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Abstract—General Game Playing (GGP) aims at creating
computer programs able to play any arbitrary game at an expert
level given only its rules. The lack of game-specific knowledge and
the necessity of learning a strategy online have made Monte-Carlo
Tree Search (MCTS) a suitable method to tackle the challenges
of GGP. An efficient search-control mechanism can substantially
increase the performance of MCTS. The RAVE strategy and
its more recent variant, GRAVE, have been proposed for this
reason. In this paper we further investigate the use of GRAVE
for GGP and compare its performance with the more established
RAVE strategy and with a new variant, called HRAVE, that uses
more global information. Experiments show that for some games
GRAVE and HRAVE perform better than RAVE, with GRAVE
being the most promising one overall.

I. INTRODUCTION

The aim of General Game Playing (GGP) is to develop
agents that are able to play many arbitrary games at an expert
level, only by being given their rules. As opposed to traditional
game playing, GGP agents cannot rely on pre-coded game-
specific knowledge because the game to be played is not
known in advance. For the same reason, it is not possible
to predetermine which search method is more suited for the
game. The search method must be able to cope with a possibly
infinite number of games. Moreover, the rules of the game are
given to the agent only few seconds before the game starts,
thus the agent has to learn the best playing strategy online.
An extra challenge is posed by the fact that the agent usually
has only few seconds per turn to choose a move.

A search technique that proved successful in GGP is Monte-
Carlo Tree Search (MCTS) [1]–[3]. In its basic form MCTS is
aheuristic, it does not require any game-specific knowledge,
anytime, it can choose the move to be played within any
time budget, and selective, it favours regions of the search
tree that have the most promising moves, growing the tree
asymmetrically [4]. Nowadays, all the best GGP agents are
MCTS-based [5]–[9].

Other than GGP, MCTS has been successfully applied
in many other domains. The most popular is the game
of Go [1], for which MCTS represented a substantial step
forward. Other examples are Hex [10], Havannah [11] and
Lines of Action [12]. Moreover, the application of MCTS has
not been limited to games, but also to other domains like
combinatorial optimization problems, constraint satisfaction
problems, scheduling problems, sample-based planning and
procedural content generation [4].

Previous work [3], [13]–[19] has shown that good search-
control mechanisms can consistently improve the overall per-
formance of MCTS. Many enhancements have been proposed
to improve different phases of the search. Some have been
proposed for particular games as they rely on game-specific
knowledge [3]. This makes them less interesting for GGP.
Others, instead, are intrinsically domain-independent [13],
[15]–[18] or are domain-independent modifications of game-
specific methods [14], and are thus suitable for GGP.

Among domain-independent enhancements for the selection
phase of MCTS we can find the Rapid Action Value Esti-
mation technique (RAVE) [15], [20], [21]. RAVE has been
successfully applied in different domains, like the game of
Go [15], [20], and General Game Playing [21]. Recently, a
generalization of RAVE has been proposed, the Generalized
Rapid Action Value Estimation (GRAVE) [22]. This strategy
has been shown to perform better than RAVE on some variants
of Go and some other games. This and the fact that it does
not necessarily need game-specific knowledge make GRAVE
interesting to investigate further in the context of GGP.

The aim of this paper is to compare the performance and
the robustness of GRAVE and RAVE for GGP. Moreover,
we introduce another variant of GRAVE, called HRAVE,
that uses the root history statistics. This enables to verify
how performance is influenced by the use of information at
different levels (from more local in RAVE to more global in
HRAVE, with GRAVE being in between). In addition, we test
how the performance of these RAVE variants is influenced by
using a more informed play-out strategy instead of the one
that chooses random moves. We do so by combining all the
three strategies with MAST [13].

This paper is structured as follows. Section II gives and
overview of MCTS and the MAST search-control mechanism.
Section III describes the RAVE strategy and the variants that
we are evaluating. Sections IV and V discuss the experimental
setup and the obtained results, respectively. Finally, Section VI
gives the conclusions and mentions possible future research.

II. BACKGROUND

A. Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a simulation-based
search method that incrementally builds a tree representation
of the search space for a game [1]–[3]. Each iteration of the
algorithm performs a complete simulation of the game from



the root state to a terminal state, adding nodes to the tree after
each simulation and collecting information about the game
in every node. More precisely, each iteration of the MCTS
algorithm consists of the following four phases:
• Selection: the algorithm descends the tree built so far until

it reaches a node that needs expansion. At each node it
uses a selection strategy to determine which move to visit
next. The standard MCTS selection strategy is the Upper
Confidence bounds applied to Trees (UCT) [2]. Given a
state s and the set A(s) of all legal moves in s, it selects
the most promising move a∗ as follows:

a∗ = argmax
a∈A(s)

{
Q(s, a) + C ×

√
lnN(s)

N(s, a)

}
(1)

N(s) is the number of times node s has been visited dur-
ing the search, N(s, a) is the number of times move a has
been selected whenever node s was visited and Q(s, a)
is the average result obtained for all the simulations in
which move a was played in state s. The second term
of the formula is used to balance the exploitation of the
estimated best move and the exploration of less visited
moves. The constant C controls this balance.

• Expansion: this phase controls the expansion of the tree.
An expansion strategy chooses which node(s) must be
added to the tree and when. A common strategy is the
one that expands the first encountered node that has at
least one unexplored move. The node corresponding to
the state reached by playing this move is added to the tree.
If there is more than one unvisited move, one of them is
chosen randomly. Other strategies might add more than
one node at a time or prefer the selection of a promising
visited move even if there are unvisited moves in the
node. Other expansion strategies are discussed in [23].

• Play-out: starting from the last node added to the tree,
the algorithm plays the game until a terminal state is
reached. In each state the algorithm uses a play-out
strategy to choose the move to play. One of the basic
play-out strategies consists in selecting a move uniformly
at random among the legal moves in the considered state.

• Backpropagation: after reaching a terminal state, the
result of the simulation is propagated back through all the
nodes traversed in the tree. The information memorized
in the nodes depends on what the simulation and play-out
strategies need. Usually, for UCT, each node s memorizes
the values used in Formula (1).

After a certain number of iterations, the best move in the
root node is chosen to be played in the real game. The meaning
of best move depends on the implementation. It could be, for
example, the one with the highest number of visits or the one
with the highest average score. In this paper we consider the
one with the highest average score.

B. The MAST play-out strategy in GGP

The Move Average Sampling Technique (MAST) [13], [16]
is among the successful domain-independent search-control

mechanisms proposed to guide the search during the play-
out phase of MCTS. The main idea behind MAST is that a
move that is good in one state is highly likely to be good also
in other states. During the search this strategy memorizes for
each move a a global average value QMAST (a) based on the
results of all the simulations in which move a was played.
The original version of MAST was using QMAST (a) in the
Gibbs measure to compute a probability distribution over all
the moves in a state and then select one of them according to
this distribution. Later research [17], [18] has shown that an ε-
greedy strategy that chooses the move with highest QMAST (a)
with probability (1− ε) and a random move with probability
ε performs significantly better in most of the tested games.

A variant of MAST, called NST, has been proposed by Tak
et al. [17]. The NST play-out strategy keeps also track of
statistics of sequences of moves. This strategy has been shown
to outperform MAST in most of the tested games.

A characteristic of both MAST and NST is that they keep
track of the collected statistics throughout all the game. Further
gain in performance has been achieved by decaying such
statistics [24]. As the game progresses old statistics might not
be as reliable as they were before, they might refer to moves
that are strong in some parts of the game but weak in others.
Thus, it is desirable to reduce their influence over time.

III. RAVE, GRAVE AND HRAVE

A. RAVE

The RAVE selection strategy has been proposed in order to
speed up the learning process inside the MCTS tree [16], [20],
[21]. The UCT algorithm bases the selection of a move in a
node on the estimated value obtained by sampling this move
in the node multiple times. However, especially when the state
space is large, the algorithm needs many simulations before
it can sample all the moves in a node and more simulations
before it can accumulate enough samples for the moves to
reduce the variance of their estimated scores. To overcome
this issue, RAVE keeps track of other statistics, also known as
All Moves As First (AMAF) values [25], [26]. In every node
it memorizes for all legal moves the following values:
• The average result Q(s, a), obtained from all the simula-

tions in which move a is performed in state s (the same
value used in Formula (1)).

• The average result AMAF (s, a), obtained from all the
simulations in which move a is performed further down
the path that passes by node s.

This means that, when backpropagating the result of a
simulation in a certain node s of the tree, the value Q(s, a)
is updated for the move a that was directly played in the
state, and the value AMAF (s, a′) is updated for all the legal
moves a′ in s that have been encountered at a later stage of the
simulation. In this way RAVE can collect more samples and
use them to reduce the variance of the moves values estimates
for the nodes that do not have many visits. Using the AMAF
scores enables to gather more information faster, however
this information is more global than the local Q(a, s) scores.



AMAF scores are useful for less visited nodes, but when
the number of visits increases, the Q(s, a) scores become
more reliable and the influence of the AMAF scores should
progressively decrease. This is why the RAVE algorithm keeps
track of the two scores separately and uses a weight β to
reduce the importance of the AMAF score over time.

Different variants for the RAVE move evaluation formula
and for the β parameter computation have been proposed [11],
[15], [20]. This paper uses the same formula that has been first
used in GGP by CADIAPLAYER [21]. RAVE selects a move
according to (1), where the term Q(s, a) is substituted by:

(1− β(s))×Q(s, a) + β(s)×AMAF (s, a) (2)

and the term β(s) is computed as follows:

β(s) =

√
K

3×N(s) +K
(3)

where N(s) is the number of times node s has been visited
and K is the equivalence parameter, that indicates for how
many simulations the two scores are weighted equal.

B. GRAVE

GRAVE [22] is a modification of RAVE that has been
proposed to overcome one of its drawbacks. A problem of
RAVE is that for the nodes close to the leaves of the tree not
only the Q(s, a) scores are based on a low number of samples,
but also the AMAF scores. In these nodes the estimates of the
moves values have less accuracy.

To solve this problem, for the nodes that have a number of
visits lower than a given ref value GRAVE uses the AMAF
scores of an ancestor node. Each node in the tree memorizes
its own AMAF scores, but keeps also a reference to the closest
ancestor that has a sufficient number of visits for its AMAF
scores to be considered reliable. When a node s has sufficient
visits (N(s) > ref ), it starts using its own AMAF values
instead of the ones of an ancestor, and the algorithm in that
node starts behaving like RAVE. Note that, if ref = 0,
GRAVE behaves exactly like RAVE from the beginning of the
search. The GRAVE strategy enables to increase the accuracy
of the estimates for the less visited nodes. However, the AMAF
scores of an ancestor might be less relevant for its descendants,
because these scores refer to a different game state.

Another aspect to be mentioned is the increased memory
consumption of GRAVE with respect to RAVE. The latter
needs only to store an extra statistic for each legal move in
the node. With GRAVE, instead, the AMAF scores in a node
might be used for other nodes lower in the tree that have
a different set of legal moves. Therefore each node has to
memorize the AMAF scores for all the moves that can be
encountered at any lower level in the tree.

C. HRAVE

HRAVE is exactly the same as GRAVE, except that it
always uses the AMAF scores of the current root of the tree
(i.e. the ref parameter is set to infinity).
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Fig. 1. Information used by RAVE, GRAVE and HRAVE for move selection
in the highlighted tree node.

HRAVE shares similarities with the domain-independent
selection strategy known as Progressive History [14]. This
strategy adds to the UCT formula a bonus that depends on
the relative history of the move being evaluated. This relative
history is defined as the average result of all the simulations
where the move was played. The influence of this bonus
decreases over time as the number of visits of the node
increases and the UCT estimate becomes more reliable.

In the case of HRAVE, the AMAF score of a move that
is included in the UCT formula as shown in (2) can be
compared to the Progressive History bonus. This is because
both the AMAF score and the bonus are computed using
the same statistics. In each turn of the game, the AMAF
scores of the root of the tree correspond exactly to the history
heuristic scores used by Progressive History. Moreover, like
in Progressive History, the influence of the AMAF score
decreases over time and makes the move evaluation formula
converge to a pure UCT strategy.

A difference between HRAVE and Progressive History is
that, for HRAVE, at the beginning of the search for a given
turn, the root node already contains some statistics collected
during previous turns. Progressive History, instead, starts each
turn with an empty table. We decided to collect these statistics
also during the previous turns to have a fair comparison of
HRAVE with GRAVE and RAVE, because both of them, at
every turn except the first, start the search already having some
statistics in the AMAF tables of the nodes in the tree.

HRAVE can also be seen as the opposite of RAVE. While
the latter uses the most local AMAF information, the former
uses the most global one. GRAVE can be placed in between,
it starts with more global AMAF statistics and then converges
to the most local ones. Fig. 1 gives an example when these
three heuristics are applied in MCTS. The number reported in
each node is the number of node visits. For the selection of a
move in the highlighted node, the figure shows in which node
each algorithm looks for the AMAF statistics to use.

IV. EXPERIMENTAL SETUP

A. Games

The discussed algorithms have been tested on 15 different
games: 3D Tic Tac Toe, Breakthrough, Knightthrough, Skir-
mish, Battle, Chinook, Chinese Checkers with three players,
Checkers, Connect 5, Othello, Quad (the version played on
a 7 × 7 board), Sheep and Wolf, Tic Tac Chess Checkers



TABLE I
CHARACTERISTICS OF THE GAMES USED FOR THE EXPERIMENTS

Game Players Simult. Constant-Sum
GROUP I

3D Tic Tac Toe 2 No Yes
Breakthrough 2 No Yes
Knightthrough 2 No Yes

Skirmish 2 No No
Battle 2 Yes No

Chinook 2 Yes No
Chinese Checkers 3P 3 No No

GROUP II
Checkers 2 No Yes
Connect 5 2 No Yes

Othello 2 No Yes
Quad 2 No Yes

Sheep and Wolf 2 No Yes
TTCC4 2P 2 No No

Zhadu 2 No Yes
TTCC4 3P 3 No No

Four (TTCC4) with two and three players, and Zhadu. Table I
gives an overview of the main characteristics of these games
specifying the number of players, if they are sequential or
simultaneous move games, and if they are constant or variable
sum games. This set of games has been chosen because it is
heterogeneous and because most of the games have been used
in previous experiments that applied RAVE to GGP [16], [21].

In the following experiments, the games in Group I of Ta-
ble I have also been used for tuning the equivalence parameter
K for the algorithms. The games in Group II, instead, have
only been used for comparing the strengths of RAVE, GRAVE
and HRAVE. The GDL description of all the considered games
can be found on the GGP-Base repository [27].

B. Setup

The aforementioned RAVE variants were implemented in
the General Game Playing code base provided by the open-
source GGP-Base project [7]. The code is implemented in Java
and each agent tested in the experiments uses a reasoner based
on Propositional Networks (PropNet, cfr. [28]).

In all the series of experiments, two agent types at a time are
matched against each other. For each match, the PropNet of the
game is generated in advance and both agents use the same
so that none of them has any advantage for having a faster
structure. Play clock and start clock are set to 1s, except for
the experiments presented in Subsection V-B that are repeated
also with start clock and play clock set to 10s.

For each game, if r is the number of roles in the game,
there are 2r different ways in which 2 types of agents can be
assigned to the roles [29]. Two of the configurations involve
only the same agent type assigned to all the roles, thus
are not interesting and excluded from the experiments. Each
configuration is run the same amount of times until the desired
number of matches have been played.

For each of the performed experiments, we report as results
the average winning percentage of one of the two involved
agents with a 95% confidence interval. For each match the
agent that achieved the highest score is considered the winner.

When both agent types achieve the same score, the outcome of
the match is considered a draw. In the first case, the winning
player gets 1 point (full win) and the other player 0 points. In
case of a draw both agent types get 0.5 points (half win).

As baseline to compare the different selection policies we
have used an agent implementing the MCTS algorithm with
UCT selection and random play-out strategy (PUCT) and an
agent implementing the MCTS algorithm with UCT selection
and MAST play-out strategy (PUCT-MAST). The UCT selection
uses the formula given in (1), with C = 0.7. For the MAST
strategy ε is set to 0.4, because it is the value that overall
performed better in [17]. Moreover, the MAST statistics are
decayed after playing every move with a factor γ = 0.2 (i.e.
20% of the statistics is kept for the next turn). This value is
set lower than the one that was found to be the best in [24]
because for each turn we have a higher number of simulations.
This means that the number of collected statistics is higher and
their influence needs to be decreased more strongly.

The aim of the first series of experiments is to tune the
equivalence parameter K used to compute the weight β(s)
in (3). The tested values for K are 10, 50, 100, 250, 500,
750, 1000 and 2000 and the parameter is tuned using the
games in Group I shown in Table I. The agents PRAVE, PGRAVE
and PHRAVE have been implemented and matched singularly
against PUCT for each value of K for at least 500 matches per
game. As selection strategy they use the RAVE, GRAVE and
HRAVE algorithm, respectively. They all use the random play-
out strategy. All of them use the value 0.2 for the C constant
because a lower value than the one used for the plain UCT
algorithm empirically showed to achieve a better performance.
For PGRAVE the ref parameter is set to 50. For each of the three
agents, the value of K that performed overall best in these
series of experiments is also used in subsequent experiments.

In the second series of experiments, the agents PRAVE,
PGRAVE and PHRAVE with the best value of K are matched
against PUCT on all the games in Table I. Testing the agents
on a wider set of games enables to detect a potential over-
fitting of the K value to the games used for tuning. Moreover,
it enables to check whether the tuned value works well also
on other games. These experiments are performed with a
start clock and play clock of 1s and then repeated with a
start clock and play clock of 10s. This is to verify how an
increased amount of time, and thus of simulations, influences
the performance of the three RAVE variants. The minimum
number of played matches per game is increased to 1000.
This provides a more precise estimate of the average winning
percentage of the agents, detecting with a higher confidence
which of the algorithms performs best.

The aim of the third series of experiments is to verify the
effect that the addition of the MAST play-out strategy has on
the three variants of RAVE. For this series of experiments the
random play-out strategy has been replaced with MAST to
obtain the agents PRAVE-MAST, PGRAVE-MAST and PHRAVE-MAST.
These agents have been matched only for the best value
of K against PUCT-MAST on all the games in Table I with
1000 matches per game. Each of these agents has the same



TABLE II
WIN% OF PRAVE , PGRAVE AND PHRAVE AGAINST PUCT FOR DIFFERENT VALUES OF K FOR THE GAMES IN GROUP I

Game K = 10 K = 50 K = 100 K = 250 K = 500 K = 750 K = 1000 K = 2000

PRAVE vs PUCT
3D Tic Tac Toe 68.7(±4.06) 70.2(±4.00) 72.3(±3.91) 80.3(±3.47) 75.0(±3.78) 81.9(±3.36) 79.5(±3.53) 74.4(±3.81)
Breakthrough 58.2(±4.33) 60.6(±4.29) 63.8(±4.22) 65.8(±4.16) 72.2(±3.93) 72.0(±3.94) 71.6(±3.96) 65.8(±4.16)
Knightthrough 68.4(±4.08) 70.8(±3.99) 71.4(±3.96) 73.6(±3.87) 70.6(±4.00) 71.2(±3.97) 71.2(±3.97) 70.8(±3.99)

Skirmish 64.7(±4.16) 57.1(±4.28) 53.5(±4.34) 49.3(±4.35) 41.2(±4.26) 41.9(±4.27) 40.8(±4.27) 39.7(±4.23)
Battle 58.0(±3.83) 60.2(±3.78) 54.3(±3.86) 57.2(±3.81) 55.8(±3.88) 58.0(±3.85) 54.0(±3.94) 52.5(±4.00)

Chinook 45.2(±4.04) 51.5(±4.06) 55.2(±4.10) 59.2(±4.05) 57.2(±4.09) 59.3(±4.01) 55.9(±4.12) 52.4(±4.11)
Chinese Checkers 3P 63.9(±4.20) 61.1(±4.26) 63.9(±4.20) 58.7(±4.30) 64.3(±4.19) 64.9(±4.17) 59.6(±4.28) 58.5(±4.31)

Robustness 5 6 6 6 5 5 5 3
Avg Win% 61.0 61.6 62.1 63.4 62.3 64.2 61.8 59.2

PGRAVE vs PUCT
3D Tic Tac Toe 63.5(±4.21) 71.4(±3.96) 75.0(±3.78) 75.3(±3.78) 80.1(±3.49) 80.7(±3.45) 79.9(±3.51) 77.9(±3.61)
Breakthrough 52.8(±4.38) 58.4(±4.32) 61.2(±4.28) 65.0(±4.19) 67.8(±4.10) 68.6(±4.07) 65.2(±4.18) 62.2(±4.25)
Knightthrough 72.6(±3.91) 72.0(±3.94) 74.0(±3.85) 71.2(±3.97) 70.6(±4.00) 74.4(±3.83) 68.0(±4.09) 68.6(±4.07)

Skirmish 62.2(±4.20) 57.0(±4.28) 51.2(±4.34) 55.7(±4.30) 46.1(±4.31) 44.6(±4.27) 42.0(±4.28) 42.2(±4.28)
Battle 68.7(±3.38) 72.7(±3.33) 71.7(±3.29) 69.6(±3.36) 71.6(±3.31) 72.6(±3.25) 69.6(±3.46) 67.5(±3.46)

Chinook 55.0(±4.08) 64.4(±4.00) 66.6(±3.89) 67.3(±3.80) 69.6(±3.80) 70.5(±3.70) 66.5(±3.87) 64.2(±3.94)
Chinese Checkers 3P 63.9(±4.20) 67.5(±4.09) 63.3(±4.21) 63.6(±4.20) 60.0(±4.28) 64.9(±4.17) 62.5(±4.23) 57.7(±4.32)

Robustness 6 7 6 7 6 5 5 5
Avg Win% 62.7 66.2 66.1 66.8 66.5 68.0 64.8 62.9

PHRAVE vs PUCT
3D Tic Tac Toe 66.5(±4.12) 63.1(±4.22) 71.9(±3.93) 76.1(±3.74) 76.1(±3.71) 75.4(±3.75) 77.0(±3.67) 68.5(±4.04)
Breakthrough 53.6(±4.38) 57.0(±4.34) 62.6(±4.25) 65.2(±4.18) 65.4(±4.17) 60.4(±4.29) 63.2(±4.23) 59.2(±4.31)
Knightthrough 74.0(±3.85) 72.4(±3.92) 74.0(±3.85) 77.4(±3.67) 74.0(±3.85) 73.8(±3.86) 70.4(±4.01) 68.2(±4.09)

Skirmish 62.6(±4.21) 57.4(±4.31) 52.0(±4.33) 48.9(±4.33) 46.2(±4.32) 41.8(±4.26) 44.2(±4.30) 37.0(±4.18)
Battle 72.3(±3.21) 75.7(±3.25) 73.2(±3.17) 69.2(±3.37) 70.9(±3.34) 67.4(±3.44) 73.5(±3.26) 69.4(±3.48)

Chinook 54.9(±4.10) 66.0(±3.89) 66.4(±3.94) 74.9(±3.54) 72.9(±3.58) 75.4(±3.55) 73.4(±3.63) 73.8(±3.61)
Chinese Checkers 3P 67.9(±4.08) 64.1(±4.19) 66.3(±4.13) 65.5(±4.16) 62.7(±4.23) 60.3(±4.28) 61.3(±4.26) 60.2(±4.27)

Robustness 6 7 6 6 6 5 5 5
Avg Win% 64.5 65.1 66.6 68.2 66.9 64.9 66.1 62.3

settings of the corresponding version without MAST and for
the MAST strategy the settings are the same as PUCT-MAST.

As a validation of the results obtained in the previous series
of experiments, the last series of experiments matches PRAVE,
PGRAVE and PHRAVE against each other two at a time and
PRAVE-MAST, PGRAVE-MAST and PHRAVE-MAST against each other
two at a time. A total of at least 1000 matches per game
have been played. All the experiments presented in the next
sections were performed on a Linux server consisting of 64
AMD Opteron 6174 2.2-GHz cores.

V. EMPIRICAL EVALUATION

A. Parameter tuning

Table II shows the performance of PRAVE, PGRAVE and
PHRAVE against PUCT for different values of K. For each
agent, the value of K that achieves the highest robustness is
selected to be used in subsequent experiments. We compute the
robustness of a certain K for an agent by summing 1 point
for each game in which the agent with such K achieved a
statistically significant improvement over PUCT and subtracting
1 point for each game in which it obtained a statistically
significant worsening of the performance. In case more values
of K have the same robustness, we chose the one with highest
average win percentage over all the games.

For PRAVE none of the values of K reaches the maximum ro-
bustness, however, for more than one value the agent achieves
a statistically significant improvement in all games but one.

TABLE III
SIMULATIONS PER SECOND OF PUCT , PRAVE , PGRAVE AND PHRAVE

Game PUCT PRAVE PGRAVE PHRAVE
3D Tic Tac Toe 3093 2831 2920 2877
Breakthrough 1453 1378 1430 1435
Knightthrough 2285 2100 2146 2210

Skirmish 106 105 104 106
Battle 2149 2001 1898 1916

Chinook 2178 2085 2150 2144
Chinese Checkers 3P 4995 4108 4235 4229

Checkers 532 518 511 518
Connect 5 1191 1160 1144 1148

Othello 39 39 39 38
Quad 2767 2617 2627 2684

Sheep And Wolf 2110 2071 2063 2097
TTCC4 2P 1124 1277 1321 1368

Zhadu 494 484 477 480
TTCC4 3P 2058 2207 2220 2257

Among these values, K = 250 is chosen because it is the
one with the highest average win percentage. For PGRAVE the
value K = 250 is selected because among the values with
highest robustness is also the one with highest average win
percentage. Finally, for PHRAVE the value K = 50 is selected
because it is the only one that reaches the highest robustness.

B. Comparison of PRAVE, PGRAVE and PHRAVE with PUCT

In this series of experiments, PRAVE, PGRAVE and PHRAVE
are matched against PUCT, both with 1s and 10s play clock.



TABLE IV
WIN% OF PRAVE , PGRAVE AND PHRAVE WITH BEST K AGAINST PUCT

WITH 1S PLAY CLOCK AND START CLOCK

Game PRAVE PGRAVE PHRAVE
3D Tic Tac Toe 78.4(±2.54) 74.3(±2.70) 64.0(±2.97)
Breakthrough 66.6(±2.92) 67.6(±2.90) 57.8(±3.06)
Knightthrough 73.0(±2.75) 73.6(±2.73) 71.3(±2.81)

Skirmish 47.5(±3.07) 54.5(±3.05) 59.3(±3.02)
Battle 57.0(±2.69) 69.7(±2.34) 73.7(±2.29)

Chinook 59.6(±2.84) 68.3(±2.71) 65.1(±2.74)
Chinese Checkers 3P 61.9(±3.00) 63.2(±2.98) 64.4(±2.96)

Checkers 63.5(±2.83) 70.8(±2.65) 60.7(±2.84)
Connect 5 70.8(±2.76) 75.5(±2.62) 66.8(±2.89)

Othello 36.9(±2.96) 42.9(±2.99) 57.4(±3.02)
Quad 75.1(±2.67) 73.6(±2.72) 73.3(±2.73)

Sheep And Wolf 66.0(±2.94) 62.9(±3.00) 56.7(±3.07)
TTCC4 2P 72.9(±2.73) 71.2(±2.77) 62.3(±3.00)

Zhadu 69.3(±2.86) 67.4(±2.91) 71.3(±2.80)
TTCC4 3P 52.1(±3.03) 52.6(±3.03) 53.4(±3.05)
Robustness 11 12 15
Avg Win% 63.4 65.9 63.8

Table III reports for each game the average median number of
simulations per second that each of the agents can perform.

Table IV shows the performance of PRAVE, PGRAVE and
PHRAVE with the best K against PUCT with 1s play clock and
start clock. PHRAVE is the only one that achieves a significant
improvement over PUCT in all games, despite not being the one
with the highest average win percentage. PRAVE and PGRAVE
still obtain a significant improvement in most of the games,
only in Othello they are significantly outperformed by PUCT.

Table V shows the results obtained by repeating the ex-
periment with 10s play clock and start clock. The results of
PHRAVE with K = 50 were noticeably lower (robustness = 7,
average win percentage = 53.0) than the ones of PRAVE and
PGRAVE with their best K. For this reason, the experiment for
PHRAVE was repeated with the value that produced the highest
average win percentage in Table II, K = 250. Such results,
being better than the ones of K = 50, are reported in Table V.

As can be seen, in most of the games the longer search
time reduces the performance increase of PRAVE, PGRAVE and
PHRAVE against PUCT. In Quad it even makes the use of RAVE,
GRAVE and HRAVE detrimental, substantially reducing the
win percentage around 10%. In Knightthrough and Othello
instead, it seems that more search time increases the perfor-
mance of all the three RAVE variants.

C. Comparison of PRAVE-MAST, PGRAVE-MAST and PHRAVE-MAST

with PUCT-MAST

Table VI shows the performance of PRAVE-MAST,
PGRAVE-MAST and PHRAVE-MAST with the best K against
PUCT-MAST. For most of the games the addition of MAST
as play-out strategy seems to benefit more PUCT-MAST.
PRAVE-MAST, PGRAVE-MAST and PHRAVE-MAST perform
significantly better than PUCT-MAST in most of the games.
However, for many of these games the difference in
performance achieved by PRAVE-MAST, PGRAVE-MAST and
PHRAVE-MAST against PUCT-MAST is not as high as the
difference in performance achieved by PRAVE, PGRAVE and

TABLE V
WIN% OF PRAVE , PGRAVE AND PHRAVE WITH K = 250 AGAINST PUCT

WITH 10S PLAY CLOCK AND START CLOCK

Game PRAVE PGRAVE PHRAVE
3D Tic Tac Toe 69.7(±2.81) 68.2(±2.86) 60.7(±2.99)
Breakthrough 67.5(±2.90) 65.1(±2.96) 60.4(±3.03)
Knightthrough 84.8(±2.23) 84.1(±2.27) 84.4(±2.25)

Skirmish 60.2(±3.01) 60.0(±3.00) 55.8(±3.07)
Battle 59.1(±2.19) 57.2(±2.29) 54.6(±2.35)

Chinook 39.8(±2.78) 56.6(±2.84) 71.8(±2.52)
Chinese Checkers 3P 54.0(±3.08) 54.7(±3.07) 49.7(±3.09)

Checkers 52.2(±2.77) 56.3(±2.73) 61.8(±2.69)
Connect 5 66.9(±2.36) 59.9(±2.50) 53.3(±2.47)

Othello 61.8(±2.97) 62.0(±2.97) 60.6(±2.97)
Quad 10.7(±1.87) 8.5(±1.68) 7.9(±1.64)

Sheep And Wolf 69.6(±2.85) 69.0(±2.87) 67.2(±2.91)
TTCC4 2P 61.1(±2.90) 66.4(±2.80) 65.7(±2.80)

Zhadu 63.4(±2.94) 66.5(±2.86) 68.5(±2.82)
TTCC4 3P 54.4(±2.97) 58.5(±2.95) 50.3(±3.02)
Robustness 10 13 11
Avg Win% 58.3 59.5 58.2

PHRAVE against PUCT. Some examples are the games 3D Tic
Tac Toe, Connect 5 and TTCC4 with 2 players.

The game for which MAST has the highest benefit on
PUCT is Quad. In this game PRAVE, PGRAVE and PHRAVE were
previously obtaining an improvement over PUCT, while the
corresponding agents with MAST are realizing a decrease in
performance with respect to PUCT-MAST.

Among the RAVE variants, the one that seems to benefit the
most (in about half of the games) from the use of MAST is
RAVE. This could be explained by considering that the AMAF
scores used by RAVE in the nodes with a low number of visits
only have a small number of samples. MAST can compensate
the lack of local information near the leaf nodes of the
tree. Using its global statistics, MAST steers the simulations
towards more promising parts of the state space during the
play-out improving its quality. The quality of a simulation for
GRAVE and HRAVE, instead, is already improved near the
leaf nodes by the use of the AMAF statistics of an ancestor.

TABLE VI
WIN% OF PRAVE-MAST , PGRAVE-MAST AND PHRAVE-MAST WITH BEST K

AGAINST PUCT-MAST

Game PRAVE-MAST PGRAVE-MAST PHRAVE-MAST
3D Tic Tac Toe 64.9(±2.76) 65.3(±2.75) 57.3(±2.89)
Breakthrough 78.5(±2.55) 74.6(±2.70) 72.3(±2.78)
Knightthrough 81.9(±2.39) 74.7(±2.70) 75.6(±2.66)

Skirmish 56.1(±3.04) 53.6(±3.04) 64.9(±2.92)
Battle 72.5(±2.32) 76.9(±2.20) 80.8(±2.03)

Chinook 32.2(±2.60) 61.3(±2.85) 58.3(±2.91)
Chinese Checkers 3P 58.7(±3.04) 57.5(±3.05) 56.1(±3.07)

Checkers 65.1(±2.80) 67.1(±2.74) 59.1(±2.85)
Connect 5 60.2(±2.25) 58.4(±2.29) 46.6(±2.41)

Othello 36.8(±2.94) 42.6(±3.00) 50.1(±3.06)
Quad 34.5(±2.80) 29.2(±2.65) 29.8(±2.67)

Sheep And Wolf 56.3(±3.08) 56.6(±3.07) 57.3(±3.07)
TTCC4 2P 63.3(±2.92) 66.2(±2.85) 46.6(±3.04)

Zhadu 73.8(±2.73) 64.8(±2.96) 65.1(±2.96)
TTCC4 3P 56.0(±2.98) 55.6(±2.98) 55.9(±3.01)
Robustness 9 11 8
Avg Win% 59.4 60.3 58.4



TABLE VII
WIN% OF ALL POSSIBLE COMBINATIONS OF AGENTS WITH AND WITHOUT MAST. THE WIN% ALWAYS REFERS TO THE FIRST OF THE TWO PLAYERS.

PGRAVE vs PGRAVE-MAST vs PHRAVE vs PHRAVE-MAST vs PGRAVE vs PGRAVE-MAST vs
Game PRAVE PRAVE-MAST PRAVE PRAVE-MAST PHRAVE PHRAVE-MAST

3D Tic Tac Toe 50.4(±3.09) 51.1(±2.93) 40.1(±3.01) 41.9(±2.89) 63.0(±2.97) 57.1(±2.91)
Breakthrough 46.9(±3.09) 46.1(±3.09) 38.8(±3.02) 44.6(±3.08) 57.1(±3.07) 54.6(±3.09)
Knightthrough 52.8(±3.10) 38.7(±3.02) 49.6(±3.10) 40.3(±3.04) 48.7(±3.10) 45.6(±3.09)

Skirmish 52.3(±3.04) 54.0(±3.04) 62.6(±2.97) 59.5(±3.02) 40.7(±3.02) 44.2(±3.01)
Battle 66.8(±2.34) 54.5(±2.65) 68.4(±2.38) 62.6(±2.52) 50.0(±2.46) 48.4(±2.67)

Chinook 58.3(±2.76) 70.1(±2.41) 55.4(±2.76) 70.8(±2.38) 54.0(±2.79) 49.7(±2.84)
Chinese Checkers 3P 55.1(±3.07) 50.1(±3.09) 55.3(±3.08) 49.4(±3.10) 46.2(±3.09) 50.1(±3.10)

Checkers 53.4(±2.91) 53.1(±2.91) 46.5(±2.94) 43.0(±2.91) 54.3(±2.90) 58.5(±2.89)
Connect 5 57.9(±2.97) 47.3(±2.19) 51.0(±3.04) 39.6(±2.17) 58.7(±2.99) 57.8(±2.22)

Othello 52.8(±3.04) 54.5(±3.04) 65.0(±2.91) 65.0(±2.90) 37.5(±2.95) 36.4(±2.93)
Quad 50.5(±3.09) 42.4(±2.90) 48.9(±3.07) 44.4(±2.89) 52.5(±3.06) 53.4(±2.93)

Sheep And Wolf 51.0(±3.10) 49.2(±3.10) 43.8(±3.08) 48.8(±3.10) 57.2(±3.07) 49.8(±3.10)
TTCC4 2P 52.3(±3.03) 54.2(±2.96) 43.7(±3.03) 37.7(±2.92) 60.9(±2.96) 66.0(±2.85)

Zhadu 50.1(±3.10) 42.0(±3.06) 52.3(±3.10) 40.2(±3.04) 46.7(±3.09) 49.5(±3.10)
TTCC4 3P 48.6(±3.02) 50.0(±2.98) 52.8(±3.04) 50.4(±3.01) 48.7(±3.03) 48.5(±3.01)
Robustness 4 1 0 −4 3 3
Avg Win% 53.3 50.5 51.6 49.2 51.7 51.3

Thus, the addition of MAST in the play-out has less added
benefit to the overall simulation quality.

D. Matching RAVE variants against each other

As a validation of previous results the agents based on the
three RAVE variants have been matched two at a time against
each other. Table VII shows the obtained results. For each pair
of algorithms the table reports a column of results without
MAST and a column with MAST.

These results are in line to what has been observed in previ-
ous experiments. PGRAVE performs better than PRAVE in some
games and equally in others. The performance of PRAVE and
PHRAVE is more game-dependent. In some games they perform
equally, in games like 3D Tic Tac Toe and Breakthrough PRAVE
performs best and in games like Skirmish and Battle PHRAVE
performs best. A similar game-dependent performance can be
observed for PGRAVE and PHRAVE, but in this case there are
more games in which PGRAVE performs best. When MAST is
added to all the agents, the difference in their performance
diminishes. PGRAVE-MAST and PRAVE-MAST perform similarly,
one outperforming the other in a few games and vice-versa.
MAST also benefits both PRAVE-MAST and PGRAVE-MAST against
PHRAVE-MAST.

Finally, we can compare the results obtained for Knight-
through by PGRAVE against PRAVE with the ones in [22]. It
can be noticed that we did not achieve the same performance
increase. In [22] the player based on GRAVE achieves a win
rate of 67.8% against the one based on RAVE when both
players have a limit of 1, 000 simulations per turn and a win
rate of 67.2% when the limit is 10, 000 simulations per turn.
However, this might be due to the different formula that we
use for β and to the fact that we do not limit the number
of simulations per turn but the amount of time. Moreover,
our implementation of RAVE is achieving a higher win rate
against UCT than in [22], where the win rate of RAVE is
69.4% for 1, 000 simulations per turn and 56.2% for 10, 000.
This, therefore, reduces the potential gain by GRAVE.

TABLE VIII
AVERAGE NUMBER OF MOVE STATISTICS PER NODE OF PRAVE AND

PGRAVE

Game PRAVE PGRAVE
3D Tic Tac Toe 4.58 9.11
Breakthrough 3.49 21.14
Knightthrough 3.16 13.44

Skirmish 4.02 54.38
Battle 8.40 19.92

Chinook 2.46 13.81
Chinese Checkers 3P 2.59 16.01

Checkers 2.58 41.94
Connect 5 4.47 9.69

Othello 2.41 14.87
Quad 3.66 7.57

Sheep and Wolf 2.95 32.04
TTCC4 2P 2.27 28.82

Zhadu 2.73 23.12
TTCC4 3P 2.47 13.32

E. Memory usage

As mentioned in Section III-B, GRAVE needs to memorize
in each node the AMAF statistics for all the actions that are
encountered during every simulation that passes through the
node. The RAVE algorithm, instead, only needs to memorize
in each node the AMAF statistics for the moves that are legal
in the corresponding game state.

Table VIII shows for RAVE and GRAVE the average num-
ber of AMAF move statistics that are memorized in each node
for every game. These results give an idea of the difference
between the algorithms in memory usage. The space required
by GRAVE ranges between 2 (in 3D Tic Tac Toe) to 16 (in
Checkers) times the space required by RAVE.

VI. CONCLUSION

In this paper the performance of the GRAVE strategy was
compared to the one of the RAVE and the HRAVE strategies.
GRAVE was also tested on a larger set of games than the one
used in [22] to verify its applicability in the context of GGP.



When combined with a random play-out strategy, we may
conclude that the performance of GRAVE is, in the worst case,
comparable with the one of RAVE both when using 1s or 10s
play clock. Not for all the tested games GRAVE was better
than RAVE, but it never had an inferior performance, except
in Connect 5 when using a 10s play clock.

Regarding HRAVE, we may conclude that its performance
is more game dependent when a random play-out strategy is
used. In some games HRAVE is either better or comparable
to RAVE and GRAVE, but there are some games where it
performs worse. Moreover, when looking at the average win
percentage, in none of the experiments its overall performance
proved to be better than both RAVE and GRAVE.

When combined with the MAST play-out strategy, GRAVE
still seems to be overall better than RAVE. However, it does
not have the same advantage over RAVE that it has when
both strategies are combined with the random play-out. MAST,
apparently, compensates the lack of information near the
leaf nodes for RAVE, closing the performance gap between
RAVE and GRAVE. There are also a few games where the
combination GRAVE-MAST actually performs worse than
RAVE-MAST. Moreover, when using MAST, HRAVE is the
strategy that appears to be the least beneficial among the three
strategies.

As seen in the experiments, the difference in performance
between RAVE, GRAVE and HRAVE is not large. Future
research could investigate further the strengths of GRAVE
over RAVE and HRAVE by tuning also its ref parameter.
Moreover, the formula proposed more recently in [15] to
compute the β parameter could be tested. According to their
findings, with this formula the performance of the three RAVE
variants could improve further. Moreover, in this paper we
only tested the combination of these strategies with MAST.
Other play-out policies might influence them in a different
way. Testing the combination with the NST play-out strategy
could be an idea for future research.
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