN 13×13 GO.

Time setting Win rate against ERICA-BASELINE 95% conf. int.

30 sec sudden death 63.7% 61.5%–65.8%
60 sec sudden death 59.4% 57.2%–61.5%
120 sec sudden death 60.7% 58.5%–62.8%

is too high. Preliminary tests with longer collection times
(keeping the other parameters equal) did not show signifi-
cantly better results. A retuning of the other parameters with
longer collection times remains as future work.

STOP. The best settings found for STOP were fearlystop =
2.5 and pearlystop = 0.4. This variant significantly outper-
formed (p<0.001) plain EXP-STONES as well as ERICA-
BASELINE in 5000 games each against GNU GO. It is
also significantly stronger (p<0.01) than the best-performing
setting of STOPB with fearlystop = 2. STOPB in turn is
significantly stronger than plain EXP-STONES as well as
STOPA (p<0.001). The STOPA strategy did not show a
significant improvement to the EXP-STONES baseline. Table
III presents the results.

D. Strength Comparisons

This subsection focuses on the time-management strategy
that proved most successful in Go, the STOP strategy. It
attempts to answer the question whether STOP’s effectiveness
generalizes to longer search times (60 seconds, 120 seconds
per game) and to the larger 19×19 board size. Furthermore,
an indication is given of how strong the effect of time
management is when compared to fixed time per move.
Comparison with ERICA-BASELINE on 13×13. Our

strongest time-management strategy on the 13×13 board,
EXP-STONES with STOP, was tested in self-play against
OREGO with ERICA-BASELINE. Time settings of 30,
60, and 120 seconds per game were used with 2000
games per data point. Table IV presents the results. For all
time settings, EXP-STONES with STOP was significantly
stronger (p<0.001).

Comparison with ERICA-BASELINE on 19×19. In this
experiment, we pitted EXP-STONES with STOP against
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TABLE V
PERFORMANCE OF EXP-STONES WITH STOP VS. ERICA-BASELINE

IN 19×19 GO.

Time setting Win rate against ERICA-BASELINE 95% conf. int.

300 sec sudden death 62.7% 60.6%–64.9%
900 sec sudden death 60.2% 58.0%–62.4%

ERICA-BASELINE on the 19×19 board. The best parameter
settings found were C = 60, MaxPly = 110 and funstable = 1
for ERICA-BASELINE, and fearlystop = 2.2 and pearlystop =
0.45 for STOP. Time settings of 300 and 900 seconds per
game were used with 2000 games per data point. OREGO
played about 960 simulations per second when searching
from the empty 19×19 board. The results are shown in Table
V—for both time settings, EXP-STONES with STOP was
significantly stronger (p<0.001).

Comparison with fixed time per move. To illustrate the
effect of successful time management, two additional ex-
periments were conducted with OREGO using fixed time
per move in 13×13 Go. In the first experiment, the time
per move (650 msec) was set so that approximately the
same win rate against GNU GO was achieved as with EXP-
STONES and STOP at 30 seconds per game. The result of
2500 games demonstrated that the average time needed per
game was 49.0 seconds—63% more than needed by our time-
management strategy. In the second experiment, the time per
move (425 msec) was set so that the average time per game
was approximately equal to 30 seconds. In 2500 games under
these conditions, OREGO could only achieve a 27.6% win
rate, 11.5% less than with EXP-STONES and STOP.

V. EXPERIMENTAL RESULTS IN OTHER DOMAINS

The goal of this section is to investigate the generality of
the domain-independent strategies described above: the semi-
dynamic strategies OPEN and MID, and the dynamic strategies
BEHIND, UNST, CLOSE, and STOP. All time-management
strategies were therefore tested in Connect-4, Breakthrough,
Othello, and Catch the Lion. Unless specified otherwise, each
experimental run again involved 5000 games (2500 as Black
and 2500 as White) against the baseline player. The results of
this section have not been published before.

We used our own engine with EXP-MOVES as the baseline.
EXP-MOVES was chosen because EXP-STONES is domain-
specific to Go, and EXP-SIM could be problematic in domains
such as Catch the Lion which do not naturally progress in
every move towards the end of the game (progression property,
[21]). ERICA-BASELINE was not used as a baseline in
other domains than Go since it was proposed specifically for
Go and not as a domain-independent technique. The engine
uses MCTS with UCB1-TUNED [22] as selection policy and
uniformly random rollouts in all conditions. The exploration
factor C of UCB1-TUNED was optimized for each domain at
time controls of 1 second per move and set to 1.3 in Connect-
4, 0.8 in Breakthrough, 0.7 in Othello, and 0.7 in Catch the
Lion. After each search, the most-sampled move at the root is
played. Draws, which are possible in Connect-4 and Othello,
were counted as half a win for both players.

A. Games
This section outlines the rules of the four test domains.
1) Connect-4: Connect-4 is played on a 7×6 board. At

the start of the game, the board is empty. The two players
alternatingly place white and black discs in one of the seven
columns, always filling the lowest available space of the
chosen column. Columns with six discs are full and cannot
be played anymore. The game is won by the player who
succeeds first at connecting four tokens of her own color either
vertically, horizontally, or diagonally. If the board is filled
completely without any player reaching this goal, the game
ends in a draw.

2) Breakthrough: The variant of Breakthrough used in this
article is played on a 6×6 board. The game was originally
described as being played on a 7×7 board, but other sizes
such as 8×8 are popular as well, and the 6×6 board preserves
an interesting search space.

At the beginning of the game, White occupies the first two
rows of the board, and Black occupies the last two rows of the
board. The two players alternatingly move one of their pieces
straight or diagonally forward. Two pieces cannot occupy the
same square. However, players can capture the opponent’s
pieces by moving diagonally onto their square. The game is
won by the player who succeeds first at advancing one piece
to the home row of the opponent, i.e. reaching the first row
as Black or reaching the last row as White.

3) Othello: Othello is played on an 8×8 board. It starts
with four discs in the middle of the board, two white discs and
two black discs. Each disc has a black side and a white side,
with the side facing up indicating the player the disc currently
belongs to. The two players alternatingly place a disc on the
board, in such a way that between the newly placed disc and
another disc of the moving player there is an uninterrupted
horizontal, vertical or diagonal line of one or more discs of
the opponent. All these discs are then turned over, changing
their color to the moving player’s side, and the turn goes to
the other player. If there is no legal move for a player, she has
to pass. If both players have to pass or if the board is filled,
the game ends. The game is won by the player who owns the
most discs at the end.

4) Catch the Lion: Catch the Lion is a simplified form of
Shogi. It is included in this work as an example of Chess-like
games, which tend to be particularly difficult for MCTS [23].

The game is played on a 3×4 board. At the beginning
of the game, each player has four pieces: a Lion, a Giraffe,
an Elephant, and a Chick. The Chick can move one square
forward, the Giraffe can move one square in the vertical and
horizontal directions, the Elephant can move one square in
the diagonal directions, and the Lion can move one square in
any direction. During the game, the players alternatingly move
one of their pieces. Pieces of the opponent can be captured. As
in Shogi, they are removed from the board, but not from the
game. Instead, they switch sides, and the player who captured
them can later on drop them on any square of the board
instead of moving one of her pieces. If the Chick reaches
the home row of the opponent, it is promoted to a Chicken,
now being able to move one square in any direction except
for diagonally backwards. A captured Chicken, however, is
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TABLE VI
PERFORMANCE OF THE INVESTIGATED TIME-MANAGEMENT STRATEGIES

IN CONNECT-4.

Player Win rate against EXP-MOVES 95% conf. int.

EXP-MOVES with OPEN
fopening = 2.25

55.8% 54.4%–57.1%

EXP-MOVES with MID
a = 2.5, b = 30, c = 20

57.0% 55.6%–58.4%

EXP-MOVES with BEHIND
fbehind = 1.5, vbehind = 0.6

55.8% 54.4%–57.1%

EXP-MOVES with BEHIND-L
fbehind = 0.75, vbehind = 0.6, lbehind = 3

57.0% 55.6%–58.4%

EXP-MOVES with UNST
funstable = 0.75

54.9% 53.6%–56.3%

EXP-MOVES with UNST-L
funstable = 1.0, lunstable = 2

55.8% 54.4%–57.2%

EXP-MOVES with CLOSE
fclose = 1.5, dclose = 0.8

58.7% 57.3%–60.0%

EXP-MOVES with CLOSE-L
fclose = 0.75, dclose = 0.8, lclose = 3

59.7% 58.3%–61.1%

EXP-MOVES with STOPA 50.8% 49.4%–52.2%

EXP-MOVES with STOPB
fearlystop = 5

63.0% 61.6%–64.3%

EXP-MOVES with STOP
fearlystop = 5, pearlystop = 0.9

65.0% 63.7%–66.3%

demoted to a Chick again when dropped. The game is won
by either capturing the opponent’s Lion, or moving your own
Lion to the home row of the opponent.

B. Connect-4

In Connect-4, a time limit of 20 seconds per player and
game was used. A draw was counted as half a win for
both players. The baseline player’s speed was about 64500
simulations per second when searching from the initial po-
sition. Table VI shows the results of all investigated time-
management strategies in Connect-4. Each strategy is listed
together with the parameter setting that was found to perform
best in initial systematic testing. The win rate given in the table
was found by using this parameter setting in an additional 5000
games against the baseline.

As Table VI reveals, EXP-MOVES enhanced with the
OPEN, MID, BEHIND, UNST, or CLOSE strategies played
significantly stronger (p<0.001) than plain EXP-MOVES.
BEHIND-L, UNST-L, and CLOSE-L could not be shown
to significantly improve on BEHIND, UNST, and CLOSE,
respectively. STOP improved significantly on EXP-MOVES
alone (p<0.001) as well as STOPB (p<0.05). EXP-MOVES
with STOPB was still significantly stronger than EXP-MOVES
alone (p<0.001). As in Go, STOPA did not have a significant
effect.

C. Breakthrough

In Breakthrough, a time limit of 20 seconds per player and
game was used. Searching from the initial board position,
the baseline player reached about 24800 simulations per

TABLE VII
PERFORMANCE OF THE INVESTIGATED TIME-MANAGEMENT STRATEGIES

IN BREAKTHROUGH.

Player Win rate against EXP-MOVES 95% conf. int.

EXP-MOVES with OPEN
fopening = 1

50.6% 49.2%–52.0%

EXP-MOVES with MID
a = 1.5, b = 50, c = 20

49.7% 48.3%–51.1%

EXP-MOVES with BEHIND
fbehind = 1, vbehind = 0.5

50.2% 48.8%–51.6%

EXP-MOVES with BEHIND-L
fbehind = 0.25, vbehind = 0.5, lbehind = 3

50.9% 49.5%–52.3%

EXP-MOVES with UNST
funstable = 0.75

54.2% 52.8%–55.6%

EXP-MOVES with UNST-L
funstable = 1.0, lunstable = 3

55.2% 53.8%–56.6%

EXP-MOVES with CLOSE
fclose = 0.5, dclose = 0.3

53.1% 51.7%–54.5%

EXP-MOVES with CLOSE-L
fclose = 0.5, dclose = 0.3, lclose = 2

53.9% 52.5%–55.3%

EXP-MOVES with STOPA 54.5% 53.1%–55.9%

EXP-MOVES with STOPB
fearlystop = 1.25

56.9% 55.5%–58.2%

EXP-MOVES with STOP
fearlystop = 1.67, pearlystop = 0.3

58.2% 56.8%–59.5%

second. Table VII displays the results of all investigated time-
management strategies in Breakthrough.

As Table VII shows, EXP-MOVES enhanced with the
UNST or CLOSE strategies played significantly stronger
(p<0.001 and p<0.05, respectively) than regular EXP-
MOVES. Neither OPEN nor MID or BEHIND had a signif-
icant effect. BEHIND-L, UNST-L, and CLOSE-L could also
not be shown to significantly improve on BEHIND, UNST,
and CLOSE. STOP played significantly stronger than the
baseline (p<0.001). It could not be shown to improve on
STOPB however. STOP (p<0.001) as well as STOPB (p<0.05)
improved significantly on STOPA. In contrast to Go and
Connect-4, STOPA already played significantly stronger than
the baseline (p<0.001).

D. Othello

In Othello, a time limit of 30 seconds per player and game
was used. The longer time setting partly compensates for the
longer average game length of Othello compared to Connect-
4, Breakthrough, and Catch the Lion. The baseline player’s
speed was about 4400 simulations per second during a search
from the initial position. Table VIII shows the results of all
investigated time-management strategies in Othello.

Table VIII reveals that EXP-MOVES enhanced with
the UNST or MID strategies played significantly stronger
(p<0.05) than the EXP-MOVES baseline. Neither OPEN
nor CLOSE or BEHIND had a significant effect. BEHIND-
L, UNST-L, and CLOSE-L could again not be shown to
significantly improve on BEHIND, UNST, and CLOSE. STOP
played significantly stronger than the baseline (p<0.05). Sim-
ilar to Breakthrough, this was already true for STOPA. The
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TABLE VIII
PERFORMANCE OF THE INVESTIGATED TIME-MANAGEMENT STRATEGIES

IN OTHELLO.

Player Win rate against EXP-MOVES 95% conf. int.

EXP-MOVES with OPEN
fopening = 1

50.1% 48.7%–51.5%

EXP-MOVES with MID
a = 2.5, b = 50, c = 10

53.2% 51.8%–54.6%

EXP-MOVES with BEHIND
fbehind = 0.5, vbehind = 0.5

49.2% 47.9%–50.6%

EXP-MOVES with BEHIND-L
fbehind = 0.5, vbehind = 0.4, lbehind = 4

51.3% 49.9%–52.7%

EXP-MOVES with UNST
funstable = 0.5

53.1% 51.7%–54.5%

EXP-MOVES with UNST-L
funstable = 0.5, lunstable = 4

52.2% 50.8%–53.6%

EXP-MOVES with CLOSE
fclose = 1.0, dclose = 0.2

50.0% 48.6%–51.4%

EXP-MOVES with CLOSE-L
fclose = 0.25, dclose = 0.5, lclose = 4

51.4% 50.0%–52.8%

EXP-MOVES with STOPA 52.9% 51.5%–54.3%

EXP-MOVES with STOPB
fearlystop = 1.25

54.2% 52.8%–55.6%

EXP-MOVES with STOP
fearlystop = 1.25, pearlystop = 0.9

54.8% 53.4%–56.2%

more general variants of STOP could not be demonstrated to
significantly improve on STOPA in Othello.

E. Catch the Lion

In Catch the Lion, a time limit of 20 seconds per player
and game was used. From the initial board, the baseline had a
speed of about 18500 simulations per second. Table IX shows
the results of all investigated time-management strategies in
Catch the Lion.

As Table IX shows, EXP-MOVES enhanced with the UNST
or CLOSE strategies played significantly stronger (p<0.001)
than regular EXP-MOVES. Neither OPEN, MID, nor BE-
HIND had a significant effect. BEHIND-L, UNST-L, and
CLOSE-L could not be shown to significantly improve on their
simpler versions BEHIND, UNST, and CLOSE. STOP was
significantly stronger (p<0.001) than both the EXP-MOVES
baseline and STOPB. STOPB improved on STOPA (p<0.001).
As in Connect-4, STOPA did not have a significant advantage
over the baseline.

F. Discussion of the Results

In the previous subsections, experimental data were ordered
by domain. This subsection summarizes and discusses the
results ordered by the type of time-management technique
instead, in order to allow for comparisons across different
domains. Tables X and XI give an overview by recapitulating
which strategies were shown to result in a significant increase
of playing strength in which game. Table X illustrates the
improvements of simple strategies—the ones not involving
repeated checks in loops, such as UNST—compared to the

TABLE IX
PERFORMANCE OF THE INVESTIGATED TIME-MANAGEMENT STRATEGIES

IN CATCH THE LION.

Player Win rate against EXP-MOVES 95% conf. int.

EXP-MOVES with OPEN
fopening = 1.5

50.7% 49.3%–52.1%

EXP-MOVES with MID
a = 1.0, b = 20, c = 10

51.2% 49.8%–52.6%

EXP-MOVES with BEHIND
fbehind = 0.75, vbehind = 0.4

51.6% 50.2%–53.0%

EXP-MOVES with BEHIND-L
fbehind = 0.25, vbehind = 0.3, lbehind = 3

50.5% 49.0%–51.9%

EXP-MOVES with UNST
funstable = 0.5

56.4% 55.0%–57.8%

EXP-MOVES with UNST-L
funstable = 0.75, lunstable = 2

56.0% 54.6%–57.4%

EXP-MOVES with CLOSE
fclose = 1.0, dclose = 0.7

57.4% 56.0%–58.8%

EXP-MOVES with CLOSE-L
fclose = 0.5, dclose = 0.7, lclose = 3

55.9% 54.5%–57.2%

EXP-MOVES with STOPA 50.0% 48.6%–51.4%

EXP-MOVES with STOPB
fearlystop = 1.67

56.9% 55.5%–58.2%

EXP-MOVES with STOP
fearlystop = 5, pearlystop = 0.2

60.4% 59.1%–61.8%

TABLE X
TIME MANAGEMENT SUMMARY – SIMPLE STRATEGIES. CHECKMARKS

IDENTIFY STRATEGIES THAT WERE SHOWN TO SIGNIFICANTLY IMPROVE
ON THEIR RESPECTIVE BASELINE (EXP-MOVES IN THE COLUMN GAME).

STRATEGIES THAT SHOWED NO SIGNIFICANT IMPROVEMENT ARE LEFT
BLANK.

EXP-MOVES with Con
ne

ct-
4

Brea
kth

rou
gh

Othe
llo

Catc
h the

Lion

13
×13

Go

OPEN 3 3
MID 3 3 3
BEHIND 3 3
UNST 3 3 3 3 3
CLOSE 3 3 3 3
STOPA 3 3
STOPB 3 3 3 3 3
STOP 3 3 3 3 3

baseline player. Table XI shows the improvements of the
loop strategies compared to their simple counterparts, such as
UNST-L to UNST. In the following, these results are discussed
ordered by time-management strategy.

OPEN and MID. Some domains, e.g., Connect-4, Othello,
and Go, profit from shifting available time from the endgame
to the midgame or early game. Intuitively, this is the case in
games that allow players to build up a positional advantage,
essentially deciding the game result many moves before
an actual terminal state is reached. Less effort is therefore
required in the endgame for the leading player to keep the
lead and execute the win. Search effort is also largely futile
for a player who has fallen behind in the endgame, and
is more effectively spent in the early or midgame to avoid
falling behind in the first place.
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TABLE XI
TIME MANAGEMENT SUMMARY – LOOP STRATEGIES. CHECKMARKS
IDENTIFY LOOP STRATEGIES THAT WERE SHOWN TO SIGNIFICANTLY

IMPROVE ON THEIR RESPECTIVE SIMPLE VERSIONS (E.G. CLOSE-L ON
CLOSE). STRATEGIES THAT SHOWED NO SIGNIFICANT IMPROVEMENT

ARE LEFT BLANK.

EXP-MOVES with Con
ne

ct-
4

Brea
kth

rou
gh

Othe
llo

Catc
h the

Lion

13
×13

Go

BEHIND-L
UNST-L 3
CLOSE-L 3

Other games, for instance Catch the Lion and Breakthrough,
are more tactical in nature and require a higher search effort
even in the endgame. One of the reasons is that with sufficient
effort, it can be possible throughout the entire game for
both players to lure their opponent into traps [23]. The
player falling behind can therefore still make effective use
of additional time in the endgame, while the leading player
still needs to spend time to avoid losing her positional gains
in this way. See [24] for a discussion of tacticality and traps
and a more in-depth comparison of the test domains in this
respect.
The following experiment was conducted in order to compare
the test domains with respect to the usefulness of spending
search time in the endgame. Player A used 1 second thinking
time per move. Player B used 1 second until 10 turns before
the average game length of the respective domain, and then
switched to 100ms per move. 1000 games were played in
each domain, with players A and B both moving first in
half of the games. In this setting, player B won 49.1% (95%
confidence interval: 46.0%− 52.3%) of games in Connect-4
and 49.0% (45.9%− 52.2%) in Othello—the loss of time in
the endgame could not be shown to significantly weaken the
player. In Breakthrough however, player B won only 36.6%
(33.6%−39.7%) of games, and in Catch the Lion only 31.4%
(28.6%− 34.4%). This explains why shifting large amounts
of time from the endgame to the opening or midgame is not
effective in these domains.
In Go, switching from 1000ms to 100ms in the described way
does result in decreased performance as well (38.4% win rate
for player B). Even though endgame time does not seem to
be wasted time in Go however, moving a part of it towards
the opening or midgame is still effective. Note that OREGO
resigns whenever its win rate at the root falls below 10%,
which cuts off most of the late endgame of Go as human
players typically would. This feature is meant to restrict
the game to the moves that actually matter. Deactivating
resigning makes games much longer on average (231 moves
instead of 118 in self-play at 1 second per move), and creates
even more opportunity to shift time away from the endgame.
Furthermore, it is interesting to note that the optimal pa-
rameter settings of the MID strategy in Connect-4 largely
turn it into a variant of OPEN by shifting time far to the
beginning of the game. In for example Othello and 13×13
Go this is not the case. Figures 1, 2, and 3 show the average
time distribution over a game of Connect-4, Othello, and Go,

respectively, using the optimized settings of the MID strategy
in each game. The figures demonstrate how the peak of the
average time spent by MID per move appears at a later stage
of the game in Othello and Go than in Connect-4. This is
probably explained by the fact that Othello and Go games
take much longer than Connect-4 games on average (compare
Table XIV). In Othello and Go it is therefore prudent not
to spend too much time on the first moves of a game,
as potential consequences of actions are not yet visible to
MCTS. Connect-4 however requires more search effort in
the opening, as games are often decided early. One could
say that opening and midgame fall into one phase in a short
game such as Connect-4.
In conclusion, OPEN and MID can be useful not only to
improve performance in a given game, but also to gain
insight into the relative importance of early game, midgame
and endgame decisions in the game at hand. Note that this
importance is always dependent on the search engine and
search timing used—an engine with opening or endgame
databases for example might optimally distribute search time
differently, and the use of long search times can make the
consequences of moves visible somewhat earlier in the game
compared to short search times.
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Fig. 1. Average time distribution over a game of Connect-4 with the MID
and OPEN strategies.
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Fig. 2. Average time distribution over a game of Othello with the MID
strategy.

BEHIND. Among the tested domains, the BEHIND strategy
is improving performance in Connect-4 and 13×13 Go.
Looking at the optimal parameter values for these two games
however, we can see that search times are prolonged when-
ever the player’s win rate falls below 0.6. This means they are
essentially always prolonged in the opening and midgame,
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Fig. 3. Average time distribution over a game of 13×13 Go with the MID
strategy.

when win rates tend to be close to 0.5. The strategy largely
turns from a method to come back from a disadvantageous
position into a method to shift more search time to the earlier
phase of the game. For Connect-4, Figure 4 shows the similar
effects of OPEN and BEHIND at optimal parameter settings
when considering the average time distribution over the turns
of the game. Since we already know the OPEN strategy
to be effective in Connect-4, and OPEN and BEHIND are
equally strong according to Table VI, it is an interesting
question whether BEHIND provides any additional positive
effect beyond this similar time shift.
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Fig. 4. Average time distribution over a game of Connect-4 with the OPEN
and BEHIND strategies.

In order to investigate this question, we determined the
average time spent on each turn of the game when us-
ing the BEHIND strategy—as presented for Connect-4 in
Figure 4—and created a regular MCTS player BEHIND-
DISTRIBUTION which directly uses these search times
depending on the current turn. Thus, it achieves the same
time distribution over the game as BEHIND, while not using
the BEHIND method itself. As an example, if BEHIND on
average uses 673ms in turn 17 of a game, this is a result of
win rates being compared to the threshold parameter vbehind
and some proportion of searches being prolonged by a factor
of fbehind in all turns up to 17. BEHIND-DISTRIBUTION just
uses 673ms every time it reaches turn 17 in this example,
regardless of the win rates observed. By comparing the
playing strength of BEHIND-DISTRIBUTION to that of
BEHIND we can determine whether the BEHIND method
has a significant effect in addition to the time distribution
over turns that it causes. BEHIND-DISTRIBUTION was also

TABLE XII
PERFORMANCE OF THE DISTRIBUTION PLAYERS IN CONNECT-4,

BREAKTHROUGH, OTHELLO, AND CATCH THE LION. 5000 GAMES PER
PLAYER WERE PLAYED AGAINST THE EXP-MOVES BASELINE.

Player Win rate 95% conf. int. Derived from Win rate

In Connect-4:
BEHIND-DISTR. 55.3% 53.9%-56.7% BEHIND 55.8%
UNST-DISTR. 50.8% 49.4%-52.2% UNST 54.9%
CLOSE-DISTR. 54.9% 53.5%-56.3% CLOSE 58.7%
STOPA-DISTR. 46.1% 44.7%-47.5% STOPA 50.8%
STOPB-DISTR. 52.9% 51.5%-54.3% STOPB 63.0%
STOP-DISTR. 55.1% 53.7%-56.5% STOP 65.0%
In Breakthrough:
UNST-DISTR. 48.7% 47.3%-50.1% UNST 54.2%
CLOSE-DISTR. 49.6% 48.2%-51.0% CLOSE 53.1%
STOPA-DISTR. 47.6% 46.2%-49.0% STOPA 54.5%
STOPB-DISTR. 47.3% 45.9%-48.7% STOPB 56.9%
STOP-DISTR. 47.2% 45.8%-48.6% STOP 58.2%
In Othello:
UNST-DISTR. 48.9% 47.5%-50.3% UNST 53.1%
CLOSE-DISTR. 49.3% 47.9%-50.7% CLOSE 50.0%
STOPA-DISTR. 49.1% 47.7%-50.5% STOPA 52.9%
STOPB-DISTR. 49.6% 48.2%-51.0% STOPB 54.2%
STOP-DISTR. 50.4% 49.0%-51.8% STOP 54.8%
In Catch the Lion:
UNST-DISTR. 51.3% 49.9%-52.7% UNST 56.4%
CLOSE-DISTR. 50.1% 48.7%-51.5% CLOSE 57.4%
STOPA-DISTR. 47.7% 46.3%-49.1% STOPA 50.0%
STOPB-DISTR. 51.8% 50.4%-53.2% STOPB 56.9%
STOP-DISTR. 49.3% 47.9%-50.7% STOP 60.4%

TABLE XIII
PERFORMANCE OF THE DISTRIBUTION PLAYERS IN 13×13 GO. 5000

GAMES PER PLAYER WERE PLAYED AGAINST GNU GO.

Player Win rate 95% conf. int. Derived from Win rate

BEHIND-DISTR. 31.3% 30.0%-32.6% BEHIND 29.9%
UNST-DISTR. 32.6% 31.3%-33.9% UNST 33.6%
CLOSE-DISTR. 31.0% 29.7%-32.3% CLOSE 32.6%
STOPA-DISTR. 18.7% 17.6%-19.8% STOPA 25.3%
STOPB-DISTR. 29.8% 28.5%-31.1% STOPB 36.7%
STOP-DISTR. 32.8% 31.5%-34.1% STOP 39.1%

implemented for 13×13 Go. Since the baseline in Go was
EXP-STONES instead of EXP-MOVES, it used the same
search times as BEHIND depending on the current number
of stones on the board, not depending on the current turn.
The results are comparable since the turn and the number of
stones on the board correlate strongly.
As Table XII shows, the win rate of BEHIND-
DISTRIBUTION in Connect-4 is not significantly different
from that of BEHIND. The same is true in Go, as indicated
in Table XIII. BEHIND only appears to improve playing
strength in Connect-4 and 13×13 Go due to its time shift
to the opening phase. It can be concluded that the BEHIND
strategy is not effective in any of the tested domains except
for Connect-4 and 13×13 Go, where it can be replaced by
a strategy directly manipulating the time distribution over
turns (or stones) such as OPEN.

UNST. The UNST strategy is significantly stronger than the
baseline in all tested domains. Figure 5 demonstrates that in
Go, UNST at optimal parameter settings has the effect of
shifting time to the opening, similar to BEHIND. Figure 6
however shows that this is not the case for UNST at optimal
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parameter settings in Connect-4. The time distribution of
UNST appears nearly identical to that of the EXP-MOVES
baseline. In order to test for an effect of the UNST method
beyond potential influences on the time distribution over the
turns of the game, we constructed a UNST-DISTRIBUTION
player for each test domain according to the procedure de-
scribed for BEHIND-DISTRIBUTION above. The Go player
was again based on the time distribution over the number of
stones on the board.
Tables XII and XIII show that UNST-DISTRIBUTION is
not significantly better than the baseline in any domain but
Go, where it is not significantly different from UNST. We
can therefore conclude that UNST is useful in Connect-4,
Breakthrough, Othello, and Catch the Lion, independently of
the time distribution over turns that results from it. In 13×13
Go however, the success of UNST largely depends on a time
shift to the opening, similar to BEHIND.

0 50 100 150 200 250

0

500

turn

av
er

ag
e

tim
e

pe
r

m
ov

e
in

m
s

EXP-STONES baseline
EXP-STONES with UNST

Fig. 5. Average time distribution over a game of 13×13 Go with the UNST
strategy.
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Fig. 6. Average time distribution over a game of Connect-4 with the UNST
strategy.

CLOSE. The CLOSE strategy is improving the performance
of the baseline in all tested domains except for Othello. As
for BEHIND and UNST, a CLOSE-DISTRIBUTION player
was created for each domain in order to test the influence of a
shifted time distribution over turns of the game that is caused
by applying CLOSE. Tables XII and XIII demonstrate that in
Breakthrough and Catch the Lion, CLOSE-DISTRIBUTION
does not achieve win rates significantly higher than 50%,
meaning that CLOSE is playing stronger independently of
the time distribution over the game that it causes. In Connect-
4, CLOSE-DISTRIBUTION does perform better than EXP-
MOVES—but still significantly worse than CLOSE itself,

which means that the CLOSE strategy has a positive effect in
addition to the time shift. In Go, this additional effect could
not be shown to be statistically significant.
It remains to be shown why CLOSE does not perform well
in Othello. It could be the case that there are too many
situations in which two moves have relatively high and close
visit counts, but investing additional search effort does not
lead to a better move decision—either because the moves
are equally valid, or because the consequences of the two
moves cannot be reliably distinguished even with the help of
a limited additional amount of time.

STOP. The STOP strategy—as well as the special case
STOPB—significantly improves on the baseline in all tested
domains. Furthermore, STOP consistently achieved the high-
est win rate of all investigated time-management techniques
across the five domains and is thus the most successful
strategy tested in this article.
We determined the average percentage of the regular search
time that was saved per move when STOP, STOPA or
STOPB were active. For STOPA/STOPB, this percentage was
31.1%/32.1% in Connect-4, 24.7%/25.0% in Breakthrough,
23.1%/23.1% in Othello, and 32.4%/33.7% in Catch the Lion.
The time shift used by STOPB thus does not change these
values significantly. Note that more than 50% cannot be saved
with STOPB, because the rest of the search time would then
still be long enough to turn a completely unsampled move
into the most-sampled one. In the most general STOP variant,
more than 50% can theoretically be saved, as it gives up the
guarantee of never stopping a search whose outcome could
still change. The saved percentages of the search time for
STOP were 34.5% in Connect-4, 47.7% in Breakthrough,
25.2% in Othello, and 68.5% in Catch the Lion. The increase
in saved time is related to the parameter pearlystop—domains
with high optimal pearlystop (0.9 in Connect-4 and Othello)
only relax the guarantee to a small degree, domains with
low optimal pearlystop (0.3 in Breakthrough and 0.2 in Catch
the Lion) relax it further.
For all STOP variants, the performance of a player imitating
their time distribution over the game was tested as well
(named STOPA-DISTRIBUTION etc.). According to Tables
XII and XIII, the distribution over turns (or stones) of
STOP and STOPB alone has no significant positive effect
on playing strength in all games except for Connect-4 and
Go. In Connect-4 and Go, STOP-DISTRIBUTION does have
a positive effect, but is still significantly weaker than STOP.
The same holds for STOPB-DISTRIBUTION. In conclusion,
STOP and STOPB are effective in all tested domains, inde-
pendently of (or in addition to) their time distribution over
turns.
The basic strategy STOPA works in some domains (Break-
through, Othello) but not in others (Connect-4, Catch the
Lion, Go). As the success of STOPB shows—a strategy that
works just like STOPA but simultaneously shifts time to the
opening of the game—this is largely due to STOPA’s adverse
effect of shifting time to the endgame. The fact that such
time shifts can potentially occur with any given strategy
makes studying and comparing these two STOP variants
worthwhile. As illustrative examples, see Figures 7 and 8
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for a visualization of the effects of STOPA and STOPB in
Connect-4 and Go, respectively. The time distribution of the
most general STOP variant—not shown here for clarity—
looks very similar to the STOPB distribution in both games.
An additional argument for the hypothesis that a time shift
to the endgame hurts the performance of STOPA comes from
the performance of STOPA-DISTRIBUTION (see Tables XII
and XIII). In all tested domains except for Othello, also
representing the only domain where STOPB does not improve
on STOPA, the time distribution over turns (or stones) of
STOPA hurts performance significantly.
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Fig. 7. Average time distribution over a game of Connect-4 with the STOPA
and STOPB strategies. While STOPA shifts time to the endgame when
compared to the baseline, STOPB shifts time to the opening phase of the
game.
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Fig. 8. Average time distribution over a game of 13×13 Go with the STOPA
and STOPB strategies.

BEHIND-L, UNST-L, and CLOSE-L. As Table XI shows,
the repeated check for the termination conditions in UNST-L
and CLOSE-L only resulted in significantly stronger play
in the domain of Go. None of the other games profited
from it. BEHIND-L was not significantly more effective than
BEHIND in any tested domain. (Note that UNST, CLOSE,
and BEHIND are special cases of UNST-L, CLOSE-L, and
BEHIND-L, respectively. Therefore, the looping versions
cannot perform worse than the simple versions if tuned
optimally.) It is possible that in the set of domains used,
only Go is sufficiently complex with regard to branching
factor and game length to make such fine-grained timing
decisions worthwhile. See Table XIV for a comparison of
average game lengths and average branching factors of all
five domains investigated. All values are averages from 1000
self-play games of regular MCTS, 1 second per move. In

TABLE XIV
GAME LENGTH AND BRANCHING FACTOR IN CONNECT-4,

BREAKTHROUGH, OTHELLO, CATCH THE LION, AND 13×13 GO.

Con
ne

ct-
4

Brea
kth

rou
gh

Othe
llo

Catc
h the

Lion

13
×13

Go

Game length 37 29 61 35 150
Branching factor 5.8 15.5 8 10.5 90

Go, we took the average against GNU GO at 30 seconds per
game.
All time-management strategies that prolong search times

when certain criteria are met, such as BEHIND, UNST, and
CLOSE, take available time from the later phases and shift
it to the earlier phases of the game. Strategies that shorten
search times based on certain criteria, such as STOPA, move
time from the opening towards the endgame instead. When
analyzing the effect of time-management approaches, it is
therefore worth testing whether these shifts have a positive or
negative effect. Should the effect be negative, STOPB provides
an example of how to possibly counteract it by introducing an
explicit shift in the opposite direction.

VI. CONCLUSION AND FUTURE RESEARCH

In this article, we investigated a variety of time-management
strategies for Monte Carlo Tree Search, using the games of
Go, Connect-4, Breakthrough, Othello, and Catch the Lion
as a testbed. This included newly proposed strategies (called
OPEN, MID, KAPPA-EXP, KAPPA-LM, and KAPPA-CM) as
well as strategies described in [7] (UNST and BEHIND) or
independently proposed in [6] (CLOSE and STOPA), partly
in enhanced form (UNST-L, BEHIND-L, CLOSE-L, STOPB,
and STOP). Empirical results show that the proposed strategy
EXP-STONES with STOP provides a significant improvement
over the state of the art as represented by ERICA-BASELINE
in 13×13 Go. For sudden-death time controls of 30 seconds
per game, EXP-STONES with STOP increased OREGO’s win
rate against GNU GO from 25.5% (using a simple baseline) or
from 35.3% (using the state-of-the-art ERICA-BASELINE) to
39.1%. In self-play, this strategy won approximately 60% of
games against ERICA-BASELINE, both in 13×13 and 19×19
Go under various time controls.

Furthermore, comparison across different games shows that
the domain-independent strategy STOP is the strongest of
all tested time-management strategies. It won 65.0% of self-
play games in Connect-4, 58.2% in Breakthrough, 54.8% in
Othello, and 60.4% in Catch the Lion. With the exception of
CLOSE in Othello, UNST and CLOSE also prove effective
in all domains. Since many time-management strategies result
in a shift of available time towards either the opening or the
endgame, a methodology was developed to isolate the effect of
this shift and judge the effect of a given strategy independently
of it.

The following directions appear promising for future re-
search. First, a natural next step is the combined testing and
optimization of all above strategies—in order to determine to
which degree their positive effects on playing strength can
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complement each other, or to which degree they could be
redundant (such as OPEN and BEHIND in Connect-4), or
possibly interfere. ERICA-BASELINE demonstrates that some
combinations can be effective at least in Go. Second, a non-
linear classifier like a neural network could be trained to decide
about continuing or aborting the search in short intervals, using
all relevant information used by above strategies as input. A
third direction is the development of improved strategies to
measure the complexity and importance of a position and
thus to effectively use time where it is most needed. In Go
for example, counting the number of independent fights on
the board could be one possible, domain-dependent approach.
Furthermore, possible interactions of time management strate-
gies with other MCTS enhancements could be studied, such
as for instance the sufficiency-based selection strategy by
Gudmundsson and Björnsson [25].

ACKNOWLEDGMENT

This work is funded by the Netherlands Organisation for
Scientific Research (NWO) in the framework of the project
Go4Nature, grant number 612.000.938. The authors would like
to thank the reviewers for their valuable comments that helped
improve this article.

REFERENCES
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