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Abstract. Monte Carlo Tree Search (MCTS) has become a widely pop-
ular sampled-based search algorithm for two-player games with perfect
information. When actions are chosen simultaneously, players may need
to mix between their strategies. In this paper, we discuss the adaptation
of MCTS to simultaneous move games. We introduce a new algorithm,
Online Outcome Sampling (OOS), that approaches a Nash equilibrium
strategy over time. We compare both head-to-head performance and ex-
ploitability of several MCTS variants in Goofspiel. We show that regret
matching and OOS perform best and that all variants produce less ex-
ploitable strategies than UCT.

1 Introduction

Monte Carlo Tree Search (MCTS) is a simulation-based search technique often
used in extensive-form games [9, 16]. Having first seen practical success in com-
puter Go [13], MCTS has since been applied successfully to general game play-
ing, real-time and continuous domains, multi-player games, single-player games,
imperfect information games, computer games, and more [4].

Despite its empirical success, formal guarantees of convergence of MCTS
to the optimal action choice were analyzed only for a MCTS variant called
UCT [16], in the case of two-player zero-sum perfect-information sequential
(turn-taking) games. In this paper, we focus on MCTS in zero-sum games with
perfect information and simultaneous moves. We argue that a good search algo-
rithm for this class of games should converge to a Nash equilibrium (NE) of the
game, which is not the case for a variant of UCT [25], commonly used in this
setting. Other variants of MCTS, which may converge to NE were suggested [26],
but this property was never proven or experimentally evaluated.

In this paper, we introduce Online Outcome Sampling (OOS), a MCTS algo-
rithm derived from Monte Carlo counterfactual regret minimization [17], which
provably converges to NE in this class of games. We provide experimental evi-
dence that OOS and several other variants of MCTS, based on Exp3 and Regret
matching, also converge to NE in a smaller version of the card game Goofspiel.
In addition, we compare the head-to-head performance of five different MCTS
variants in full-size Goofspiel. Since Goofspiel has recently been solved [21], we



use the optimal minimax values of every state to estimate the exploitability
(i.e., worst-case regret) of the strategies used in the full game. The results show
that regret matching and an optimized form of OOS (OOS+), which have never
been used in context of MCTS, produce the strongest Goofspiel players.

1.1 Related Work

The first application of MCTS to simultaneous move games was in general game
playing (GGP) [11] programs. The Cadiaplayer [12] using a strategy we describe
as DUCT in Subsection 3.1 was the top performing player of the GGP compe-
tition between 2007 and 2009. Despite this success, Shafiei et al. [25] provide a
counter-example showing that this straightforward application of UCT does not
converge to NE even in the simplest simultaneous move games and that a player
playing a NE can exploit this strategy. Another variant of UCT, which has been
applied to the simultaneous move game Tron [24], builds the tree as if the play-
ers were moving sequentially giving one of the player unrealistic informational
advantage. This approach also cannot converge to NE in general.

For this reason, other variants of MCTS were considered for simultaneous
move games. Teytaud and Flory [26] describe a search algorithm for games with
short-term imperfect information, which are a generalization of simultaneous
move games. Their algorithm uses Exp3 (see Subsection 3.2) for the simultaneous
moves and was shown to work well in the Internet card game Urban Rivals. A
more thorough investigation of different selection policies including UCB, UCB1-
Tuned, ε-greedy, Exp3, and more is reported in the game of Tron [20]. We show
a similar head-to-head performance comparison for Goofspiel in Section 4 and
we add an analysis of convergence to NE.

Finnsson applied simultaneous move MCTS to several games, including small
games of Goofspiel [12, Chapter 6]. This work focused mainly on pruning prov-
ably dominated moves. Their algorithm uses solutions to linear programs in the
framework of Score-Bounded MCTS [6] to extend the ideas of MCTS-Solver [27]
to simultaneous move games. Saffidine et al. [23] and Bosansky et al. [3] recently
described methods for αβ pruning in simultaneous move games, and also applied
their algorithms to simplified Goofspiel. Our work differs in that our algorithm
is built with the simulation-based search framework of Monte Carlo Tree Search
(MCTS), which is more suitable for larger games with difficult evaluation of the
quality of intermediate game states.

The ideas presented in this paper are different than MMCTS and IS-MCTS [2,
10] in the sense that the imperfect information that arises in simultaneous move
games is rather short term because it only occurs between state transitions. In
our case game trees may include chance events, but the outcomes of the chance
events are observable by each player. As a result, techniques such as backward
induction [5, 21, 22] are applicable, and search algorithms can be seen as sample-
based approximations of these solvers.



2 Simultaneous Move Games

A finite game with simultaneous moves and chance can be described by a tuple
(N ,S = D∪C ∪Z,A, T , ∆c, ui, s0). The player set N = {1, 2, c} contains player
labels, where c denotes the chance player and by convention a player is denoted
i ∈ N . S is a set of states, with Z denoting the terminal states, D the states
where players make decisions, and C the possibly empty set of states where
chance events occur. A = A1×A2 is the set of joint actions of individual players.
We denote Ai(s) the actions available to player i in state s ∈ S. The transition
function T : S × A1 ×A2 7→ S defines the successor state given a current state
and actions for both players. ∆c : C 7→ ∆(S) describes a probability distribution
over possible successor states of the chance event. The utility functions ui : Z 7→
[vmin, vmax] ⊆ R gives the utility of player i, with vmin and vmax denoting the
minimum and maximum possible utility respectively. We assume constant-sum
games: ∀z ∈ Z, u1(z) = k − u2(z). The game begins in an initial state s0.

A matrix game is a single step simultaneous move game with action sets A1

and A2. Each entry in the matrix Arc where (r, c) ∈ A1 × A2 corresponds to
a payoff (to player 1) if row r is chosen by player 1 and column c by player 2.
For example, in Matching Pennies, each player has two actions (heads or tails).
The row player receives a payoff of 1 if both players choose the same action and
0 if they do not match. Two-player simultaneous move games are sometimes
called stacked matrix games because at every state s there is a joint action set
A1(s) × A2(s) that either leads to a terminal state or (possibly after a chance
transition) to a subgame which is itself another stacked matrix game.

A behavioral strategy for player i is a mapping from states s ∈ S to a
probability distribution over the actions Ai(s), denoted σi(s). Given a profile
σ = (σ1, σ2), define the probability of reaching a terminal state z under σ as
πσ(z) = π1(z)π2(z)πc(z), where each πi(z) is a product of probabilities of the
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Fig. 1: Examples of a two-player simultaneous game without chance nodes (left)
which has Matching Pennies as a subgame, and a portion of 3-card Goofspiel
including chance nodes (right). The dark squares are terminal states. The values
shown are optimal values that could be obtained by backward induction.
Note: the left figure is taken from [3] and provided by Branislav Bosansky.



actions taken by player i along the path to z (c being chance’s probabilities).
Define Σi to be the set of behavioral strategies for player i. A Nash equilibrium
profile in this case is a pair of behavioral strategies optimizing

V ∗ = max
σ1∈Σ1

min
σ2∈Σ2

Ez∼σ[u1(z)] = max
σ1∈Σ1

min
σ2∈Σ2

∑
z∈Z

πσ(z)u1(z). (1)

In other words, none of the players can improve their utility by deviating uni-
laterally. For example, the Matching Pennies matrix game has a single state and
the only equilibrium strategy is to mix equally between both actions, i.e., play
with a mixed strategy (distribution) of (0.5, 0.5) giving an expected payoff of
V ∗ = 0.5. If the strategies also optimize Equation 1 in each subgame starting in
an arbitrary state, the equilibrium strategy is termed subgame perfect.

In two-player constant sum games a (subgame perfect) Nash equilibrium
strategy is often considered to be optimal. It guarantees the payoff of at least
V ∗ against any opponent. Any non-equilibrium strategy has its nemesis, which
will make it win less than V ∗ in expectation. Moreover, subgame perfect NE
strategy can earn more than V ∗ against weak opponents. After the opponent
makes a sub-optimal move, the strategy will never allow it to gain the loss back.
The value V ∗ is known as the minimax-optimal value of the game and is the
same for every equilibrium profile by von Neumann’s minimax theorem.

A two-player simultaneous move game is a specific type of two-player imper-
fect information extensive-form game. In imperfect information games, states
are grouped into information sets: two states s, s′ ∈ I if the player to act at I
cannot distinguish which of these states the game is currently in. Any simul-
taneous move game can be modeled using an information set to represent a
half-completed transition, i.e., T (s, a1, ?) or T (s, ?, a2).

The model described above is similar to a two-player finite horizon Markov
Game [19] with chance events. Examples of such games are depicted in Figure 1.

3 Simultaneous Move Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [9, 16] is a simulation-based search algorithm
often used in game trees. The main idea is to iteratively run simulations to a
terminal state, incrementally growing a tree rooted at the current state. In its
simplest form, the tree is initially empty and a single leaf is added each iteration.
The nodes in the tree represent game states (decision nodes) or chance events
(chance nodes). Each simulation starts by visiting nodes in the tree, selecting
(or sampling) which actions to take based on information maintained in the
node, and then consequently transitioning to the successor states. When a node
is visited whose immediate children are not all in the tree, the node is expanded
by adding a new leaf to the tree. Then, a rollout policy is applied from the new
leaf to a terminal state. The outcome of the simulation is then back-propagated
to all the nodes that were visited during the simulation.

In Simultaneous Move MCTS (SM-MCTS), the main difference is that a joint
action is selected. The convergence to an optimal strategy depends critically on



1 SM-MCTS(node s)
2 if s is a terminal state (s ∈ Z) then return u1(s)
3 else if s ∈ T and s is a chance node (s ∈ C) then
4 Sample s′ ∼ ∆c(s)
5 if s′ 6∈ T then add s′ to T
6 u1 ← SM-MCTS(s′)
7 Xs ← Xs + u1; ns ← ns + 1
8 return u1

9 else if s ∈ T and ∃(a1, a2) ∈ A1(s)×A2(s) not previously selected then
10 Choose one of the previously unselected (a1, a2) and s′ ← T (s, a1, a2)
11 Add s′ to T
12 u1 ← Rollout(s′)
13 Xs′ ← Xs′ + u1; ns′ ← ns′ + 1
14 Update(s, a1, a2, u1)

15 return u1

16 (a1, a2)← Select(s)
17 s′ ← T (s, a1, a2)
18 u1 ← SM-MCTS(s′)
19 Update(s, a1, a2, u1)

20 return u1

Algorithm 1: Simultaneous Move Monte Carlo Tree Search

the selection and update policies applied, which are not as straightforward as
in purely sequential games. Algorithm 1 describes a single simulation of SM-
MCTS. T represents the MCTS tree in which each state is represented by one
node. Every node s maintains a cumulative reward sum over all simulations
through it, Xs, and a visit count ns, both initially set to 0. As with standard
MCTS, when a state is visited these values are incremented, in the same way on
lines 7 and 13, and in the node updates on lines 14 and 19. As seen in Figure 1,
a matrix of references to the children is maintained at each decision node.

Chance nodes are explicitly added to the tree and handled between lines 3
and 7, which is skipped in games without chance events since |C| = 0. At a
chance node s, X̄s = Xs/ns represents the mean value of the chance node and
corresponding joint action at the parent of s. This mean value at chance nodes
approximates the expected value (weighted sum) that would be computed by
backward induction or a depth-limited search algorithm.

At a decision node s, the estimated values X̄s′ of the children nodes s′ =
T (s, a1, a2) over all joint actions form an estimated payoff matrix for node s.
The critical parts of the algorithm are the updates on lines 14 and 19 and the
selection on line 16. Each variant below will describe a different way to select a
joint action and update a decision node.

In practice, there are several optimizations to the base algorithm that might
be desirable. For example, if a game has a large branching factor, it may take
many iterations for the expansion condition and consequence in lines 9 to 10 to
fill up the matrix before switching to a selection policy. The matrix can instead



be filled such that at least one action has been taken from each row and one from
each column before switching to the selection policy. Since DUCT and Exp3 do
not require values for each entry in the matrix, this could reduce the number of
simulations before switching to |A1(s)| + |A2(s)| from |A1(s)||A2(s)|. The use
of progressive widening [7, 8] may also lead to deeper searches. In this paper,
the implementation for experiments is based on the pseudo-code presented in
Algorithm 1.

3.1 Decoupled UCT

In Decoupled UCT (DUCT) [11], each player i maintains separate reward sums
Xi
s,a and visit counts nis,a for their own action set a ∈ Ai(s). When a joint action

needs to be selected on line 16, each player selects an action that maximizes the
UCB value over their reward estimates independently:

ai = argmax
a∈Ai(s)

{
X̄i
s,a + Ci

√
lnns
ns,a

}
, where X̄i

s,a =
Xi
s,a

ns,a
(2)

The update policy increases the rewards and visit counts for each player i:
Xi
s,ai ← Xi

s,ai + ui, and ns,ai ← ns,ai + 1.

While references to children nodes in the MCTS tree are maintained in a
matrix, each player decouples the values and estimates from the joint actions
space. In other words, for some state s, each player maintains their own tables
of values. For example, suppose the actions sets areA1(s) = {a, b, c} andA2(s) =
{A,B,C}, then the information maintained by at state s is depicted in Figure 2.
Many of the other selection policies also maintain values separately, and some
use jointly maintained values.

Player 1

Action Reward Sum Visit Count

a X1
s,a ns,a

b X1
s,b ns,b

c X1
s,c ns,c

Player 2

Action Reward Sum Visit Count

A X2
s,A ns,A

B X2
s,B ns,B

C X2
s,C ns,C

Fig. 2: Decoupled values maintained in the tree at a node representing state s.

After the simulations, a move is chosen that maximizes X̄i
s,ai for the searching

player i. Alternatively, one can choose to play a mixed (i.e., randomized) strategy
by normalizing the visit counts. We call the former DUCT(max) and the latter
DUCT(mix).



3.2 Exp3

In Exp3 [1], each player maintains an estimate of the sum of rewards, denoted
x̂is,a, and visit counts nis,a for each of their actions. The joint action selected on
line 16 is composed of an action independently selected for each player based on
the probability distribution. This probability of sampling action ai is

σti(s, ai) =
(1− γ) exp(ηwis,ai)∑
aj∈Ai(s)

exp(ηwis,aj )
+

γ

|Ai(s)|
, where (3)

η =
γ

|Ai(s)|
, and wis,a = x̂is,a − max

a′∈Ai(s)
x̂is,a′ .

Here, the reason to use wis,a is for numerical stability in the implementation.
The action selected by normalizing over the maximum value will be identical to
the action chosen without normalizing.

The update after selecting actions (a1, a2) and obtaining a simulation result
(u1, u2) updates the visits count and adds to the corresponding reward sum
estimates the reward divided by the probability that the action was played by
the player using

ns,ai ← ns,ai + 1, x̂is,ai ← x̂is,ai +
ui

σti(s, ai)
.

Dividing the value by the probability of selecting the corresponding action makes
x̂is,a estimate the sum of rewards over all iterations, not only the once where ai
was selected.

Since these values and strategies are maintained separately for each player,
Exp3 is decoupled in the same sense as DUCT, storing values separately as
depicted by Figure 2.

The mixed strategy used by player i after the simulations are done is given
by the frequencies of visit counts of the actions,

σfinali (s, ai) =
ns,ai∑

bi∈Ai(s)
ns,bi

.

Previous work [26] suggests first removing the samples caused by the explo-
ration. This modification proved to be useful also in our experiments, so before
computing the resulting final mixed strategy, we set

ns,ai ← max

0, ns,ai −
γ

|Ai(s)|
∑

bi∈Ai(s)

ns,bi

 . (4)

3.3 Regret Matching

This variant applies regret matching [15] to the current estimated matrix game
at each stage. Suppose iterations are numbered from t ∈ {1, 2, 3, · · · } and at



each iteration and each decision node s there is a mixed strategy σti(s) used
by each player i for each node s in the tree, initially set to uniform random:
σ0
i (s, a) = 1/|A(s)|. Each player i maintains a cumulative regret ris[a] for having

played σti(s) instead of a ∈ Ai(s). In addition, a table for the average strategy
is maintained per player as well σ̄is[a]. The values in both tables are initially set
to 0.

On iteration t, the selection policy (line 16 in Algorithm 1) first builds the
player’s current strategies from the cumulative regret. Define x+ = max(x, 0),

σti(s, a) =
ris[a]

R+
sum

if R+
sum > 0 oth.

1

|Ai(s)|
, where R+

sum =
∑

a∈Ai(s)

ri,+s [a]. (5)

The main idea is to adjust the strategy by assigning higher weight proportionally
to actions based on the regret of having not taken them over the long-term. To
ensure exploration, an γ-on-policy sampling procedure similar to Equation 3 is
used choosing action a with probability γ/|A(s)|+ (1− γ)σti(s, a).

The updates on line 14 and 19 add regret accumulated at the iteration to the
regret tables ris and the average strategy σ̄is[a]. Suppose joint action (a1, a2) is
sampled from the selection policy and utility ui is returned from the recursive call
on line 18. Label the current child (i, j) estimate X̄s,i,j and the reward(i, j) =
X̄s,i,j if (i, j) 6= (a1, a2), or ui otherwise. The updates to the regret are:

∀a′1 ∈ A1(s), r1s [a
′
1]← r1s [a

′
1] + (reward(a′1, a2)− u1),

∀a′2 ∈ A2(s), r2s [a
′
2]← r2s [a

′
2] + (reward(a1, a

′
2)− u2),

and average strategy updates for each player, σ̄is[a]← σ̄is[a] + σti(s, a).
The regret values ris[ai] are maintained separately by each player, as in DUCT

and depicted by Figure 2. However, the updates and specifically the reward uses
a value that is a function of the joint action space.

After the simulations, a move for the root s is chosen by sampling over the
strategy obtained by normalizing the values in σ̄is.

3.4 Online Outcome Sampling

Online Outcome Sampling (OOS) is an MCTS adaptation of the outcome sam-
pling MCCFR algorithm designed for offline equilibrium computation in imper-
fect information games [17]. Regret matching is applied but to a different type
of regret, the sampled counterfactual regret. Counterfactual regret is a way to
define individual regrets at s for not having played actions a ∈ Ai(s) weighted
by the probability that the opponent played to reach s [28]. The sampled coun-
terfactual regret is an unbiased estimate of the counterfactual regret.

In OOS, each simulation chooses a single exploration player iexp, which al-
ternates across simulations. Also, the probability of sampling to a state s due
to the exploring player’s selection policy, π, is maintained. These two param-
eters are added to the function in line 1 of Algorithm 1. Define σti(s), regret
and average strategy tables as in Subsection 3.3. Regret matching (Equation 5)



is used to build the strategies, and the action selected for i = iexp is sampled
with probability ps,ai = γ/|A(s)|+ (1− γ)σti(s, ai). The other player j’s action
is selected with probability ps,aj = σtj(s, aj). The recursive call on line 18 then
sends down πps,ai as the new sample probability.

Upon return from the recursive call, the exploring player i = iexp first builds
a table of expected values given their strategies vis[a]. In outcome sampling, the
values assigned to nodes that were not sampled are assigned a value of 0. This
ensures that the estimate of the true counterfactual values remains unbiased.
Due to the complexity of the implementation we omit this standard version of
outcome sampling and refer interested readers to [18, Chapter 4]. Instead, we
present a simpler optimized form inspired by Generalized MCCFR with prob-
ing [14] that seems to perform better in practice in our initial investigation.
The idea is to set the value of the unsampled actions to their current estimated
value. Define the child state s{ai,aj} = T (s, ai, aj) if (i, j) = (1, 2) or T (s, aj , ai)
otherwise. For the exploring player i = iexp, for a ∈ Ai(s), the values are:

vis[a] =
∑

a′∈Aj(s)

σtj(s, a
′)Xj

s,a′ where Xj
s,a′ =

{
ui if {a, a′} were selected
Xs′
ns′

oth., where s′ = s{a,a′}

The expected value of the current strategy for the exploring player i = iexp
is then vis,σ =

∑
i∈Ai(s)

σti(s, a)vis[a]. The regrets are updated for i = iexp and

average strategy for j 6= iexp as follows. For all ai ∈ Ai(s) and all aj ∈ Aj(s):

ris[ai]← ris[ai] +
1

π

(
vis[ai]− vis,σ

)
, and

σ̄js[aj ]← σ̄js[aj ] +
1

π
σtj(s, aj)

Finally, after all the simulations a move is chosen for player i by [21] selecting
an action from the mixed strategy obtained by normalizing the values in σ̄isroot .
We refer to this optimized version of OOS as OOS+.

Since OOS is an application of outcome sampling to the subgame defined
by the search tree, it converges to an equilibrium as the number of iterations
at the same rate as outcome sampling MCCFR [18]. OOS+ introduces bias and
hence may not converge to an equilibrium strategy [14]. Approximate observed
convergence rates are shown in Subsection 4.3.

By way of example, consider Figure 3. Suppose iexp = i = 1, the trajectory
sampled is the one depicted giving payoff u1 to Player 1, and Player 1’s sampled

f f ′

e 1/2 1/5

e′ 6/10 7/10

s s s1 2
3

(a,b) (c,d) (e,f)
u1

Fig. 3: Example of Online Outcome Sampling.



action sequence is a, c, e. Given this trajectory, Player 1’s regret tables and Player
2’s average strategies are updated at s1, s2, and s3. Specifically at s3, the matrix
shown contains the reward estimates such that the top-left entry corresponds to
Xs3,e,f/ns3,e,f . The probability of sampling s3 was π = ps1,a · ps2,c. The values
vis3 [e] = σj(s3, f)u1 + σj(s3, f

′)/5, vis3 [e′] = 6σj(s3, f)/10 + 7σj(s3, f
′)/10, and

vis,σ = σi(s3, e)v
i
s3 [e] + σi(s3, e

′)vis3 [e′].

4 Empirical Evaluation

In this section we present and discuss the experiments performed to assess the
practical behavior of the algorithms above.

4.1 Goofspiel

Goofspiel is a card game where each player gets N cards marked 1-N , and there
is a central pile, shuffled and face down called the point-card deck (also 1-N).
Every turn, the top card of this point card deck flips, it is called the upcard.
Then, players choose a bid card from their hand and reveal it simultaneously.
The player with the higher bid card obtains a number of points equal to the
value of the upcard. The bid cards and upcard are then discarded and a new
round starts. At the end of N rounds, the player with the highest number of
points wins. If the number of points are tied, the game ends in a draw. The
standard game of Goofspiel has N = 13, which has (13!)3 ≈ 2.41 · 1029 unique
play sequences including chance events.

There are two ways to define the payoffs received at terminal states. Either
the player with the highest points wins (payoffs {0, 0.5, 1}) or the payoff to the
players is the difference in scores. We refer to the former as Win-Loss Goofspiel
(WL-Goof(N)) and the latter as Point-Difference Goofspiel (PD-Goof(N)). A
backward induction method to solve PD-Goof(N) was originally described in
[22] and has recently been implemented and used to solve the game [21] for
N ≤ 13, therefore the optimal minimax value for each state is known. Our
evaluation makes use of these in Subsection 4.3. However, WL-Goof(N) is more
common in the games and AI community [3, 12, 17, 23].

Mixing between strategies is important in Goofspiel. Suppose a player does
not mix and always bids with card n at s. An opponent can respond by playing
card n + 1 if n 6= 13 and n = 1 otherwise. This counter-strategy results in
collecting every point card except the one lost by the n = 13, leading to a
victory by a margin of at least 78 points when N = 13. This remains true even
if the point-card deck was fixed (removing all chance nodes). Nonetheless, the
results presented below may differ in a game without chance nodes.

4.2 Head-to-Head Performance

To assess the individual performance of each algorithm, we run a round-robin
tournament where each player plays against each other player n = 10000 times.



P1 \ P2 RND DUCT(max) DUCT(mix) Exp3 OOS OOS+ Tuned Parm.

DUCT(max) 76.0 Ci = 1.5
DUCT(mix) 78.3 57.5 Ci = 1.5

Exp3 80.0 55.8 48.4 γ = 0.2
OOS 73.1 55.3 43.8 47.0 γ = 0.5

OOS+ 77.7 67.0 53.3 60.0 57.1 γ = 0.55
RM 80.9 63.3 53.2 57.2 58.3 50.4 γ = 0.025

P1 \ P2 RND DUCT(max) DUCT(mix) Exp3 OOS OOS+ Tuned Parm.

DUCT(max) 12.92 Ci = 150
DUCT(mix) 11.88 0.91 Ci = 150

Exp3 13.18 4.15 3.17 γ = 0.01
OOS 10.69 3.33 0.82 -1.71 γ = 0.5

OOS+ 10.83 8.08 3.23 1.03 1.03 γ = 0.4
RM 12.94 6.60 3.41 1.12 1.05 0.17 γ = 0.025

Table 1: Top: Win percentages for player 1 in WL-Goof(13), 95% confidence
interval widths ≤ 1 %. Bottom: Average points earned per game for player 1 in
PD-Goof(13). 95% confidence intervals widths≤ 0.28. 10000 games per matchup.
Draws considered half wins to each player to ensure the percentages sum to 100.

This tournament is run using WL-Goof(13) and PD-Goof(13). Parameters are
tuned manually by playing against a mix of the players. The metric used to
measure performance in WL-Goof is win percentage with 0.5 win for a tie and
in PD-Goof is the average number of points gained per game. Each player has
1 second of search time and in our implementation each algorithm generally
achieves well above 100000 simulations per second (see Table 2) using a single
thread run on a 2.2 GHz AMD Opteron 6174. A uniform random strategy is
used for the rollout policy. Ideally we are interested in the performance under
different rollout policies, but we leave this as an interesting topic of future work.

The results are shown in Table 1. The RND player chooses a card to play uni-
formly at random. Of the MCTS variants, we notice that DUCT(max) had the
worst performance, losing to every other algorithm in both games. In contrast,
RM and OOS had the best performance, winning against every other algorithm
in both games. RM’s wins and gains against OOS+ are not statistically sig-
nificant, and OOS+ seems to perform better against the other variants. This
may mean that the reach probabilities and counterfactual values are important,
even in the simultaneous move setting, the simplest form of imperfect informa-
tion. However, in both games Exp3 appears to perform better than standard
OOS. Also, some results differ between the two games, implying that their rel-
ative strength may vary. For example, in WL-Goof, RM wins 58.3% vs. OOS
and 53.2% against DUCT(mix) and in PD-Goof wins only 1.05 points vs. OOS
compared to 3.41 vs. DUCT(mix).



Algorithm Mean Ex2 Mean Ex4 Mean simulations per second

DUCT(max) 7.43 ± 0.15 12.87 ± 0.13 124127 ± 286
DUCT(mix) 5.10 ± 0.05 7.96 ± 0.02 124227 ± 286

Exp3 5.77 ± 0.10 10.12 ± 0.08 125165 ± 61
OOS 4.02 ± 0.06 7.92 ± 0.04 186962 ± 361

OOS+ 5.59 ± 0.09 9.30 ± 0.08 85940 ± 200
RM 5.56 ± 0.10 9.36 ± 0.07 138284 ± 249

Table 2: Depth-limited exploitability at different depths and relative speeds in
PD-Goof(11). 800 search samples per root state, 95% confidence interval widths.

4.3 Exploitability and Convergence

After its simulations, each MCTS algorithm above recommends a play strategy
for each state in the tree σi(s). The exploitability of this strategy can be obtained
by computing the amount it can lose against its worst-case opponent. Defined
formally, Ex(s, σi) = maxσj∈Σj (V ∗(s) − ui(s, σi, σj)), where ui(s, σi, σj) is the
expected return of the subgame rooted at s when players use (σi, σj) and V ∗(s) is
the optimal minimax value of state s. Zero exploitability means that σi is a Nash
equilibrium strategy. Computing exact exploitability would require a strategy at
every state in the game, which may not be well defined after short computation
in the root. Therefore, we compute a depth-limited lower bound approximation
to this value, which assumes optimal play after depth d:

Exd(s, σi) =


V ∗(s) if d = 0;∑
s′∈∆c(s)

∆c(s, s
′)Exd−1(s′, σi) if s ∈ C;

maxaj∈Aj(s)

∑
ai∈Ai(s)

σi(s, ai)Exd−1(T (s, ai, aj), σi) otherwise.

It can be computed using a depth-limited expectimax search.
We assume that the player will not run additional simulations in the following

moves and follow the strategy computed in the root until the end of the game.
If this strategy is undefined at some point of the game, we assume selecting an
arbitrary action. The mean exploitability values for depth d ∈ {2, 4} over every
initial upcard in PD-Goof(11), are shown in Table 2.

The results in Table 2 indicate that standard OOS, the only method known
to converge to NE, produces the strategies with the lowest depth-limited ex-
ploitability for d ∈ {2, 4}. However, as seen in Subsection 4.2 this does not
necessarily lead to gains in performance, likely due to the restricted search
time. Nonetheless, in a repeated play setting where opponents may adapt, less
exploitable strategies are desirable. Each of the other algorithms produce less
exploitable strategies than DUCT(max), which was expected in Goofspiel due
to the importance of mixing. However, surprisingly, DUCT(mix) strategies are
much less exploitable than expected. This begs the question of whether DUCT(mix)
produces less exploitable strategies in Goofspiel, so in our next experiment we
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Fig. 4: The percentage of strategies produced by MCTS with exploitability lower
than the given threshold after certain number of iterations in WL-Goof(4) (first
four in left column), PD-Goof(4) (first four in right column) and mean ex-
ploitability for both Goofspiel versions (bottom two).



run the full best response to compute the full-game exploitability in smaller
games of Goofspiel. Given the results below, we speculate that DUCT(mix) may
be rotating among strategies in the support of an equilibrium strategy recom-
mending a mixed strategy that coincidentally is less exploitable in PD-Goof(11)
given the low search time. We do admit that more work is needed to clarify this
point.

The next experiment evaluates how quickly the strategy computed by MCTS
converges to a Nash equilibrium strategy in smaller game. We run MCTS with
each of the selection strategies for 100000 iterations from the root and we com-
puted the value of the full best response against this strategy after every 1000
iterations. The eight graphs in Figure 4 represent the number of runs (out of one
hundred), in which the exploitability of the strategy was lower than the given
threshold in PD/WL-Goof(4). For example with Exp3 in WL-Goof(4), the ex-
ploitability was always smaller than 0.3 after 30 thousand iterations and in 49
out of 100 runs, it was less than 0.1 after 100 thousand iterations. The last two
graphs show the mean exploitability of the strategies. Consistently with the pre-
vious observations [25], the results show that DUCT does not converge to Nash
equilibrium of the game. In fact, the exploitability of the produced strategy starts
to increase after 20000 iterations. Exp3, OOS+, and RM strategies converge to
the (at least good approximation of) Nash equilibrium strategy in this game.
The computed strategies have low exploitability with increasing probability. In
WL-Goof(4), OOS+ and RM converge much faster in the earlier iterations, but
Exp3 converges more quickly and steadily with more iterations. In PD-Goof(4),
RM clearly dominates the other strategies after 20000 iterations.

5 Conclusion and Future Work

In this paper, we compare six different selection strategies for MCTS in games
with perfect information and simultaneous moves with respect to actual playing
performance in a large game of Goofspiel and convergence to the Nash equilib-
rium in its smaller variant. The OOS strategy we introduced is the only one,
which provably eventually converges to NE. After the whole tree is constructed,
the updates behave exactly as in MCCFR, an offline equilibrium computation
method with formal guarantees of convergence. The initial finite number of iter-
ations, in which the strategy in some nodes was not updated cannot prevent the
convergence. We believe OOS+, RM, and Exp3 also converge to Nash equilibria
in this class of games, which we experimentally verify in the small Goofspiel
games. We aim to provide the formal proofs and analysis of convergence rates
in the future work.

The novel OOS+ and RM strategies have the quickest experimental conver-
gence and performed best also in head-to-head matches. Both have beaten all
the other strategies significantly and the performance difference in their mutual
matches were insignificant.

In future work, we hope to apply some of these algorithms in the general
game-playing and other simultaneous move games, such as Tron and Oshi-Zumo,



and compare to existing algorithms such as SMAB and double-oracle methods
to better assess their general performance. In addition, we are curious about
the effect of different rollout policies on the behavior of each algorithm, the
comparison to existing studies in UCT.
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