
Implementing Propositional Networks on FPGA

Cezary Siwek1, Jakub Kowalski1?, Chiara F. Sironi2??, and
Mark H. M. Winands2

1 Institute of Computer Science, Faculty of Mathematics and Computer Science
University of Wrocław, Wrocław, Poland
ave@cezar.info, jko@cs.uni.wroc.pl

2 Games & AI Group, Department of Data Science and Knowledge Engineering
Maastricht University, Maastricht, The Netherlands
{c.sironi,m.winands}@maastrichtuniversity.nl

Abstract. The speed of game rules processing plays an essential role in
the performance of a General Game Playing (GGP) agent. Propositional
Networks (propnets) are an example of a highly efficient representation
of game rules. So far, in GGP, only software implementations of propnets
have been proposed and investigated. In this paper, we present the first
implementation of propnets on Field-Programmable Gate Arrays (FP-
GAs), showing that they perform between 25 and 58 times faster than
a software-propnet for most of the tested games. We also integrate the
FPGA-propnet within an MCTS agent, discussing the challenges of the
process, and possible solutions for the identified shortcomings.

Keywords: General Game Playing · Field-Programmable Gate Arrays
· Propositional networks · Monte Carlo Tree Search

1 Introduction

The aim of General Game Playing (GGP) [7] is to develop a program that can
play any arbitrary game at an expert level, given only its rules. Moreover, these
rules are previously unknown, and an agent has a limited time to process them
before the game begins. During the game, the time is also constrained, with
usually only a few seconds available to choose a move.

In GGP, it is impossible for the designers of the program to embed in the
agent existing knowledge about the game, as it is in the case of chess, checkers,
Go, and other standard AI challenges. As such, with the goal to create a universal
algorithm performing well in various situations and environments, the domain
has been identified as a new grand challenge of Artificial Intelligence [6], and
a special logic-based Game Description Language (GDL) has been designed to
describe any deterministic, turn-based, finite game with perfect information [11].
? Supported in part by the National Science Centre, Poland under project number
2015/17/B/ST6/01893.

?? Supported by the Netherlands Organisation for Scientific Research (NWO) under
the GoGeneral project, grant number 612.001.121.

2 Cezary Siwek, Jakub Kowalski, Chiara F. Sironi, and Mark H. M. Winands

Table 1. Description of GDL keywords. ?f represents a fact.

Keyword Description Keyword Description
role(?r) ?r is a player in the game true(?f) ?f is true in current state
init(?f) ?f is true in initial state next(?f) ?f is true in next state
terminal current state is terminal does(?r, ?m) ?r plays move ?m
goal(?r, ?s) ?r gets score ?s in current state legal(?r, ?m) ?r can play move ?m in current state

Because of the generality, GGP benefits algorithms that are knowledge-free.
As a result, the most successful approaches are based on the Monte Carlo Tree
Search (MCTS) [4], the algorithm that apart from GGP [5] has proven itself in
Go [17] and many other domains [3].

As the strength of game-playing search algorithms is usually closely corre-
lated with their performance, it is crucial for the game reasoners to be as fast
as possible. When in 1997 Deep Blue defeated Gary Kasparov, it was partially
because of the hardware accelerators – Application Specific Integrated Circuits
designed specifically for this system [9].

In GGP, as the quality of results obtained by MCTS depends on a number
of performed simulations, much attention has been devoted to improving the
speed of GDL resolution engines. This includes mainly fast, logically-optimized
interpreters and compilers to low-level languages [10, 19]. Propositional Networks
(propnets) [14], are efficient representation of GDL reasoners, closely correlated
to logic circuits. They can speed-up the state computation process by several
orders of magnitude compared to non-optimized custom-made or Prolog-based
GDL reasoners [18]; thus they are used by many successful GGP players.

In this paper, we present the first implementation of Propositional Networks
on Field-Programmable Gate Arrays (FPGAs), the integrated circuits that can
be reconfigured by the end-user. Thus, we were able to achieve performance
impossible for the reasoners encoded as a software. Resulting FPGA-based rea-
soner computes game states mostly about 25-58 times faster than the optimized
software propnet implementation described in [18].

To utilize this computational potential, we have implemented a working
MCTS-based GGP player proof of concept, upon which we study and present
shortcomings and effort required to construct a hardware-accelerated player.

2 Preliminaries

2.1 Game Description Language and Propositional Networks

GDL is a first order logic language proposed to represent game rules in GGP in
a compact and modular format [11]. A state in GDL is represented as a set of
true facts. Special keywords, described in Table 1, are used to define different
game elements and the game dynamics. By processing the GDL game rules, a
player is able to reconstruct the dynamics of a finite state machine for the game.

Propnets [14] are an alternative to GDL to represent the dynamics of a game,
and any GDL game description can be converted into a propnet. Propnets are
directed graphs where the components are either propositions or connectives.

Implementing Propositional Networks on FPGA 3

Each component has incoming arcs from its input components and outgoing
arcs to its output components. The truth value of a component depends on the
truth value of its inputs and is propagated to its outputs.

There are four types of connectives: and, or and not logic gates, and transi-
tions, identity gates that output their input value with one step delay. Proposi-
tions can be divided into three categories: input, that have no input components,
base, that have one single transition as input, and all other propositions, iden-
tified as view. The truth values of base propositions represent the state of the
game. Their input, the transition, controls their value for the next state. Having
no inputs, input proposition have their value set by the game playing agent,
that sets to true the one corresponding to the action he decides to play. View
propositions express agents’ goals, legal moves and terminality of game states.

A unique truth assignment to base propositions determines the unique truth
values of view propositions. The combination of truth assignments to base and
input proposition uniquely determines the truth assignment for the next state.

2.2 Monte Carlo Tree Search

MCTS [4] is a simulation-based search algorithm that incrementally builds a
tree representation of the search space of the game. More precisely, it repeats
the following four phases until a given search budget expires:

– Selection: the algorithm traverses the tree built so far. A selection strategy
is used to choose which action to simulate in each visited node until a state
not yet in the tree is reached. One of the most commonly used selection
strategies is UCB1 [1], the same we use in our MCTS implementation.

– Expansion: the first visited state in the simulation that was not part of the
tree yet, is added to the tree as a new node.

– Playout: starting from the state corresponding to the node added during
expansion, a playout strategy is used to simulate the game until a terminal
state or a certain depth is reached.

– Backpropagation: the result obtained at the end of the simulation is propa-
gated back in the tree and used to update statistics about the visited moves.

2.3 Field-Programmable Gate Arrays

FPGAs are chips, whose logic is designed to be configured after they were man-
ufactured or even embedded in the final product (hence Field). This allows fast
prototyping of the Integrated Chips (ICs), creating small amounts of products
with custom hardware, or even performing remote updates to the hardware in
the end devices. FPGAs are made out of thousands of interconnected Universal
Logic Modules (ULMs), which can be individually programmed to perform sim-
ple logic operations and arbitrarily connected with each other. For specialized
operations, this allows for a significant increase of computational speed and IO
bandwidth against implementation in software.

4 Cezary Siwek, Jakub Kowalski, Chiara F. Sironi, and Mark H. M. Winands

Desired structure and behavior of the FPGA is usually written in a Hardware
Description Language (HDL), like Verilog or VHDL. It resembles classic pro-
gramming with expressions, statements and datatypes, but the execution flow is
parallel rather than sequential, and there are explicit constructs to handle time.

FPGAs are used in many domains, including communication, image process-
ing, control engineering, networks, cryptography, mathematics, neuro-computing,
etc. A comprehensive survey on FPGA applications can be found in [13].

Related research, mostly concerns using FPGAs to implement game engines,
especially board games [12], to accelerate computations and thus improve the
performance of the agents. This includes FPGA-based approaches to play, e.g.,
chess [2], Othello [20], and Go [8].

3 Methodology

We present our approach, that given an arbitrary GDL game generates FPGA-
based reasoner and embeds it into the MCTS algorithm. The entire random
playout phase, has been implemented within a reasoner component. This signif-
icantly reduces the number of tree-to-reasoner calls, reducing the overhead, and
improving the overall performance of the system.

We based our solution on Propositional Networks. They are a fast reasoning
mechanism on their own, and because their structure consists mainly of standard
logic gates, we can almost directly mirror their computational logic in a hardware
chip. This approach can increase performance by orders of magnitude because of
zero computational overhead and simultaneous propagation of signals. The latter
is essential, as the simulation speed is dictated by the clock frequency, which is
in turn constrained by the longest component path, not the total number of
propnet components.

FPGAs are especially well suited to be used as a GGP reasoner because
their reprogramming capability allows for switching between various (previously
known) games on the fly. The Cyclone V chip we are using is even more up to
the task because it integrates a dual core ARM computer running GNU/Linux
operating system that can communicate with the FPGA through fast shared
memory. We run the player search algorithm on this ARM computer, and the
intense reasoning computations are delegated to the FPGA-part of the chip.

3.1 From GDL to Verilog

Our system generates ready-to-synthesize Verilog code. We use previously pre-
pared Verilog modules that implement the behavior of the propnet component
types, a template for a whole propnet module, and the project into which the
propnet module will be injected. Now, given GDL rules of a new game, we gen-
erate software propnet using the code from [18]. Then, for every component in
this propnet, we create new instance belonging to one of the before-mentioned
modules and make it a new node in our hardware propnet. When all components

Implementing Propositional Networks on FPGA 5

are placed, we implement edges of the software propnet as wire connections in
the HDL. We do this by BFS traversal of the underlying propnet graph.

The propnet meta-information contains information about the propnet struc-
ture (e.g. initial state, game state size) and describes game’s legal moves, states,
etc. We write this data to the propnet module and a separate XML file that will
be later passed to the software side running on the ARM computer. Propnet
graph and meta-information for the propnet controller logic are filled into the
propnet module template, and resulting file is copied to the FPGA project.

Because of the complexity of the compilation process for the FPGA, and the
fact that Intel’s tools require to be run on an AMD64 PC, given GDL rules,
our system waits until the image for the FPGA is provided from the computer
controlled by a human. Thus, the current version cannot compete in a standard
GGPmatch; however, the human does not make any contribution to the resulting
image, and in principle, the process can be fully automated.

3.2 System Architecture

Figure 1 presents the overall architecture of our project. The ARM computer
contains the high-level part of the system. It consists of GGP player, MCTS
implementation, and driver library initialized with a game meta-information.
It exchanges data with the FPGA board through the shared memory, contain-
ing four regions for communication with the propnet controller. Those are for:
command queue (e.g., reset, execute n random simulations, set return context);
sending next states; sending next legal moves; and sending scores of the players.

The information flow on FPGA is presented on the lower half of the figure.
The main components are propnet driver, responsible for proper data transmis-
sion, and the propnet itself, programmed as described in Subsection 3.1 and
containing parts dedicated to communicating with the rest of the board.

3.3 MCTS Reasoner Implementation

Our goal is to implement a reasoner that can be effectively used by the MCTS
algorithm. Thus, it needs to perform random simulations from an arbitrary game
state to some terminal state, computing players’ scores in this state.

The search algorithm works on the integrated ARM computer and interfaces
with the FPGA via a driver library encoded in Java. For the FPGA to start
playouts from a specific node, it has to switch context into the state correspond-
ing to this node. Thus, we require from the MCTS tree implementation to store
data representing the internal state of the FPGA propnet. This state is provided
by the library during the MCTS expansion phase. The library exposes to MCTS
three functions:

– FPGAState getRootState(): returns game tree root in FPGA encoding.
– (list<legalMoves>, list<(FPGAState, jointMove)>)

getNextStates(FPGAState state): returns for a given state the list of legal
moves for each role, and all the children states and edges going to them.

6 Cezary Siwek, Jakub Kowalski, Chiara F. Sironi, and Mark H. M. Winands

PROPNET

Context
word selector

Propnet driver

Shared memory

RNG

Command

Driver library

MCTS Tree

GGP Player

F
P

G
A

A
R

M
 C

om
p

ut
er

Metainformation

(Root state context,
moves encoding,
players count, ...)

Legal
moves

Average
scoresCommands Contexts

Scores

C
o

nt
e

xt
 r

eg
is

te
r

1

C
o

nt
e

xt
 r

eg
is

te
r

2

...

C
o

nt
e

xt
 r

eg
is

te
r

n

Cont. playouts
mode

State discover
mode

Terminal

State

New
state

Move
source

Joint
move

Legal
moves Reset

Player1 move
randomizer

Joint
move

seqencer

Legal
moves

Player 1 move
randomizer

...

Player n move
randomizer

Fig. 1. System architecture.

Implementing Propositional Networks on FPGA 7

– list<long> getScores(FPGAState state, int n): computes for each player
the scores obtained during a batch consisting of n random simulations.

Calling reasoner to calculate a single playout, which is standard for software
propnets, is very inefficient in our FPGA-based architecture, mainly because of
communication costs. In order to reduce the number of read-write cycles, we
only provide interface for scheduling batched playouts. When simulating, MCTS
uses the getScores function to request a specific number of playouts (it is an
MCTS initialization parameter) and backpropagates the summarized scores.

3.4 State Computation

Each transition node has assigned a unique number, and thus the game state
is coded as a bit vector, where nth bit corresponds to the value stored in the
nth transition node. Since this can grow up to a few kilobytes, it is divided into
128-bit words when loaded from or stored in the shared memory. Now, when the
library issues new playouts, the propnet driver module loads every context word
into an appropriate context register in the propnet. Propnet reset, and every
new game state evaluation, takes place in one clock cycle.

We have three modes that we use to control the behavior of the propnet
module: state discovery, context switching, and continuous playout.

In the state discovery mode, all legal joint actions are iterated over by the
move sequencer. For each joint action, after calculating the next state, the prop-
net driver starts forwarding context words (state representation) and the corre-
sponding joint move into the shared memory. This can be a multi-step process,
as the memory may force to stall sending the state until it is ready.

In the context switching mode, the propnet driver queries requested place
in the shared memory for the context words, which are then written to the
propnet’s context registers.

In the continuous playout mode, the players’ actions are continuously taken
from the modules generating legal random actions, until a terminal state is
reached. When that happens, the propnet module signals scores to the propnet
driver and resets the internal propnet to the previously set context. To ensure
generated actions are uniformly distributed, for each player, we randomize a
number i between 0 and the number of his legal actions, and loop through all
his actions, reducing i on set bits, until the i-th legal action is found.

4 Experiments

To evaluate the performance of the FPGA implementation of propnets we carried
out two types of experiments. Firstly, we compare the speed of our propnets
with one of the fastest software propnets reasoners [18] and also with the Java-
based Prover from the GGP-Base package [15] used as a baseline. Secondly, we
investigate how the obtained speed-up translates to the performance of an MCTS
agent, focusing on analysis of influence of batch size to the number of MCTS
node expansions and software MCTS operations overhead.

8 Cezary Siwek, Jakub Kowalski, Chiara F. Sironi, and Mark H. M. Winands

Table 2. Comparison of reasoners based on running Flat Monte Carlo algorithm.
FPGA speed is equivalent to the clock frequency, which is probed in 1.0Mhz steps.
FPGA chip utilization is the space required to fit the propnet on the board.

Game Speed (avg nodes/sec) Initialization time #Propnet FPGA chip
FPGA software Prover FPGA (min) software (sec) components utilization

Horseshoe 8,500,000 192,583 3,812 4:20 0.45 350 7%
Connectfour 7,000,000 285,908 561 5:37 0.67 814 12%

Pentago 7,000,000 119,111 342 5:20 2.70 1,291 13%
Jointconnectfour 4,500,000 171,575 270 5:53 1.00 1,614 16%
Breakthrough 1,400,000 38,015 601 12:03 1.35 17,752 72%

Reversi 1,171,875 4,806 19 14:08 23.91 56,014 41%

In our experiments we use TerasIC DE1-SoC board containing the Altera’s
Cyclone V series SoC: 5CSEMA5F31C6. The GGP player, search algorithm and
communication with the reasoner are run by a computer embedded in the before-
mentioned SoC with ARM Cortex A9, Dual core @925Mhz with 1 GB RAM,
running Debian 9 Strech 32-bit. The FPGA project compilation is performed
on Intel Core i5-4670 with 16 GB DDR3 @1600Mhz RAM using Ubuntu 16.04
server 64-bit and Intel Quartus Prime Lite Edition 17.0 as FPGA compilation
IDE. Software propnets and the GGP-Base Prover are tested on a Linux server
consisting of 64 AMD Opteron 6174 2.2-GHz cores and 252 GB RAM.

4.1 Performance Comparison

To test the reasoner’s performance, we use a Flat Monte Carlo Search, measuring
the number of states visited during random playouts from the initial game state.

We compare results obtained for FPGA with other reasoners – software prop-
nets and Prover. The overall results are presented in Table 2. They are based on
1 million simulations for FPGA, and more than 250 thousands simulations for
the other reasoners (except 1000 simulations for Reversi). GDL descriptions of
the games can be found in the Stanford Gamemaster repository [16].

As expected, the usage of hardware accelerator substantially increases the
reasoner’s efficiency. For all games except Reversi, the improvement factors are
between 24.5 (Connect-Four) and 58 (Pentago). For Reversi, which produces
the largest propnet among the tested games, FPGA-based reasoner computes
states over 290 times faster. This example shows that smaller propnets do not
necessarily imply smaller chip utilization.

The downside of moving from software to hardware is a considerable increase
of initialization time. Instead of seconds it is about 5–6 minutes for small and
medium games, and for large propnets it is almost a quarter. Such times exclude
GGP players from being ready during their standard initialization clock. We
discuss this issue in detail and present possible solutions in the next section.

4.2 MCTS Player Performance

Embedding an FPGA propnet reasoner into the MCTS involves delegating some
computation time to the software responsible for managing the MCTS tree. The

Implementing Propositional Networks on FPGA 9

Fig. 2. Dependency between a batch size and the FPGA-based agent’s performance
measured by a number of nodes expansions, number of computed playouts, and the
overhead (percent of time spent in an MCTS tree). Data was measured for batches of
size 10, 50, 300, 600, 1500, and 3000; 10 runs for each test.

longer the time, the more overhead is observed, and the results are getting worse
compared to the zero-overhead situation from the previous experiment.

Increasing batch size makes the evaluation of expanded nodes more reliable,
yet significantly reduces their number. Reduced batches, instead, lead to more
frequent calls to software part of the algorithm, increasing the overhead.

Figure 2 presents the data we gathered for Pentago (for other games the
charts look similar). For both games we run 10 matches against the random
player, considering only 10 first turns of each match. The number of node expan-
sions obtained by the software player (using the same, yet non-batched MCTS, so
number of playouts and node expansions are the same) is provided as a baseline.

Despite the overhead, it is possible to adjust batch so the FPGA player per-
forms much more playouts than software-only agent. However, it is impossible
to reach the same size of MCTS tree, which significantly influences the perfor-
mance. This can be solved by implementing multithreaded MCTS, embedding
MCTS in the FPGA, or using hardware with shorter communication latency.

5 Discussion

Let us analyze the time-profile of an initialization process. The FPGA initial-
ization time currently prevents the described solution to be embedded in a
competition-ready GGP player. However, there are possibilities for reducing it
significantly. The first phase is a software propnet construction. The exact times
have been presented in Table 2. For generating Verilog propnet module, we use

10 Cezary Siwek, Jakub Kowalski, Chiara F. Sironi, and Mark H. M. Winands

our own Java library, that requires up to 2 minutes and can be easily optimized.
In our GGP player, the dynamic part of FPGA is a particular game’s propnet,
and the support structure remains constant. Preparing this support structure
(compilation and fitting) requires 3 minutes, but can be reduced significantly
using commercial tools, e.g., Intel Quartus Prime Pro, which allows caching part
of the compilation process. The most time-consuming phase is propnet structure
fitting, responsible for the physical placement of the logic modules on a chip. Its
time depends mostly on the number of components, and requires solving com-
putationally hard problems. Currently, it can take from 1 to about 30 minutes,
depending on the game size.

Due to limited space on the FPGA chip, there is a hard limit on the game
size we are able to handle. However, this size is not a direct result of the number
of the propnet components, as it also heavily depends on the graph planarity
and the optimizations performed by the synthesis toolchain. We can observe in
Table 2 that for Reversi and breakthrough smaller initial propnet size lead to
much higher chip utilization. Also, we would like to point out that the largest
chip utilization we have observed is 72%, which allows to estimate the limit on
the games we are able to hardware-accelerate using the described system.

We also have a limitation associated with memory block size that can be
easily extended in the future. In the described implementation, the state size
times number of legal joint moves in this state cannot exceed 32KB.

There is also a number of significant optimization improvements we can apply.
For example, during gameplay, clock frequency has to be low because of long
signal propagation paths within the game propnet. However, after the result is
calculated and information exchange between the shared memory and propnet
driver starts, frequency can be temporarily increased by an order of magnitude.
This will make the process of writing data to the memory several times faster.

The usage of a PCI-E equipped FPGA-board would allow pushing the ARM
computer out of the loop, removing the need to handle propnet on two machines
and allowing FPGA board to talk directly to the main, much powerful, computer
(which is necessary to reduce the influence of the MCTS tree overhead).

Currently, when MCTS has control, the reasoner is idle, waiting for the next
task. As the reasoner operates independently of the ARM computer, it is possible
to remove those pauses, by scheduling tasks ahead. From the MCTS point of view
it can be managed as multithreaded simulations, e.g., by using virtual loses [17].

Summarizing, it is possible to create a fully functional GGP player that can
successfully participate in the GGP competitions, although it requires heavy
optimizations and top-level hardware and software. Still, for some large games,
there is no guarantee that the initialization will finish before the imposed start
time. This can be partially solved by storing compiled FPGA projects for already
known games, allowing their fast retrieval when the same game is detected.

5.1 Future work

Although the hardware accelerators provide the highest computational efficiency,
it comes with some drawbacks. However, as we have a complete implementa-

Implementing Propositional Networks on FPGA 11

tion of the propnet in the Verilog, we can use the industrial-grade simulators
and optimizers to run the propnet in software. This could lead to better op-
timized propnet structure and allow more straightforward embedding into the
GGP player. To evaluate the usefulness of such simulated hardware propnets,
we plan to implement them and compare their efficiency against the reference
Java implementation and our FPGA-based reasoner.

Most MCTS implementations are based on the purely random playouts; how-
ever, multiple more sophisticated strategies have proven to be quite effective [5,
17]. We would like to implement and test such non-random simulations on the
FPGA. This will complicate the board architecture and slow down the reasoner.
Yet, it may be the only possibility to overcome certain limitations, and tackle
games that cannot be solved by even extremely efficient brute force search.

In particular, because FPGAs have memory distributed around the entire
chip, it is possible to locally keep track of state changes. Thus, once a player
wins, we can memorize which propositions contributed to this, and create a
heuristic state evaluation function that improves over time, similarly to some
simulation control learning algorithms presented in [5].

6 Conclusions

In this paper, we present the first attempt to encode propnets, a successful com-
putational representation in GGP, on a hardware chip. Because a GGP player
has to handle any game encoded in GDL, we based our system on FPGAs,
which allow us to reprogram our hardware reasoners and quickly switch between
previously encountered games.

This is preliminary work that opens a new branch of GGP research, parallel
to the improvement of software-based reasoners, which has been worked on for
nearly a decade [19]. The approach we described is able to achieve from 25 up to
290 times improvement over the software propnets when comparing the number
of visited states per time unit. Moreover, the ratio is considerably better for large
games, the ones that are especially problematic for all kinds of software-based
reasoners – even GDL compilers. We may conclude that FPGA-propnets are a
faster alternative to software propnets for reasoning on game descriptions.

We also integrate the FPGA-propnet within an MCTS agent and discuss the
difficulties that this entails. Using Pentago, we show how the communication be-
tween the FPGA-propnet and the software that manages the search introduces
a considerable overhead. Because of this, our FPGA-propnet MCTS agent is
not ready to participate in a GGP competition yet. However, we discuss various
improvements that can solve the current shortcomings. This, together with the
successful performance of the FPGA-propnet with respect to the software prop-
net when tested on their own, indicates that this research direction is promising.

Moreover, although we plan to enhance our system to handle more sophis-
ticated AI approaches, we think that merging vanilla MCTS with computation
power of hardware raises an interesting question about a gameplay level that
can be achieved by using sheer brute force.

12 Cezary Siwek, Jakub Kowalski, Chiara F. Sironi, and Mark H. M. Winands

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine learning 47(2-3), 235–256 (2002)

2. Boulé, M., Zilic, Z.: An FPGA Move Generator For the Game of Chess. ICGA
Journal 25(2), 85–94 (2002)

3. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A Survey of Monte Carlo
Tree Search Methods. IEEE TCIAIG 4(1), 1–43 (2012)

4. Coulom, R.: Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. In: Computers and Games. pp. 72–83 (2007)

5. Finnsson, H., Björnsson, Y.: Learning Simulation Control in General Game Playing
Agents. In: AAAI. pp. 954–959 (2010)

6. Genesereth, M., Love, N., Pell, B.: General Game Playing: Overview of the AAAI
Competition. AI Magazine 26, 62–72 (2005)

7. Genesereth, M., Thielscher, M.: General Game Playing. Morgan & Claypool (2014)
8. Haiying, G., Fuming, W., Wei, L., Yun, L.: Monte Carlo simulation of 9x9 Go

game on FPGA. In: Conference on Intelligent Computing and Intelligent Systems.
vol. 3, pp. 865–869 (2010)

9. Hsu, F.H.: Chess hardware in Deep Blue. Computing in Science Engineering 8(1),
50–60 (2006)

10. Kowalski, J., Szykuła, M.: Game Description Language Compiler Construction. In:
AI 2013: Advances in Artificial Intelligence, LNCS, vol. 8272, pp. 234–245 (2013)

11. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General Game Play-
ing: Game Description Language Specification. Tech. rep., Stanford Logic Group
(2008)

12. Olivito, J., Resano, J., Briz, J.L.: Accelerating Board Games Through Hardware/-
Software Codesign. IEEE TCIAIG 9(4), 393–401 (2017)

13. Romoth, J., Porrmann, M., Rückert, U.: Survey of FPGA applications in the period
2000–2015 (Technical Report) (2017)

14. Schkufza, E., Love, N., Genesereth, M.: Propositional Automata and Cell Au-
tomata: Representational Frameworks for Discrete Dynamic Systems. In: AI 2008:
Advances in Artificial Intelligence, LNCS, vol. 5360, pp. 56–66 (2008)

15. Schreiber, S.: The general game playing base package.
http://code.google.com/p/ggp-base/ (2013)

16. Schreiber, S.: Stanford Gamemaster. http://games.ggp.org/stanford/ (2016)
17. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep
neural networks and tree search. Nature 529, 484–503 (2016)

18. Sironi, C.F., Winands, M.H.M.: Optimizing propositional networks. In: Computer
Games, CCIS, vol. 705, pp. 133–151 (2017)

19. Waugh, K.: Faster State Manipulation in General Games using Generated Code.
In: IJCAI Workshop on General Intelligence in Game-Playing Agents (2009)

20. Wong, C., Lo, K., Leong, P.H.W.: An FPGA-based Othello endgame solver. In:
Conference on Field-Programmable Technology, 2004. pp. 81–88 (2004)

