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Abstract—Monte-Carlo Tree Search (MCTS) has been applied
successfully in many domains. Previous research has shown
that adding randomization to certain components of MCTS
might increase the diversification of the search and improve
the performance. In a domain that tackles many games with
different characteristics, like General Game Playing (GGP),
trying to diversify the search might be a good strategy. This paper
investigates the effect of randomizing search-control parameters
for MCTS in GGP. Four different randomization strategies are
compared and results show that randomizing parameter values
before each simulation has a positive effect on the search in
some of the tested games. Moreover, parameter randomization
is compared with on-line parameter tuning.

Index Terms—Monte-Carlo tree search, search-control param-
eter randomization, General Game Playing

I. INTRODUCTION

The goal of General Game Playing (GGP) is to create agents
that are capable of playing a wide variety of abstract games
by only being given their rules [1]. Agents have a limited
amount of time (usually a few seconds) to prepare to play
and to select a move in-between game turns. In this setting,
no prior or game-specific knowledge can be exploited by the
agents, which have to acquire such knowledge on-line.

A search strategy that has been successfully applied to
GGP is Monte-Carlo tree search (MCTS) [2], [3]. Numerous
domain-independent enhancements for the different phases of
MCTS have also been proposed, and shown to perform well
in GGP [4]. The performance of MCTS and its enhancements
is usually controlled by a certain number of parameters,
the optimal values of which are in general game-dependent.
However, in GGP it is not possible to tune the parameters for
a specific game in advance, because the game the agent is
going to play is not known. Therefore, parameters are usually
tuned off-line by selecting a set of values that perform overall
best on a predefined set of games.

Sironi et al. [5] proposed different strategies to tune search-
control parameters on-line per game. Using on-line parameter
tuning strategies enables the agent to adapt the search to
each new game being played (i.e. self-adaptive MCTS). The
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on-line tuning strategy that is shown to perform best is the
one based on the N-Tuple Bandit Evolutionary Algorithm
(NTBEA) [6]. The on-line tuning agent that uses this strategy
performs almost as good as the agent that uses off-line tuned
parameters, being even better in a few games.

It has also been shown that in a general game playing
domain where time setting are shorter, like the 40ms per move
of the real-time domain of the General Video Game AI (GVG-
AI) competition [7], tuning parameters on-line is, for most of
the games, comparable to just randomizing them before each
MCTS simulation [8]. In addition, on-line randomization of
a small number of parameters seems to give robust settings
for most of the tested games when a small predefined set of
feasible values is considered for each parameter.

Although the time settings of GGP are less tight than
in GVG-AI, a few second of search time per move is still
quite short. Therefore, it is interesting to see how parameter
randomization performs in GGP and how it compares to on-
line parameter tuning. This paper compares four different
strategies to randomize search-control parameters for MCTS
in GGP. These strategies randomize parameters once per game
run, once per turn, once per simulation and once per visited
state, respectively. The randomization strategy that performs
best is further analyzed to verify how it influences the perfor-
mance with respect to fixed parameter values. Moreover, this
randomization strategy is compared with on-line parameter
tuning both directly and by evaluating the performance against
an agent with fixed sub-optimal parameter values and against
a benchmark GGP agent, CADIAPLAYER [4].

The paper is organized as follows. Section II discusses re-
lated work. Section III gives background knowledge on MCTS
and on-line parameter tuning. The parameter randomization
strategies are described in Section IV. Section V reports the
results of the performed experiments, and in Section VI the
conclusion is given and future work is discussed.

II. RELATED WORK

Previous research has shown how tree search might benefit
from adding randomization to some of its aspects. A first
example can be found in the work of Beal et al. [9], which
shows the effects of using random numbers as intermediate
state evaluations when performing minimax search in Chess.
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An agent using only random evaluations for intermediate states
is shown to outperform the same agent that uses 0 as heuristic
instead. Adding a random term to existing heuristic functions
is shown to be beneficial as well. This effect is explained by
considering that random evaluations are able to capture some
aspects of the structure of the tree.

Bošanskỳ et al. [10] proposed the use of a random tie-
breaking rule when MCTS has to select among multiple
actions of a player that have the same UCT value. They test
an UCT agent that, for each role, selects an action randomly
among those that have the UCT value within a predefined
small offset from the highest UCT value. Results on a set of
simultaneous move games show that this agent converges to
a better approximation of the optimal strategy with respect to
the agent that uses a deterministic tie-breaking rule.

Chen [11] proposed two randomization techniques for
MCTS in the game of Go. The first technique consists in
randomizing a set of parameters that control the selection
phase. During a simulation, each of these parameters is ran-
domized in a predefined range of values before selecting a
move in each of the visited tree nodes. The second technique
is used to add randomization to the play-out phase of MCTS
by hierarchically randomizing the order of a set of predefined
move generators before selecting a move in each state visited
during the play-out. His results show that these randomization
techniques improve the performance of the MCTS agent for
different search budgets and sizes of the Go board.

III. BACKGROUND

This section provides background on MCTS and on on-line
tuning of search-control parameters for MCTS.

A. Monte-Carlo Tree Search

MCTS [2], [3] is a simulation based-search strategy that
incrementally builds a tree representation of the state space
of a game. It performs game simulations by repeating the
following four phases until a search budget expires:

Selection: the tree built so far is traversed until a node
that has not been fully expanded is reached. A node is fully
expanded when all its successor nodes have been added to the
tree. A selection strategy is used in each visited node to select
the next move to visit.

Expansion: one or more nodes are added to the tree.
Play-out: starting from a node that was added to the tree

during expansion, the game is simulated until a terminal state
or a fixed depth is reached. A play-out strategy is used in each
state to select which move to visit.

Backpropagation: the game result obtained at the end of
the simulation is propagated back through all the visited tree
nodes, and used to update statistics about the moves.

When the search budget expires, MCTS returns one of the
moves in the root node to be played in the real game.

The standard MCTS selection strategy is UCT [2] (Upper
Confidence bounds applied to Trees). Given a state s, UCT

chooses the action a∗ for a player using the UCB1 sampling
strategy [12] as follows:

a∗ = argmax
a∈A(s)

{
Q(s, a) + C ×

√
lnN(s)

N(s, a)

}
. (1)

A(s) is the set of legal moves in s, Q(s, a) is the average
result of all simulations in which move a has been selected in
s, N(s) is the number of times state s has been visited during
the search and N(s, a) is the number of times move a has
been selected whenever state s was visited. The C constant
is used to control the balance between exploitation of good
moves and exploration of less visited ones.

Other successful selection strategies are the Rapid Action
Value Estimation strategy [13], and its generalization, GRAVE
[14]. GRAVE selects a move using the UCB1 formula (Eq.
1), where the term Q(s, a) is substituted by the following
quantity:

β(s)×Q(s, a) + (1− β(s))×AMAF (s′, a) , (2)

with

β(s) =

√
K

3×N(s) +K
. (3)

Here, AMAF (s′, a) is the average result of all the simulations
in which move a was selected at any moment after s′ was
visited, and s′ is the ancestor of s that has been visited at
least Ref times. Ref is a threshold that specifies the minimum
number of visits that a state should have for its AMAF
statistics to be considered reliable. The equivalence parameter
K specifies the number of simulations for which the two move
estimates (i.e. Q(s, a) and AMAF (s′, a)) are weighted equal.

A successful play-out strategy is the Move Average Sam-
pling Technique (MAST) [4]. During the play-out, MAST
selects a random move with probability ε, and the move with
highest Q(a) with probability (1 − ε). Q(a) is the average
result obtained by all the simulations in which move a was
played at any point in the game.

B. On-line Parameter Tuning

To implement on-line parameter tuning the standard MCTS
iteration is modified by adding two extra phases, therefore the
search for each MCTS simulation is performed as follows:
• For each role in the game, for each parameter that is

being tuned, an allocation strategy chooses a value in the
predefined finite set of feasible values for the parameter.

• The standard MCTS phases are performed (selection,
expansion, play-out and backpropagation), controlled by
the parameter values chosen in the previous phase.

• The result obtained by the simulation is used to update
statistics about the parameter values that were used to
control the search during such simulation.

Different allocation strategies have been proposed for the
first phase [5], [15]. In this paper, the one that seemed to
perform best, the one based on the N-Tuple Bandit Evolution-
ary Algorithm (NTBEA) [6], is considered to compare on-line



TABLE I
PARAMETERS CONSIDERED IN THE EXPERIMENTS WITH THEIR DESCRIPTION, DEFAULT VALUE, SUB-OPTIMAL VALUE AND SETS OF FEASIBLE VALUES

Param. Description Default Sub-opt. Set of feasible valuesvalue value
C Exploration constant for the UCT selection 0.2 0.9 {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
ε Probability of selecting a random action with MAST 0.4 0 {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
K Equivalence parameter of GRAVE 250 ∞ {0, 10, 50, 100, 250, 500, 750, 1 000, 2 000,∞}
Ref Visit threshold used by GRAVE 50 ∞ {0, 50, 100, 250, 500, 1 000, 10 000,∞}

V O
When using GRAVE selection in state s, select a random move a among the

0.01 0.025 {0.001, 0.005, 0.01, 0.015, 0.02, 0.025}ones with value V (a, s) ∈ [maxa(V (a, s))− V O,maxa(V (a, s))]
T During selection at s, if N(s) < T , select next action with play-out strategy 0 200 {0, 5, 10, 20, 30, 40, 50, 100, 200,∞}

parameter tuning with parameter randomization. The NTBEA
allocation strategy uses an evolutionary algorithm, which
considers each combination of parameters as an individual and
each single parameter as a gene. The evolutionary algorithm
starts with a randomly generated combination of parameter
values and evolves it over time using the statistics (i.e. average
reward and number of visits of tuples of parameters of different
lengths) collected in an N-Tuple fitness landscape model
(LModel). The following are the steps that NTBEA repeats
until the search budget expires:

1) Use the current combination of parameter values (i.e.
individual) to control an MCTS simulation.

2) Use the reward obtained by the MCTS simulation to
update the statistics for the parameter tuples in LModel
that correspond to the evaluated combination.

3) Generate x neighbors of the evaluated combination, each
by mutating the value of a randomly selected parameter
in the combination.

4) Evaluate each of the x neighbors using LModel to
compute an estimate of their UCB1 value.

5) Set the neighbor with the highest estimated UCB1 value
as the current combination.

More details on the NTBEA allocation strategy and on how
to use LModel to compute the estimate of the UCB1 values
can be found in [5].

IV. SEARCH PARAMETER RANDOMIZATION

This section describes four different strategies to randomize
search-control parameters: per game, per turn, per simulation
and per state. They consider a finite set of parameters, each of
which is associated to a finite fixed set of possible values, and
they randomize the values of such parameters for each role in
the game separately.

Per run: before the start of the search for an entire run
of the game, this strategy sets for each role each considered
parameter to a random value in its set of feasible values. The
combination of parameters for each role are then kept fixed
until the run of the game is over.

Per turn: for each role in the game, this strategy sets
a random combination of feasible values for the considered
parameters before starting the search of each game turn.

Per simulation: this strategy sets for each role a new
random combination of feasible parameter values before the
start of each new MCTS simulation. This strategy is the
one that most resembles on-line parameter tuning, which is
also modifying the combination of parameter values for each

role before each simulation. The difference is that on-line
parameter tuning uses the previously learned information to
bias the selection of parameter values.

Per state: every time a state is visited during a simulation,
this strategy randomizes for each role the values of the param-
eters used to perform the search in the state. This strategy is
similar to the one proposed in [11], although in [11] the same
random parameter values are assigned to all the roles.

V. EMPIRICAL EVALUATION

This section presents an analysis of parameter randomiza-
tion for MCTS, by performing multiple series of experiments.
Subsection V-A describes the experimental setup, while the
results are given in Subsections V-B, V-C, V-D and V-E.

A. Setup

The baseline GGP agent used in the experiment implements
MCTS with the GRAVE selection strategy [14] and the MAST
play-out strategy [4]. When NTBEA is used to tune search
parameters on-line, the settings are the same as in [5]. Thus,
the number of neighbors x generated when evolving the con-
sidered parameter combination is 5, the exploration constant
CNTBEA used to compute the UCB1 value of parameter
combinations with LModel is 0.2, and LModel considers only
1- and d-tuples, where d is the number of tuned parameters.
No tuples of intermediate lengths are considered.

Table I summarizes all the parameters that can be ran-
domized/tuned. The table reports their default value, the sub-
optimal value they are set to in one of the series of experiments
presented in Subsection V-E, and the set of feasible values used
when randomizing or tuning the parameters. These values are
the same as in [5]. The default values were obtained by off-line
tuning over a predefined set of games, therefore are expected
to perform generally well over the games tested in this paper.

All the experiments presented in the next subsections are
performed on a set of 14 games [16]: 3D Tic Tac Toe, Break-
through, Knightthrough, Chinook, Chinese Checkers with 3
players, Checkers, Connect 5, Quad (the version played on
a 7 × 7 board), Sheep and Wolf, Tic Tac Chess Checkers
Four (TTCC4) with 2 and 3 players, Connect 4, Pentago and
Reversi. Each experiment matches two agent types at a time
against each other, ensuring that each of them is assigned
to each role in the game the same amount of times over all
the game runs. For 3-player games, all possible assignments
of agent types to the roles are considered, except the two
configurations that assign the same type to each role. All



TABLE II
COMPARISON OF PARAMETER RANDOMIZATION STRATEGIES AGAINST EACH OTHER FOR DIFFERENT NUMBERS OF RANDOMIZED PARAMETERS

K, Ref
3D Tic Tac Toe Breakthrough Knightthrough Chinook Chinese Checkers 3P Checkers Connect 5

GAMERND 46.8(±2.38) 49.7(±2.53) 53.3(±2.53) 44.9(±2.33) 49.5(±2.52) 38.7(±2.35) 45.3(±1.92)
TURNRND 46.8(±2.39) 48.1(±2.53) 51.5(±2.53) 40.7(±2.29) 51.1(±2.52) 43.4(±2.40) 42.2(±1.90)
SIMRND 59.5(±2.31) 52.9(±2.53) 51.1(±2.53) 58.1(±2.33) 49.9(±2.52) 58.8(±2.36) 54.6(±1.82)

STATERND 46.9(±2.35) 49.4(±2.53) 44.1(±2.51) 56.4(±2.33) 49.5(±2.52) 59.1(±2.35) 57.8(±1.85)
Quad Sheep And Wolf TTCC4 2P TTCC4 3P Connect 4 Pentago Reversi

GAMERND 38.4(±2.32) 47.3(±2.53) 41.5(±2.42) 49.6(±2.45) 41.3(±2.38) 48.0(±2.49) 44.4(±2.40)
TURNRND 37.5(±2.31) 49.0(±2.53) 45.6(±2.46) 48.5(±2.46) 45.8(±2.41) 48.1(±2.48) 46.0(±2.41)
SIMRND 56.2(±2.37) 53.5(±2.52) 60.5(±2.39) 50.0(±2.45) 60.8(±2.34) 52.2(±2.49) 57.0(±2.39)

STATERND 67.9(±2.20) 50.1(±2.53) 52.3(±2.45) 51.9(±2.46) 52.1(±2.42) 51.7(±2.49) 52.5(±2.39)
K, Ref , C, ε

3D Tic Tac Toe Breakthrough Knightthrough Chinook Chinese Checkers 3P Checkers Connect 5
GAMERND 43.9(±2.40) 49.5(±2.53) 55.9(±2.51) 50.3(±2.41) 50.7(±2.52) 52.4(±2.40) 46.4(±2.17)
TURNRND 34.9(±2.33) 45.5(±2.52) 50.7(±2.53) 42.7(±2.38) 41.4(±2.48) 30.4(±2.21) 32.6(±2.02)
SIMRND 68.2(±2.22) 61.1(±2.47) 51.7(±2.53) 63.9(±2.32) 59.0(±2.48) 59.8(±2.36) 54.9(±2.11)

STATERND 53.0(±2.39) 43.9(±2.51) 41.7(±2.50) 43.1(±2.41) 48.9(±2.52) 57.4(±2.40) 66.1(±2.02)
Quad SheepAndWolf TTCC4 2P TTCC4 3P Connect 4 Pentago Reversi

GAMERND 44.3(±2.45) 52.6(±2.53) 48.9(±2.51) 49.2(±2.48) 47.2(±2.44) 51.5(±2.45) 49.3(±2.49)
TURNRND 40.3(±2.42) 50.1(±2.53) 46.8(±2.51) 46.1(±2.48) 46.1(±2.45) 39.9(±2.40) 48.1(±2.49)
SIMRND 72.3(±2.19) 52.9(±2.53) 58.1(±2.47) 53.5(±2.48) 61.5(±2.38) 62.4(±2.36) 51.4(±2.49)

STATERND 43.0(±2.45) 44.5(±2.52) 46.2(±2.51) 51.2(±2.50) 45.1(±2.45) 46.1(±2.45) 51.3(±2.50)
K, Ref , C, ε, T , V O

3D Tic Tac Toe Breakthrough Knightthrough Chinook Chinese Checkers 3P Checkers Connect 5
GAMERND 44.3(±2.41) 52.5(±2.53) 44.5(±2.52) 52.6(±2.42) 45.4(±2.51) 43.2(±2.40) 40.7(±2.16)
TURNRND 28.0(±2.21) 45.1(±2.52) 41.3(±2.49) 37.3(±2.35) 40.0(±2.47) 25.3(±2.10) 30.4(±2.06)
SIMRND 71.8(±2.15) 53.6(±2.52) 54.1(±2.52) 54.7(±2.41) 57.8(±2.49) 67.2(±2.26) 67.9(±2.01)

STATERND 55.9(±2.38) 48.7(±2.53) 60.1(±2.48) 55.4(±2.43) 56.8(±2.50) 64.3(±2.33) 61.0(±2.14)
Quad Sheep And Wolf TTCC4 2P TTCC4 3P Connect 4 Pentago Reversi

GAMERND 38.6(±2.40) 49.8(±2.53) 49.5(±2.52) 48.1(±2.49) 42.5(±2.43) 46.4(±2.46) 43.2(±2.48)
TURNRND 34.1(±2.34) 46.5(±2.53) 39.0(±2.46) 45.3(±2.48) 37.8(±2.39) 36.1(±2.37) 42.2(±2.48)
SIMRND 75.3(±2.11) 55.6(±2.52) 60.4(±2.47) 53.1(±2.50) 67.2(±2.28) 64.0(±2.37) 57.2(±2.47)

STATERND 52.0(±2.47) 48.1(±2.53) 51.1(±2.53) 53.5(±2.50) 52.5(±2.46) 53.5(±2.47) 57.5(±2.47)

configurations are run the same number of times until each
agent type has played at least 500 games in total. All agents are
given 1s start- and play-clock, except CADIAPLAYER, which
uses 10s start- and play-clock in order to reach a number of
simulations similar to the other agents. Experimental results
always report the average win percentage of one of the two
agent types with a 95% confidence interval. The average win
percentage for a game is computed by splitting 1 point among
the agents that achieved the highest score and assigning 0
points to all other agents. Bold results indicate the agent
type with the highest win rate for the corresponding game
and number of parameters. Experiments were performed on a
Linux server consisting of 64 AMD Opteron 6274 2.2-GHz
cores, except the ones presented in Table IV and V, which
were performed on a Linux server consisting of 48 AMD
Opteron 6344 2.6-GHz cores.

B. Comparison of Parameter Randomization Strategies

This series of experiments evaluates the randomization
strategies, both by directly matching the agents that imple-
ment them against each other, and by comparing them when
matched against the agent with fixed default parameters.

Table II shows the results obtained by performing a
round-robin tournament with all the randomizing agents (i.e.
STATERND, SIMRND, TURNRND, GAMERND). Each block
of the table corresponds to a different number of parameters
being randomized, each row corresponds to an agent, and each
column to a game. Result in the table represent the average win
percentage of the row agent against all other agents. As can
be seen, for most of the games, independently of the number
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Fig. 1. Win percentage of the agents with the parameter randomization
strategies against the agent with fixed default parameter values.

of parameters being considered, the agent that randomizes
parameters per simulation seems to be the best performing
one. This does not contradict the findings in [11]. Although the
author mentions that randomizing parameters per simulation
did not perform as well as per state, he tested only in the
game of Go. When tested on more games, there are still a
few games where randomization per state performs better (e.g.
Quad for 2 parameters, Connect 5 for 4, Knightthrough for 6),
but randomizing per simulation seems overall best.

The performance of the randomizing agents against the
agent with default fixed values is shown in Fig. 1. For different
number of parameters, the figure reports the average win per-
centage of each of the randomizing agents over all the tested
games. Once again, the agent that randomizes parameters per
simulation is the one showing the best performance overall
when compared to the other randomizing agents. However,
none of the agents seems to be overall better than the agent
that uses fixed default values. Moreover, the results suggest
that the performance of the randomizing agents drops with



TABLE III
COMPARING ALL FEASIBLE VALUES OF C WITH VALUE RANDOMIZATION PER SIMULATION

3D Tic Tac Toe Breakthrough Knightthrough Chinook Chinese Checkers 3P Checkers Connect 5
C = 0.1 51.5(±1.38) 66.0(±1.38) 63.9(±1.40) 42.2(±1.35) 48.2(±1.45) 54.2(±1.37) 45.7(±1.07)
C = 0.2 55.6(±1.36) 78.2(±1.21) 69.0(±1.35) 63.8(±1.31) 58.9(±1.43) 65.8(±1.31) 53.0(±1.05)
C = 0.3 54.9(±1.36) 71.0(±1.33) 62.5(±1.41) 66.9(±1.30) 57.8(±1.44) 61.3(±1.34) 51.9(±1.04)
C = 0.4 52.5(±1.35) 58.3(±1.44) 54.0(±1.46) 63.4(±1.32) 54.7(±1.45) 56.4(±1.37) 52.7(±1.05)
C = 0.5 50.8(±1.35) 45.6(±1.46) 47.6(±1.46) 56.5(±1.36) 51.5(±1.45) 50.7(±1.38) 52.7(±1.04)
C = 0.6 50.0(±1.37) 39.0(±1.43) 42.4(±1.44) 47.6(±1.37) 48.5(±1.45) 47.2(±1.38) 51.9(±1.06)
C = 0.7 47.5(±1.36) 35.8(±1.40) 38.6(±1.42) 39.3(±1.34) 45.1(±1.45) 41.3(±1.36) 49.6(±1.10)
C = 0.8 46.8(±1.36) 33.2(±1.38) 37.9(±1.42) 35.2(±1.30) 44.8(±1.45) 38.7(±1.35) 47.1(±1.09)
C = 0.9 43.7(±1.35) 30.0(±1.34) 41.0(±1.44) 33.0(±1.28) 41.5(±1.43) 36.9(±1.34) 46.1(±1.09)

SIMRNDC 46.8(±1.35) 42.8(±1.45) 43.0(±1.45) 52.1(±1.38) 49.0(±1.45) 47.6(±1.38) 49.3(±1.07)
Quad Sheep And Wolf TTCC4 2P TTCC4 3P Connect 4 Pentago Reversi

C = 0.1 24.0(±1.16) 59.6(±1.43) 39.1(±1.39) 49.6(±1.42) 29.5(±1.26) 34.6(±1.35) 61.2(±1.40)
C = 0.2 37.5(±1.34) 55.3(±1.45) 61.5(±1.39) 52.1(±1.41) 48.5(±1.40) 51.6(±1.41) 59.9(±1.41)
C = 0.3 53.2(±1.39) 51.7(±1.46) 62.7(±1.38) 51.1(±1.42) 54.5(±1.39) 54.6(±1.39) 54.1(±1.43)
C = 0.4 59.9(±1.36) 49.7(±1.46) 58.3(±1.40) 51.0(±1.42) 56.4(±1.39) 53.5(±1.38) 50.1(±1.44)
C = 0.5 59.5(±1.37) 47.8(±1.46) 52.0(±1.43) 51.2(±1.42) 54.5(±1.40) 50.9(±1.39) 49.0(±1.44)
C = 0.6 59.2(±1.38) 48.2(±1.46) 48.9(±1.43) 48.8(±1.42) 54.2(±1.40) 51.1(±1.39) 46.4(±1.44)
C = 0.7 55.5(±1.40) 46.4(±1.46) 45.7(±1.43) 49.7(±1.42) 50.7(±1.41) 51.7(±1.39) 44.0(±1.43)
C = 0.8 48.5(±1.41) 46.9(±1.46) 42.0(±1.42) 49.7(±1.42) 49.5(±1.41) 51.2(±1.39) 44.2(±1.43)
C = 0.9 40.7(±1.39) 45.3(±1.45) 40.8(±1.41) 46.8(±1.42) 49.7(±1.41) 46.4(±1.39) 45.3(±1.43)

SIMRNDC 62.0(±1.35) 49.0(±1.46) 49.1(±1.43) 50.0(±1.43) 52.5(±1.40) 54.5(±1.38) 45.8(±1.43)

TABLE IV
COMPARING ALL FEASIBLE VALUES OF ε WITH VALUE RANDOMIZATION PER SIMULATION

3D Tic Tac Toe Breakthrough Knightthrough Chinook Chinese Checkers 3P Checkers Connect 5
ε = 0.0 43.0(±1.25) 64.2(±1.27) 73.7(±1.16) 38.8(±1.17) 32.3(±1.23) 42.2(±1.22) 37.8(±1.00)
ε = 0.1 47.0(±1.25) 59.3(±1.30) 67.4(±1.24) 58.8(±1.20) 45.8(±1.31) 58.4(±1.23) 46.6(±0.98)
ε = 0.2 46.3(±1.25) 57.3(±1.31) 63.2(±1.27) 64.7(±1.16) 50.8(±1.32) 64.2(±1.19) 50.4(±0.98)
ε = 0.3 48.2(±1.25) 57.4(±1.31) 57.3(±1.31) 63.4(±1.17) 55.1(±1.31) 64.8(±1.19) 51.1(±0.97)
ε = 0.4 48.4(±1.25) 56.6(±1.31) 54.7(±1.32) 61.1(±1.19) 55.5(±1.31) 61.2(±1.21) 54.1(±0.96)
ε = 0.5 49.8(±1.26) 55.2(±1.31) 53.7(±1.32) 58.8(±1.20) 57.4(±1.30) 56.7(±1.23) 56.3(±0.97)
ε = 0.6 53.1(±1.25) 53.0(±1.32) 50.9(±1.32) 54.3(±1.22) 54.5(±1.31) 51.1(±1.24) 57.6(±0.95)
ε = 0.7 55.4(±1.25) 51.3(±1.32) 47.5(±1.32) 50.2(±1.22) 53.9(±1.31) 46.5(±1.25) 58.5(±0.97)
ε = 0.8 59.7(±1.23) 46.8(±1.32) 40.9(±1.30) 43.2(±1.21) 50.9(±1.32) 42.8(±1.23) 58.1(±1.00)
ε = 0.9 57.4(±1.25) 37.3(±1.28) 31.5(±1.23) 36.3(±1.18) 48.2(±1.32) 39.3(±1.22) 53.9(±1.05)
ε = 1.0 44.0(±1.29) 22.9(±1.11) 16.7(±0.98) 25.4(±1.06) 42.5(±1.30) 35.8(±1.19) 36.2(±1.13)

SIMRNDε 47.7(±1.26) 38.7(±1.29) 42.6(±1.31) 44.9(±1.20) 53.0(±1.31) 36.8(±1.20) 39.3(±1.01)
Quad Sheep And Wolf TTCC4 2P TTCC4 3P Connect 4 Pentago Reversi

ε = 0.0 18.6(±0.98) 38.7(±1.29) 40.5(±1.26) 41.6(±1.25) 26.9(±1.11) 46.1(±1.27) 43.2(±1.28)
ε = 0.1 26.2(±1.10) 41.4(±1.30) 60.7(±1.25) 47.3(±1.27) 29.9(±1.15) 49.2(±1.27) 54.0(±1.30)
ε = 0.2 33.7(±1.19) 42.2(±1.31) 67.0(±1.20) 50.2(±1.27) 35.6(±1.20) 51.0(±1.28) 60.5(±1.27)
ε = 0.3 39.7(±1.23) 44.7(±1.31) 67.3(±1.19) 52.2(±1.27) 39.5(±1.23) 52.1(±1.28) 61.3(±1.27)
ε = 0.4 47.6(±1.26) 47.1(±1.32) 62.9(±1.23) 53.2(±1.27) 45.4(±1.25) 52.5(±1.28) 59.1(±1.28)
ε = 0.5 53.8(±1.26) 48.8(±1.32) 58.2(±1.26) 54.0(±1.27) 51.7(±1.25) 51.4(±1.28) 56.9(±1.29)
ε = 0.6 61.5(±1.23) 51.9(±1.32) 50.4(±1.28) 52.7(±1.27) 56.8(±1.25) 49.3(±1.27) 52.9(±1.30)
ε = 0.7 67.0(±1.18) 55.1(±1.31) 43.1(±1.27) 51.5(±1.27) 62.3(±1.22) 49.7(±1.27) 49.7(±1.30)
ε = 0.8 69.4(±1.17) 56.3(±1.31) 37.9(±1.25) 49.2(±1.27) 65.0(±1.20) 48.9(±1.28) 45.4(±1.29)
ε = 0.9 68.4(±1.19) 60.4(±1.29) 30.8(±1.19) 48.4(±1.28) 67.7(±1.18) 49.2(±1.28) 38.2(±1.26)
ε = 1.0 57.2(±1.29) 60.8(±1.29) 25.8(±1.13) 45.6(±1.27) 66.5(±1.19) 48.1(±1.28) 29.2(±1.18)

SIMRNDε 56.8(±1.25) 52.4(±1.32) 55.2(±1.27) 54.0(±1.27) 52.9(±1.26) 52.5(±1.27) 49.6(±1.30)

the increase in the number of randomized parameters.

C. Randomization per Simulation vs Fixed Parameters

These series of experiments further analyze the randomiza-
tion strategy that performed overall best in the previous series
of experiments: randomization per simulation. The purpose
is to verify if randomization of parameter values during the
search brings any contribution to the performance of the
MCTS agent with respect to keeping parameter values fixed
for the whole game. Each series of experiments focuses on
one single parameter, considering the agents that keep the
parameter fixed to one of its feasible values and the agent
that randomizes such parameter per simulation (SIMRND). All
other parameters for SIMRND are set to their default values.
These agents are matched against each other in a round-robin
tournament and, for each game, the average win percentage of
each agent against all other agents is reported in the results.

Tables III, IV and V show the results of such experiments
for the parameter C, ε and K, respectively. Being quite time-
consuming, these series of experiments have been performed
only for the parameters that seemed to be more relevant for
the search. First of all, it is interesting to notice that for a few
games randomizing the parameter values during the search
achieves one of the highest win percentages. This can be
observed in Quad and Pentago for the parameter C, in TTCC4
with 3 players and Pentago for the parameter ε and in about
half of the games for the parameter K. Randomization seems
to be particularly effective for this parameter.

In general, for many of the games randomization per simu-
lation seems to perform better than a few of the fixed values
of the parameter. Moreover, there are a few games where
randomizing parameter values, even if not the best choice, still
performs better than the default fixed value. For some games,
this happens because the default value, despite being optimal



TABLE V
COMPARING ALL FEASIBLE VALUES OF K WITH VALUE RANDOMIZATION PER SIMULATION

3D Tic Tac Toe Breakthrough Knightthrough Chinook Chinese Checkers 3P Checkers Connect 5
K = 0 47.8(±1.32) 46.2(±1.38) 57.8(±1.37) 40.1(±1.26) 51.1(±1.38) 33.1(±1.26) 48.6(±1.06)
K = 10 51.2(±1.33) 50.0(±1.39) 59.9(±1.36) 40.9(±1.27) 51.4(±1.38) 41.5(±1.31) 52.6(±1.04)
K = 50 53.2(±1.31) 53.6(±1.38) 56.8(±1.37) 45.3(±1.28) 52.4(±1.38) 55.7(±1.31) 54.5(±1.01)
K = 100 53.2(±1.31) 54.2(±1.38) 54.5(±1.38) 51.9(±1.28) 52.2(±1.38) 61.7(±1.28) 55.0(±1.01)
K = 250 56.4(±1.30) 56.8(±1.37) 53.8(±1.38) 55.8(±1.27) 52.0(±1.38) 66.6(±1.24) 58.0(±0.98)
K = 500 56.5(±1.30) 56.9(±1.37) 51.9(±1.39) 57.4(±1.26) 52.4(±1.38) 63.5(±1.26) 57.8(±0.98)
K = 750 57.1(±1.30) 55.2(±1.38) 51.0(±1.39) 57.2(±1.26) 52.0(±1.38) 58.7(±1.30) 55.2(±0.98)
K = 1000 56.5(±1.30) 54.0(±1.38) 50.5(±1.39) 55.5(±1.27) 51.9(±1.38) 53.9(±1.31) 53.3(±0.99)
K = 2000 53.6(±1.31) 52.7(±1.38) 50.4(±1.39) 54.6(±1.27) 49.7(±1.38) 42.7(±1.31) 47.9(±0.99)
K =∞ 8.9(±0.77) 16.7(±1.03) 16.6(±1.03) 29.3(±1.16) 34.4(±1.31) 8.4(±0.73) 10.2(±0.62)

SIMRNDK 55.7(±1.30) 53.6(±1.38) 46.8(±1.38) 62.0(±1.24) 50.3(±1.38) 64.3(±1.26) 56.9(±0.98)
Quad Sheep And Wolf TTCC4 2P TTCC4 3P Connect 4 Pentago Reversi

K = 0 49.0(±1.31) 51.6(±1.39) 28.4(±1.23) 49.9(±1.34) 41.6(±1.30) 37.4(±1.31) 53.4(±1.36)
K = 10 50.2(±1.32) 49.9(±1.39) 33.0(±1.27) 51.5(±1.34) 44.2(±1.31) 38.9(±1.32) 58.3(±1.34)
K = 50 50.8(±1.31) 50.8(±1.39) 43.6(±1.34) 53.3(±1.33) 48.4(±1.32) 44.6(±1.34) 61.1(±1.33)
K = 100 50.8(±1.31) 50.4(±1.39) 50.7(±1.34) 50.6(±1.33) 50.0(±1.31) 48.7(±1.35) 61.5(±1.32)
K = 250 51.7(±1.31) 50.6(±1.39) 59.5(±1.31) 51.7(±1.33) 54.3(±1.31) 55.7(±1.33) 57.6(±1.35)
K = 500 53.4(±1.31) 50.2(±1.39) 63.2(±1.28) 52.2(±1.33) 55.9(±1.31) 58.0(±1.32) 52.0(±1.36)
K = 750 54.6(±1.31) 50.0(±1.39) 63.9(±1.28) 51.1(±1.33) 56.8(±1.31) 60.1(±1.30) 48.9(±1.36)
K = 1000 55.7(±1.30) 49.6(±1.39) 63.4(±1.28) 50.9(±1.33) 57.1(±1.31) 60.5(±1.31) 44.0(±1.36)
K = 2000 57.3(±1.30) 49.8(±1.39) 59.0(±1.32) 49.2(±1.34) 56.7(±1.30) 60.2(±1.31) 38.7(±1.33)
K =∞ 10.6(±0.83) 45.5(±1.38) 21.9(±1.13) 39.1(±1.31) 25.3(±1.15) 23.9(±1.15) 19.5(±1.08)

SIMRNDK 65.9(±1.25) 51.6(±1.39) 63.5(±1.29) 50.4(±1.34) 59.8(±1.30) 62.0(±1.30) 55.0(±1.36)

TABLE VI
PARAMETER RANDOMIZATION AGAINST PARAMETER TUNING

Game
SIMRND

K, Ref K, Ref , C, ε K, Ref , C,
ε, T , V O

3D Tic Tac Toe 47.1(±4.01) 52.1(±4.07) 51.7(±4.16)
Breakthrough 39.8(±4.29) 8.8(±2.49) 12.6(±2.91)
Knightthrough 40.8(±4.31) 10.6(±2.70) 15.6(±3.18)

Chinook 50.8(±4.08) 19.7(±3.24) 36.9(±4.11)
Chinese Checkers 3P 44.6(±4.34) 47.2(±4.36) 56.3(±4.33)

Checkers 49.7(±4.10) 25.9(±3.63) 62.5(±4.04)
Connect 5 48.1(±3.15) 66.1(±3.32) 66.7(±3.53)

Quad 55.2(±4.17) 65.8(±3.99) 93.0(±2.06)
Sheep And Wolf 48.8(±4.39) 52.2(±4.38) 51.4(±4.39)

TTCC4 2P 50.3(±4.22) 22.7(±3.61) 34.5(±4.12)
TTCC4 3P 50.9(±4.27) 53.9(±4.26) 59.1(±4.22)
Connect 4 49.1(±4.21) 59.7(±4.19) 67.6(±3.92)
Pentago 47.7(±4.15) 54.7(±4.04) 57.5(±4.12)
Reversi 48.1(±4.31) 42.1(±4.26) 57.4(±4.27)

Avg. Win% 47.9(±1.11) 41.5(±1.11) 51.6(±1.14)

over all the set of games on which it was tuned, is actually not
optimal for the specific game. Examples are Quad, Connect
4 and Pentago for C, Quad, Sheep and Wolf, TTCC4 with 3
players and Connect 4 for ε, and Quad, TTCC4 with 2 players,
Connect 4 and Pentago for K.

D. Randomization per Simulation vs Parameter Tuning

This series of experiments compares the agent that uses pa-
rameter randomization per simulation (SIMRND) with the one
that tunes parameter values on-line with the NTBEA allocation
strategy (NTBEA). Table VI shows the results obtained by
matching the two agents against each other for 2, 4 and 6 ran-
domized/tuned parameters. Regarding the overall performance,
for 2 and 4 parameters on-line tuning seems to perform better
than randomization, while when the tuned parameters increase
to 6, randomization performs in general as well as on-line
tuning. This is probably because with 6 parameters the number
of possible value combinations becomes too high. With the
short time settings of GGP the agent does not have sufficient
time to converge to good combinations, therefore evaluating
combinations almost randomly. Among the tested ones, 4

seems to be the most interesting number of parameters to
compare randomization and on-line tuning against the default
values. With 2 and 6 parameters the performance of the two
agents is close for many of the games, while with 4 there is a
clearer distinction between games for which tuning performs
best and games for which randomization performs best.

Looking at specific games, interesting results are the ones
for Knightthrough and Breakthrough. For these two games,
for each number of considered parameters, on-line tuning
seems more effective than randomization. In addition, for
Chinook and TTCC4 with 2 players on-line tuning performs
much better than randomization when the number of tuned
parameters is 4 or 6. On the contrary, in Quad randomization
achieves a much higher performance than on-line tuning for all
number of parameters. Moreover, in Connect 5 and Connect
4, parameter randomization shows a better performance than
online tuning for 4 and 6 parameters, and in Checkers its
performance drops when going from 2 to 4 parameters, but
becomes better than on-line tuning with 6 parameters.

E. Comparison of Default Parameter Values, Parameter Ran-
domization and On-line Parameter Tuning

These series of experiments compare parameter randomiza-
tion and parameter tuning with the fixed default values. First of
all, the agent that randomizes parameter values (SIMRND) and
the one that tunes them on-line (NTBEA) are matched directly
against the agent that uses the fixed default parameter values
(DEFAULT). Subsequently, all three agents are compared by
matching them against two different types of opponents: an
agent that uses fixed sub-optimal values for the parameters
and a successful GGP agent, CADIAPLAYER [4], which won
three editions of the GGP competition.

Results obtained by matching SIMRND and NTBEA against
DEFAULT are shown in Table VII. Results are reported for 2, 4
and 6 randomized/tuned parameters. These results are in line
to the results presented in Subsection V-D. When matched



TABLE VII
COMPARISON OF SIMRND AND NTBEA AGAINST THE AGENT WITH DEFAULT PARAMETER VALUES

Game K, Ref K, Ref , C, ε K, Ref , C, ε, T , V O
SIMRND NTBEA SIMRND NTBEA SIMRND NTBEA

3D Tic Tac Toe 46.4(±4.12) 46.0(±4.11) 39.4(±4.00) 39.5(±4.08) 40.6(±4.01) 38.6(±4.05)
Breakthrough 40.4(±4.31) 48.6(±4.39) 11.0(±2.75) 55.2(±4.36) 9.4(±2.56) 31.6(±4.08)
Knightthrough 44.2(±4.36) 46.8(±4.38) 20.6(±3.55) 68.2(±4.09) 19.8(±3.50) 50.2(±4.39)

Chinook 61.8(±3.99) 63.5(±3.95) 23.6(±3.61) 51.0(±4.05) 19.8(±3.34) 31.6(±3.94)
Chinese Checkers 3P 45.6(±4.35) 51.0(±4.37) 34.7(±4.16) 42.7(±4.32) 33.7(±4.13) 28.0(±3.92)

Checkers 48.8(±4.08) 47.6(±4.13) 17.9(±3.17) 40.4(±4.06) 20.4(±3.29) 20.9(±3.42)
Connect 5 43.9(±3.12) 45.7(±3.05) 36.5(±3.22) 28.6(±3.07) 45.7(±3.21) 33.2(±3.26)

Quad 65.0(±3.93) 60.1(±4.05) 72.8(±3.71) 51.9(±4.21) 72.4(±3.67) 17.2(±3.13)
Sheep And Wolf 52.0(±4.38) 52.2(±4.38) 49.8(±4.39) 44.8(±4.36) 50.0(±4.39) 46.2(±4.37)

TTCC4 2P 49.5(±4.27) 51.5(±4.19) 20.6(±3.47) 49.7(±4.20) 19.0(±3.40) 33.6(±4.03)
TTCC4 3P 48.7(±4.26) 48.4(±4.26) 46.1(±4.28) 43.1(±4.18) 40.8(±4.23) 39.4(±4.15)
Connect 4 50.9(±4.17) 55.6(±4.18) 55.4(±4.13) 46.8(±4.20) 48.0(±4.23) 30.6(±3.89)
Pentago 53.7(±4.19) 55.3(±4.21) 50.2(±4.22) 43.5(±4.15) 42.6(±4.13) 42.1(±4.18)
Reversi 42.8(±4.29) 46.9(±4.33) 31.0(±3.99) 45.1(±4.33) 28.7(±3.92) 33.5(±4.07)

Avg. Win% 49.6(±1.12) 51.4(±1.12) 36.4(±1.08) 46.5(±1.12) 35.1(±1.07) 34.0(±1.07)

TABLE VIII
COMPARISON OF DEFAULT, SIMRND AND NTBEA AGAINST SUB-OPTIMAL FIXED PARAMETER VALUES

Game K, Ref K, Ref , C, ε K, Ref , C, ε, T , VO
DEFAULT SIMRND NTBEA DEFAULT SIMRND NTBEA DEFAULT SIMRND NTBEA

3D Tic Tac Toe 94.9(±1.90) 92.4(±2.22) 93.4(±2.03) 87.1(±2.67) 80.5(±3.21) 85.3(±2.86) 98.8(±0.91) 97.3(±1.38) 96.4(±1.61)
Breakthrough 97.8(±1.29) 95.6(±1.80) 97.0(±1.50) 96.4(±1.63) 73.2(±3.89) 97.8(±1.29) 96.8(±1.54) 83.2(±3.28) 97.0(±1.50)
Knightthrough 96.6(±1.59) 92.4(±2.33) 96.8(±1.54) 93.0(±2.24) 63.0(±4.24) 99.0(±0.87) 95.2(±1.88) 70.2(±4.01) 95.6(±1.80)

Chinook 73.1(±3.55) 83.5(±3.07) 80.9(±3.21) 83.3(±3.08) 63.8(±4.06) 86.0(±2.85) 93.5(±2.01) 86.6(±2.82) 89.1(±2.51)
Chinese Checkers 3P 67.9(±4.08) 68.5(±4.06) 72.0(±3.92) 79.6(±3.52) 70.8(±3.97) 70.6(±3.98) 89.7(±2.66) 85.3(±3.09) 76.4(±3.71)

Checkers 94.8(±1.80) 95.3(±1.76) 95.7(±1.68) 88.4(±2.55) 67.4(±3.85) 84.1(±2.95) 99.3(±0.70) 98.8(±0.83) 96.5(±1.39)
Connect 5 94.7(±1.54) 92.8(±1.66) 94.5(±1.40) 85.5(±2.55) 83.9(±2.77) 67.0(±3.63) 96.1(±1.36) 97.2(±1.37) 90.1(±2.32)

Quad 91.0(±2.40) 96.8(±1.33) 95.9(±1.64) 79.0(±3.52) 91.3(±2.42) 81.8(±3.29) 98.3(±1.08) 99.4(±0.68) 92.6(±2.21)
Sheep And Wolf 58.4(±4.32) 56.6(±4.35) 57.0(±4.34) 65.4(±4.17) 65.4(±4.17) 62.2(±4.25) 77.0(±3.69) 70.8(±3.99) 67.4(±4.11)

TTCC4 2P 90.0(±2.60) 92.0(±2.36) 93.5(±2.15) 89.4(±2.67) 71.3(±3.95) 89.5(±2.68) 98.2(±1.17) 91.8(±2.41) 94.2(±2.05)
TTCC4 3P 68.4(±3.97) 65.0(±4.08) 67.7(±3.96) 69.7(±3.95) 70.0(±3.95) 67.1(±4.02) 85.0(±3.05) 81.7(±3.34) 79.4(±3.47)
Connect 4 93.1(±2.09) 95.7(±1.70) 94.2(±1.94) 90.8(±2.40) 94.3(±1.99) 87.8(±2.79) 97.3(±1.35) 98.1(±1.08) 95.1(±1.84)
Pentago 84.1(±3.15) 89.4(±2.64) 87.7(±2.83) 87.7(±2.83) 85.6(±3.02) 81.6(±3.32) 93.4(±2.11) 93.4(±2.07) 90.3(±2.56)
Reversi 85.3(±3.05) 81.2(±3.35) 83.4(±3.23) 83.8(±3.20) 67.8(±4.04) 69.5(±4.00) 95.4(±1.80) 93.8(±2.10) 92.9(±2.19)

Avg. Win% 85.0(±0.81) 85.5(±0.80) 86.4(±0.78) 84.2(±0.83) 74.9(±0.99) 80.7(±0.89) 93.8(±0.55) 89.1(±0.72) 89.5(±0.70)

TABLE IX
COMPARISON OF DEFAULT, SIMRND AND NTBEA AGAINST CADIAPLAYER

Game DEFAULT
K, Ref K, Ref , C, ε K, Ref , C, ε, T , V O

SIMRND NTBEA SIMRND NTBEA SIMRND NTBEA
3D Tic Tac Toe 92.1(±2.36) 92.3(±2.26) 91.9(±2.34) 91.4(±2.41) 90.4(±2.55) 91.9(±2.35) 86.7(±2.89)
Breakthrough 63.2(±4.23) 50.6(±4.39) 61.8(±4.26) 23.2(±3.70) 68.0(±4.09) 19.4(±3.47) 45.8(±4.37)
Knightthrough 50.8(±4.39) 35.8(±4.21) 52.2(±4.38) 19.6(±3.48) 74.8(±3.81) 16.0(±3.22) 45.0(±4.37)

Chinook 82.8(±3.22) 86.6(±2.92) 88.0(±2.74) 54.1(±4.22) 81.3(±3.28) 55.1(±4.24) 63.4(±4.10)
Checkers 90.6(±2.32) 86.5(±2.72) 91.2(±2.28) 63.2(±3.97) 87.6(±2.71) 65.8(±3.92) 52.6(±4.12)
Connect 5 70.4(±3.18) 66.8(±3.33) 68.2(±3.29) 61.2(±3.73) 45.5(±3.78) 70.4(±3.54) 51.9(±3.95)

Quad 98.8(±0.96) 99.6(±0.55) 99.2(±0.78) 98.8(±0.96) 99.4(±0.68) 99.4(±0.68) 93.0(±2.24)
Sheep And Wolf 56.8(±4.35) 56.8(±4.35) 60.4(±4.29) 51.6(±4.38) 51.6(±4.38) 55.6(±4.36) 50.0(±4.39)

Connect 4 68.2(±3.90) 65.1(±4.04) 69.7(±3.92) 68.5(±3.98) 63.2(±4.06) 65.4(±4.04) 48.0(±4.24)
Pentago 73.0(±3.80) 75.0(±3.62) 78.1(±3.52) 69.7(±3.95) 71.3(±3.80) 64.7(±4.11) 62.6(±4.10)

Avg. Win% 74.7(±1.16) 71.5(±1.21) 76.1(±1.14) 60.1(±1.32) 73.3(±1.19) 60.4(±1.32) 59.9(±1.32)

against an opponent that uses generally good fixed default
values, the difference in the overall performance between SIM-
RND and NTBEA is similar to the difference in performance
that was observed when the two agents were matched against
each other directly. Moreover, for 2 parameters both agents
seem to have at least the same performance of DEFAULT in
many of the tested games. For 4 parameters the performance
of NTBEA is still quite close to the one of DEFAULT, while
the performance of SIMRND drops for most of the games. For
6 parameters both tuning and randomizing parameter values
does not seem to provide any benefit in most of the games.
Once again, Quad is an interesting game, because it seems
to significantly benefit from parameter randomization for any
tested number of randomized parameters.

The results obtained by matching the DEFAULT, SIMRND
and NTBEA agents against the agent that uses sub-optimal
fixed values for the parameters are presented in Table VIII.
These agents are compared for 2, 4 and 6 randomized/tuned

parameters. Note that for the sub-optimal agent only the
parameters that are being randomized/tuned by the opponent
are set to sub-optimal values, other parameters are set to
their default values. Once again, results show that for 2
and 6 parameters SIMRND and NTBEA have a very close
performance, while for 4 parameters NTBEA performs better.
In general, all agents have a much better performance than
the agent with sub-optimal values. This supports the claim
that parameter values have a strong influence on the search and
that it is worth investigating which are the best values for each
game. Moreover, in a situation where the optimal parameter
values for a specific game are not known in advance, tuning
or randomizing them seems to be a valid approach, rather than
setting an arbitrary combination that might be sub-optimal.

Results of the final series of experiments are shown in
Table IX. This table reports the results obtained by matching
DEFAULT, SIMRND and NTBEA against CADIAPLAYER. All
the agents tested so far implement the same MCTS strategy



with the same enhancements. The purpose of this series of
experiments is to verify how the agents perform against an
opponent with a different implementation of MCTS. For most
of the games, independently of the number of considered
parameters, all agents show a better performance than CADI-
APLAYER, with NTBEA that tunes 2 parameters being the best.
It is confirmed that on-line parameter tuning is successful in
Breakthrough and Knightthrough for 2 tuned parameters and
in particular for 4, while parameter randomization performs
the worst on these two games for 4 and 6 parameters.

Next, for 2 parameters, in all previous series of experiments
the performance of SIMRND was close to the one of NTBEA.
However, against CADIAPLAYER the difference in perfor-
mance is higher. This means that the relative performance
of these two agent does not only depend the number of
parameters that they are considering, but also by the type of
opponent. From previous experiments, tuning only 2 param-
eters might have seemed not very interesting, because it was
only slightly improving the performance over randomization.
However, against CADIAPLAYER on-line tuning is shown to be
better than just randomizing the parameters. Therefore, for the
agent to be more robust against different types of opponents,
2 parameters are still worth tuning. The biggest gap in the
performance of SIMRND with respect to NTBEA is visible for
4 parameters. Moreover, by going from 2 to 4 parameters the
performance of SIMRND drops much more than the one of
NTBEA (more than 9 points for SIMRND and less than 3 for
NTBEA). This suggest that, for different opponents, on-line
tuning might be more robust than parameter randomization.

VI. CONCLUSION AND FUTURE WORK

This paper evaluated four different strategies that randomize
search control parameters for MCTS in GGP: per game, per
turn, per simulation and per state. Moreover, randomization per
simulation has been compared with on-line parameter tuning,
giving more insights on the performance of both approaches.

Results showed that, when compared to each other, the
randomization strategy that performs best is the one that ran-
domizes parameter values before each simulation. Moreover,
for single parameters, it has been shown that for some games
it is better to randomize the value per simulation rather than
keeping it fixed for the whole game. This suggests that MCTS
might benefit from diversifying the search not only by using
strategies like UCT and MAST that try to balance exploration
and exploitation of moves, but also by changing the strategy
itself while searching. Randomizing parameter values allows
to explore not only the search space for the moves, but also
the search space of the strategies, diversifying the search
even more. The fact that the search is further diversified by
constantly changing the parameter values while searching for
the best ones, might also be one of the reasons behind the
success of on-line parameter tuning in some games.

Results have also shown that the effect of parameter ran-
domization depends on multiple factors. Whether it is ben-
eficial to randomize parameter values per simulation rather
than keeping them fixed or rather than tuning them on-line

does not only depend on the game. It also depends on which
and how many parameters are being randomized and on the
type of opponent the agent is facing. Future work could look
into devising a mechanism to automatically detect for each
new game if it is worth using parameter randomization, and if
so, which parameters are worth randomizing. This mechanism
could further be extended to detect on-line if, for a given game,
it is better to randomize or tune the parameters.

It may also be concluded that, although not always the
best solution for all games, randomization is still beneficial
in GGP for games where the fixed settings that are generally
optimal are actually performing poorly. Moreover, parameter
randomization might be a valid alternative when the number
of parameter to tune is high and time settings are limited,
because the problem of tuning them on-line becomes too hard
due to the increased combinatorial complexity.
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