
 1

Analysis and Implementation of Lines of ActionAnalysis and Implementation of Lines of ActionAnalysis and Implementation of Lines of ActionAnalysis and Implementation of Lines of Action

Mark Winands and Jos Uiterwijk

Department of Computer Science, Universiteit Maastricht, The Netherlands

Abstract

LOA is a two-person zero-sum game with perfect information. It is a connection game, albeit
non-typical. The state-space complexity and game-tree complexity are comparable with those of
Othello. For the state of the art of computer techniques, LOA seems uncrackable. An alpha-beta
depth-first iterative-deepening searching program (MIA) is developed. Moves are generated for
a part incrementally. A heuristic is used that can be used to show when positions in LOA are not
terminal. This heuristic is based on quad counts and euler numbers. Several move-ordering
techniques are used: transposition-table moves, killer moves, and history heuristic work very
well in LOA. Some explored game-specific ordering techniques are less successful. PVS and
null moves works fine. Although LOA is a connection game, capturing pieces is important.
Therefore a quiescence search is performed, which considers only capture moves destroying or
creating connections.

Concentration, centralisation, solid formations, connections and (partial) blocking are
important components in evaluation functions for LOA. Based on these concepts, three different
evaluation functions have been constructed, denoted normal, quad and blocking. They all
consider the concentration and the centralisation of the pieces on the board. The quad evaluator
in addition uses quad counts to determine the solidness and connectioness of the formations,
whereas the blocking evaluator takes into account the mobility of the pieces towards the
neighbourhood of the centre of mass. Experiments show that the quad evaluator performs best.

1. Introduction
Lines of Action (LOA) is a board game which is played on a checkers board. It is a two-person zero-
sum game with perfect information. LOA is a connection game, albeit non-typical. Claude Soucie
invented it around 1960. Sid Sackson (1969) described it in his first edition of A Gamut of Games. We
use the rules described in the second edition of A Gamut of Games:

1. One player controls the twelve black pieces and the other the twelve white pieces. The black pieces are

placed in two rows along the top and bottom of the board, while the white stones are placed in two files at
the left and right of the board. The set-up of the game is shown in figure 1.

2. Black moves first.
3. Each turn, the player to move has to move one of his pieces, in a straight line, exactly as many squares as

there a pieces of either colour anywhere along the line of movement. (These are the Lines of Action).
4. You may jump over your own pieces.
5. You may not jump over your opponent's pieces, but you can capture them by landing on them.
6. The object of the game is to turn your pieces into one connected unit. The first player to do so is the winner.

The connections within the group may be either orthogonal or diagonal. For example, in figure 2 black has
won because his pieces form one connected unit.

7. If one player is reduced by captures to a single piece, that is a win for this player.
8. If a move simultaneously creates a single connected unit for both the player moving and the opponent, the

player moving wins.

 2

 Figure 1: Board set-up Figure 2: A terminal position.

These are the official rules. Some situations were not covered by the original rules. For these situations,
the rules of the Mind Sports Olympiad (MSO) are used:

9. If a player cannot move, this player loses.1
10. If a position with the same player to move occurs for the second time, this is a draw.

The notation concerning board and moves used in this article is the standard chess notation. The
possible moves of the black piece on d3 in figure 3 are indicated by arrows. The piece cannot move to
f1 because its path is blocked by an opposing piece. The move to h7 is not allowed because a black
piece is already there.

Figure 3: Movement of pieces.

2. Complexity of LOA
An upper bound of the state-space complexity for LOA can easily be derived. The computation is of
the same kind as in checkers (Schaeffer and Lake, 1996). Let B be the number of black pieces and W
the number of white pieces. There are at most twelve black and twelve white pieces. Each of the 64
squares on the board can be occupied by a piece. The number of positions having 24 pieces or less is
derived in the following formula:

1 The use of this rule is disputable, because some LOA players think that the player has to pass.

 3

)1,1(),(
12

1

12

1
NumWBNum

B W
−∑ ∑

= =
 where

 −

=

W
B

B
WBNum

6464
),(

In the formula we have neglected all positions with two pieces or fewer, because they are impossible to
reach. One of the players would have won before the last move was made. For the same reason we
neglect all positions with only pieces of the same colour on the board. These neglections only lead to a
reduction of 8.4 × 1012 positions.

In table 1, we have calculated the separate combinations per number of pieces. For example, the
combination of three pieces is Num(2,1) + Num(1,2). If we sum the numbers for 3 up to and including
24 pieces together, we obtain 1.3 × 1024 different positions. Of course we have still included some
positions, which are not reachable from the start (Dyer, 2000), but we are convinced that this lowers the
state-space complexity only marginally. Therefore, we take for the state-space complexity O(1024).

of pieces # of positions
3 249984
4 8895264
5 228735360
6 4648410816
7 78273240192
8 1124246003472
9 14045698101120
10 154805625541952
11 1521396969611904
12 13445574994311264
13 107590873672114560
14 782632117126476864
15 5188514989534830720
16 31335094798158420360
17 171930216128039066880
18 853283294857675368960
19 3807935897946939333120
20 15158514055288777729920
21 53164643498259191458560
22 160592373542262268414080
23 396757628751471486670080
24 677794282450430456394720
Total: 1308338020676454019380152

Table 1: State-space complexity.

The game-tree complexity can be approximated by the size of a uniform game tree with as depth the
average game length and as branching factor the average number of legal moves (Allis, 1994). Lacking
a large database with LOA games we have approximated these numbers using experiments in which
our program plays against itself. The results gave an average game length of 38 ply and an average
branching factor of 30. The game-tree complexity thus is about O(1056). The state-space complexity
and game-tree complexity are comparable with those of Othello. For the state of the art of computer
techniques, LOA is uncrackable. Another curiosity of LOA is that its terminal positions still have a lot
of pieces remaining on the board. Therefore endgame databases are probably not very useful in LOA.

 4

3. The Quad Heuristic
In LOA it is not trivial to detect a terminal node. Remember that the game is over when a group of
pieces with the same colour is connected. In most cases this is not easy to detect. Checking on a game-
over situation is a time-consuming process in LOA, contrary to games like draughts and chess. The
obvious solution is to incrementally update the count of pieces when moves are made. Next, count the
number of pieces of an arbitrary group, using a depth-first algorithm. If this number equals the total
number of stones of that colour, the game is over. However, the depth-first search necessary to retrieve
the number of pieces is a time-consuming process.

Fortunately, there is a heuristic that can detect in 99% of the cases that a game definitely is not
over. The solution lies in using bit quads, an OCR method. A quad is defined as a 2 × 2 array of bit
cells. In LOA there are 81 possible bit quads for each side, including also bit quads covering only a part
of the board along the edges. Considering rotational equivalence, there are six distinct types, depicted
in figure 4:

Figure 4: Different kinds of quads.

Notice, that we have two kinds of quads with two pieces. One in which the pieces are diagonally
adjacent, another in which they are orthogonally adjacent. If a quad only partially covers the board, the
cells not covering the board are considered empty. Summing over all quads gives us the euler number E
of the board as follows:

() 4/231 ∑∑∑ −−= dQQQE

For a motivation of this formula see (Gray, 1971). The euler number represents the number of
connected groups minus the number of holes (interior regions). For example, in figure 5 the euler
number of black is three, because black has three connected units. The euler number of white is one.
White has two connected units, but his pieces are surrounding the region at e5. This is called a hole.
Therefore the euler number of white is equal to two connected units minus one hole. This example

Q0
quads with no

pieces

Q1
quads with one

piece

Q2
quads with two

pieces

Q3
quads with three

pieces

Qd
quads with two

diagonally-adjacent
pieces

Q4
quads with four

pieces

 5

shows us that euler numbers do not completely detect win positions. If the euler number is greater than
one, the game is definitely not over (Minsky and Papert, 1988). Only when there are at least as many
holes as connected groups, we have to use another method. But fortunately holes in LOA are rare and
using this heuristic is often enough to detect non-terminal positions.

Figure 5: Position with holes.

An advantage of this method is that we incrementally can update the bit quads and their counts.

There are mostly eight quads that change as the result of a move, with a maximum of twelve when a
capture move occurs. Although the bookkeeping is not trivial, it is still cheap enough to outperform
other methods.
 In table 2 we see that using bit quads causes a speed up of 10 a 15 % at the start position of the
game. An argument against the bit quad method is that its performance is low when the total number of
stones is also low, but LOA usually ends with many stones still on the board. The big gain is that we
can use quad counts in the quiescence search and in the evaluation function also.

Depth Time (ms) with quads Time (ms) without

quads
Nodes

1 50 60 37
2 220 220 217
3 440 440 1671
4 990 1100 6081
5 6530 8070 105933
6 52120 60470 817567

Table 2: Results of using quads.

 6

4. Evaluation Functions
Although knowledge about LOA is not well developed, there are some basic principles when playing
LOA. Carl von Blixen (2000) described on his homepages some guidelines, which we will take as a
framework for developing an evaluation function.

4.1 General principles of LOA
• Create a threat as quickly as possible.

If a player can possibly connect all his pieces in one connected unit, this situation is called a threat.
Also as the opposite party can prevent the connection to be made, the situation is still a threat, because
the player threats to win. The first player to create a threat to win has a big advantage, because the
opponent will have to break up his own formation to stop this threat. In figure 6 we see that white can
win by the move e8-e6. Black can only prevent this by g4××××e4, but he has to weaken his own formation.

Figure 6: Threat position. Figure 7: Blocked piece.

• Block opponent’s pieces

Because one is not allowed to jump over opponent’s pieces, it is possible to block a piece. A piece
is completely blocked, if it cannot move anywhere. Blocking a piece far away from the rest can be very
effective. In figure 7 the opposite side has to waste many moves to first capture pieces around the
blocked one at a8 and try to connect again. During that time, black is likely able to create a threat. Even
partial blocking can be very effective if it forces the opponent to find a way around your pieces.
Handscomb (2000a) describes that it is a common tactic to create a wall at the b- or g-file, or the 2nd or
7th row in the beginning phase of the game, which partially blocks pieces of the opposite side.

• Connect pieces on multiple ways

If pieces are connected in more than one direction it is harder for the opponent to break them up.
In figure 8 black has created a rock solid formation in the centre of the board, which is hard to break
up. The disadvantage is that it is hard to create this kind of formation fast. The danger exists that the
opponent can make a threat first. Mostly it is good practise first to look if it is possible to connect a
piece to a group of connected pieces and only secondly to see if a solid connection can be made.

 7

Figure 8: Solid formation. Figure 9: Roessner vs. Handscomb.

These principles are good to have in mind when playing LOA. But they only say what is good in LOA,
not how to achieve it. Some programmers have implemented a centralisation factor in their evaluator.
Pieces in the centre are more awarded than pieces outside. Handscomb (2000b) argues that the benefits
of centralisation in LOA are exaggerated. Because of the nature of the game, pieces huddled together in
the middle are incapable of capturing each other. Even with only two pieces in a given line of action
you need a distance of two squares for a capture, and if there are three pieces a considerable distance
from the edge to the middle of the board is required. In figure 9 some pieces of white are scattered
around the edges of the board. The white piece at h4 can destroy blacks formation in the middle by
capturing the black piece d4. The white pieces at the edges of the board are acting as cruise missiles.
This is not possible when all the pieces are in the centre.

The last aspect we want to discuss in this subsection is capture moves. At first sight capturing
opponent’s pieces is not a good idea. However, it is not hard to see that capture moves in the endgame
often are not bad. First, sometimes the only defence against a hostile threat is capturing a piece such
that its formation is destroyed. Second, it also happens that the only way one is able to connect with its
own formation is by a capture move. Third, a capture move is the only way to free one's blocked piece.
Some authors argue that capturing pieces in the begin and middle game is also good. They think that a
material advantage like in chess exists, because if a player has more pieces than his opponent, he has
more chances to prevent hostile threats and create his own threats. The opponent has fewer possibilities
to prevent threats. Whether material is really an advantage depends on the position of the pieces on the
board. A material component in the evaluation function is dangerous in LOA, because the program
might wildly capture pieces. A more subtle method has to be used, because sometimes a material
disadvantage can be an advantage.

4.2 LOA evaluators
It is important that the evaluator is fast and a good estimator. The problem is to find those
characteristics of LOA, which make the program play well. We have implemented three evaluators:
normal, quad and blocking.

• Normal evaluator

This is the core of every evaluator implemented in the program. We have chosen for a centre-of-
mass approach. For each side, the centre of mass of the pieces at the board is computed. Next we
compute for each piece its distance to the centre of mass. The distance is measured as the minimal
number of squares the piece has to travel going to the centre of mass. Subsequently the average
distance towards the centre of mass is calculated. Because only one piece can be in the centre of mass
at the time, boards with few pieces are favoured. Therefore a recalculation is done which takes the
number of pieces into account. The inverse of this average distance is defined as the concentration.

 8

How lower the average distance of the centre of mass, how higher the concentration. We favour boards
where the pieces of the same colour are more in proximity of the centre of mass. Notice that we do not
look at connections. Because we favour boards where pieces are in the neighbourhood of each other,
eventually they will be connected in multiple ways. This evaluator favours sometimes capture moves.
For example, if 1. d1-d3 is played, the program will respond with a3××××d3. This move will not only
improve its own concentration, but will also undermine the opponent’s concentration, its pieces being
even more scattered around the board.

Also penalties are given for each piece at the edge, because they are easy to block. Finally
positions with a more centralised centre of mass are slightly favoured, preventing formations built at
the edges of the board, which are easy to break up or to block.

• Quad evaluator
This evaluator is called quad, because it uses the quad count. We can use the quad count on several

ways. For example, we can easily compute the euler number of each side. If we assume that holes do
not occur, we have also computed the number of connected groups. It seems wise to take this factor
into consideration. Because the goal of the game is to create one connected group, minimising the
number of connected groups is a good subgoal of the game. However, at the start of the game this
number is only two. Only stupid moves can keep this number at two. Every sequence of normal moves
in the beginning phase of the game will increase this number.

The normal evaluator has no notice of solid formations. Formations with quads of three or four
pieces are not possible to break up by a single capture. It seems reasonable to favour boards with many
Q3’s and Q4’s. The danger exists that a lot of those quads are created outside the neighbourhood of the
centre of mass. Therefore only Q3’s and Q4’s are rewarded, which lie at a distance of at most two of the
centre of mass. Notice, that this evaluator implicitly favours a material advantage.

Figure 10: Wall position. Figure 11: Pseudo blocking.

• Blocking evaluator
The problem with the previous two evaluators is that they are not able to detect blocking situations.

For example, in figure 10 black is to move. If he plays f5-c5, this will result in a better value of the
evaluation function then doing f5-e6, but the piece at c5 can not move any further to the centre of mass
because of the white wall. However, the piece at e6 is still able to move further. Therefore we have to
take into account if pieces are partially blocked. If a piece outside the neighbourhood of the centre of
mass cannot move, a penalty is given. Also lower penalties are given for pieces, which have two moves
or less. For pieces outside the region of the centre of mass is looked if they are able to move directly to

 9

the region of the centre of mass. For this evaluator we need to use our move generator. This is the
reason why this evaluator is much slower than the others. If the benefit of better evaluations will
outperform the disadvantage of searching less deep is doubtful. This evaluator has a notion of blocking
but has his own faults: sometimes a piece can easily be freed by a capture move and be connected. For
example, in figure 11 the black piece at f8 is completely blocked. This board position is too negatively
evaluated, because black can free this piece and win the game by c4××××f7. Luckily, this kind of situation
can easily be detected by the quiescence search.

5. Some Results
We have performed some experiments for the three evaluators described in the previous section. The
experiments were performed on a P366 with 128 Kb SDRAM. All evaluators played 200 games against
each other, switching sides halfway. The program uses quiescence search, a 214-entry transposition
table, the history heuristic and killer moves, but no null moves. The time was limited to 5 sec. per
move. The match results are given in table 3.

Quad vs. Normal Quad vs. Blocking Normal vs. Blocking

127-71-2 119-76-5 117-81-2

Table 3: Comparing the evaluators with each other (wins-losses-draws).

We can conclude from the table that the quad evaluator is the best of the three. Interestingly, the quad
evaluator defeats the blocking evaluator with no significantly higher numbers than the normal evaluator
does. Because the normal evaluator defeats the blocking evaluator and is defeated by the quad
evaluator, one should expect a glorious victory for the quad evaluator when playing against blocking.
Possibly, both evaluators take advantage of the same weaknesses of the blocking evaluator.

When the normal and quad evaluators are used, the speed of the search performed is between
17000 and 18000 nodes per second (nps). If the blocking evaluator is used a speed of only 5000 nps is
achieved. Thus, the blocking evaluator is a much slower evaluator, causing that normally roughly a ply
less can be searched.

Although the goal of the study is not to make the best LOA program in the world, we compared

our program against others. We have only used recent programs playable at an IBM compatible PC. A
description of the programs we used is given below.

• Loa2D. Benjamin Guihaire has written this program. The version currently used is 3.1, released in

May 2000. The program is considered as lightweight. It has different evaluators, our program
having played against the Normal evaluator.

• LoaW. Dave Dyer and Ray Tayek have created this program. It was released in 1996. The program
is written in C++.

• Mona. Darse Billings, who is a member of The University of Alberta Games Group, has created
this program. The program was released in 2000. Mona has won of the best LOA players in the
world. Still, the author of Mona feels it is too early to declare over-champion (significantly stronger
than the human world champion) status for Mona. The program is written in C.

• YL. Yngvi Bjornsson, who is also a member of The University of Alberta Games Group, has
constructed this program. This program is normally better than Mona, but in a 30-minutes-per-
move match Mona had the upperhand. It searches deeper than Mona does. YL is written in C.

 10

Our program MIA (Maastricht In Action) played with both colours against these programs. We used
the same settings as for the evaluator experiments, but this time with a thinking time of 30 sec. and
using the null-move heuristic. The results are given in the table 4.

MIA vs. Loa2D2 MIA vs. LoaW3
2-0 2-0

MIA vs. Mona4 MIA vs. YL4

2-0 0-2

Table 4: Comparing MIA with other programs.

6. Conclusions and Future Research
LOA is a game with complexities comparable to those of Othello. It seems that it will be “safe” for
being cracked for the near future. Therefore, we have put emphasis on the development of a strong
game-playing program. So far, we have built in a relatively short time a program, MIA, which is
reasonably strong. Especially the use of the quad heuristic, both in detecting terminal positions and as
an important component in the evaluation function is responsible for MIA’s strength.
 We expect that the strength of MIA can considerably be enhanced in the near future. One way
of course is to extend and fine-tune the alpha-beta enhancements. Moreover, we will investigate the use
of endgame databases. However, most games played end with a considerably number of stones on the
board, which means that the effect of endgame databases will probably not be very large. Finally, the
best prospects to enhance MIA’s playing strength will be the addition of domain knowledge in the
evaluation function. The playing and understanding of games is therefore a necessary prerequisite, for
which the organisation of events like the Computer Olympiad is essential.

References
1. Allis, L.V. (1994). Searching for Solutions in Games and Artificial Intelligence. Ph.D. thesis

Rijksuniversiteit Limburg, Maastricht, The Netherlands.
2. Blixen, C. von (2000). Lines-of-Action. http://www.student.nada.kth.se/~f89-cvb/loa.html.
3. Dyer, D (2000). Lines of Action Homepage. http://www.andromeda.com/people/ddyer/loa/loa.html.
4. Gray, S.B. (1971). Local Properties of Binary Images in Two Dimensions. IEEE Transactions on

Computers, Vol. C-20, No. 5, pp. 551-561.
5. Handscomb, K. (2000a) Lines of Action Strategic Ideas – Part 1. Abstract Games. Vol. 1, No. 1.
6. Handscomb, K. (2000b) Lines of Action Strategic Ideas – Part 2. Abstract Games. Vol. 1, No. 2.
7. Minsky, M. and Papert, S. (1988). Perceptrons: An Introduction to Computational Geometry. MIT

press, Cambridge, MA, USA.
8. Sackson, S. (1969). A Gamut of Games. Random House, New York, NY, USA.
9. Schaeffer, J. and Lake, R. (1996). Solving the Game of Checkers. Games of No Chance (ed. J.

Nowakowski). MSRI Publications, Vol. 29, pp. 119-133. Cambridge University Press, Cambridge,
UK.

2 In Loa2D it is not possible to set a certain thinking time, only a certain level. The level was set at 6 (hard), because it takes
Loa2D approximately 30 sec. thinking time.
3 In LoaW it is not possible to set a certain thinking time, only a certain level. The level of Loa2D was therefore set at 5 and
the thinking time of MIA at 5 sec.
4 Mona and YL do only run at the server of University of Alberta.

