
Monte-Carlo Tree Search
for Artificial General Intelligence in Games

Monte-Carlo Tree Search
for Artificial General Intelligence in Games

Dissertation

to obtain the degree of Doctor at the Maastricht University,
on the authority of the Rector Magnificus Prof. dr. Rianne M. Letschert

in accordance with the decision of the Board of Deans,
to be defended in public on

Wednesday, November 13, 2019, at 16:00 hours

by

Chiara Federica Sironi

Supervisor:
Prof. dr. ir. R.L.M. Peeters

Co-supervisor:
Dr. M.H.M. Winands

Assessment Committee:
Prof. dr. G. Weiss (chair)
Prof. dr. Y. Björnsson (Reykjavik University)
Prof. dr. M. Gyssens (Hasselt University, transnational University Limburg)
Dr. M. Preuss (Leiden University)
Prof. dr. ir. J.C. Scholtes

This research has been funded by the Netherlands Organisation for Scientific Research
(NWO) in the framework of the project GoGeneral, grant number 612.001.121.

Dissertation Series No. 2019-32
The research reported in this thesis has been carried out under the auspices of SIKS,
the Dutch Research School for Information and Knowledge Systems.

ISBN 978-94-6380-553-7

Printed by ProefschriftMaken, de Bilt
Cover design by ProefschriftMaken, de Bilt
Design of cover picture by Annalisa Sironi, Seregno, Italy.

c©2019 C.F. Sironi, Maastricht, The Netherlands.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronically, mechanically, photo-
copying, recording or otherwise, without prior permission of the author.

Preface

After receiving my Master’s degree in Computer Science two things were on my
mind. First, I wanted to find something fun to do in the large amount of free time
that suddenly became available after graduation. Second, I wanted to find a Ph.D.
position in order to continue my studies. Finding something fun to do was easy. I
came across an on-line course promising that by the end of the last lecture I would
have been able to create a computer program that plays any abstract game you
can think of. Excited by the challenge, I enrolled in this course on a topic I had
never heard of before, called general game playing. Finding a Ph.D. position was
not as quick. It took a few months of searching before I was accepted as a Ph.D.
candidate at the Department of Data Science and Knowledge Engineering (DKE)
of Maastricht University. Surprisingly enough, the main topic of my Ph.D. turned
out to be exactly the same one of the on-line course. However, I soon realized
that it is enough to follow a few weeks of on-line lectures to learn how to create a
general game-playing program, but it takes more than four years of effort to make
this program only slightly more intelligent. This thesis is the result of the research I
performed during my Ph.D. and is also the result of the effort of all the people that
supported me in the process, and whom I would like to thank.

First of all, I wish to thank my daily supervisor, Mark Winands, for his invaluable
help during these years and for teaching me much about research. I am grateful for
all the time and effort he spent in guiding me during my Ph.D. and his immense
knowledge about search in games has been of great help in the realization of this
thesis. I also wish to thank Ralf Peeters for being my promotor and giving me useful
feedback.

I would also like to thank all the people with whom I collaborated during the
past years. I enjoyed visiting the Game AI research group at QMUL, UK and I am
especially grateful to Jialin Liu, Diego Pérez-Liébana, Raluca Gaina, Ivan Bravi and
Simon Lucas for their valuable insights on the GVG-AI framework and on Evolu-
tionary Algorithms. I also enjoyed working with Cezary Siwek and Jakub Kowalski,
from the University of Wrocław, Poland. I wish to thank them for the interest they
showed in my work and for giving me the opportunity to collaborate with them.
Their insights on FPGAs were a valuable addition to this thesis. Furthermore, I
wish to thank Tom Vodopivec, from the University of Ljubljana for all the interest-
ing talks we had in Maastricht and for sharing his work and giving me advice. I am
also grateful to Stephan Schiffel, from Reykjavik University for his advice on GDL
and PropNets and for making the time I spent visiting the Cadia lab enjoyable.

vi

I also wish to thank all my colleagues for making DKE a pleasant work environ-
ment. My gratitude also goes to the IT-support team, especially to Peter Geurtz
for always taking care of the servers and making sure they are up-to-date and ready
to run experiments.

Of course, I would like to thank all the people that shared the office with me
during these years and made it a fun place to work at. My very first office mates,
Chun, Hendrik and Libo. My senior Ph.D. office mates, Firat, Nasser and Shuang,
I learned a lot from them. Arjun and Yiyong deserve my thanks for keeping me
company in the office and for all the fun lunch breaks we had, together with Seethu
and Amir as well. My thanks also go to my current office mates and colleagues at
Tapijn, Cameron, Dennis, Eric, Lianne, Matthew, Tahmina and Walter. I enjoy the
interesting discussions on games that we have in the office, the occasional after-work
drinks and spending time playing with their cool Ludii game system. Furthermore,
I wish to thank all other Ph.D. fellows and other colleagues that shared with me
the good (and sometimes hard) times of work life at DKE: Bijan, Christos, Dario,
Esam, Jordi, Katharina, Kirill, Li, Lucas, Maria, Meysam, Monica, Tom, Wei and
Zhenglong.

My thanks also go to my friend Olivia for her moral support and for always
knowing the best places where to hang out in Maastricht. My friends Alessandro,
Daniela, Federica, Isabella and Sonia deserve my thanks as well. They proved that
distance does not matter when there is real friendship. I am also grateful to Els
and Harrie, for all the help they gave me when I first moved to the Netherlands
and for always being there for me. Special thanks go to my boyfriend Joost, for
always being by my side, cheering me on and keeping me motivated. He deserves
praise also for showing an infinite amount of patience every time I was stressed for
an approaching deadline. Last but not least, my gratitude goes to all my family, to
my sister Annalisa and especially to my parents Luisa and Federico. They have been
supportive throughout all my life, always encouraging each of my decisions. Grazie
per tutto quello che avete fatto per me.

Chiara Sironi, 2019

Acknowledgements
The research has been carried out under the auspices of SIKS, the Dutch Research
School for Information and Knowledge Systems. This research has been funded by
the Netherlands Organisation for Scientific Research (NWO) in the framework of
the project GoGeneral, grant number 612.001.121.

Table of Contents

Preface v

Table of Contents vii

List of Figures xi

List of Tables xii

List of Algorithms xv

1 Introduction 1
1.1 Games . 2
1.2 Games and Artificial Intelligence . 5
1.3 Games and Artificial General Intelligence 7
1.4 Search Techniques . 10
1.5 Problem Statement and Research Questions 12
1.6 Thesis Overview . 14

2 Search Techniques 17
2.1 Tree Search in Games . 17
2.2 Monte-Carlo Methods . 20

2.2.1 Flat Monte-Carlo Search . 20
2.2.2 Multi-Armed Bandit Algorithms 22

2.3 Monte-Carlo Tree Search . 23
2.3.1 “Open-Loop” MCTS for Non-Deterministic Games 25

2.4 The UCT Selection Strategy . 30
2.4.1 Simultaneous Move UCT . 31

2.5 MCTS Enhancements . 36
2.5.1 Selection Strategy Enhancements 36
2.5.2 Play-out Strategy Enhancements 38
2.5.3 Transposition Tables . 41
2.5.4 Tree Reuse . 47

2.6 Discussion . 49

viii Table of Contents

3 Test Environments 51
3.1 Stanford General Game Playing . 51

3.1.1 Game Description Language 52
3.1.2 Game Management . 57
3.1.3 Competition . 58
3.1.4 GGP Base Agent . 59

3.2 General Video Game AI . 61
3.2.1 Video Game Description Language 61
3.2.2 Game Management . 64
3.2.3 Single-Player Planning Competition 65
3.2.4 GVG-AI Agents . 66

3.3 Discussion . 68

4 Optimizing Propositional Networks 71
4.1 Background . 72

4.1.1 Propositional Networks . 72
4.2 PropNet Implementation . 75

4.2.1 Initialization . 75
4.2.2 Optimizations . 76
4.2.3 PropNet-based Reasoner . 85

4.3 Experiments . 86
4.3.1 Setup . 86
4.3.2 Comparison of Single Optimizations 88
4.3.3 Comparison of Combined Optimizations 90
4.3.4 Comparison of PropNet Reasoner and Prover 92
4.3.5 Game-Playing Performance 94

4.4 Encoding PropNets on Field Programmable Gate Arrays 95
4.4.1 FPGA-PropNet Reasoner Implementation 95
4.4.2 FPGA-PropNet Reasoner Performance 97

4.5 Chapter Conclusions and Future Research 100

5 Rapid Action Value Estimation Variants 103
5.1 All-Moves-As-First . 104
5.2 RAVE Variants . 105

5.2.1 Rapid Action Value Estimation 105
5.2.2 Generalized Rapid Action Value Estimation 106
5.2.3 History Rapid Action Value Estimation 108

5.3 Experiments . 108
5.3.1 Games . 109
5.3.2 Setup . 109
5.3.3 Tuning the Equivalence Parameter K 111
5.3.4 Matching RAVE Variants against UCT 111
5.3.5 Matching RAVE Variants against UCT with MAST 115
5.3.6 Matching RAVE Variants against Each Other 117
5.3.7 Memory Usage . 119

5.4 Chapter Conclusions and Future Research 120

Table of Contents ix

6 On-line Search-Control Parameter Tuning for MCTS 123
6.1 Related Work . 125
6.2 Design of Self-Adaptive MCTS . 126

6.2.1 Integration of Parameter Tuning with MCTS 126
6.2.2 Formulation of the Parameter Tuning Problem 127

6.3 Allocation Strategies . 128
6.3.1 Discrete Allocation Strategies 129
6.3.2 Continuous Allocation Strategy 142

6.4 Empirical Evaluation . 144
6.4.1 Setup . 144
6.4.2 On-line Parameter Tuning for the SP Agent 150
6.4.3 On-line Tuning for the AP Agent 150
6.4.4 On-line Parameter Tuning Validation 157
6.4.5 Parameters Inter-dependency 157
6.4.6 Tuning Six Parameters with Different Time Constraints . . . 159
6.4.7 Best On-line Tuning Agent vs CadiaPlayer 161
6.4.8 On-line Parameter Tuning in Real-time Settings 162
6.4.9 Discussion . 166

6.5 Chapter Conclusions and Future Research 167

7 Comparing Randomization Strategies for Search-Control Parame-
ters in MCTS 171
7.1 Related Work . 172
7.2 Search-Control Parameter Randomization 173
7.3 Empirical Evaluation . 175

7.3.1 Setup . 175
7.3.2 Comparison of Parameter Randomization Strategies 178
7.3.3 Randomization per Simulation vs Fixed Parameters 180
7.3.4 Randomization per Simulation vs Parameter Tuning 185
7.3.5 Comparison of Default Parameter Values, Parameter Random-

ization and On-line Parameter Tuning 186
7.3.6 Search Tree Analysis . 191
7.3.7 Parameter Randomization in Real-time Settings 197

7.4 Chapter Conclusions and Future Research 201

8 Conclusions and Future Research 203
8.1 Answers to the Research Questions 203

8.1.1 Speeding Up Game Rule Interpretation 203
8.1.2 Local and Global Information in the Selection Strategy . . . 204
8.1.3 On-line Search-Control Parameter Tuning 205
8.1.4 Search-Control Parameter Randomization 206

8.2 Answer to the Problem Statement 207
8.3 Recommendations for Future Research 208

8.3.1 Specific Recommendations . 208
8.3.2 General Recommendations 210

x Table of Contents

References 213

Appendices

A Example of Game Descriptions 235
A.1 GDL Description for Tic Tac Toe . 235
A.2 VGDL Game Description for Zelda 238

B Game Rules 241
B.1 Games for the Stanford GGP Project 241
B.2 Games for the GVG-AI Project . 245

C Supplementary Results for Chapter 4 249

D Supplementary Results for Chapter 5 255

E Supplementary Results for Chapter 6 257

F Supplementary Results for Chapter 7 265

Index 267

Valorization 269

Summary 273

Curriculum Vitae 279

SIKS Dissertation Series 281

Table of Contents xi

List of Figures

2.1 Representation of a game tree. 19
2.2 Outline of Monte-Carlo Tree Search. 23
2.3 Representation of a game tree with chance nodes. 27
2.4 “Open-loop” representation of a game tree for a non-deterministic game. 28
2.5 Representation of a game tree for a simultaneous move game with two

players. 31
2.6 Sequential action selection in a turn of a two-player simultaneous

move game. 33
2.7 Computation of cumulative statistics for Player 1 in a state of a si-

multaneous move game with two players. 34
2.8 Statistics memorized by each player in a state, when DUCT is applied

on a simultaneous move game with two players. 35
2.9 Extraction and update of N-Grams after an MCTS simulation. . . . 40
2.10 Use of N-Grams to compute the NST value of an action. 41
2.11 Application of UCT on a search tree built without using a transposi-

tion table. 44
2.12 Application of UCT1, UCT2, UCT3 and UCT4 on a search graph

built using a transposition table. 45
2.13 Tree reuse in MCTS. 47
2.14 Example of graph reuse in MCTS with transposition tables. 48

3.1 Representation of a state of Tic Tac Toe with GDL. 52
3.2 Representation of a level of Zelda with VGDL. 64

4.1 GDL game description for a simple game. 73
4.2 Grounded GDL game description for a simple game. 73
4.3 PropNet structure example. 74
4.4 Examples of changes to the PropNet structure after applying Opt0. . 79
4.5 Changes to the PropNet structure after applying Opt1. 80
4.6 Examples of changes to the PropNet structure after applying Opt2. . 82
4.7 Changes to the PropNet structure when applying Opt3. 84
4.8 Tradeoff between MCTS play-out speed and distinct Monte-Carlo

evaluations. 97

5.1 UCT vs AMAF statistics update. 105
5.2 Use of AMAF statistic for the GRAVE strategy. 107

6.1 Interleaving on-line tuning with MCTS. 126
6.2 MAB and HE representation of the combinatorial action-space of the

parameter tuning problem. 130
6.3 Overview of the exploration and exploitation phases of NMC. 133
6.4 Overview of the generation and evaluation phases of LSI. 134
6.5 Overview of the execution of EA. 140
6.6 Overview of the execution of NTBEA. 141

xii Table of Contents

6.7 Win percentage of APNMC, APLSI, APEA and APNTBEA tuning six
parameters with different time constraints. 160

7.1 Randomization strategies. 174
7.2 Win percentage of the agents with the parameter randomization strate-

gies against the agent with fixed default parameter values. 178
7.3 Maximum MCTS tree depth over game turns of AP, APSIM-RND and

APNTBEA. 191
7.4 Average effective branching factor over game turns of AP, APSIM-RND

and APNTBEA. 192
7.5 Trees built for Breakthrough by the AP, APSIM-RND and APNTBEA

agents, respectively. 193
7.6 Trees built for Knightthrough by the AP, APSIM-RND and APNTBEA

agents, respectively. 194
7.7 Trees built for Quad by the AP, APSIM-RND and APNTBEA agents,

respectively. 195
7.8 Trees built for Connect Four by the AP, APSIM-RND and APNTBEA

agents, respectively. 196

C.1 Speed of the Prover without and with cache over different game turns
for the games of Amazons, Battle, Breakthrough, and Chinese Check-
ers with 1, 2, 3 and 4 players. 250

C.2 Speed of the Prover without and with cache over different game turns
for the games of Chinese Checkers with 6 players, Connect Four, Oth-
ello, Pentago, Skirmish, and Tic Tac Toe. 251

C.3 Speed of the optimized PropNet without and with cache over different
game turns for the games of Amazons, Battle, Breakthrough, and
Chinese Checkers with 1, 2, 3 and 4 players. 252

C.4 Speed of the optimized PropNet without and with cache over different
game turns for the games of Chinese Checkers with 6 players, Connect
Four, Othello, Pentago, Skirmish, and Tic Tac Toe. 253

List of Tables

4.1 Comparison of single optimizations. 89
4.2 Comparison of combined optimizations. 91
4.3 Comparison of the PropNet reasoner with the Prover and effect of the

cache. 93
4.4 Win percentage of the PropNet agent against the Prover agent. . . . 94
4.5 Comparison of the FPGA-PropNet with the software PropNet and the

Prover, based on running random simulations from the initial game
state. 98

Table of Contents xiii

4.6 Initialization time and memory usage of the FPGA-PropNet and the
software PropNet. 99

5.1 Win percentage of PRAVE, PGRAVE and PHRAVE against PUCT for
different values of K. 112

5.2 Win percentage of PRAVE, PGRAVE and PHRAVE with best K against
PUCT with 1s play-clock and start-clock. 113

5.3 Simulations per second of PUCT, PRAVE, PGRAVE and PHRAVE. . . . 113
5.4 Win percentage of PRAVE, PGRAVE and PHRAVE withK = 250 against

PUCT with 10s play-clock and start-clock. 114
5.5 Win percentage of PRAVE-MAST, PGRAVE-MAST and PHRAVE-MAST

with best K against PUCT-MAST. 115
5.6 Win percentage of PRAVE-MAST against PRAVE, PGRAVE-MAST against

PGRAVE and PHRAVE-MAST against PHRAVE. 116
5.7 Win percentage of all possible combinations of agents with and with-

out MAST. 118
5.8 Average number of move statistics per node of PRAVE and PGRAVE. 119

6.1 Default values, discrete and continuous domains of the parameters
considered in the experiments on the Stanford GGP project. 146

6.2 Default values, discrete domains and sub-optimal values of the pa-
rameters considered in the experiments on the GVG-AI project. . . . 149

6.3 Win percentage of the on-line tuned SP agent that tunes two param-
eters with different allocation strategies against the SP agent with
default parameter values. 151

6.4 Win percentage of the on-line tuned AP agent with different allocation
strategies that tune two parameters against the AP agent with default
parameter values. 152

6.5 Win percentage of the on-line tuned AP agent with different allocation
strategies that tune four parameters against the AP agent with default
parameter values. 153

6.6 Win percentage of the on-line tuned AP agent with different allocation
strategies that tune six parameters against the AP agent with default
parameter values. 154

6.7 Variation (%) of visited nodes per second of the on-line tuned AP
agent that tunes four parameters with respect to the off-line tuned
AP agent. 156

6.8 Variation (%) of MCTS iterations per second of the on-line tuned AP
agent that tunes four parameters with respect to the off-line tuned
AP agent. 158

6.9 Win percentage of SPNTBEA and APNTBEA against agents that ran-
domize parameter values before each game run. 159

6.10 Win percentage of the on-line tuning APLOCAL agent that does not
consider interdependency among parameters, and of the on-line tun-
ing AP agents that achieve the highest win percentage against off-line
tuned AP. 160

xiv Table of Contents

6.11 Win percentage of AP and APNTBEA (1s start- and play-clock) against
CadiaPlayer (10s start- and play-clock). 161

6.12 Win percentage of MaastCTS2 with fixed parameter values (MP),
with sub-optimal fixed parameter values (MPSUB-OPT), tuned on-line
with the MAB strategy (MPMAB) and tuned on-line with the NTBEA
strategy (MPNTBEA), with game tick set to 40ms. 163

6.13 Variation (%) of MCTS iterations per tick (40ms) of MaastCTS2
tuned on-line with the MAB strategy (MPMAB) and tuned on-line
with the NTBEA strategy (MPNTBEA) with respect to MaastCTS2
with fixed parameter values (MP). 164

6.14 Win percentage of MaastCTS2 with fixed parameter values (MP),
with sub-optimal parameter values (MPSUB-OPT), tuned on-line with
the MAB strategy (MPMAB) and tuned on-line with the NTBEA
strategy (MPNTBEA), with game tick set to 100ms. 165

7.1 Default values, discrete domains and sub-optimal values of the pa-
rameters considered in the experiments on the Stanford GGP project. 176

7.2 Default values, discrete domains and sub-optimal values of the pa-
rameters considered in the experiments on the GVG-AI project. . . . 177

7.3 Comparison of parameter randomization strategies against each other
for different numbers of randomized parameters. 179

7.4 Comparing all feasible values of C with value randomization of C per
simulation. 181

7.5 Comparing all feasible values of εMAST with value randomization of
εMAST per simulation. 182

7.6 Comparing all feasible values of K with value randomization of K per
simulation. 183

7.7 Parameter randomization against parameter tuning. 185
7.8 Win percentage of APSIM-RND and APNTBEA against the agent with

default parameter values, AP. 187
7.9 Win percentage of AP, APSIM-RND and APNTBEA against the agent

with sub-optimal fixed parameter values. 188
7.10 Win percentage of AP, APSIM-RND and APNTBEA (1s start- and play-

clock) against CadiaPlayer (10s start- and play-clock). 189
7.11 Win percentage of MaastCTS2 with fixed parameter values (MP),

with sub-optimal parameter values (MPSUB-OPT), with randomiza-
tion per simulation (MPSIM-RND) and tuned on-line with the NTBEA
strategy (MPNTBEA), with game tick set to 40ms. 198

7.12 Win percentage of MaastCTS2 with fixed parameter values (MP),
with sub-optimal parameter values (MPSUB-OPT), with randomiza-
tion per simulation (MPSIM-RND) and tuned on-line with the NTBEA
strategy (MPNTBEA), with game tick set to 100ms. 199

B.1 Characteristics of the games of the Stanford GGP project used for
the experiments. 242

Table of Contents xv

B.2 Characteristics of the games of the GVG-AI project used for the ex-
periments. 246

D.1 Win percentage of PUCT-MAST against PUCT with 1s play-clock and
start-clock. 255

E.1 Win percentage of the AP agent that tunes four parameters on-line
with the MAB allocation strategy with or without using a batch of
simulations to evaluate each parameter combination. 260

E.2 Win percentage of the AP agent that tunes four parameters on-line
with the MAB allocation strategy with or without using a batch of
simulations to evaluate each parameter combination. 260

E.3 Win percentage of the AP agent that tunes four parameters on-line
with the NMC allocation strategy for different combinations of values
for Cg and Cl. 261

E.4 Win percentage of the AP agent that tunes four parameters on-line
with the LSI allocation strategy, for different values of the factor κ. . 262

E.5 Win percentage of the AP agent that tunes four parameters on-line
with the EA allocation strategy, for different values of the elite size µ. 262

E.6 Win percentage of the AP agent that tunes four parameters on-line
with the NTBEA allocation strategy, for different number of gener-
ated neighbors X. 263

E.7 Win percentage of the AP agent that tunes four parameters on-line
with the NTBEA allocation strategy, using different lengths for the
n-tuples. 263

F.1 Win percentage of the AP agent that randomizes two, four and six
parameters with different randomization strategies, against the AP
agent with fixed default parameter values. 266

List of Algorithms
1 Pseudocode for Monte-Carlo Search. 21
2 Pseudocode for Monte-Carlo Tree Search. 26
3 Pseudocode for “open-loop” Monte-Carlo Tree Search. 29
4 Remove constant-value components. 76
5 Remove true components. 77
6 Remove anonymous propositions. 78
7 Detect and remove constant-value components. 81
8 Remove components with no outputs. 84
9 Pseudocode for the MAB allocation strategy. 129
10 Pseudocode for the HE allocation strategy. 131
11 Pseudocode for the NMC allocation strategy. 132
12 Pseudocode for the LSI allocation strategy. 135
13 Pseudocode for the EA allocation strategy. 138
14 Pseudocode for LModel. 139

xvi Table of Contents

15 Pseudocode for the NTBEA allocation strategy. 140
16 Pseudocode for the CMA-ES allocation strategy. 143

Chapter 1

Introduction

This thesis investigates how search can be utilized to support Artificial General
Intelligence (AGI) in games. The aim of AGI is creating Artificial Intelligence (AI)
that can perform multiple different tasks in multiple different environments, can
autonomously manage itself and possesses the ability to adapt to perform any new
task that it might have never performed before (Goertzel and Pennachin, 2007).
Similarly, the goal of the research area of general game playing (GGP)1 is to create
programs that are able to play many (video) games with different properties without
requiring any human intervention. This means that programs cannot rely on game-
specific and prior knowledge and have to automatically adapt to each new game.

Among the main human competences that AGI should aim to reproduce, Go-
ertzel (2014) identifies planning. Also Yannakakis and Togelius (2015) mention
search and planning as a relevant subfield of AGI research in games. Given that
games can model a wide variety of computationally hard problems (Schaul, Togelius,
and Schmidhuber, 2011; Yannakakis and Togelius, 2018), they can be considered a
reasonable subset of all the planning tasks that we would like an AGI to be able to
perform. Therefore, GGP seems particularly suitable as a test domain to improve
search and planning in the direction of achieving AGI.

A search technique that can be directly applied to GGP is Monte-Carlo Tree
Search (MCTS), because in its basic form it does not require any domain-specific
knowledge (Browne et al., 2012). MCTS is a simulation-based search technique
for making decisions in a given (game) domain. It incrementally builds a tree rep-
resentation of the search space of the problem, focusing on promising actions. To
estimate the value of the actions it uses Monte-Carlo simulations. MCTS has already
been successful in GGP both for abstract games (e.g. board games) (Finnsson and
Björnsson, 2010) and video games (Perez-Liebana et al., 2016). However, for many
games it is still far from performing at the same level of game-specific programs or
human experts. Therefore, this thesis investigates new techniques to improve MCTS
in order to advance AGI further.

1In this thesis the term general game playing and the acronym GGP are used to indicate the
broad field that encompasses general game playing for any type of game, such as board games,
video games, etc.

2 Introduction

This chapter is structured as follows. First, Section 1.1 gives an introduction
to games and describes some properties that are useful to classify those used in
this thesis. Section 1.2 discusses the role of games in AI research, while Section
1.3 extends the discussion to the importance of games for research on AGI. Next,
Section 1.4 summarizes the search methods that are most relevant for this work. The
problem statement and the four research questions for this thesis are formulated in
Section 1.5. Finally, Section 1.6 gives an overview of the thesis.

1.1 Games
Since ancient times, games have been part of human culture (Murray, 1952). The
oldest game we have evidence of, Senet, is an Egyptian game dating back approxi-
mately to 3 500 B.C. that has been played for more than 3 000 years (Piccione, 1980).
The exact rules of this game are unknown, but the main goal of the two players is to
get their own pawns across a board divided into 3 rows of 10 cells each. Other games
that originated a long time ago are Backgammon, Go and Chess (Murray, 1952; Par-
lett, 2018). Early versions of Backgammon come from Persia and are about 5 000
years old, the origins of Go can be found in China, probably about 3 000–4 000 years
ago, and it seems that precursors of Chess originated in India before the 6th century.
These games are still played nowadays, together with thousands of other games, and
new games are constantly being developed. The popularity of games throughout
history and in current days is probably because they couple fun and entertainment
together with intellectual activity and competition. Moreover, by playing games
people can train their skills and compare them with others.

In general, a game is defined by a set of rules and involves one or more players
that want to reach a goal. To achieve their goal they try to modify the state of the
game by performing actions that are admissible according to the rules. How the
state changes when actions are performed and what conditions determine the end
of the game is also specified by the rules. There are different types of games, which
can be classified according to multiple properties. Below is a list of properties that
are relevant for the games considered in this thesis. It is also important to remind
that these properties might influence the performance of the AI techniques designed
to play games.

Equipment. Games can differ in the equipment they require to be played. Games
that require a board are referred to as board games, of which Chess is a famous
example. Games like Bridge and Poker, which are played with cards, are
referred to as card games. An example of tile-based game is Dominoes, which
requires rectangular tiles marked with numbers. There are also games, like
Rock-Paper-Scissors, that do not require any equipment at all, and games, like
Monopoly and Risk, that require multiple types of equipment (e.g. a board,
dice, various types of tokens and cards with different purposes). So-called
Eurogames are a particular type of board games that also use different types of
equipment, like cards and other pieces. An example is the game Catan. Games
with no or little equipment, like Chess and Poker, are sometimes referred to as
abstract games. This thesis uses this particular meaning of the term, although

1.1 — Games 3

there seems to be no global consensus on a single definition of abstract games.
Finally, a category that is new with respect to the ones just mentioned is video
games, sometimes also called digital games, which require a digital device to
be played on, like a computer or a console.

Number of players. Games can involve different numbers of players. One-player
games require only one player and can be seen as optimization problems or
puzzles. In such games the player aims at the best possible outcome without
having to take into consideration any other player. Some examples are Soli-
taire and Sudoku. When talking about video games, the term single-player
games is more commonly used. A game is called single-player when there
is only one playable character, though there could also be a number of Non-
Player Characters (NPCs) that behave according to a fixed strategy and can
influence the game outcome. This means that the player has to consider them
when making decisions. Examples of classic video games with a single-player
mode are Pac-Man and Super Mario Bros. Finally, we can distinguish between
two-player games and games that require more than two players, the multi-
player games. Both in two- and multi-player games the players have to take
into account each other’s actions. The two categories are usually identified
separately because multi-player games add an extra level of difficulty with re-
spect to two-player games. For multi-player games it is usually harder to find
an equilibrium and the possibility of coalition formation among the players
adds an extra challenge. Checkers, Chess and Go are well-known examples of
two-player games, while Chinese Checkers, Monopoly and Risk are examples
of multi-player games. This thesis focuses on two- and multi-player abstract
games, and on single-player video games.

Game flow. The game flow can be discrete or continuous. In a game with a discrete
flow, also called turn-based game, time is discretized into turns and each player
has to wait for her2 turn to play an action. Turn-based games can be further
distinguished into sequential move games (or turn-taking games), where players
move one per turn, and simultaneous move games, where more than one player
can move in the same turn. Chess and Go are examples of sequential move
games, while Rock-Paper-Scissors and Diplomacy are examples of simultaneous
move games. When players can perform an action at any point in time and
the game flow is continuous (despite some actual fine-grained discretization
necessary to implement the game on a machine) we talk about real-time games.
Most video games, like the ones in this thesis, are real-time. All board games
used in this thesis are turn-based, with either sequential or simultaneous moves.

Observability. There are games where at all times all the players have all the in-
formation that defines the current game state. These games are called perfect-
information games. Some examples are Chess, Checkers, and in general most
of the classic board games, where the players can see the complete board and
the placement of the pieces on it. If at any time during the game any of the

2Where gendered forms cannot elegantly be avoided, the generic feminine is used throughout
this thesis in order to avoid cumbersome forms such as “he or she”, “(s)he”, or “her/his”.

4 Introduction

players is missing some information on the current game state and only has
access to a partial observation, then the game is said to have imperfect in-
formation. Most of the card games, like Poker and Bridge are an example of
this category, because a player does not know which cards the other players
have. It is important to make a distinction between imperfect-information and
incomplete-information games (Harsanyi, 1967). In games with incomplete in-
formation the players do not have all the information about the structure of
the game. For example, they might not know their payoffs or available actions,
or the rules of the game. An example of game with incomplete information is
World of Warcraft, a massively multi-player on-line role-playing game where
players do not have complete knowledge about the environment nor about
other players and their goals. By contrast, games where each player knows
everything about the structure of the game are said to have complete informa-
tion. Examples of this category are Chess and Poker. All the games in this
thesis have perfect information, although simultaneous move games can be
considered as having imperfect information because the player does not know
which actions the opponents will select in each turn.

Determinism. Games for which the next state is solely determined by the actions
of the players are called deterministic. In a deterministic game, given a state
and an action of the players, there is only one possible next state. If the game
state can be changed by any event other than the players’ actions (e.g. by
the roll of a die or by NPC’s actions in a video game), then for each state
and action of the players multiple next states can be reached. If the players
know the probabilities of reaching each possible state by playing an action
then the game is stochastic. If these probabilities are unknown to the players
the game is non-deterministic. An example of a deterministic game is Chess.
Backgammon is a stochastic game because the probabilities of each outcome
of the die are known (1

6 for each face). Ms. Pac-Man (a later variant of Pac-
Man) is a non-deterministic game because there is randomness in the ghosts’
movement. The abstract games this thesis considers are all deterministic, while
the video games can be either deterministic or not.

Payoff. A two- or multi-player game where the sum of the payoffs of the players is
always zero is called a zero-sum game. To maintain a sum of zero, it means
that whenever a player has a gain in her payoff there has to be a corresponding
loss for one or more of the other players. A zero-sum game is a special case of
constant-sum game, which is a game where the payoffs of the players always
add up to a constant value. Zero-sum and constant-sum games usually foster
competition among the players. We can also have variable-sum games, where
players can aggregate gains and losses. Variable-sum games might still be
competitive, but can also be cooperative if the players can increase the sum
of their payoffs by cooperating. This thesis considers both constant-sum and
variable-sum games.

1.2 — Games and Artificial Intelligence 5

1.2 Games and Artificial Intelligence

Over the years, research on Game AI has been applied in many categories of games,
going from classic board games to card games and video games. Each category
is characterized by different combinations of the properties listed in the previous
section, and each of them poses different challenges to the research community.
This section briefly presents the history of Game AI and discusses the major break-
throughs in the field.

Since the creation of the first computers there has been interest in classic board
games as test-bed for AI techniques. The reason is that these games provide an
abstract representation of real-world problems, and have the advantage of being
well-formed, structured and easy to model and simulate, while still being reasonably
complex to tackle. Moreover, the ability for a human to solve a game or play it well
has always been coupled with intelligence and rational thought. Thus, the better a
computer program can perform on a game the more it is considered to be intelligent
(Shannon, 1950; Genesereth and Thielscher, 2014).

Even before AI was established as a research field in 1956, there had been work
investigating whether computers could be programmed to play board games. Turing
(1953) defined one of the first Chess-playing algorithms that was based on the ideas
of minimax (Neumann and Morgenstern, 1944). At the same time, Shannon (1950)
described an even more complete set of ideas on how a computer could play Chess.
He proposed a representation for board positions, an evaluation function, quiescence
search, and some ideas for selective game-tree search. Samuel completed in 1955 the
implementation of the first Checkers program that was able to beat weak amateur
players (Samuel, 1959). This program was able to improve its evaluation function
by repeatedly playing against itself, and for this reason, it is regarded as one of the
first game-playing programs capable of learning.

In later years also other games, like Backgammon, attracted the interest of the AI
research community, because of the increased complexity given by their stochastic
component. However, despite all the initial enthusiasm, up until the 1990s the ma-
jority of game-playing programs were still performing below human level. One of the
first breakthroughs for research in game AI was when TD-Gammon, a Backgam-
mon computer program implemented by Gerald Tesauro in 1992, reached a play level
close to top human players (Tesauro, 1992; Tesauro, 1995). Not much time later, in
1994, the Checkers program created by Schaeffer et al. (1996), Chinook, became
world champion. Schaeffer et al. (2007) continued improving their work until Check-
ers was finally solved by proving it is a draw and showing the strategy to achieve it.
However, the most recognized milestone for game AI happened in 1997, when Deep
Blue, a chess-playing program created by IBM, defeated the world Chess champion
Garry Kasparov (Hsu, 2002).

After all this success, research on board games started focusing on another chal-
lenge, the game of Go. Compared to games like Chess and Checkers, Go has a much
larger branching factor and search space. It is also hard to incorporate expert knowl-
edge in a game-playing program for Go. For these reasons, it has been considered one
of the most complex board games by many researchers and it has been recognized as
a grand challenge for AI (Müller, 2002; Gelly et al., 2012). For many years research
in Go kept progressing steadily, though the level of computer programs remained

6 Introduction

close to amateur human players. It was around 2006, when MCTS was first pro-
posed (Kocsis and Szepesvári, 2006; Coulom, 2007a) that the level of Go computer
programs started substantially increasing. In 2007 the computer program MoGo
defeated a 5-dan professional human player on the reduced 9× 9 Go board without
any handicap3 (Gelly and Wang, 2007; Gelly and Silver, 2008). In subsequent years,
the programs MoGo (Gelly et al., 2006; Gelly and Silver, 2011), Crazy Stone
(Coulom, 2007b) and Zen were able to beat professional players on the standard
19× 19 Go board with different handicaps. In 2016 AlphaGo (Silver et al., 2016),
a computer program created by Google DeepMind, was the first that managed to
beat one of the best Go players, the professional 9-dan player Lee Sedol, without any
handicap. In 2017 a new improved version of AlphaGo was designed, AlphaGo
Zero, which could beat AlphaGo and was not using any kind of pre-coded domain
knowledge (Silver et al., 2017). In the same year, the same approach was shown
to work also in the games of Chess and Shogi, for which the generalized player
AlphaZero was able to beat the best playing programs (Silver et al., 2018).

These classic board games, however, have all the same features: they have a
discrete search and action space, they are played on a two-dimensional and discrete
board, they are turn-based and most of them are deterministic and with perfect
information. This is why the game AI community has devoted its attention also
to card games. Poker, for example, is interesting for the community because of
properties such as imperfect information, the presence of multiple competing players
that need to be taken into account and modeled, the necessity of risk management
and the presence of deception (Billings et al., 2002). As proof of the recent progress
of AI in poker, Bowling et al. (2015) report that one of the many variants of poker,
heads-up limit Texas Hold’em, has been solved.

In the last twenty years, interest in video games has also been growing (Yan-
nakakis and Togelius, 2018). First, video games are popular with the public and
their industry is constantly growing, demanding increasingly smarter AI characters
and more realistic and entertaining game play for the users, fostering research in
this direction (Laird and VanLent, 2001). Second, they also require a diversified
range of thinking skills to be played. They require the ability to orientate and move
in 3D environments, knowing how to deal with the game physics. Moreover, the
player should be able to respond quickly to events if the video game is in real time,
taking into account all the NPCs that can change the game state independently of
the player and asynchronously. To reach a strong level of play an agent needs all this
range of skills, which are not trivial to implement, therefore research is still needed
in this area. Finally, besides game playing, (video) games are interesting also for
research on AI that can automatically generate content for them, i.e. procedural
content generation, or adapt to the level of the player (Togelius et al., 2011).

Most of the current video game-playing programs are still far from reaching top
human-level performance. However, as evidence of the ongoing effort of the re-
search community, numerous competitions were established in the past decade as
benchmarks for AI techniques. They have different purposes and focus on differ-

3A handicap means that a certain number of stones of the color of the computer program are
placed on the board before the start of the game to make up for the difference in strength with
respect to the human player.

1.3 — Games and Artificial General Intelligence 7

ent categories of video games. Pac-Man is probably one of the arcade games that
attracted more attention and its variants are still actively being used as a tool for
research (Rohlfshagen et al., 2018). This game is challenging thanks to its real-time
and stochastic components, while at the same time having relatively simple rules
and a small set of available actions. Numerous competitions have been organized for
the game of Pac-Man and its variants. The most recent one and still running is the
Ms. Pac-Man Versus Ghost Team Competition (Williams, Perez-Liebana, and Lu-
cas, 2016), based on Ms. Pac-Man and started in 2016 as an updated version of the
previous Ms. Pac-Man Versus Ghost Competition (Rohlfshagen and Lucas, 2011).
The competition has both a track to evaluate agents that control Ms. Pac-Man and
a track to evaluate agents that control the NPCs in the game. It also offers an extra
challenge for the AIs thanks to the introduction of partial observability, allowing
each character to only have a first person limited view of the maze.

To evaluate research progress on real-time strategy (RTS) games many AI com-
petitions based on the game of StarCraft have been organized, among which the
StarCraft AI Competition is the most popular (Ontañón et al., 2013). Due to real-
time play, imperfect information, non-determinism, combinatorial action space and
high dimensionality of the state space (estimated to have at least 101685 states),
this game has always been considered hard to tackle for AI, and has gained more
and more popularity as a test bed for AI techniques. DeepMind and Blizzard En-
tertainment in 2017 released the StarCraft II Learning Environment (SC2LE), a
reinforcement-learning environment based on the successor of StarCraft, to be used
for research purposes. Moreover, in early 2019 DeepMind announced that their
StarCraft II agent, AlphaStar, based on a deep neural network and trained by
supervised learning and reinforcement learning, had defeated two top professional
players (Vinyals et al., 2019). This achievement shows the potential for a game-
playing agent to reach the strategical skills of human players, although, during the
matches, AlphaStar still had the advantage of being able to act faster and had a
higher precision than the human opponents had.

Regarding first-person shooter games, a known competition is the Visual Doom
AI Competition (Kempka et al., 2016), that evaluates how agents can play a game
based on Doom by only having access to the screen buffer. This competition is
particularly interesting to test techniques to play 3D video games, where agents
have to navigate the environment. Finally, for the category of racing games, since
2007 the Simulated Car Racing Championship was established, and since 2008 the
framework has been based on the TORCS racing game. Participants can submit
car-racing controllers that are evaluated on different racing tracks.

1.3 Games and Artificial General Intelligence

The research discussed in the previous section and all the mentioned game-playing
programs have one thing in common: game specificity. Game-specific programs
might perform extremely well on one game but might not be able to deal with any
other game. For many years, the vast majority of game AI research and, more in
general, of the whole AI research field focused on the so-called “narrow AI”, which

8 Introduction

consists of developing specialized programs that show intelligence only on specific
tasks. Some of these programs are quite successful, but in general they incur the
risk of overfitting to the problem. Often, they tend to be refined using domain-
specific knowledge and engineering tricks, and usually most of the knowledge is
coded by the programmer instead of being learned by the program. This leaves less
room for actual AI and makes the programs not applicable to any other task unless
major modifications are first performed. This picture recently led some researchers
to concentrate on more general AI, defining a new research area called Artificial
General Intelligence (AGI) (Goertzel and Pennachin, 2007). This research area
tackles the creation of programs that are able to perform different complex tasks
in different environments and learn how to adapt to perform each task. Similarly,
game AI research has been focusing on creating programs that are able to play many
different games, fostering research in the area of general game playing (GGP). Given
that search and planning are among the main competences that AGI should be able
to display, using GGP to improve the general applicability of search and planning
methods could be considered as one of the first stepping stones to reach AGI.

Having gained popularity only recently, most of the work on GGP has been
performed in the past ten to fifteen years. However, the concept of GGP programs
was proposed already in the 1960s by Pitrat (1968). He described a program able
to play several games on a bidimensional board by being given their rules, and
stresses the need for such a program to use general heuristics and to be able to
study the game rules on its own. Moreover, in 1992 Barney Pell highlighted the
problem of evaluating general intelligence of a game-playing program when most of
the analysis of the game is actually performed by humans (Pell, 1993). In his research
he proposed a framework calledMetagame meant to evaluate multiple agents against
each other on a set of different games. Agents should be able to play each game by
just receiving its rules and without any human intervention. Pell also presented a
generator for symmetric chess-like games to be used within theMetagame framework
and a game-playing agent called Metagamer, able to analyze game rules and derive
a representation and an evaluation function for the game.

A commercial GGP system was released a few years later, in 1998, and is still
available nowadays: Zillions of Games (Mallett and Lefler, 1998). This system
uses a “Universal Gaming Engine” technology that enables users to play many types
of puzzles and board games. Other than offering a variety of games, the system
enables users to define their own games by writing the rules in a functional language.
The engine then parses these rules so that the built-in agent can play the games.
This system provides a useful tool for board and abstract game design. By letting
the engine play the game against itself designers can test different properties. For
example, if the game can be solved, if it is a forced win for any of the players,
etc. However, since its release the system has not been used much for research
purposes. This might be due to some of its limitations, which include the possibility
to only represent perfect-information games, no support for arithmetic, functions
and variables, and no support to create connection games, such as Hex.

A concept similar to Metagame and Zillions of Games, and probably one of the
more well-known efforts of game AI research in providing a standard for GGP in ab-
stract games is the GGP project of the Logic Group of Stanford University (Stanford

1.3 — Games and Artificial General Intelligence 9

GGP project) (Genesereth, Love, and Pell, 2005). This project aims at developing
agents that can play any arbitrary (finite, deterministic and perfect-information)
game by being given the rules at run-time, thus assuming that the agent is seeing
each game for the first time and that no prior, game-specific knowledge can be ex-
ploited. This project also defines the Game Description Language (GDL) (Love,
Hinrichs, and Genesereth, 2006) to represent game rules, and a communication pro-
tocol that agents have to follow to interact with a central server that acts as a
mediator and manages the game matches. To foster research on the topic, since
2005 an annual competition has been established, that matches GGP agents against
each other to evaluate their strength.

Recently, two alternatives to the Stanford GGP project have been presented to
facilitate and promote research in GGP for abstract games. Kowalski et al. (2019)
have proposed a new language to represent board games, called Regular Boardgames.
This language has been developed with the intent of overcoming some limitations of
other existing game description languages, which in some cases lack expressiveness or
efficiency, or make the game structure difficult to understand for users. At the same
time, a new general game system, called Ludii, has been proposed (Browne, 2018;
Piette et al., 2019). This system defines games as structures of ludemes, i.e. high-
level, easily understandable game concepts. Ludii enables modeling and play of a
large variety of strategic games, and provides a more efficient and clear representation
of their rules with respect to GDL. This makes it a promising benchmark for game
AI, although no official GGP competition yet exists based on this system.

As seen for research on game-specific programs, also research on general game
AI started expanding its horizon to more complex and challenging domains: video
games. In 2012 the Arcade Learning Environment (ALE) was designed (Belle-
mare et al., 2013). This framework provides an interface with a set of video games
for the Atari 2600 console and expects the agents to be able to play all the given
games. It allows agents to send the movement of the joystick as input and returns
the pixel representation of the screen as output. Thus, agents have to include also a
mechanism to interpret this information. A notable achievement regarding the ALE
framework is the program based on deep neural networks and Q-learning designed by
Google DeepMind, which managed to perform better than or equal to professional
human players in more than half of the tested games (Mnih et al., 2015). One of the
limitations of ALE, however, is that the number of available games is quite small
and it is not trivial to add more games. This makes it easy to tune the agents for
single games in advance. Most of the research on ALE has indeed been limited to
the creation of agents that share the same structure (usually neural networks), but
still have parameters (e.g. network weights) learned for each specific game, which
seems to go against the purpose of GGP (Yannakakis and Togelius, 2018).

To foster research on GGP for video games, a Dagstuhl seminar was organized
in 2012 to establish the new research area of General Video Game Playing (GVGP)
(Levine et al., 2013). Similarly to the Stanford GGP project, GVGP aims at creating
agents that are able to play many different video games that they might have never
seen before. A Video Game Description Language (VGDL) has also been formalized
to specify rules and levels of the video games (Ebner et al., 2013; Schaul, 2013).
To promote research in the area of GVGP, since 2014 the General Video Game-AI

10 Introduction

(GVG-AI) competition has been running (Perez-Liebana et al., 2016) as part of the
GVG-AI project. This competition focuses on 2D arcade-style video games. The
first editions of the competition offered only a single-player planning track, where
agents had to play games using a forward model to simulate the effect of the actions
on the game and plan their next action. In subsequent editions more tracks have
been added, including a 2-player planning track, a single-player learning track, a
game generation track and a level-generation track.

Recently, more and more frameworks have started appearing to test general game
AI approaches. In 2016, the Retro Learning Environment (RLE) was proposed
(Bhonker, Rozenberg, and Hubara, 2016). It is similar to ALE, but is based on the
Super Nintendo Entertainment System and provides more complex games. In the
same year Google DeepMind released the DeepMind Lab platform (Beattie et al.,
2016). This platform provides a set of first-person 3D games to benchmark GGP
agents in different, large and partially observable environments. Since 2016, Open AI
also released two platforms to support AI research, OpenAI Gym (Brockman et al.,
2016) and OpenAI Gym Retro (OpenAI, 2018). The first acts as interface for a set of
various benchmark games on which reinforcement-learning algorithms can be tested.
The second is an extension of OpenAI Gym that includes a large selection of classic
video games.

1.4 Search Techniques

Most of the research on Game AI sees playing a game as a search problem, and
deciding which actions to play means exploring the game tree with a tree-search
algorithm. As mentioned in Section 1.2, initially all research in Game AI focused
mainly on two-player board games with perfect information, deterministic, turn-
based and with discrete search and action space, like Chess and Checkers. The
foundation of most of the tree-search algorithms that enabled computer programs to
reach a good performance in such board games is the minimax algorithm (Neumann
and Morgenstern, 1944). This algorithm explores the game tree up to a certain
depth in a breadth-first manner, alternating between states where the root player,
identified as max, has to move and states where the opponent, identified as min,
has to move. The (estimated) payoff obtained by the max player in leaf nodes is
propagated backward in the tree considering that on her turn max always tries to
maximize her score, while min always tries to minimize max’s score. The most
popular variant of minimax search for deterministic two-player games is αβ-search
(Knuth and Moore, 1975), which uses a pruning technique to speed up minimax
by excluding from the search the branches of the tree that are proved to have no
influence on the final result of the game.

There are many games, however, for which minimax and its variants are not
successfully applicable. First of all, for games with a high branching factor and a
large state space minimax, even when enhanced with pruning techniques, cannot
visit a sufficient portion of the tree to choose an action with an informed decision.
Moreover, minimax and its variants rely on game-specific heuristic evaluation func-
tions to compute the payoff of game states and there are games, like Go, for which

1.4 — Search Techniques 11

designing such heuristic is difficult, and domains, like GGP, where no game-specific
information is available in advance. To avoid the need for pre-coded game-specific
knowledge in heuristic evaluation functions the use of Monte-Carlo evaluations was
proposed (Abramson, 1990). These evaluations estimate the value of a state by
randomly simulating the game until a terminal state is reached and can be directly
used to evaluate states in the minimax algorithm.

Monte-Carlo evaluations have been used as sampling strategy to develop other
Monte-Carlo Search (MCS) algorithms. The simplest one is Flat Monte-Carlo Search
(Flat-MCS), which samples all actions in a state of the game uniformly at random
using Monte-Carlo evaluations, and then considers as the best action the one that
obtained the highest average payoff. Flat-MCS has been successfully applied to
Bridge (Ginsberg, 2001) and Scrabble (Sheppard, 2002). However, the limitation
of Flat-MCS and in general of the random Monte-Carlo evaluations of game states
is that, even when the number of samples is large, there is no guarantee that the
action with the highest estimated value corresponds to the game-theoretic optimum
(Browne, 2010). More advanced sampling techniques have also been used together
with MCS, like UCB1 (Auer, Cesa-Bianchi, and Fischer, 2002), that can balance
exploitation of actions with a high estimated payoff and exploration of less visited
actions that might turn out to be better in the future, once more samples are col-
lected. Convergence to the game-theoretic optimum is not guaranteed with UCB1
either, but it enables MCS to converge faster to the action with the highest Monte-
Carlo evaluation. The UCB1 strategy, together with Monte-Carlo evaluations and
the idea of building a tree structure during the search has posed the basis for the
creation of MCTS (Coulom, 2007a) and one of its most well-known action selection
strategies, UCT, i.e. UCB applied to Trees (Kocsis and Szepesvári, 2006).

MCTS is a tree-search technique that incrementally builds a tree representation
of the game space by iterating over the following four phases: selection, expansion,
play-out and backpropagation. During selection a strategy is used to decide how to
traverse the tree built so far. When an unvisited state is reached, a corresponding
node is added to the tree during expansion. A Monte-Carlo evaluation is performed
during the play-out to evaluate the new node, and the result is propagated in the
tree during backpropagation to update the action statistics that will be used by the
selection strategy in the next iteration. In its basic form MCTS is (i) aheuristic,
i.e. it does not require any game-specific knowledge, (ii) anytime, i.e. it can choose
the action to be played within any time budget, and (iii) selective, i.e. it favors
regions of the search tree that have the most promising actions, growing the tree
asymmetrically. Its selectivity makes it more suitable than minimax to tackle games
with a high branching factor, like Amazons (Lorentz, 2008).

Due to its characteristics, MCTS has been successfully applied to many games.
The most popular is the game of Go (Coulom, 2007a), for which MCTS represented
a substantial step forward. Other examples are Hex (Arneson, Hayward, and Hen-
derson, 2010), Havannah (Teytaud and Teytaud, 2010), Lines of Action (Winands,
Björnsson, and Saito, 2010) and Ms. Pac-Man (Pepels, Winands, and Lanctot,
2014). MCTS has also been shown to be particularly suitable for GGP, where it has
seen successful applications both on board games (Finnsson and Björnsson, 2010)
and video games (Perez-Liebana et al., 2016). Other than games, MCTS has been

12 Introduction

applied to a wide range of domains, like robotics (Goldhoorn et al., 2014), logistics
(Edelkamp et al., 2016), transportation (Trunda and Barták, 2013), medical plan-
ning (Zhu, Lizotte, and Hoey, 2014), chemistry (Segler, Preuss, and Waller, 2018)
and space exploration (Hennes and Izzo, 2015).

1.5 Problem Statement and Research Questions
Previous sections discussed the relevance of games in the field of AI and AGI, and
general game playing was identified as a suitable domain to test search techniques
that support AGI. Moreover, MCTS was presented as a successful technique for
domains like GGP, where no specific domain knowledge is available. This thesis
focuses on enhancing MCTS for AGI in games, with application to general game
playing. The following problem statement guides the research.

Problem statement: How can the performance of Monte-Carlo Tree
Search for general game playing be improved?

To answer the problem statement four research questions have been formulated.
They deal with (1) speeding up the interpretation of game rules written in a declar-
ative language, (2) evaluating the use of global or local information to enhance the
selection strategy of MCTS, (3) on-line tuning search-control parameters for MCTS,
and (4) investigating the effect of search-control parameter randomization in MCTS.

Research question 1: How can the process of interpreting on-line the
game rules written in a declarative language be sped up?

GGP requires to define a formal language to encode the rules of the games it
considers. One possible approach to define game rules is the use of a declarative
language, of which the Game Description Language (GDL) (Love et al., 2006) is a
well-known example. GDL represents game rules as a collection of logical rules. An
advantage of using this approach is that it enables game-playing agents to extract
knowledge from the game rules by logical deduction. When describing the game
rules using a declarative language as GDL game-playing agents cannot directly get
all the elements that are necessary to reason about a game (i.e. future game states,
legal actions and goals for the players, etc.). They have to include a mechanism to in-
terpret such rules. A limitation of using a declarative language to describe the game
rules is that the interpretation process is usually very slow, and this might hinder
the performance of MCTS. Although MCTS can choose an action at any time, the
quality of its choice depends on how many simulations can be performed (Robilliard,
Fonlupt, and Teytaud, 2014). More simulations mean more accurate estimates of
the collected statistics on which the final action selection is based. How fast an agent
can interpret the game rules to reason on the game directly influences the number
of simulations that can be performed in a given amount of time. To increase the
reasoning speed, game-specific agents usually exploit game-specific characteristics,
and are therefore much faster than GGP agents that have to interpret a declarative
language like GDL (Schiffel and Björnsson, 2014). This thesis deals with the prob-
lem of speeding up the interpretation process of game rules written in GDL, such

1.5 — Problem Statement and Research Questions 13

that MCTS could benefit from a higher number of simulations. To answer the first
research question, an agent for the Stanford GGP project is considered, for which a
game rule interpreter based on Propositional Networks (PropNets) (Schkufza, Love,
and Genesereth, 2008; Cox et al., 2009; Genesereth and Thielscher, 2014) is in-
vestigated. Moreover, four optimizations for the structure of such PropNets are
investigated. Finally, an implementation of the PropNet structure on a Field Pro-
grammable Gate Array (FPGA), which has the potential of further increasing the
simulation speed of an MCTS agent, is presented.

Research question 2: What is the effect of using locally or globally
collected information to enhance the selection strategy for Monte-Carlo
Tree Search?

During the selection phase of MCTS the tree is traversed from the root to a leaf
node. The selection strategy decides how the tree is traversed during this phase by
selecting which action to visit in each node. Many selection strategies have been
proposed for MCTS, among which UCT (Kocsis and Szepesvári, 2006) is one of
the most popular. Previous research has shown that enhancing the UCT strategy
by increasing the amount of information used to guide the search can consistently
improve the overall performance of MCTS (Finnsson and Björnsson, 2010; Nijssen
and Winands, 2011; Gelly and Silver, 2011; Cazenave, 2015). Rapid Action Value
Estimation (RAVE) (Gelly and Silver, 2007) is among the strategies proposed to
enhance the UCT selection. In each tree node, RAVE uses locally collected informa-
tion about the general performance of the actions to bias the selection. RAVE has
proved successful, other than in specific domains like Go (Gelly and Silver, 2011),
also when applied to the Stanford GGP project (Finnsson and Björnsson, 2010).
Recently, a generalization of RAVE has been proposed, Generalized Rapid Action
Value Estimation (GRAVE) (Cazenave, 2015). When a tree node has only a small
number of visits, GRAVE uses more global information than RAVE to bias action
selection. This strategy has been shown to perform better than RAVE on some
variants of Go and some other games. To answer the second research question,
this thesis first proposes another variant of RAVE, History Rapid Action Value Es-
timation (HRAVE), which biases action selection always using global information
about the actions. Subsequently, it compares the performance of RAVE, GRAVE
and HRAVE against each other. These RAVE variants are tested in the framework
of the Stanford GGP project.

Research question 3: How can search-control parameters for Monte-
Carlo Tree Search be tuned effectively on-line?

Many enhancements for the different phases of MCTS have been applied suc-
cessfully in GGP (Finnsson and Björnsson, 2010; Tak, Winands, and Björnsson,
2012; Soemers et al., 2016). Often, MCTS and its enhancements are controlled by
multiple parameters that require extensive and time-consuming off-line optimization.
Moreover, as the played games are unknown in advance, off-line optimization can-
not tune parameters specifically for single games. It has to find values that perform
overall well on a predefined set of games, with no guarantee that they will perform

14 Introduction

successfully also on unseen games. To answer the third research question, this the-
sis proposes a Self-Adaptive MCTS strategy (SA-MCTS) that integrates within the
search a method to automatically tune search-control parameters on-line per game.
Seven different allocation strategies are presented, which decide how to allocate the
available samples to evaluate the different values of all the tuned parameters. What
these strategies have in common is that they are all designed to balance exploitation
of parameter values that seem to perform well for the game at hand and exploration
of parameter values that have been evaluated less. SA-MCTS is evaluated both in
the framework of the Stanford GGP project and in the framework of the GVG-AI
project.

Research question 4: What is the effect of randomizing search-control
parameters for Monte-Carlo Tree Search?

Previous research has shown that adding randomization to certain components
of the search might increase its diversification and improve its performance. For
example, Beal and Smith (1994) showed that the addition of a random term to the
heuristic function of minimax is able to capture some aspects of the structure of the
tree, biasing the search towards states where the player has more available actions
(i.e. more mobility). Moreover, Bošanskỳ et al. (2016) improved MCTS by modify-
ing the action-selection strategy to randomly select an action among the ones with
the highest values. This causes MCTS to diversify the strategies that are explored
for both players. Finally, Chen (2012) added randomization to diversify how the
selection strategy and play-out strategy of an MCTS agent sample the available ac-
tions. This is shown to be beneficial for the search for the game of Go. In a domain
that tackles many games with different characteristics, like General Game Playing
(GGP), trying to diversify the search adding some randomization might be a good
strategy for some games. Furthermore, also the on-line search-control parameter
tuning mechanism used by SA-MCTS is adding a random component to the search
whenever it explores different parameter combinations. Therefore, it is interesting
to verify what happens when parameters are always selected randomly instead of
making informed choices. To answer the fourth research question, this thesis tests
four different strategies to randomize search-control parameters in MCTS: random-
ization per game, per turn, per simulation and per state. Moreover, search-control
parameter randomization is compared with fixed parameter settings and with on-
line parameter tuning both in the framework of the Stanford GGP project and in
the framework of the GVG-AI project.

1.6 Thesis Overview

This thesis is organized into eight chapters. Chapter 1 provides an introduction to
games, discusses their relevance for AI and AGI and gives a brief description of the
most popular search techniques used by game AI programs. Moreover, it presents
the formulation of the problem statement and the four research questions that guide
the research reported in this thesis.

1.6 — Thesis Overview 15

Chapter 2 discusses tree-search techniques. First, a formal definition for the
games used in this thesis is given. Subsequently, Monte-Carlo methods are described
and linked to the development of MCTS, which is presented next. Finally, the
chapter gives an overview of one of the most well-known MCTS selection strategies,
UCT, and of a selection of enhancements for different parts of MCTS that are
relevant for this thesis.

Chapter 3 introduces the test environments used for the experiments: the Stan-
ford GGP project and the GVG-AI project. For each of them, the chapter presents
the language used to describe games, the process to manage the execution of a
game run, the set-up of the corresponding competition and the characteristics of
the agent(s) that are used in subsequent chapters for the experiments. Finally,
the chapter ends with a discussion of interesting research directions to improve the
performance of MCTS in the presented environments.

Chapter 4 addresses the first research question. To speed up the interpretation
process of GDL, an interpreter based on the representation of the game rule as a
PropNet is investigated. First, four optimizations for the structure of the PropNet
are evaluated, and their best combination is identified. Subsequently, an implemen-
tation of the optimized PropNet on an FPGA board is presented. Both the optimized
PropNet and its implementation on an FPGA are compared with a custom-made
rule interpreter, the Prover. All the interpreters are tested on a subset of games of
the Stanford GGP environment.

The second research question is addressed in Chapter 5. Three enhancements
for the selection strategy of MCTS are evaluated, RAVE, GRAVE and HRAVE,
of which HRAVE is newly proposed. These enhancements share the same biasing
mechanism for the selection of actions in a node, but differ in how information is
collected. RAVE uses local information, GRAVE varies between using local and
global information and HRAVE uses global information. The performance of these
three enhancements is tested also in combination with a more informed play-out
strategy. These strategy are compared on a selection of games from the Stanford
GGP project to investigate how using local or global information affects the search.

Chapter 6 addresses the third research question. This chapter proposes the design
of SA-MCTS by using a mechanism that tunes search-control parameters on-line.
Seven strategies to allocate available samples to evaluate parameter value combi-
nations on-line are proposed and compared. The allocation strategy that performs
best is also tested against a successful GGP agent, CadiaPlayer. SA-MCTS is
tested on a subset of games taken both from the Stanford GGP project and from
the GVG-AI project.

The fourth research question is addressed in Chapter 7. Four strategies to ran-
domize search-control parameters for MCTS are presented in this chapter and com-
pared against each other. The strategy that performs best is further investigated and
compared with on-line parameter tuning both directly and against different types of
opponents. Moreover, the chapter analyzes how parameter randomization influences
the structure of the tree built by MCTS. Experiments are performed both on games
taken from the Stanford GGP project and games taken from the GVG-AI project.

Finally, Chapter 8 answers the four research questions and the problem state-
ment. It also gives an overview of possible future research directions.

16 Introduction

Additionally, Appendix A gives an example of a GDL game description for the
Stanford GGP project and an example of a VGDL game description for the GVG-AI
project. Moreover, the rules and the relevant characteristics of the games for the
Stanford GGP project and the GVG-AI project used in the experiments are reported
in Appendix B. Finally, additional results for Chapters 4, 5, 6 and 7 are presented
in Appendices C, D, E and F, respectively.

Chapter 2

Search Techniques

Parts of this chapter are based on:

• Sironi, Chiara F., Liu, Jialin, and Winands, Mark H.M. (2019). Self-
Adaptive Monte-Carlo Tree Search in General Game Playing. IEEE
Transactions on Games, In press.

• Sironi, Chiara F. and Winands, Mark H.M. (2016). Comparison of rapid
action value estimation variants for General Game Playing. Compu-
tational Intelligence and Games (CIG), 2016 IEEE Conference on, pp.
309–316.

• Soemers, Dennis J.N.J., Sironi, Chiara F., Schuster, Torsten, andWinands,
Mark H.M. (2016). Enhancements for Real-Time Monte-Carlo Tree
Search in General Video Game Playing. Computational Intelligence and
Games (CIG), 2016 IEEE Conference on, pp. 436–443.

This chapter introduces the search techniques used in this thesis. It focuses on the
description of MCTS and of the methods from which it originated. It also presents
some of the enhancements for MCTS that have been proposed in the literature and
that are necessary to understand subsequent chapters of this thesis.

The chapter is organized as follows. First, Section 2.1 gives a formal definition
of the considered games and introduces the terminology used throughout this thesis.
Next, Section 2.2 introduces Monte-Carlo methods and their link to MCTS, while the
MCTS algorithm is described in Section 2.3. Subsequently, the UCT action selection
strategy for MCTS is presented in Section 2.4, and relevant MCTS enhancements are
presented in Section 2.5. Finally, Section 2.6 discusses the need for an appropriate
environment to test search strategies and their enhancements.

2.1 Tree Search in Games
The games considered in this thesis can be formally defined as reported below. The
given definition assumes that the games are discrete and in each turn all players
have to move simultaneously by performing a joint action. In a game with r players,

18 Search Techniques

a joint action is represented as a tuple ~a = 〈a1, ..., ar〉, where each ai is the action
performed by player i. This definition can also model games where not all players
execute an action at the same time. This is done by assuming that players that do
not perform an action in a turn are actually performing a null action1 that has no
effect on the game. All the search techniques considered in this thesis are based on
the given formal definition, expressed by the following components:

• R = {1, ..., r}: the set of r players. In this thesis we use increasing indices
to represent the players.

• S: the set of all possible states in the game.

• {A1, ...,Ar}: for each player i ∈ R, a set of actions that are legal for i in at
least one state during the game.

• s0 ∈ S: the initial state.

• legal(s, i) : S → P(Ai): a function that given a state s ∈ S and a player
i ∈ R returns the set A(s,i) ⊆P(Ai) of actions that are legal in s for player i.

• next(s,~a) : S× (legal(s,1)× ...× legal(s, r))→ S: a transition function
that given a state s ∈ S and a joint action ~a of all players returns the next state
of the game s′ reached by performing the joint action ~a in s. Note that for
deterministic games this function always returns the same state, while for non-
deterministic or stochastic games each time it will return one of the possible
next states according to the probability distribution over next states.

• terminal(s) : S → {true, false}: a function that given a state s ∈ S
determines whether the state is terminal, i.e. the game is over in the state.

• payoff (s) : S → R: a payoff function that given a state s ∈ S returns a tuple
~q = 〈q1, . . . , qr〉 with the payoff obtained in s by each of the players.

The functions listed above to define a game are frequently used by the search
techniques presented in this thesis. When reporting pseudocode, the methods that
implement the functions legal(s, i), next(s,~a), terminal(s) and payoff (s) are called
GetLegalActions(s, i), GetNextState(s,~a), Terminal(s) and Payoff(s), re-
spectively. This thesis assumes that all presented search techniques have access to
a game model , also called forward model, that offers the implementation of such
methods for the game being played.

Knowing the game components and starting with the initial state s0 we can build
the game tree that represents all possible ways the game can be played. Figure 2.1
shows a representation of a game tree. Each node corresponds to a state in the game
and each edge corresponds to a (joint) action. The initial state of the game, s0 is
represented by the root node of the tree. Starting from the root node, for each action
available in the corresponding state we can add one edge to the tree, and for each
state reached by applying one of such actions we can add a new node to the tree.

1A null action in the literature is also commonly referred to as noop or pass.

2.1 — Tree Search in Games 19

��

�� �� ��

�� ����

��

��
��

������

��

Figure 2.1: Representation of a game tree.

By repeating this process recursively on each new node the complete game tree can
be built. Note that with this procedure, if a state can be reached from the initial
state with different sequences of actions, multiple separate nodes will be created in
the tree that represent the same state.

When talking about game trees it is useful to define the following commonly used
terms:

• Consider a tree node Si representing state si and a tree node Sj representing
state sj . If state sj can be reached from state si with an action, then node Si
is called parent of node Sj , and node Sj is called child of node Si. Each node
in the tree has one and only one parent, except the root that has no parent.
A node can have zero, one or multiple children. Nodes with the same parent
are called siblings. For example, in Figure 2.1 node S0 is the parent of node
S2, node S2 is a child of node S0, and node S3 is a sibling of node S2.

• A node can be identified as an ancestor of node Si if it is Si itself, its parent or
an ancestor of its parent. Conversely, all nodes that have node Si as ancestor
are identified as its descendants. A node Si, together with all its descendants
is identified as the subtree rooted in Si. In Figure 2.1, for example, node S0 is
ancestor of node S5, which is its descendant. The subtree rooted in S2 includes
the nodes S2, S4, S5 and S6.

• All nodes that have at least one child are called internal nodes. Nodes with no
children are identified as leaf nodes. In a game tree, leaf nodes correspond to
terminal game states, thus are also called terminal nodes. In terminal nodes
the game is over and the payoff of each player is known. In Figure 2.1, S2 is
one of the internal nodes, while S1 is one of the leaf nodes.

Game trees can have a very large number of nodes, which makes it infeasible to
visit the full tree. Game-playing programs usually use a search technique to visit only

20 Search Techniques

a portion of the game tree called search tree. During each turn of the game, a search
technique incrementally builds the search tree starting from the node representing
the current game state as the root. Action and state statistics might be memorized
in each node and used to guide future search. The search runs until a search budget
has been consumed, for example until a certain amount of time has passed, or until
the tree has been visited up to a certain depth. It is relevant to point out that search
trees, as opposite to game trees, can have non-terminal leaf nodes. From such nodes
the search algorithm can continue the search and expand the tree.

2.2 Monte-Carlo Methods
Monte-Carlo methods were first applied in physics to approximate intractable in-
tegrals (Metropolis and Ulam, 1949). Since then they have been applied in many
other domains, including games. Abramson (1990) proposed to use them during tree
search to evaluate game states in place of game-specific heuristics. The idea behind
Monte-Carlo evaluations is to perform multiple simulations of the game starting from
the state that we want to evaluate until a terminal state is reached. The payoffs
obtained by the simulations are then averaged to get an estimate of the state value.

Monte-Carlo evaluations have been used to develop numerous search techniques,
among which Flat Monte-Carlo Search (Flat-MCS) (Browne et al., 2012) is one of
the simplest. Given a game state, Flat-MCS performs a 1-ply search, sampling all
legal actions uniformly at random with Monte-Carlo evaluations. It then picks the
one with the highest average payoff. The performance of Flat-MCS can be improved
by replacing the uniform sampling strategy with one that balances exploration of
less sampled actions that might turn out to be more profitable and exploitation
of actions that have obtained a high average payoff so far. Multi-Armed Bandit
(MAB) problems (Auer et al., 2002) present the same exploration vs exploitation
dilemma. Algorithms designed to handle these problems can be integrated with
MCS methods as well. This idea is behind the creation of the MCTS algorithm
(Kocsis and Szepesvári, 2006; Coulom, 2007a).

Subsection 2.2.1 describes Flat-MCS, while Subsection 2.2.2 introduces theMulti-
Armed Bandit algorithms and relates them to tree search, giving the basis to under-
stand how MCTS originated.

2.2.1 Flat Monte-Carlo Search
Flat-MCS can be used to choose which actions to play in a game (Browne et al.,
2012). Algorithm 1 gives the pseudocode of Flat-MCS that can be applied to games
with any number of players, with either simultaneous or sequential moves, and ei-
ther deterministic, stochastic or non-deterministic. Given the game state s where
an action has to be chosen and the player performing the search i, the procedure
MonteCarloSearch(s, i) samples legal joint actions uniformly at random until
the search budget expires. Examples of search budget could be a limited amount
of time or a given number of samples. This procedure uses two types of variables
to memorize in the root node statistics about the performance of the actions. For
each action ai of player i, the variable qSumai keeps track of the sum of payoffs

2.2 — Monte-Carlo Methods 21

1: procedure MonteCarloSearch(s, i)
Require: The game model gm.
Input: Current root state s, player performing the search i ∈ R.
Output: The action to play in state s.

2: while search budget available do
3: ~a← random legal joint action of all the players
4: s′ ← gm.GetNextState(s,~a)
5: ~q ← PlayOut(s′)
6: qSumai ← qSumai + qi
7: nai ← nai + 1

8: A(s,i) ← gm.GetLegalActions(s, i)

9: return argmaxai∈A(s,i)

{
q̄ai =

qSumai

nai

}
10: procedure PlayOut(s)

Require: The game model gm.
Input: The game state s to evaluate.
Output: A tuple ~q = 〈q1, . . . , qr〉 with the payoffs obtained at the end of the
play-out by each player.

11: if gm.Terminal(s) then
12: return gm.Payoff(s)
13: else
14: ~a ← random legal joint action of all the players
15: s′ ← gm.GetNextState(s,~a)
16: return PlayOut(s′)

Algorithm 1: Pseudocode for Monte-Carlo Search.

obtained by all simulations in which action ai was played in the initial state, while
the variable nai keeps track of the number of times action ai was selected in the
initial state. These two variables are used to compute the average payoff q̄ai of each
action ai of player i as in Formula 2.1.

q̄ai =
qSumai

nai
(2.1)

More precisely, for each iteration, Flat-MCS selects a random legal joint action ~a of
the players, where player i plays one of its legal actions ai. Then it computes the
next state s′ reached by performing the joint action ~a in state s. From state s′ a
play-out of the game is performed, using a Monte-Carlo evaluation and obtaining
a tuple ~q = 〈q1, . . . , qr〉 of payoffs, one for each player. The payoff qi of the player
performing the search is added to qSumai and the counter nai is incremented by
1. At the end of the search, the legal action of player i that has the highest q̄ai is
returned to be played in the game.

The PlayOut(s) procedure, given a state s, performs a Monte-Carlo evaluation.
If the state is terminal, this procedure returns the tuple with the payoffs of each
player in the state. Otherwise it selects a random joint action, uses it to compute

22 Search Techniques

the next state and recursively calls itself on the new state. Note that the presented
Flat-MCS algorithm can be applied also to single-player games by considering that
the joint action and payoff tuples will contain a single element, and to sequential
move games by considering that whenever a player is not on its turn it will play a
null action with no effect on the game.

2.2.2 Multi-Armed Bandit Algorithms
The MAB problem (Auer et al., 2002) with m arms is defined as a set of m unknown
independent real payoff distributions Q = {Q1, ..., Qm}, each of which is associated
to one of the arms. When one of the arms is played a payoff is obtained as a sample
of the corresponding distribution.

The aim of a sampling algorithm for a MAB problem is to maximize the cu-
mulative payoff obtained by successive plays of the arms as quickly as possible. To
do so, for each iteration the algorithm can choose which arm to play depending on
past played arms and obtained payoffs. This originates the exploration vs exploita-
tion dilemma: the algorithm should try to exploit promising arms more often, while
still trying to explore other arms that might have been unlucky so far, but actually
have a high average payoff. Solving the exploration vs exploitation dilemma means
finding an algorithm that minimizes the regret of the player over time, which is the
expected payoff loss due to not playing the best arm.

Among the algorithms that have been proposed for the MAB problem, the family
of the Upper Confidence Bound (UCB) algorithms includes some of the most popular
ones. One of them, and also one of the most used, is UCB1 (Auer et al., 2002), that
in each iteration assigns a value, UCB1 (a) to each arm a, and selects which arm a∗

to play as shown in Formula 2.2.

a∗ = argmax
a∈A

{
UCB1 (a)

}
UCB1 (a) = q̄a +

√
2 lnn

na

(2.2)

In this formula, A is the set of available arms, q̄a is the average payoff over all
the plays of arm a, n is the number of samples taken so far for all arms, and na
is the number of samples taken so far for arm a. The first term of the formula,
q̄a, is the exploitation term that rewards arms with a high average payoff, while
the second term is the exploration term that rewards arms that have been visited
less. An interesting property of UCB1 is that, when the payoff distributions have
values in the interval [0, 1], the algorithm is guaranteed to achieve logarithmic regret
uniformly over time. A logarithmic increase has been proved to be the best possible
lower bound on the growth of the regret for MAB problems (Lai and Robbins, 1985).

The UCB1 algorithm can also be used as action selection strategy in MCS algo-
rithms, instead of the uniformly random selection strategy. In a game, the problem
of selecting an action in a state for a player can be seen as a MAB. The player has
a number of available actions (i.e. the arms) and for each iteration of the search
has to select the one that maximizes the payoff, while still making sure to explore
less visited ones in case they turn out to be better. Once an action is selected by

2.3 — Monte-Carlo Tree Search 23

������������	
��

��������� 	
���
��� �������� ���������������

�����������	��
����
	

���������	��
���
���

�
���
��

����	
��	
���	����

�
���������	��
���
��

�����
����	

��
����
 ���

������	������
�

�
������

�
��
����� ���

�
	������� �����

����
� �
��

Figure 2.2: Outline of Monte-Carlo Tree Search (inspired by Chaslot et al., 2008b).

the UCB1 algorithm, its payoff can be computed using Monte-Carlo evaluations on
the state that results from the application of such action. In addition, UCB1 can be
used to select the actions for the opponents in two- and multi-player games. This,
together with the idea of building a tree that memorizes part of the visited states
together with statistics about visited actions, is the basis of the MCTS algorithm
(Coulom, 2007a) and of one of its most popular action selection strategies, UCT
(Kocsis and Szepesvári, 2006).

2.3 Monte-Carlo Tree Search
Monte-Carlo Tree Search (MCTS) is a simulation-based search method used to select
which action to play in a given game state (Kocsis and Szepesvári, 2006; Coulom,
2007a; Chaslot et al., 2008b). Starting from the given state, MCTS incrementally
builds a tree representation of the search space of the game. Each iteration of the
algorithm performs a complete simulation2 of the game from the given root state
to a terminal state, adding nodes to the tree after each simulation and collecting
information about the game in every node. At the end of the search, the collected
information is used to select which action to play. Each iteration of the MCTS
algorithm consists of the four phases shown in Figure 2.2: Selection, Expansion,
Play-out and Backpropagation. Below we give a detailed description of each phase:

Selection. During this phase the algorithm descends the tree built so far until it
reaches a node that requires expansion. At each node it uses a selection strat-
egy to determine which joint action to visit next. Multiple selection strategies

2Sometimes in the literature the term simulation is used as a synonym for play-out, which is
one of the four phases of MCTS. In this thesis, instead, we use the terms iteration and simulation
interchangeably to indicate a complete repetition of the four MCTS phases.

24 Search Techniques

have been proposed in the literature, many of which derive from multi-armed
bandit algorithms. We can distinguish deterministic selection strategies, which
assign a value to each move of a player and pick the one with the best value,
and stochastic selection strategies, which perform a probabilistic action selec-
tion. Among the most popular and successful deterministic selection strategies
we can find the ones based on UCB algorithms, like UCB1, from which UCT
originated, and its refinement, UCB1-TUNED (Auer et al., 2002). One of the
simplest stochastic selection strategies is ε-greedy, which, for each player, se-
lects the action with highest estimated payoff with probability (1 − ε) and a
random action otherwise (Sutton and Barto, 1998). More advanced stochas-
tic selection strategies are Exp3 (Exploration-Exploitation with Exponential
weights) (Auer et al., 1995) and Regret Matching (Hart and Mas-Colell, 2000).
They both select an action for each player using a probability distribution on
the actions available for the player. The first strategy computes this probabil-
ity distribution using the cumulative payoff obtained by each action weighted
by the probability of selecting the action, while the second uses for each action
the cumulative regret for not having selected such action in previous iterations.

Expansion. In this phase one or more nodes are added to the tree. A common
strategy is the one that adds to the tree one new node per simulation. More
precisely, a new node is added for the first state encountered in the simulation
that has no corresponding node in the tree yet. Other strategies might add
more or less than one node per simulation or they might use different strate-
gies to select which node to add. Some alternative expansion strategies are
discussed in (Yajima et al., 2011).

Play-out. During a play-out (also called roll-out in the literature), starting from
the last node added to the tree the algorithm plays the game until a terminal
state or a certain depth is reached. In each state the algorithm uses a play-
out strategy to choose the joint action to simulate. One of the basic play-out
strategies consists in performing a Monte-Carlo evaluation, thus for each player
in each considered state an action is selected uniformly at random among the
legal actions. However, it has been shown in the literature that more informed
play-out strategies can increase the level of play (Gelly et al., 2006; Finnsson
and Björnsson, 2010; Tak et al., 2012).

Backpropagation. At the end of the simulation, the payoffs obtained by all players
are propagated back as a tuple through all the nodes traversed in the tree. The
payoffs are used to update the information memorized in each node. Usually,
each node s memorizes for each of the players the expected payoff and the
number of visits of each legal action in the state. Depending on which selection
and play-out strategies are being used, other information might be memorized
in the nodes. In this thesis we backpropagate a tuple ~q with the scores that
the players achieve in the last state reached by the simulation.

The execution of MCTS terminates when a predefined budget, for example a
given number of simulations or a finite amount of time, expires. At this point, a

2.3 — Monte-Carlo Tree Search 25

final action selection strategy chooses the best action in the root to be played in the
real game. The final action selection technique can be implemented in various ways.
For instance, it could choose the action with the highest number of visits or the one
with the highest average score.

The general pseudocode for MCTS is given in Algorithm 2. This algorithm
can be applied to games with any number of players, either deterministic or not,
and with either simultaneous or sequential moves. It starts with the procedure
MonteCarloTreeSearch(S, i), that keeps performing MCTS simulations from
the root node until the search budget is over. After the last iteration, the action to
play in the real game is selected with the final action selection strategy and returned.

Procedure PerformMctsSimulation(S) shows the recursive implementation
of a single MCTS simulation, starting from the given tree node S. First of all, the
procedure retrieves the game state s corresponding to the given node S using the
method S.GetState(). If this state is terminal, the simulation ends and the payoffs
of the players are returned. Otherwise a joint action ~a is chosen by the selection
strategy (line 9). The child node S′ of S that is reached by playing such action is
retrieved by the method S.GetChild(~a). If the node S′ is not null (i.e. it has been
already created) then the selection phase continues with the recursion at line 12,
otherwise the expansion phase starts (lines 14 to 16). During this phase the next
state s′ reached by performing the selected joint action ~a in s is retrieved. The
method CreateNewNode(s′) takes care of creating the new node S′ by setting s′
as the corresponding state and by initializing the statistics needed by the selection
strategy. The node S′, is added to the tree as the child of S. Subsequently, a
play-out is started from the new state s′ (line 17). Finally, line 18 makes sure that
the statistics collected so far for the selected action ~a in S are updated with the
backpropagated payoffs.

The play-out phase is implemented by the procedure PlayOut(s). Starting
from the given state s this procedure uses the play-out strategy to select the joint
action to simulate ~a , and recursively calls itself on the next state reached by playing
such action. When a terminal state is encountered, the tuple of payoffs is returned.

2.3.1 “Open-Loop” MCTS for Non-Deterministic Games

As mentioned in Section 2.1, given a state s and an action ~a, the transition function
next(s,~a) for non-deterministic or stochastic games returns each time a different
state according to a predefined probability distribution over all the possible next
states. To model this type of games the game tree is usually extended with the
addition of chance nodes. A chance node is reached once an action has been selected
in a state by the players, and it is used to model the choice of a possible next
state that does not depend on the players. Once a chance node is reached, the
environment selects one of the available next states according to the underlying
probability distribution. Figure 2.3 shows an example of how a stochastic game
is represented using chance nodes. Round nodes represent game states where the
players can perform a joint action. Each action is associated to one of the exiting
edges and leads to a diamond-shaped chance node. Each edge exiting a chance
node is associated to the probability of reaching the corresponding next state (in

26 Search Techniques

1: procedure MonteCarloTreeSearch(S, i)
Require: The game model gm.
Input: Current node S corresponding to the current game state s, player per-
forming the search i ∈ R.
Output: The action to play in the root state s for player i.

2: while search budget available do
3: ~q ← PerformMctsSimulation(S)
4: return finalActionSelectionStrategy.Select(S, i)

5: procedure PerformMctsSimulation(S)
Require: The game model gm.
Input: Tree node S from where to start the simulation.
Output: A tuple ~q = 〈q1, . . . , qr〉 with the payoff obtained at the end of the
simulation by each player.

6: s← S.GetState()
7: if gm.Terminal(s) then
8: return gm.Payoff(s)
9: ~a ← selectionStrategy.Select(S)

10: S′ ← S.GetChild(~a)
11: if not S′ = null then
12: ~q ←PerformMctsSimulation(S′)
13: else
14: s′ ← gm.GetNextState(s,~a)
15: S′ ← CreateNewNode(s′) . State s′ memorized in node S′
16: S.AddChild(~a, S′)
17: ~q ←PlayOut(s′)
18: S.Update(~a, ~q)
19: return ~q

20: procedure PlayOut(s)
Require: The game model gm.
Input: The game state s where to start the play-out.
Output: A tuple ~q = 〈q1, . . . , qr〉 with the payoff obtained at the end of the
play-out by each player.

21: if gm.Terminal(s) then
22: return gm.Payoff(s)
23: ~a ← playOutSrtategy.Select(s)
24: s′ ← gm.GetNextState(s,~a)
25: return PlayOut(s′)

Algorithm 2: Pseudocode for Monte-Carlo Tree Search.

2.3 — Monte-Carlo Tree Search 27

��

����

����������

�	 �������

�⃗�
�⃗�

�⃗�

�⃗� �⃗� �⃗� �⃗�

chance

players’ choice

chance

players’ choice

Pr ��
�

� Pr ��
�

�

Figure 2.3: Representation of a game tree with chance nodes.

the figure probabilities are explicitly reported only for the chance node reached
performing action a1 in the root).

Such a model is easy to construct for stochastic games, where the players know
the probability distribution of the next states. For non-deterministic games it is still
applicable, however, the probability distribution is unknown and it is thus infeasible
to create the exact model. The probability distribution over the next states could
be estimated. However, a large number of samples for each action would be required
in order to find all possible successor states and compute an accurate estimate. In
addition, adding a node for each possible successor state of each action makes the
three grow exponentially.

To avoid these problems, the “open-loop” representation of the game tree has been
proposed as an alternative to the model with chance nodes for non-deterministic
domains (Perez-Liebana et al., 2015). This tree representation has seen success-
ful applications particularly in the GVG-AI competition, where it is adopted by
many of the participating agents to tackle non-deterministic video games (Perez-
Liebana et al., 2016; Gaina et al., 2018; Perez-Liebana et al., 2018). With an “open-
loop” representation, each tree node except the root can correspond to multiple
game states. More precisely, a node S in the game tree of a non-deterministic game
corresponds to all the states that can be reached by performing the sequence of
actions on the path from the root node to S. The root node of the game tree is
the only node that is always corresponding to a single state, the current state of the
game. Moreover, each edge exiting a tree node corresponds to one of the actions
that are legal in any of the states that correspond to the node. Figure 2.4 shows
the “open-loop” representation of the same game shown in Figure 2.3. Note that

28 Search Techniques

��

�� �� ��

��

�� ��

��� ���
�	 �

��

�⃗�

�⃗�

�⃗�

�⃗�

�⃗�

�⃗�

�

Figure 2.4: “Open-loop” representation of a game tree for a non-deterministic game.

this representation reduces the number of nodes in the tree, but at the same time
it does not model some information about the game. For example, in node S we do
not know that by playing action ~a2 we can reach states s7 and s8 only from state
s3, and state s9 only from state s4.

To exploit an “open-loop” representation the MCTS algorithm, Algorithm 2 pre-
sented in Section 2.3, has to be adapted. This algorithm used a “closed-loop” repre-
sentation: each time a new node is added to the tree during a simulation, the state
generated by the transition function is memorized at it (lines 14 and 15), and it
is reused in subsequent simulations without being generated again (line 6). For a
non-deterministic game this means that each node will be associated to only one of
all the possible next states generated by sampling the corresponding distribution.
When generating and reusing only one state we do not know how representative it is
for the set of all possible states, and this might be detrimental for the performance
of the search.

Algorithm 3 gives the pseudocode of “open-loop” MCTS, which does not memo-
rize the states at the nodes, but uses the game model to generate the states every
time it is required. The main difference with “closed-loop” MCTS in Algorithm 2
is that every time a node in the tree is visited the corresponding state is gener-
ated using the game model (lines 9 and 10), and whenever a new node is created
the state is used to initialize the statistics but is not memorized (line 14). Not
memorizing the state at the node also means that both the procedure MonteCar-
loTreeSearch(S, s, i) and the procedure PerformMctsSimulation(S, s) have
to use the state s corresponding to the visited node S as a parameter.

The “open-loop” approach has the advantage of using less memory than the
“closed-loop” approach, because states are not memorized at the nodes. At the same
time, however, it requires the use of the game model to compute a state every time
a node is visited in the tree during a simulation, while “closed-loop” MCTS only

2.3 — Monte-Carlo Tree Search 29

1: procedure OpenLoopMonteCarloTreeSearch(S, s, i)
Require: The game model gm.
Input: Current node S, the corresponding current game state s, player per-
forming the search i ∈ R.
Output: The action to play in the root state s for player i.

2: while search budget available do
3: ~q ← PerformMctsSimulation(S, s)
4: return finalActionSelectionStrategy.Select(S, i)

5: procedure PerformMctsSimulation(S, s)
Require: The game model gm.
Input: Tree node S from where to start the simulation and (one of) the corre-
sponding game state(s) s.
Output: A tuple ~q = 〈q1, . . . , qr〉 with the payoff obtained at the end of the
simulation by each player.

6: if gm.Terminal(s) then
7: return gm.Payoff(s)
8: ~a ← selectionStrategy.Select(S)
9: S′ ← S.GetChild(~a)

10: s′ ← gm.GetNextState(s,~a)
11: if not S′ = null then
12: ~q ←PerformMctsSimulation(S′, s′)
13: else
14: S′ ← CreateNewNode(s′) . State s′ not memorized in node S′
15: S.AddChild(~a, S′)
16: ~q ←PlayOut(s′)
17: S.Update(~a, ~q)
18: return ~q

19: procedure PlayOut(s)
Require: The game model gm.
Input: The game state s where to start the play-out.
Output: A tuple ~q = 〈q1, . . . , qr〉 with the payoff obtained at the end of the
play-out by each player.

20: if gm.Terminal(s) then
21: return gm.Payoff(s)
22: ~a ← playOutSrtategy.Select(s)
23: s′ ← gm.GetNextState(s,~a)
24: return PlayOut(s′)

Algorithm 3: Pseudocode for “open-loop” Monte-Carlo Tree Search.

30 Search Techniques

needs the game model to compute one state in the tree for each simulation, i.e.
the one corresponding to the newly added node. If using the game model has a
high computational cost, “open-loop” MCTS might be at a disadvantage compared
to “closed-loop” MCTS. When deciding which of the two approaches to use these
aspects should be taken into account.

2.4 The UCT Selection Strategy
A popular MCTS selection strategy is UCT (Kocsis and Szepesvári, 2006), which
is based on the UCB1 algorithm discussed in Subsection 2.2.2. Given a game state
s and the set A(s,i) of all legal actions of player i in s, UCT assigns the value
UCT (s, ai) to each action ai of the player, and selects the action a∗i according to
Formula 2.9.

a∗i = argmax
ai∈A(s,i)

{
UCT (s, ai)

}
UCT (s, ai) = q̄(s,ai) + C ×

√
lnns
n(s,ai)

(2.3)

Here, ns is the number of times state s has been visited during the search and n(s,ai)

is the number of times action ai has been selected for player i whenever node s
was visited. The term q̄(s,ai) is the average payoff obtained for all the simulations
in which action ai was selected for player i in state s, and like for MCS it can be
computed as qSum(s,ai)

n(s,ai)
, where qSum(s,ai) is the sum of all payoffs obtained so far

by action ai when selected in state s. C is a constant that is used to control the
balance between the exploitation promoted by the first term of the formula, and
the exploration promoted by the second term. As for UCB1, in UCT the values
of the payoffs are expected to be in the interval [0, 1]. When this holds true and
given sufficient time and memory, Kocsis and Szepesvári (2006) proved that in a
two-player, sequential move game the probability of selecting a sub-optimal action
in the root of the MCTS tree converges to zero. Therefore, the MCTS tree converges
to the optimal value of the minimax tree.

Whenever the UCT selection strategy or one of its variants are used, MCTS has
to memorize in the nodes the statistics that are necessary to compute the expected
payoff of an action q̄(s,ai) that is used in Formula 2.9. These statistics can be
memorized at the action level, i.e. for each legal action in each node, or at the
node level, i.e. for each node in the tree. For example, when considering the tree
of a sequential move game, memorizing statistics at the action level would mean
memorizing in each node the values qSum(s,ai) and n(s,ai) for each action ai that is
legal for the player i that is on turn in the node. These values can then be used to
compute q̄(s,ai) =

qSum(s,ai)

n(s,ai)
to be used in the UCT formula. Memorizing statistics

at the node level, instead, would mean memorizing in each node the values qSum(s,i)

and ns for the corresponding state s and then computing the expected payoff of an
action ai as the expected payoff of the state s′ reached by performing such action,
q̄(s,ai) =

qSum(s′,i)
n(s′)

. Here, qSum(s,i) is the sum of all the payoffs obtained by player

2.4 — The UCT Selection Strategy 31

���⟨��,� , ��,�⟩,��

���⟨��,� , ��,�⟩,��

���⟨��,� , ��,�⟩,��

���⟨��,� , ��,�⟩,��

���⟨��,� , ��,�⟩,��

���⟨��,� , ��,�⟩,��

���⟨��,� , ��,�⟩,��

���⟨��,� , ��,�⟩,��

��,� ��,�

��,�

��,�

….………… ….………… ….………… ……….……

Figure 2.5: Representation of a game tree for a simultaneous move game with two players.

i in the simulations in which state s was visited, and ns is the number of times state
s was visited. Both implementations are equivalent for sequential move games, but
in general one might have (dis)advantages over the other. In the remainder of this
thesis it is assumed that statistics are memorized at the action level. These statistics
are computed using as payoffs the scores obtained by the players at the end of each
simulation. Because there is no guarantee that the scores will be in the interval
[0, 1], whenever used in the UCT formula they are first re-scaled for this interval.

2.4.1 Simultaneous Move UCT

The UCT selection strategy used by MCTS was originally designed for sequential
move, turn-taking games. In such games the standard way of applying UCT consists
in using it in each state to select the action for the player that has to move in the
corresponding turn. For simultaneous move games, however, multiple players have
to move in the same turn, and adapting UCT to such a situation is not trivial.

Figure 2.5 shows an example of how the search tree for a simultaneous move
game can be represented. The considered game has two players, 1 and 2, each of
which has two possible actions in each state. In the root, Player 1 can perform

32 Search Techniques

actions a1,1 and a1,2, while Player 2 can perform actions a2,1 and a2,2 (given an
action a, the first subscript index indicates the player that performs the action and
the second subscript index is used to distinguish among the actions of the player). In
each node, to represent all possible combinations of actions a matrix A can be used,
where the rows corresponds to the actions of Player 1 and the columns to the actions
of Player 2. Each entry Aj,k of the matrix memorizes for each player i ∈ {1, 2} the
(estimated) payoff q̄(〈a1,j ,a2,k〉,i) computed by selecting the given joint action in the
node. Moreover, for each joint action there is an edge pointing to the next node in
the tree, corresponding to the state reached by performing such joint action from
the current node. The presented representation can be used for simultaneous move
games with any number of players. For a game with r players moving simultaneously
each node of the tree will correspond to an r-dimensional matrix.

It is easy to see the space complexity of simultaneous move games. First of all,
the next game state depends on the actions of more than one player, therefore when
adapting the UCT selection strategy to such games we have to decide if to con-
sider this interdependency and how. Secondly, the number of joint actions increases
exponentially with the number of players. Usually, to apply UCT each player has
to memorize for each action a the sum of payoffs obtained so far by the action,
qSuma, and the visits count, na, so that it can compute the average payoff q̄a. If in
a simultaneous move game these pairs of statistics for each joint action have to be
memorized for each player, then the required space is also increasing exponentially.
For example, if we consider a simultaneous move game with r players, each with x
legal actions per node, we have xr joint actions, with a total of rxr pairs of statistics.
This aspect might also be taken into account when designing a simultaneous move
UCT selection strategy.

Two different approaches have been proposed to adapt UCT to simultaneous
move games with two or more players (Tak, Lanctot, and Winands, 2014a): Se-
quential UCT (SUCT) and Decoupled UCT (DUCT). These two approaches differ
in how they address the previously mentioned aspects. Below, SUCT is discussed
first, and subsequently DUCT.

Sequential UCT

SUCT transforms the simultaneous move game into a sequential move game by
serializing the game tree, therefore the selection of a joint action for a game state
becomes a sequence of selections of single actions, one for each player. The standard
UCT selection can thus be applied to select each of the single actions.

To better clarify how SUCT works with an example, Figure 2.6 shows part of the
search tree built by serializing the game tree introduced in Figure 2.5. Each tree node
(in gray) corresponds to two levels of the serialized game tree, one for each player.
The figure also shows which statistics are memorized when using SUCT for the root
state of the game. For Player 1, statistics are kept for each action, and an action is
selected by applying standard UCT on these statistics. Whenever in a simulation
one of the actions is chosen, the corresponding qSum will be updated with the payoff
obtained by Player 1 at the end of the simulation and the corresponding n will be
incremented. For Player 2, a separate instance of statistics for the actions is kept

2.4 — The UCT Selection Strategy 33

Player 1

Player 2

Turn

�

Turn

� � 1

Player 1

Player 2

������,�

���,�

������,�

���,�

	�,� 	�,�

������,�|��,�

���,�|��,�

������,�|��,�

���,�|��,�

	�,� 	�,�

…………..

������,�|��,�

���,�|��,�

������,�|��,�

���,�|��,�

	�,� 	�,�

………….. ………….. …………..

Figure 2.6: Sequential action selection in a turn of a two-player simultaneous move game.

for each of the actions of Player 1. The subscript a2,k|a1,j for a statistic of Player 2
indicates that the statistic has been collected for action a2,k of the player, given that
action a1,j has been selected for Player 1. An action for Player 2 is selected using
standard UCT on the instance of statistics reached by the edge corresponding to the
action selected for Player 1. At the end of a simulation, the statistics of the action
are updated only for this instance. The payoff obtained by Player 2 at the end of the
simulation will be used to update the corresponding qSum, and the corresponding n
will be incremented. Only when the complete joint action is selected the next game
state is computed and a new node is visited (or generated and added to the search
tree if not yet present).

The same structure can be easily adapted to simultaneous move games with r
players, by adding for each tree node a level of statistics for each player. Collecting
statistics with this structure reduces the space usage with respect to the matrix
structure discussed previously. When using SUCT, if we consider a simultaneous
move game with r players, each with x legal actions per node, we have a total of∑r
i=1 x

i pairs of statistics, which is less than the rxr pairs of statistics memorized
by the matrix.

To be noted when using SUCT is that the order in which the players are con-
sidered influences the action selection, because different statistics will be collected
depending on the order of the players. Bošanskỳ et al. (2016) studied the effect
of game serialization on the value of a two-player, zero-sum, perfect-information,
simultaneous move game. They show that for the player that plays second the value
computed applying minimax to the serialized game is an upper bound on the value
that would be obtained by considering the game as a matrix. Letting the opponent

34 Search Techniques

����⟨��,�, ��,�⟩

�⟨��,�, ��,�⟩

����⟨��,�, ��,�⟩

�⟨��,�, ��,�⟩

����⟨��,�, ��,�⟩

�⟨��,�, ��,�⟩

����⟨��,�, ��,�⟩

�⟨��,�, ��,�⟩

��,� ��,�

��,�

��,�

������,�
� ����⟨��,�, ��,�⟩
 ����⟨��,�, ��,�⟩

���,�
� �⟨��,�, ��,�⟩
 �⟨��,�, ��,�⟩

������,�
� ����⟨��,�, ��,�⟩
 ����⟨��,�, ��,�⟩

���,�
� �⟨��,�, ��,�⟩
 �⟨��,�, ��,�⟩

Figure 2.7: Computation of cumulative statistics for Player 1 in a state of a simultaneous
move game with two players.

play second will then make us overestimate her game value and make the player
performing the search be more cautious in the action selection. Usually, when using
SUCT, regardless of the number of opponents, the player performing the search is
the one that plays first. In this way, the opponents are simulated with the advantage
of knowing which action was selected for the initial player when it is time to select
their own actions. As a consequence the player performing the search learns to play
the actions that have less risk of being penalized by the opponents, thus assuming
a defensive behavior.

In general, SUCT is not guaranteed to converge to an optimal solution, neverthe-
less it has been tested in multiple domains. Tron was the first game in which it was
applied (Samothrakis, Robles, and Lucas, 2010; Den Teuling and Winands, 2012).
In Tron SUCT proved quite successful. In the work of Lanctot et al. (2013) differ-
ent variants of SUCT performed in general better than the stochastic approaches
Exp3 and Regret Matching. Tak et al. (2014a) also showed that SUCT has a good
performance in Tron. Their work also tested SUCT on other games to verify how it
performs in a GGP setup. It was shown that for almost all games SUCT performs
better than Exp3 and Regret Matching.

Decoupled UCT

DUCT is so called because, when selecting a joint action in a tree node, it decouples
the action statistics for each player and applies UCT to these statistics to select the
action of each player independently. Figure 2.7 gives an example of which statistics
are considered for a player when the DUCT selection strategy is applied. This
example refers to the same simultaneous move game shown in Figure 2.5, but only
shows statistics from the point of view of Player 1 (an example for Player 2 would be
similar). The matrix in the figure refers to the root state of the simultaneous move
game tree presented in Figure 2.5. Given this matrix, the statistics that would be
considered for each action of Player 1 are shown on the right of the corresponding row
of the matrix. For each of the actions aj1 of Player 1, DUCT considers the cumulative

2.4 — The UCT Selection Strategy 35

����
��,�

�
��,�

����
��,�

�
��,�

��,� ��,�

Player 1
����

��,�

�
��,�

����
��,�

�
��,�

��,� ��,�

Player 2

Figure 2.8: Statistics memorized by each player in a state, when DUCT is applied on a
simultaneous move game with two players.

sum of payoffs and cumulative number of visits, qSumaj1
and naj1 over all the other

player’s actions. These cumulative statistics are used to compute the estimated
payoff q̄aj1 required to compute the value of action aj1 with the UCT formula.

The fact that DUCT uses cumulative statistics means that each player only has
to memorize such statistics for her own actions in each node, thus saving space
with respect to the memorization of the whole matrix of statistics. Considering the
same example introduced earlier, Figure 2.8 shows the statistics that each of the two
players memorizes in the root node. The reduced space complexity can be seen as an
advantage of DUCT. In a game with r players, where each player has x legal actions
per state, the total number of statistics to be memorized is rx, which is much less
than the previously mentioned rxr statistics for the whole matrix of joint actions.

Despite DUCT has been proved to not converge in general to an optimal strategy
(Shafiei, Sturtevant, and Schaeffer, 2009), it has been successfully applied in various
domains. Different variants of DUCT have been successful in Tron, where they were
shown to outperform stochastic selection strategies (Perick et al., 2012). MCTS with
the DUCT selection strategy was first applied to GGP by CadiaPlayer (Björnsson
and Finnsson, 2009), an agent developed for the competition related to the Stanford
GGP project (Genesereth et al., 2005), where each abstract game is modeled as
a simultaneous move game. The CadiaPlayer agent has always placed among
the top players of the competition between 2007 and 2012. Tak et al. (2014a)
confirmed this success in GGP by showing that DUCT is the best on most of the
nine tested simultaneous move games when compared to SUCT, Exp3 and Regret
Matching. DUCT has also been analyzed by Bošanskỳ et al. (2016), which showed
that its performance can be further improved by using a random tie-breaking rule
when selecting among multiple actions of a player that have the same UCT value.
More precisely, for each player an action is selected randomly among the ones that
have a UCT value within a predefined small offset from the highest UCT value.
Experiments show that this agent converges to a better approximation of the optimal
strategy with respect to a DUCT agent that uses a deterministic tie-breaking rule
(e.g. always selecting the first or the last among the actions with the same value).
Given its overall better performance over SUCT, enhancements for the UCT strategy
are presented in the rest of this thesis assuming the DUCT implementation.

36 Search Techniques

2.5 MCTS Enhancements
This section discusses MCTS enhancements that are relevant for this thesis. First,
Subsections 2.5.1 and 2.5.2 describe various enhancements for the selection and the
play-out phase of MCTS, respectively. Subsequently, Subsection 2.5.3 introduces
the use of transposition tables to memorize tree nodes for MCTS, and finally, Sub-
section 2.5.4 explains how the search tree built during a game turn can be reused in
subsequent turns.

2.5.1 Selection Strategy Enhancements
Various enhancements for the MCTS selection strategy have been proposed in the
literature (Browne et al., 2012). Usually, a selection strategy assigns a value to each
of the available actions in a state and selects an action according to these values.
Enhancing the selection strategy by adding knowledge that modifies such values
and guides the search towards certain actions has been shown to be beneficial in
many domains. Below, the selection strategy enhancements that are used by the
MCTS agents in this thesis are discussed: First Play Urgency, Rapid Action Value
Estimation and Progressive History. A characteristic that all these enhancements
have in common is that they are all domain-independent, which makes them suitable
for domains like GGP.

First Play Urgency

In its standard implementation, the UCT selection strategy randomly visits all ac-
tions in a state at least once before using Formula 2.9 to select the best action. This
is inefficient if there is a high number of actions in a state and not many simula-
tions are available. Moreover, if an action is always returning a win or a high payoff
whenever evaluated, it seems more reasonable to keep selecting such action rather
than other unexplored ones.

Wang and Gelly (2007) propose to assign to unexplored actions a predefined
value, called First-Play Urgency (FPU), that determines the urgency for these ac-
tions to be explored. When an action has to be selected in a state, the UCT value
is computed for already explored actions, while the FPU value is assigned to unex-
plored ones. Subsequently, the action with the highest value is selected. In this way,
it is possible to control how urgently unexplored actions should be selected. A value
of FPU = ∞ corresponds to the standard strategy, i.e. all actions are explored
once before considering their UCT value. On the contrary, a low value of FPU
means that the exploitation of actions with a high expected payoff will be preferred
to exploration of unvisited actions. The work of Wang and Gelly (2007) shows that
using an FPU value that favors early exploitation has positive results in the game
of Go.

The idea of FPU has also been successfully applied to GGP by Finnsson (2012a)
using the enhancement that they call Unexplored Action Urgency. Like FPU, it as-
signs to the unvisited actions a predefined value that corresponds to the UCT value
that would be computed for an action visited once and that resulted in a draw. In
addition, a discount is added to the urgency value, which decreases the urgency of

2.5 — MCTS Enhancements 37

exploring unvisited actions as the number of explored actions increases. The Unex-
plored Action Urgency enhancement is shown to improve the agent’s performance
in GGP when paired with an informed play-out strategy.

Rapid Action Value Estimation

The Rapid Action Value Estimation (RAVE) strategy (Gelly and Silver, 2007) is
a domain-independent technique that has been proposed in order to speed up the
learning process inside the MCTS tree. When there are only a few samples avail-
able to compute the UCT value of a player’s action in a node, RAVE adds to the
computation the action statistics collected for the whole subtree of the node. This
results in a faster decrease of the variance of the estimated payoff of the actions.
More details about the RAVE technique are given in Chapter 5.

RAVE has been successfully applied in Go (Gelly and Silver, 2007; Gelly and Sil-
ver, 2011), Hex (Cazenave and Abdallah, 2010), Havannah (Teytaud and Teytaud,
2010; Rimmel, Teytaud, and Teytaud, 2011) and GGP (Finnsson and Björnsson,
2010). Moreover, multiple variations of RAVE have been proposed. Lorentz (2011)
presented Killer RAVE, a modification of RAVE that uses the subtree statistics to
improve the UCT value only for the most important actions. Killer RAVE was shown
to significantly improve over RAVE in Havannah. RAVE-max and its stochastic vari-
ant δ-RAVE-max were proposed by Tom and Müller (2011) to make RAVE action
estimates more robust. These variant worked well for the game Sum of Switches,
but not for Go. Another variant, poolRAVE, was proposed by Hoock et al. (2010).
This variant keeps a pool of k-best moves according to the RAVE statistics. During
selection for a player, a move from the pool is played with a certain probability,
otherwise the default selection strategy is used. In the games of Havannah and Go
poolRAVE was shown to be successful.

Progressive History

Progressive History (PH) has first been proposed by Nijssen and Winands (2011),
which successfully applied it to multi-player games. Later, it has also been applied to
GVGP showing good results in some of the tested video games (Soemers et al., 2016).
Similarly to RAVE, PH combines the UCT value of a player’s action together with
another quantity that is computed using knowledge acquired during the search. More
precisely, PH biases action selection in a state towards actions that have performed
well in other states, assuming that actions that are good in a state might be good
in similar states as well. To compute the bias, PH keeps a global table where it
memorizes for each action ai of each player i the expected payoff q̄ai of all the
simulations performed so far in which ai was played at any point in the game.
Formula 2.4 shows how the UCT value of an action ai in a state s is computed with
the PH enhancement from the point of view of player i. For each player, this value
is computed independently.

UCTPH (s, ai) = q̄(s,ai) + C ×

√
lnns
n(s,ai)

+ q̄ai ×
W

(1− q̄(s,ai))n(s,ai) + 1
(2.4)

38 Search Techniques

The first two terms are the same as in the UCT formula presented in Section 2.2.
The last term represents the bias towards generally good actions. Here, q̄ai is the
previously mentioned global average payoff of action ai, and W is a constant that
determines the influence of the PH bias on the selection. The denominator (1 −
q̄(s,ai))n(s,ai) + 1 is needed to decay the influence of the bias over time, as the
actions get more visits and the UCT estimates become more reliable. Multiplying
the number of visits n(s,ai) by the inverse payoff of action ai in s, (1 − q̄(s,ai)),
guarantees that actions that perform well in a state are biased longer than actions
that perform poorly. Summing 1 at the denominator is used to avoid dividing by 0
if q̄(s,ai) = 1.

The statistics that PH collects for each action are similar to the ones collected by
RAVE, with the difference that RAVE collects such statistics for each node instead
of globally. This means that PH has as an advantage over RAVE because it is using
less memory. Moreover, the memory required to store statistics for PH is constant
with respect to the size of the tree, while for RAVE it increases linearly as the tree
grows. However, a possible disadvantage of PH with respect to RAVE is that the
global information collected by PH might be less accurate for a certain state than
the information collected by RAVE for the same state.

2.5.2 Play-out Strategy Enhancements

One of the basic play-out strategies for MCTS is the one that selects random ac-
tions in each state. However, random play-outs are not very realistic, because the
opponent(s) are likely making decisions using a more rational strategy. Using some
knowledge about the game to guide the play-out can increase the performance of an
MCTS agent. Below we discuss the play-out strategy enhancements that are used by
the MCTS agents in this thesis: Move Average Sampling Technique and N-Grams
Selection Technique. Similarly to the selection strategy enhancements presented in
Subsection 2.5.1, these play-out strategy enhancements are suitable for domains like
GGP because they are all domain-independent.

Move Average Sampling Technique

The Move Average Sampling Technique (MAST) has been devised by Finnsson and
Björnsson (2008), which successfully integrated it in CadiaPlayer, an MCTS-based
agent developed for the Stanford GGP competition. The main idea behind MAST
is the same as the PH enhancement for the selection strategy, i.e. an action that is
good in one state is likely to be good also in other states. Like PH, during the search
MAST memorizes for each action ai of each player i the expected payoff q̄ai based on
the results of all the simulations in which action ai was played so far. The difference
is that MAST uses this information to guide the search outside of the tree, during
the play-out. In this thesis, when using MAST, duplicate actions in a simulation are
not detected, thus the MAST strategy will update their expected value each time
they appear in the simulation.

The original implementation of MAST guides the play-out by selecting actions in
a state according to the probabilities computed using the Gibbs measure. Formula

2.5 — MCTS Enhancements 39

2.5 shows how the probability Prob(ai, s) of selecting action ai of player i in state s
is computed with the Gibbs measure.

Prob(ai, s) =
e(q̄ai

/τ)∑|A(s,i)|
j=1 e(q̄ai,j

/τ)
(2.5)

Here, A(s,i) is the set of all the actions that are legal for player i in the current
state s, and τ is a parameter that controls the shape of the distribution. Higher
values of τ make the distribution more uniform making it favor more exploration of
actions, while lower values stretch it, making it favor more exploitation. With the
Gibbs measure, actions with a high global average, and thus more likely to be good
in general, are also more likely to be selected during the play-out.

Later research on MAST has shown that the use of an ε-greedy strategy to select
actions gives a significantly better performance than the use of the Gibbs measure
in most of the tested games (Tak et al., 2012; Powley, Whitehouse, and Cowling,
2013). The ε-greedy strategy chooses the action with highest expected payoff q̄ai
with probability (1−εMAST) and a random action with probability εMAST. Tak et al.
(2012) motivate the success of the ε-greedy strategy by considering that it always
guarantees a fixed probability (i.e. 1 − εMAST) of selecting the action with highest
expected payoff. With the Gibbs measure, on the contrary, this probability varies
depending on the expected payoff of other actions, and the action with the highest
payoff might get swamped by other actions.

A first play urgency parameter, fpuMAST can be specified for the MAST strategy,
both when using the Gibbs measure and when using an ε-greedy strategy. This
parameter specifies a default value that is assigned to actions that have not been
visited yet during the search, and thus no expected payoff is memorized for them in
the statistics collected by MAST. A high value of fpuMAST motivates exploration of
not yet visited actions.

Further research by Tak, Winands, and Björnsson (2014b) has also shown that
decaying the global statistics used by MAST is beneficial. MAST keeps the infor-
mation collected during the search for a game step and reuses it in subsequent steps,
so that at the start of a new search it is already known which the best actions are
in general. However, as the game progresses, old statistics might not be as reliable
as they were before. For example, statistics collected in an early state of the game
might be based on parts of the tree that are not reachable anymore at a later stage
of the game. Decaying the statistics over time helps addressing this issue. Three dif-
ferent decay methods have been proposed, move decay, batch decay and simulation
decay, which decay MAST statistics after each action, after a batch of simulations
and after each simulation, respectively. Move and batch decay discount the MAST
statistics of all actions, while simulation decay discounts only the statistics of the
actions visited in the simulation after which it has been applied. Formula 2.6 shows
how the decay with a factor of ω ∈ [0, 1] updates the global statistics of an action
ai of player i.

qSumai ← ω × qSumai

nai ← ω × nai
(2.6)

40 Search Techniques

N-Grams updated after the simulation:

B

C

A +2

+2

+1

Length 1

A B

C A

B C

+2

+1

+1

Length 2

A B C

B C A

C A B

+1

+1

+1

Length 3

Sequence of actions selected
during the current simulation:

A B C A B

Figure 2.9: Extraction and update of N-Grams after an MCTS simulation.

The statistics qSumai and nai have the same meaning as in Formula 2.1 in Subsection
2.2.1 and are used to compute the average payoff of action ai. Among the tree
proposed decay strategies, Tak et al. (2014b) show that move and simulation decay
appear to be comparable in performance on the tested set of games. Both of them
seem better than batch decay. However, there are a few games for which move decay
shows a better performance than simulation decay and vice versa.

N-Grams Selection Technique

The N-Grams Selection Technique (NST) (Tak et al., 2012) is a play-out strategy
similar to MAST. Like MAST, NST biases the play-outs towards actions that have
performed overall well so far. The difference is that NST does not only exploit
information about single actions, but also about sequences (N-Grams) of actions.
This makes NST more suitable for games where a good action might depend on the
actions of the opponents, or where there are certain actions that perform generally
well when applied in sequence. NST has been shown to be successful as domain-
independent strategy when applied to GGP both for board games (Tak et al., 2012)
as well as for video games (Soemers et al., 2016). Moreover, Powley et al. (2013)
and Powley, Cowling, and Whitehouse (2014) used the same idea of NST (i.e. using
statistics of N-Grams of actions to guide the play-outs) to implemented their strat-
egy, the N-Gram-Average Sampling Technique (NAST). This technique has been
shown to be successful also for imperfect-information games.

In this thesis, NST is applied only to single-player games, therefore the examples
below are given for this category of games. However, NST is applicable to two-
and multi-player games as well, with either sequential or simultaneous move. For a
better explanation of how NST is applied to these categories of games we refer to
Tak et al. (2012). When implemented in MCTS, after each simulation NST extracts
from the simulated path all N-Grams of actions up to a certain length L and uses the
payoff obtained by the simulation to update their expected payoff. Like for MAST,
duplicates in the same simulation are not detected, therefore the payoff of an N-
Gram will be updated for each of its occurrences. Figure 2.9 shows which N-Grams
NST will extract from the given simulation for a single-player game with maximum
N-Gram length L = 3. Next to each N-Gram the number of updates is shown.

2.5 — MCTS Enhancements 41

N-Grams used to compute the NST
value of action D:

D

Length 1

C D

Length 2

B C D

Length 3

Sequence of joint actions
selected so far during the
simulation:

A B C

Figure 2.10: Use of N-Grams to compute the NST value of an action.

With NST, the selection of an action in a state during the play-out works as
follows. Like for MAST, with probability εNST an action is chosen randomly. Oth-
erwise, with probability 1− εNST the one with the highest NST value is chosen. In a
single-player game, when considering N-Grams up to length L, the NST value of an
action a is computed averaging the payoff of all the N-Grams of length l ∈ [1, L] that
end with action a preceded by the last l−1 actions selected so far in the simulation.
In this computation, N-Grams with length greater than 1 are taken into account only
if they have been visited at least N times. For a single-player game with maximum
N-Gram length L = 3, Figure 2.10 shows which N-Grams are considered to compute
the NST value of the given action.

Like for MAST, also for NST a first play urgency parameter, fpuNST can be
specified. Exactly like fpuMAST, this parameter specifies a default value that is
assigned to actions that have never been encountered before during the search. Note
that fpuNST is not applied to unvisited N-Grams with length greater than 1, because
such N-Grams are taken into account only if they have been visited at least N times.
For NST it is also beneficial to keep the collected N-Grams statistics, so that they
can be reused to guide the search in subsequent game steps. Once again, Tak et al.
(2014b) showed that decaying such statistics over time has an overall positive effect
on the search.

2.5.3 Transposition Tables

Oftentimes a search algorithm might visit identical states in different parts of the
game tree. Such states are called transpositions and are reached through different se-
quences of actions, therefore in a search tree they will be associated to distinct nodes.
This also means that relevant information about the same state is kept separately in
each of these nodes. For games where transpositions are present, transposition tables
(Greenblatt, Eastlake III, and Crocker, 1967) enable us to represent the search tree
as a graph, where each state corresponds to a single node. In this way, the infor-
mation memorized for a state in a node can be reused for each of its transposition,
reducing search effort.

When using transposition tables, however, there are multiple aspects that have
to be taken into consideration. First of all, using a graph representation of the
search space might give rise to the Graph-History Interaction problem (GHI). This
problem is caused by the fact that the information related to a node might depend on
the history of actions that led to it. Moreover, transposition tables usually require

42 Search Techniques

a large amount of space to store all the visited nodes, therefore an appropriate
representation is necessary. Finally, when using transposition tables in MCTS it is
necessary to adapt the UCT selection strategy, because there are multiple ways to
update action statistics and compute UCT values. These issues are discussed below.

The Graph-History Interaction Problem

The graph represented by transposition tables could be of two types: a Directed
Acyclic Graph (DAG), if a state cannot be visited more than once in the same line
of play, and a Directed Cyclic Graph (DCG) otherwise. An example of game that
can be represented with a DAG is Tic Tac Toe, because once a cell is marked cannot
be unmarked to go back to a previous state. On the contrary, Chess is an example
of game that can be represented with a DCG, because players are allowed to move
their pieces back to the position where they came from. When transposition tables
are used to transform a game tree into a DCG there is an important issue to take
into consideration. In a DCG the same node might correspond to multiple identical
states that, however, have a different history. The history of played moves might
influence the information related to such states, causing two types of problems: the
move-generation problem and the evaluation problem. The first problem is caused
when the sequence of actions that leads to a state plays a role in determining which
actions are legal in it. In Chess for example, this problem happens with castling
moves, which can be performed in a given state only if the King and the Rook
have not previously been moved. The second problem arises when the history of
a node influences its value. For example, this problem in Chess happens because
of the rule stating that the game should be declared a draw if a board position
repeats three times with the same player to move. Together, the move-generation
problem and the evaluation problem are known as the Graph-History Interaction
(GHI) problem (Palay, 1983; Campbell, 1985). The most trivial solution for the GHI
problem would be to include in each state all relevant history information, thus the
previously mentioned situations could be discriminated and associated to different
nodes. However, memorizing all the relevant history might require too much memory.
Moreover, the frequency of transpositions might be reduced, defying the purpose of
using a transposition table. Different other solutions for the GHI problem have been
studied (Breuker, 1998; Kishimoto and Müller, 2004). In general, they propose to
memorize only part of the relevant history, while at the same time providing different
mechanisms to detect nodes for which values are wrongly computed, so that they
can be fixed.

Representation

Another issue to discuss regrading transposition tables is how to represent them. To
reduce space usage, a finite hash table is a commonly used representation (Breuker,
1998). A hash value is associated to each state and a hash function is used to
compute from it the hash index of the corresponding entry in the table. Optionally,
each state can be associated also to a hash key, which is used to distinguish two
states with the same hash index.

2.5 — MCTS Enhancements 43

In game playing, one of the most used hashing techniques for transposition tables
is Zobrist hashing (Zobrist, 1970). This type of hashing associates a random integer
value to each element that composes the state (e.g. a piece-position pair in chess)
and computes a 64-bits hash value of the state by performing a XOR of the values
of these single elements. If the hash table has 2n entries, the first n bits of the hash
value are used to compute the hash index, while the remaining 64− n bits are used
as hash key. Although Zobrist hashing was proposed as a game specific solution, it
has been used in GGP as well. The GGP agent CadiaPlayer used it to compute
the hash value of game states represented in GDL. In GDL a state is represented as
a set of predicates that are true in it (more details in Chapter 3). CadiaPlayer
computes the hash value of a state with Zobrist hashing by associating an integer
value to each symbol that forms the true predicates and then performing a XOR on
all of them.

The use of a finite hash table can cause two types of errors: type-1 errors and
type-2 errors. Type-1 errors occur when two distinct states have the same hash
value. This type of error is difficult to detect, because the two states also have
the same hash key. A possible solution to this problem could be using a hash map
instead of a hash table. With a hash map the entire state can be stored as the
key, such that if the states have the exact same hash value they can always be
distinguished. Type-2 errors occur when two states have the same hash index and
therefore they are associated to the same table entry. This event is referred to as
collision. Type-2 errors are easier to detect by simply checking the hash keys of the
states, which will be different. However, when a type-2 error occurs a mechanism
has to be implemented to decide how to deal with the collision. One solution consists
in storing at each table entry a linked list that contains an element for each state
with the same hash index.

Transposition Tables in MCTS

Transposition tables are a general enhancement that has been applied to different
search algorithms, like αβ-search and MCTS. In this thesis they are specifically
applied to MCTS. It is relevant to mention that the use of transposition tables with
MCTS gives different options to implement the UCT selection strategy. In this
section, four different implementations of UCT, identified as UCT0, UCT1, UCT2,
and UCT3 are discussed. The first one, UCT0, is the standard implementation of
UCT without transposition tables, which is presented here for comparison. UCT1,
UCT2 and UCT3 have been proposed by Childs, Brodeur, and Kocsis (2008) for
MCTS with transposition tables. These UCT variants use the same UCT formula
(i.e. Formula 2.9), but differ in how they compute the terms q̄(s,ai), n(s,ai) and ns,
and in how they update the collected statistics. Below, a one-player game is used
to give examples of how these UCT variants are applied. The examples consider
that statistics are stored at the action level. Figure 2.11 represents the search tree
of the one-player game that would be built when transposition tables are not used,
and on which UCT0 can be applied. Figure 2.12 represents the search graph of the
one-player game that would be built using transposition tables, and on which all
other UCT versions can be applied. Note that this is a one-player game, therefore

44 Search Techniques

������,��,��

���,��,��

������

��,	

������,��,��

���,��,��

��,

��� �� ��
 �����
 ��

��

�� ��

�

�� ��

���� �� ��

��,�

��,�
�

��,�

��

�� ��

Figure 2.11: Application of UCT on a search tree built without using a transposition table.

the action subscript indicating the player is always 1. The second action subscript
is used to discriminate among Player 1’s actions.

UCT0. Without transposition tables, this variant computes the UCT value of an ac-
tion of a player by considering only the statistics collected in the node reached
by performing the exact sequence of actions selected so far. If the same state
can be reached with a different sequence of actions, the statistics collected by
performing such sequence are memorized in a different node, which is not con-
sidered by UCT0. Moreover, at the end of a simulation, UCT0 only updates
the statistics of the actions in the nodes visited during the simulation. UCT0
can be applied to the tree in Figure 2.11. For example, to compute the UCT
value of action a1,2 in node S, UCT0 would compute the terms in the UCT
formula as follows:

q̄(s4,a1,2) =
qSum(S,a1,2)

n(S,a1,2)

n(s4,a1,2) = n(S,a1,2)

ns4 = n(S,a1,2) + n(S,a1,4)

(2.7)

Note that here the notation qSum(S,a1,j) and n(S,a1,j) is used to specify that
only the statistics of action a1,j in the particular node S are considered, even
if there might be other nodes corresponding to the same state. The figure also
gives an example of how backpropagation is implemented for UCT0. If the
sequence of actions a1,0, a1,1, a1,2, a1,3 (i.e. the edges represented in bold) has

2.5 — MCTS Enhancements 45

������,��,��

���,��,��

��

�� �	

�
 �� ��

�
,�

�
,

��,�

������,��,��

���,��,��

�

�������,��,��

���� ,��,��

�������,��,��

���� ,��,�� ��,� ��,�

�′
��

�� ��

�������,��,	�

����,��,	�

�
,�

�������,��,
�

����,��,
� �
,�

��

��

��� ���

��,�

Figure 2.12: Application of UCT1, UCT2, UCT3 and UCT4 on a search graph built using
a transposition table.

been visited during the simulation, only the action statistics in the gray nodes
are updated.

UCT1. This variant is the same as UCT0, except that transpositions are taken into
account. This means that the computation of the UCT value of an action in
a state considers all the statistics accumulated for such state, even the ones
obtained by reaching it from a different path. The backpropagation phase is
the same as in UCT0, i.e. the payoff obtained at the end of a simulation is used
to update statistics only for the nodes on the traversed path.3 As an example,
UCT1 can be applied to the search graph in Figure 2.12. With UCT1, if
a1,0, a1,1, a1,2, a1,3 is the sequence of simulated actions, during backpropagation
only the statistics in the gray nodes are updated. Moreover, the terms q̄(s4,a1,2),
n(s4,a1,2) and ns4 needed to compute the UCT value of action a1,2 in node S
are obtained in the exact same way as for UCT0, the difference being that
node S now contains all the statistics ever collected for the actions in state s4.

UCT2. For this variant, the statistics update during backpropagation is the same
as for UCT1. The difference is that, when computing the estimated value of
an action ai for player i in state s UCT2 uses the expected value of player
i for the state s′ reached by performing ai in s. The node corresponding to
state s′ contains at least the same samples as the node associated to s, but

3Note that with transposition tables a node might have more than one parent, therefore it
would be possible to backpropagate the payoff of the simulation also through the paths of all other
parents.

46 Search Techniques

it might contain even more samples, because it might have been visited from
other paths as well. Therefore, with more samples, the value estimate of an
action would be more accurate. As an example, if UCT2 is applied to the
search graph in Figure 2.12, the computation of the UCT value of action a1,2

in node S would use the following terms:

q̄(s4,a1,2) =
qSum(S′′,a1,3) + qSum(S′′,a1,7)

n(S′′,a1,3) + n(S′′,a1,7)

n(s4,a1,2) = n(S,a1,2)

ns4 = n(S,a1,2) + n(S,a1,4)

(2.8)

Note that node S′′ might have been visited from the node with state s5 as
well, therefore its statistics might be based on more samples than the ones in
S. However, also note that for the visits of state s4 and action a1,2 UCT2
still uses the statistics memorized in node S instead of the ones in S′′. An
alternative would consist in using the statistics of S′′ to also compute the
visits, as shown below:

n(s4,a1,2) = n(S′′,a1,3) + n(S′′,a1,7)

ns4 = n(S′′,a1,3) + n(S′′,a1,7) + n(S′′,a1,5) + n(S′′,a1,6)

(2.9)

This implementation was used by Kocsis, Szepesvári, and Willemson (2006a)
when performing MC search with transposition tables. However, Childs et al.
(2008) note that in MCTS this choice might lead the estimate for the value of
a1,2 in S to converge to the wrong value. This happens especially if state S′′
has been visited mostly from other paths that did not include S as its parent.

UCT3. This variant is similar to UCT2, as it follows the same idea of comput-
ing the value of an action in a state s using the expected value of the state
reached by performing such action in s. However, UCT3 further refines the
estimated values of the actions by exploiting for each node the information of
all its children recursively. This approach can be implemented by modifying
the backpropagation phase with respect to the UCT approaches presented so
far. During backpropagation, UCT3 updates each action ai visited in the sim-
ulation using the expected value of the node reached by the action, instead of
the actual simulation result. Moreover, whenever the statistics of an action are
updated in a node, the update is recursively propagated backwards through
all the actions that lead to the updated node. To give an example, looking
at Figure 2.12, after a simulation that visited actions a1,0, a1,1, a1,2, a1,3, not
only the statistics of the actions represented with a bold edge will be updated,
but also the ones indicated by a dashed edge. With this particular update
during backpropagation, the computation of the UCT value of an action can
be performed in the same way as for UCT0 and UCT1, thus using the action
statistics memorized in the node where the action is being evaluated. The dif-
ference will be that such statistics have been updated considering the statistics
of all descendants of the current node.

2.5 — MCTS Enhancements 47

�������

�⃗
���

∗

���������

Reused part of

the tree

Discarded part of

the tree

Joint action

performed
after turn ���

Figure 2.13: Tree reuse in MCTS.

Childs et al. (2008) compared all the presented variants on an artificial game
tree, showing that the ones implemented for transposition tables (UCT1, UCT2 and
UCT3) outperform the basic UCT0 algorithm that does not consider transpositions.
Which variant among UCT1 UCT2 and UCT3 is more suitable seems to depend on
the game. On an artificial game tree UCT2 performs slightly better than UCT1 and
UCT3 performs slightly better than both UCT1 and UCT2. However, UCT3 requires
a time consuming procedure to update statistics, therefore its usage is recommended
for games where the time required to update the nodes is negligible when compared
to the time necessary to simulate the game.

2.5.4 Tree Reuse

MCTS is used to select which action to play in each turn of a game. Whenever the
search for a new turn starts, some implementations of MCTS simply discard the tree
built in the previous turn and start building a new one from scratch. However, part
of the information stored in the tree might still be relevant for the new turn as well,
and it can be used to guide the search for the new turn instead of starting it without
any knowledge. Tree reuse consist in keeping part of the tree and the corresponding
memorized statistics in-between game turns. This search enhancement has been
successfully applied in Lines of Action (Winands et al., 2010), TwixT (Steinhauer,
2010), Ms. Pac-Man (Pepels et al., 2014) and in GVGP (Soemers et al., 2016).

Figure 2.13 shows how tree reuse works. The depicted tree has been created
during the search at turn trn. When the joint action ~a∗trn is performed at the end
of turn trn the tree node that can be reached by performing such action is already
part of the search tree. Therefore, when starting the search for turn trn + 1 this
node can be used as the new root and its subtree, together with all the memorized
statistics, can be reused during the new search. The old root, the siblings of the new
root and their subtrees, which are not relevant anymore, can be discarded.

48 Search Techniques

Transposition table

��
….

�������� � 1 → ���������� � 0

��
….

�������� � 1 → ���������� � 1

��
….

�������� � 1 → ���������� � 0

��
….

�������� � 1 → ���������� � 1

�	
….

�������� � 1 → ���������� � 0
!

�

….

�������� � 1 → ���������� � 0

��
….

�������� � 1 → ���������� � 1

��
….

�������� � 2 → ���������� � 1

�������

⃗���
∗

Joint action

performed after
turn ���

��

Undiscovered

edge

���������

��

�	��

����

��

�	

��

�

Figure 2.14: Example of graph reuse in MCTS with transposition tables.

In non-deterministic games, however, keeping part of the tree without any mod-
ification might have some negative effects. As mentioned in Subsection 2.3.1, the
nodes in the search tree of a non-deterministic game might correspond to more than
one possible state. When the root is initialized in turn trn+1 with the node created
in the previous turn the exact state it corresponds to is known, because an action
has been played in the real game. However, when the node was created in turn trn
it might have corresponded to multiple states, therefore the information memorized
in it and in its subtree might not be fully representative of the new root state at
turn trn+ 1. A solution to this problem was proposed by Pepels et al. (2014), and
it consists in decaying the statistics in the reused part of the tree before starting
the search for the new turn. In this way, old statistics will have less impact on the
new search, while at the same time providing it some guidance. The simplest way
to decay statistics consists in multiplying them with a decay factor γ ∈ [0, 1]. For
example, if for each action ai of each player i in a state s we are keeping the sum of
payoffs obtained so far by playing the action, qSums,ai , and the number of times the
action has been visited, ns,ai , Formula 2.10 shows how these statistics are updated
in order to decay them.

qSum(s,ai) ← γ × qSum(s,ai)

n(s,ai) ← γ × n(s,ai)

(2.10)

The idea of tree reuse can be applied also to transposition tables. In this case
it would be more appropriate to call it graph reuse, because transposition tables

2.6 — Discussion 49

represent the search tree as a graph. As we can do for the search tree, we can reuse
information in a transposition table from one turn to the next. The difference is that
for a transposition table it is not immediate to recognize which entries (i.e. nodes
in the game graph) will be relevant for the subsequent turn.

An example of implementation of graph reuse for MCTS is shown in Figure
2.14. This is the implementation used by CadiaPlayer (Finnsson, 2012b), the
agent developed for the Stanford GGP competition. This agent builds a game tree
where each node contains a reference to the corresponding entry in the transposition
table. Therefore, more nodes can point to the same table entry. An entry in the
transposition table records all information about the corresponding state and keeps
a counter count of all the nodes in the tree that reference to it. Like for tree reuse,
at the end of a turn trn, the root node for the search in turn trn + 1 is initialized
with the node reached by performing the selected joint action ~a∗trn. At this point the
old root, the siblings of the new root and all their descendants (i.e. the gray nodes
in the figure) are removed from the tree and for each removed node the counter
of the corresponding table entry is decremented by 1. The figure shows for each
table entry how the counter at the end of turn trn, counttrn, is updated before the
start of turn trn + 1, counttrn+1. Table entries that are not referenced in the tree
anymore, therefore with counttrn+1 = 0, are deleted from the transposition table.
These entries are colored in gray in the figure.

An issue with this implementation is that in-between turns some nodes might
be removed from the transposition table even though they are still relevant for
the search. This happens when a state that is still reachable in the new turn has
been discovered only from the part of the tree that is being deleted at the end of
the previous turn. For example, in Figure 2.14 the search has not discovered the
dashed edge yet. Therefore, the table entry for state s4 is erroneously identified as
useless and removed from the transposition table. A new table entry will be created
whenever the edge will be discovered. However, all the useful statistics accumulated
in previous turns are lost.

An alternative solution to implement graph reuse is to record for each table entry
the last turn in which it was visited. Before the start of a new turn, the only entries
that are deleted from the transposition table are the ones that have not been visited
in the last b turns. This solution does not completely avoid the risk of deleting
table entries of states that are still reachable in later turns. However, it allows to
control this risk by tuning the parameter b. Low values for b decrease the probability
of keeping useless entries in the table, reducing space occupation, but at the same
time they increase the probability of discarding entries that are still relevant. The
opposite situation is caused by high threshold values.

2.6 Discussion

This chapter introduced relevant search techniques for this thesis, with focus on
MCTS and its enhancements. The aim of the thesis is to investigate how MCTS
can be used to support AGI in games, and GGP has been chosen as a suitable test
domain for this task. The next step requires to identify environments that facilitate

50 Search Techniques

the testing of multiple search techniques over possibly large and heterogeneous sets
of games.

An option could be implementing from scratch various game environments that
present different characteristics. However, this would require a considerable pro-
gramming effort. Another option could be taking publicly available implementa-
tions of different game environments from different sources. Although, this would
require effort in adapting the search agent to the characteristics of each domain
implementation.

A solution to these problems comes for the effort of the research community in
providing ready-to-use test environments for GGP. An ideal GGP test environment
provides a large set of games that present different characteristics, and are repre-
sented with a common language. In this way, only the effort of implementing a single
agent that is able to interpret this language is necessary.

Examples of such environments have been discussed in Chapter 1. Among them,
two have been chosen for this thesis. The first is the environment of the Stanford
GGP project, which provides a selection of abstract perfect-information games. The
second is the framework of the GVG-AI project, which provides a selection of arcade-
style video games. These two environments, together with their characteristics, and
the language they use to describe games are presented in Chapter 3.

Chapter 3

Test Environments

Parts of this chapter are based on:

• Sironi, Chiara F., and Winands, Mark H.M. (2017). Optimizing Propo-
sitional Networks. Computer Games, Vol. 705 of CCIS, pp. 133–151.

• Soemers, Dennis J.N.J. and Sironi, Chiara F. and Schuster, Torsten and
Winands, Mark H.M. (2016). Enhancements for Real-time Monte-Carlo
Tree Search in General Video Game Playing. Computational Intelligence
and Games (CIG), 2016 IEEE Conference on, pp. 436–443.

This chapter describes the test environments used in this thesis: the Stanford
General Game Playing (Stanford GGP) project and the General Video Game AI
(GVG-AI) project. The first one focuses on GGP for abstract games, while the
second on GGP for arcade-style video games. For each of the two environments, this
chapter introduces the language used to describe the corresponding games, describes
how the execution of a game run is managed, presents the rules of the associated
competition and summarizes the common implementation details of the agents that
are tested in the subsequent chapters. The Stanford GGP project is presented in
Section 3.1, while the GVG-AI project is presented in Section 3.2. Finally, Section
3.3 discusses research directions worth investigating to improve the performance of
MCTS for these environments.

3.1 Stanford General Game Playing

The Stanford GGP project (Genesereth and Thielscher, 2014) focuses on the creation
of game-playing agents that are able to tackle a wide variety of abstract games
assuming no-prior knowledge about them. Agents are provided with the game rules
specified in the Game Description Language (GDL) (Love et al., 2006), and have
a limited amount of time (usually a few seconds) for each turn to select a move.
To promote research on the topic, since 2005 an annual GGP competition has been
established (Genesereth et al., 2005) as part of the project. Due to this competition

52 Test Environments

(cell 1 1 o)
(cell 1 2 b)
(cell 1 3 b)
(cell 2 1 o)
(cell 2 2 x)
(cell 2 3 x)
(cell 3 1 x)
(cell 3 2 b)
(cell 3 3 b)
(control oplayer)

Figure 3.1: Representation of a state of Tic Tac Toe with GDL.

format GGP agents can be directly matched against each other to compare the
performance of the approaches they use.

More details about the Stanford GGP project are given in the following subsec-
tions. GDL is presented in Subsection 3.1.1. Next, the game management procedure
adopted to match agents against each other is described in Subsection 3.1.2. Sub-
section 3.1.3 introduces the Stanford GGP competition. Finally, Subsection 3.1.4
summarizes the main characteristics of the game-playing agent developed and tested
in this thesis.

3.1.1 Game Description Language

GDL is a Prolog-based language proposed to represent game rules in a compact
and modular format (Love et al., 2006). It can be used to represent any finite,
deterministic, perfect-information, turn-based, simultaneous-move game with any
number of players. GDL can also model sequential-move games by considering them
as simultaneous-move games where players that do not have to move in a given turn
return a “null” action with no effect on the game. This “null” action in GDL is
represented with a special keyword, noop. There exist also multiple extensions of
GDL, which enable game authors to specify larger sets of games. GDL-II (Thielscher,
2011), which stands for GDL with Imperfect Information, gives the possibility to
represent any finite game with randomness and imperfect information. GDL-III (i.e.
GDL-II with Introspection) (Thielscher, 2017) further extends GDL-II adding the
possibility to represent epistemic games, i.e. games where the rules depend on the
knowledge of the players. Finally, rtGDL (Real-Time Game Description Language)
(Kowalski, 2016) builds upon GDL-II adding the possibility to represent real-time
games, where time-based events can be modeled. This thesis focuses on the part of
the Stanford GGP project that deals with perfect information, turn-based games,
therefore using only GDL and none of its extensions.

A state in GDL is represented as a set of true propositions. Figure 3.1 shows
a state of Tic Tac Toe with the corresponding representation in GDL. To give an
example, the GDL proposition (cell 1 1 o)means that the cell at position (1, 1) in
the grid is marked by the player that uses the symbol o, while the proposition (cell
1 1 b) means that the cell at position (1, 2) in the grid is blank. The proposition

3.1 — Stanford General Game Playing 53

(control oplayer) means that in the state the player that should move next is the
one that uses the symbol o.

When the game rules are specified in GDL, variables are used to reduce the length
of game descriptions. A variable in GDL always starts with a question mark, for
instance ?x. GDL also provides 101 game-independent constants that represent the
integers from 0 to 100. Rules in GDL are represented with the prefix notation. For
example, the rule (?f1 <= ?f2, ..., ?fn) is the equivalent of the logic implication
f1 ⇐ f2∧ ...∧fn, where ?f and f represent propositions. Special relations, which are
game independent, are used to define different game elements and the game dynam-
ics (i.e. the goals, the legal actions, the transition function,...). Moreover, a finite
arbitrary number of other relations can be defined by the game author to specify
game-dependent concepts that support the definition of the game-independent rela-
tions. The game-independent relations, identified by particular keywords, are listed
below. Parts of the GDL game description of Tic Tac Toe are used as examples.
The complete game description can be found in Appendix A.1.

• (role ?r): specifies that ?r is a role in the game. This relation is used to
determine which players are participating in the game. For example, the GDL
rules for Tic Tac Toe include the following definitions of roles:

(role xplayer)
(role oplayer)

• (input ?r ?a): specifies that ?a is a feasible action for player ?r in the game.
In Tic Tac Toe, for example, a player ?r can mark any cell or perform the
noop action. This is specified by the following relations:

(<= (input ?r (mark ?x ?y)) (index ?x) (index ?y) (role ?r))
(<= (input ?r noop) (role ?r))

In Tic Tac Toe, the game-dependent index relation is used to indicate that
?x and ?y have to be feasible indices for the game. An integer ?x is a legal
index for Tic Tac Toe if the game description contains the proposition (index
?x) (e.g. the game description of Tic Tac Toe specifies (index 1), (index
2), and (index 3), because the grid has three rows and three columns.).

• (base ?f): specifies that ?f is one of the propositions that are used to represent
the state of the game. The base relation in Tic Tac Toe is specified as follows:

(<= (base (cell ?x ?y b)) (index ?x) (index ?y))
(<= (base (cell ?x ?y x)) (index ?x) (index ?y))
(<= (base (cell ?x ?y o)) (index ?x) (index ?y))
(<= (base (control ?r)) (role ?r))

This means that a GDL state of Tic Tac Toe is represented by propositions
of the form (cell ?x ?y b), (cell ?x ?y x) and (cell ?x ?y o), where
?x and ?y have to be a pair of feasible indices, and propositions of the form

54 Test Environments

(control ?r), where ?r has to be a feasible role in the game. The symbols b,
x and o mean that a cell is blank, marked by xplayer and marked by oplayer,
respectively.

• (init ?f): specifies which propositions ?f are true in the initial state of the
game. For example, in Tic Tac Toe we have the following relations:

(init (cell 1 1 b))
(init (cell 1 2 b))
...
(init (cell 3 3 b))
(init (control xplayer))

These relations are stating that in the initial state of Tic Tac Toe each cell in
the grid is blank and that the first player to move is xplayer.

• (true ?f): specifies that proposition ?f is true. In GDL, all the propositions
?f that can be an argument for the true relation are the ones identified by
the base relation, therefore propositions of the form (true ?f) are referred to
as base propositions. The true relation usually appears in the body of GDL
rules and is used to define which proposition have to be true in the current
state in order for the relations in the head of the rule to be true. See below
the examples for the legal and next relations.

• (legal ?r ?a) specifies that an action ?a is legal for player ?r. This relation
usually appears as the head of the rules that specifies which proposition have
to be true in a state in order for the move to be legal for the player. For
example, in Tic Tac Toe the legal relation is used in the following rules:

(<= (legal ?r (mark ?x ?y))
(true (cell ?x ?y b))
(true (control ?r)))

(<= (legal xplayer noop)
(true (control oplayer)))

(<= (legal oplayer noop)
(true (control xplayer)))

The first rule specifies that the action (mark ?x ?y) is legal for player ?r
if both the propositions (true (cell ?x ?y b)) and (true (control ?r))
are true in the current state. This means that a player ?r can mark the cell
at position (?x, ?y) only if the cell is blank and it is her turn to move. The
second and third rule are specifying that a player can perform the noop action
only in states where it is the turn of the other player to move.

• (does ?r ?a): specifies that player ?r performs action ?a. In GDL, all the
possible pairs of arguments (?r ?a) for the does relation are the ones identified

3.1 — Stanford General Game Playing 55

by the input relation, therefore propositions of the form (does ?r ?a) are
referred to as input propositions. The does relation usually appears in the
body of GDL rules with the next relation in the head and is used to define
which action the player has to perform in the current state in order for the
proposition in the next relation to be true in the next state. See below the
example for the next relations.

• (next ?f): specifies that proposition ?f is true in the next state. This relation
usually appears as the head of the rules that specify which propositions have
to be true in the current state in order for a proposition to be true in the next
state. Two examples of rules with the next relation in the Tic Tac Toe game
description are the following:

((<= (next (cell ?x ?y x))
(does xplayer (mark ?x ?y))
(true (cell ?x ?y b)))

(<= (next (control xplayer))
(true (control oplayer)))

The first rule is stating that the cell at position (?x ?y) will be marked with
the symbol x in the next state if in the current state the cell is blank and
xplayer marks it. The second rule is stating that in the next state it will be
the turn of xplayer if in the current state it is the turn of oplayer. Similar
rules can be defined for oplayer, and other rules can be defined to specify
which conditions are necessary in the current state for a cell to remain blank
or remain marked in the next state.

• terminal: specifies that the current state is terminal. This relation usually
appears as the head of the rules that define for which conditions a state is
terminal. For example, in Tic Tac Toe we have the following rules:

(<= terminal (line x))

(<= terminal (line o))

(<= terminal (not open))

These rules are stating that the game will end in states where there is either
a line of three os or a line of three xs, or no blank cell for the players to mark.
The relations line and open are game-specific relations defined by the game
author.

• (goal ?r ?s): specifies that player ?r gets score ?s in the current state. This
relation appears as the head of the rules that define for which conditions a
player gets a certain score. In GDL the goal relation must always be defined
for terminal states, while it is not compulsory to define it for non-terminal

56 Test Environments

states. The values defined for the players’ scores in GDL are always included
in the interval [0, 100]. Below are some of the rules that specify the goal relation
in Tic Tac Toe:

(<= (goal xplayer 100)
(line x))

(<= (goal xplayer 50)
(not (line x))
(not (line o))
(not open))

(<= (goal xplayer 0)
(line o))

These rules are specifying the scores for xplayer in a terminal state. The
player will get a score of 100 if there is a line of x marks, a score of 0 if there
is a line of o marks, and a score of 50 if there is no blank cell left and none
of the players formed a line with her marks. Similar rules can be defined to
specify the scores for oplayer.

By processing game rules written in GDL, which constitute a logic program, a
player is able to reconstruct the dynamics of a finite state machine for the game.
This state machine can be seen as the game model that can be used to simulate the
game. The initial state can be directly computed using the init relation. Given
the current state, identified by the base propositions that are true, the truth value
of the propositions identified with the terminal, goal and legal relations can
be computed. If also the truth value of the input propositions is given (i.e. the
action that each player is performing is known), the truth value of the propositions
identified with the next relation can be computed as well. This will give the set of
base propositions that are true in the next state. This procedure can be repeated
until a terminal state is reached. As an advantage over memorizing and using the
state machine directly, GDL reduces both the space required to memorize game
rules and the computational cost of reasoning on them. Agents implemented for the
Stanford GGP competition have to include a component that interprets the GDL
rules to build a state machine (i.e. the game model) and reasons on them in the way
described above. This component is often referred to as the reasoner .

Note that an alternative to providing the GDL game rules to the agents would
be to give them the game model directly, like described in Subsection 3.2.2 for the
GVG-AI framework. However, having access to the GDL rules enables agents to
extract knowledge from them and use it to enhance the search. An example of work
in this direction is the one of Schiffel (2011), which investigates a knowledge-based
approach for GGP. He proposes to use heuristic search with an evaluation function
for non-terminal states that is generated automatically by analyzing the GDL game
rules. This analysis determines how likely it is for a terminal or goal proposition to
become true from the current state being evaluated. Another example is the work of
Finnsson (2012b), which proposes the Predicate-Average Sampling technique (PAST)

3.1 — Stanford General Game Playing 57

and the Feature-to-Action sampling Technique (FAST). PAST uses the description
of the state as a set of GDL propositions to bias the play-out in a way similar to
MAST, but considering statistics of proposition-action pairs instead of actions only.
FAST, instead, extracts board game features (i.e. pieces types and cells) from the
rules and uses them to evaluate game states.

3.1.2 Game Management
To enable GGP agents to compete against each other there is the need for a mediator
(or game manager) that takes care of managing the match (i.e. an instance of a
game). Such game manager should communicate the rules of the game to the agents
participating in the match, keep track of the state of the game, update it with the
moves played by the agents, make sure that agents play legal moves and abide to
the game rules, and finally determine the winner of the game. The Stanford GGP
project defines a communication language that the game manager and the agents
can use to set up and perform game matches (Genesereth and Thielscher, 2014).
The communication takes place through HTTP messages and each agent must be
connected to the internet, listening on a particular port. Before starting a match,
the game manager must know the IP address and port of each of the participating
agents and must have access to a database where to retrieve the GDL description of
the game to be played.

When performing a match, the game manager uses the following types of mes-
sages to communicate with each agent that should take part in the match:

• info(): this message is used to check if an agent is ready to play a new match.
If the agent is ready it should respond with available, otherwise with busy.

• start(id, role, description, start-clock, play-clock): this message com-
municates to the agent that a new match is starting, and gives information
about the match. More precisely, it gives the agent the unique id of the match
that is starting, the role that the agent must play in the match (taken from
the game description) and the game description in GDL. In addition, a start-
clock, which defines the amount of time in seconds that the agent has available
to prepare to play the game, and a play-clock, which defines the amount of
time in seconds that the agent can spend on selecting an action in each turn
are given. After receiving this message, and before the start-clock is over, the
agent should respond to the game manager with a message saying that it is
ready to play the match.

• play(id, move): before each turn, the game manager sends this message to
each agent to request an action. The message specifies the id of the match it
refers to, and the joint action (move) performed by all agents in the previous
turn. After receiving this message, each agent can use the joint action to
update its representation of the state. Subsequently, before the play-clock is
over, each agent has to reply to the game manager with the action it wants to
play. If the agent does not respond in time, the game manager will substitute
its action with a random legal one. Note that in all messages the actions of
each player are represented as GDL proposition.

58 Test Environments

• stop(id, move): this message is used to notify the agents that a match is
over. The message contains the id of the match it refers to and the last played
joint action (move). Agents should respond to this message with done.

• abort(id): this message is used by the game manager to notify the agents that
the match with the given id is terminating abnormally. After receiving this
message, agents can stop their search and return to a ready state, returning to
the game manager a message saying that they are done.

By setting up a game manager and using this protocol, agents can be matched
and compared against each other. It is interesting to mention that this protocol has
a possible drawback. If agents are running on different machines during a match,
their performance might be influenced by the hardware specifications. For agents
that use search-based techniques, for example, better hardware would mean that
they can visit a bigger portion of the search space, and possibly improve the quality
of the selected actions.

3.1.3 Competition
To give a common test bed to GGP agent developers and also to promote research on
the topic, the Stanford GGP competition initiated in 2005 (Genesereth et al., 2005).
This competition tests all participating agents on a series of games with different
levels of difficulty and different characteristics (e.g. single- and multi-player, com-
petitive and cooperative, etc...). Matches are run following the protocol described
in Subsection 3.1.2. Usually, during the competitions agents are not only tested for
their ability to win games, but also for their ability to play legal moves consistently
and for being able to respect the time constraints (i.e. the start- and play-clock
settings). In addition, because one of the aims of GGP is to foster on-line learning
ad on-line knowledge acquisition about the game that is being played, the start- and
play-clock are usually set to a few seconds for each played game.

Over the years, many agents have taken part in the competition and various
different approaches have been tested. The first editions of the competition were
dominated by agents that were using traditional tree search approaches. The win-
ners of 2005 and 2006, ClunePlayer (Clune, 2007) and Fluxplayer (Schiffel
and Thielscher, 2007) were using minimax search combined with heuristic functions
learned automatically. Since 2007 the top agents have all been based on some vari-
ants of MCTS. CadiaPlayer (Björnsson and Finnsson, 2009) was the winner in
2007, 2008 and 2012. Ary (Méhat and Cazenave, 2010) won in 2009 and 2010.
Turbo Turtle, the agent developed by Sam Schreiber, won in 2011 and 2013. The
champion of 2014 was Sancho (Draper and Rose, 2014) and the one of 2015 was
Galvanise, developed by Richard Emslie. An exception was WoodStock (Piette,
2016), the winner of the last competition ran so far, in 2016. This agent was not
using MCTS, but was transforming the GDL game description into a Stochastic
Constraint Satisfaction Problem (SCSP). The obtained SCSP was then decomposed
into one-step SCSPs (also known as µSCSPs), one for each game turn. A stochastic
constraint solver was applied on each µSCSP to find feasible solutions, which were
then evaluated with UCT sampling to find the ones with highest payoff.

3.1 — Stanford General Game Playing 59

3.1.4 GGP Base Agent

Agents for the Stanford GGP project can be implemented in any programming lan-
guage as long as the communication protocol is respected. However, to facilitate
the development of the agents, a code base is provided, the General Game Playing
Base Package (GGP Base Package) (Schreiber and Landau, 2016). The GGP Base
Package is implemented in Java and offers various functionalities, among which the
implementation of a game server that manages game matches and the implementa-
tion of game-playing agents. The code provided for the agents already implements
the communication protocol defined in Subsection 3.1.2 and a method to reason
on the GDL rules and interpret them as a state machine. This code can be easily
extended to implement and test different search methods.

The MCTS agent used in the experiments presented in the next chapters has
been developed extending the code in the GGP Base Package. Given that GDL
represents each game as being simultaneous move, this agent performs the search in
every turn of the game. Therefore, when the game has actually sequential moves the
agent keeps pondering in the opponent’s turn as well. The main characteristics of
this agent are summarized below. First, details about the implementation of UCT
are given. Subsequently, the representation of the tree as a transposition table is
discussed, together with all the implementation aspects of MCTS that are influenced
by this representation.

Implementation of UCT

Given that the games played by the agent are expressed in GDL, which repre-
sents them as simultaneous move games, the agent implements the DUCT selection
strategy (i.e. Decoupled UCT for simultaneous move games, Chapter 2, Subsec-
tion 2.4.1). The successful application of DUCT to GGP (Björnsson and Finnsson,
2009; Tak et al., 2014a), together with the reduced space usage with respect to
SUCT, is what motivates its use as selection strategy. When applied to games that
have in fact sequential moves, DUCT behaves exactly like the standard implementa-
tion of UCT. Note that enhancements of the UCT selection strategy that modify the
UCT value computed for the actions (e.g. RAVE and PH) can be easily implemented
keeping the same decoupled structure of DUCT.

The selection strategy of the MCTS agent is enhanced with the definition of
the FPU of yet unexplored moves (see Subsection 2.5.1), and with the random tie-
breaking rule to choose among actions that have the same value during selection
(see Subsection 2.4.1). More precisely, to implement the random tie-breaking rule
the agent defines a value offset parameter VO . When selecting an action in a state,
it will select a random action among all the actions that have the value less than
VO away from the maximum computed action value. For example, when selecting
an action ai in state s for player i using UCT, a random action will be selected in
the following set of actions: {ai ∈ A(s,i) : UCT (s, ai) ∈ [UCTmax −VO ,UCTmax]},
where UCTmax = maxai∈A(s,i)

(UCT (s, ai)). For all the experiments, the default
value of FPU is set to 1, and the default value of V O is set to 0.01. Note that these
settings consider that the payoffs of the agent are rescaled to [0, 1] when using UCT.

60 Test Environments

Implementation of MCTS and Transposition Tables

The agent represents the search tree as a transposition table using a hash map.
The entire state is used as hash key and the hash index is computed directly on
such state. Depending on the type of reasoner that the agent is using, a state is
represented differently and its representation influences how the hash function is
implemented. Two types of state representations can be distinguished:

Set of GDL propositions. A state is represented as a set of GDL propositions
that are true in it. The hash value of such state is computed as the sum of
the hash values of each proposition that is true in the state. The hash value of
a proposition is computed with the default Object.hashCode() method, called
on the class that represents a GDL proposition in the GGP Base Package.

Sequence of bits. A state is represented as a sequence of bits, where each bit
corresponds to a GDL base proposition. A bit is set to 1 if the corresponding
proposition is true in the state and to 0 otherwise. The hash value of such a
state is computed with the default method provided by the class that is used
to represent the sequence of bits, namely the org.apache.lucene.util.OpenBitSet
class of the Apache Lucene library.1

Using the entire state as hash key ensures that the transposition table does not
suffer from type-1 errors. The risk of type-2 errors is still present, although easy to
detect by simply comparing the two states that have the same hash index. When
such an error occurs, the involved states are memorized at the same index of the
hash map using a linked list. To be also noted is that, because GDL is used to define
the game model, the agent does not have to deal with the GHI problem directly. If
the history of moves that led to a certain state is relevant, GDL already represents
it as part of the state. The agent can thus assume that states that have the same
GDL representation are indeed identical states, with the same legal actions and the
same value.

The use of transposition tables influences various aspects of the implementation
of MCTS. First of all, because of transposition tables, the agent in this thesis adopts
“open-loop” MCTS even when they are playing deterministic games. Given that the
state representation is used as key for the hash map to retrieve the corresponding
tree node, it would be necessary to memorize all next states in the parent node so
that they could be used as keys to retrieve the child nodes. Therefore, to reduce the
amount of memory used by the transposition table, whenever an action is chosen in
a node the next state is generated with the game model, and the corresponding tree
node is retrieved from the transposition table using such state as key.

Also the implementation of UCT is affected by the transposition table. Among
the UCT variants for transposition tables presented in Subsection 2.5.3 the agent in
this thesis uses UCT1. Although UCT1 seems to perform slightly worse than UCT2
and UCT3, the performance of all three variants is still close (Childs et al., 2008).
Moreover, UCT1 it is the one with the most efficient computation of the UCT value
when games are all modeled with simultaneous moves and DUCT is implemented.

1https://lucene.apache.org/core/4_8_1/

3.2 — General Video Game AI 61

To compute the value of an action ai for player i in a node, UCT1 uses the statistics
memorized for the action itself, which are already recorded as a single value. UCT2
and UCT3, instead, use the statistics of the actions available in the nodes reached
by performing ai (UCT3 even does this recursively). In a simultaneous move game
represented with DUCT there might be multiple next states reached by performing
the action ai in a node, depending on the moves that other players perform. This
would mean that to obtain the expected value of this action it is necessary to sum
over all these nodes, which is time consuming.

The final aspect that is influenced by the use of a transposition table is the
implementation of graph reuse. The agent in this thesis implements graph reuse as
discussed in Chapter 2, at the end of Subsection 2.5.4. Each table entry is stamped
with the last turn in which it was visited. At the beginning of a new turn it is
eliminated if it has not been visited in the past b turns. For the agent, b is set to
2. Other than eliminating entries that have not been visited in the last 2 turns, no
further decay of statistics memorized in the transposition table is performed between
game turns, because all the games the agents deals with are deterministic.

3.2 General Video Game AI

The GVG-AI project was born to foster research on GVGP (Levine et al., 2013).
It focuses on the creation of gents that are able to play many different 2D arcade-
style real-time video games, which are defined using the Video Game Description
Language (VGDL) (Ebner et al., 2013; Schaul, 2013). As part of the GVG-AI
project, the GVG-AI framework has been developed, which provides researchers with
a common platform for testing their agents. Since 2014, the GVG-AI competition has
been running using this framework. For the first two years, the GVG-AI competition
consisted only of a single-player planning track, while later a 2-player planning track,
a single-player learning track, a game generation track and a level-generation track
have been added (Perez-Liebana et al., 2018).

This thesis focuses on the single-player planning track of the competition. In
the next subsections more details about the GVG-AI project are given, mainly de-
scribing the characteristics that are relevant for this competition track. First, Sub-
section 3.2.1 introduces VGDL. Subsequently, Subsection 3.2.2 explains how games
are managed in the GVG-AI framework, while 3.2.3 describes the structure of the
competition. Finally, the agents used in this thesis are presented in Subsection 3.2.4.

3.2.1 Video Game Description Language

VGDL is a high-level language that describes 2D arcade-style video games in a
concise manner (Ebner et al., 2013; Schaul, 2013). At first, it was used only to define
single-player games. Subsequently, it has been extended for two-player video games
(Gaina, Perez-Liebana, and Lucas, 2016) and for games with real-world physics
(Perez-Liebana et al., 2017). In the rest of this subsection, the focus is on the
aspects of VGDL that are relevant for single-player video games, which are the
video games this thesis considers.

62 Test Environments

Although inspired by GDL, in that it aims at representing a large number of
heterogeneous video games, VGDL presents substantial differences. As opposed to
the abstract games considered by the Stanford GGP project, video games include
non-deterministic behavior, either due to the presence of NPCs or random events.
Moreover, state changes might not only be influenced by the players’ action but also
by NPCs’ actions or by time-based events, which might happen at any moment and
asynchronously. Therefore, a turn-based model it is not sufficient anymore, and a
continuous representation is necessary. In addition, the dynamics of the game might
be defined also by interaction and collisions between the various game elements and
the players, and a video game description language should be able to model this as
well. All these considerations were taken into account when designing VGDL.

VGDL is used to model real-time, non-deterministic games. A game in VGDL
is described as a set of objects that are placed in a two-dimensional space and are
characterized by certain properties and/or behaviors. Objects can move, spawn, dis-
appear, spawn new objects, transform or change properties. They can also interact
with each other by means of collisions, and the consequences of a collision are given
in the VGDL rules. In VGDL two main components are used to specify a game: the
game description and the level description.

The game description defines the game dynamics and the interactions among
game objects. Below, the four main parts in which a game description is divided are
explained. Parts of the game description of the game of Zelda are used as example.
The complete game description for the game can be found in Appendix A.2.

• SpriteSet: defines the objects used in the game, their type and their prop-
erties. A property is defined with the syntax propertyName=propertyValue
and can specify how the object is visualized, how it is affected by the physics
of the game, what its resources are and which parameters control its behavior.
For example, in Zelda this is the definition of an object identified as key:

key > Immovable color=ORANGE img=oryx/key2

Here, Immovable specifies the type of the object, while color=ORANGE and
img=oryx/key2 specify two of its properties. More precisely, the color of
the key is orange and the image used to represent the key in the game is
“oryx/key2.png”. The objects are organized in a tree hierarchy, which is de-
fined by the indentation of each line. Each object inherits the properties of its
ancestors. For example, the following is part of the objects definition in Zelda:

avatar > ShootAvatar stype=sword frameRate=8
nokey > img=oryx/swordman1
withkey > color=ORANGE img=oryx/swordmankey1

Looking at the indentation, it is possible to deduce that avatar is the par-
ent of nokey and withkey, therefore both of them will be avatars of type
ShootAvatar, will be able to use a sword (defined in a separate line of the
description) and have the frame rate set to 8.

3.2 — General Video Game AI 63

• LevelMapping: associates (a subset of) the defined objects to symbols that
can be used to define the initial state of the game in the level description. For
example, in Zelda the following lines are part of the LevelMapping block:

A > floor nokey
w > wall
. > floor

Here, the symbol A represents the agent without a key, nokey, on a floor tile,
w represents the wall object and . represents a floor tile with no other object
on it.

• InteractionSet: defines what happens when there is a collision between two
objects. More precisely, each line in the InteractionSet maps two objects to an
effect that takes place when they collide and can specify optional properties
for this effect. As part of the properties of an effect, a change in score can also
be specified, both positive, for an increase, and negative, for a decrease. Note
that there are no limitations on the value of a score change. Therefore, the
range of score values that can be obtained in GVG-AI is unbounded, unlike
the score values in the Stanford GGP project. As an example, below is part
of the InteractionSet of Zelda:

movable wall > stepBack
enemy sword > killSprite scoreChange=2
avatar enemy > killSprite scoreChange=-1
nokey key > transformTo stype=withkey scoreChange=1 killSecond=True

The first lines means that no movable object can pass through a wall (i.e. it
has to step back). The second line means that whenever an enemy and the
sword collide the enemy is killed and the score of the player is increased by 2
points. The third line means that whenever the avatar collides with an enemy
the avatar is killed and the player loses 1 point. Finally, the fourth line means
that if the avatar without a key (i.e. nokey) collides with the key, then it
transforms into an avatar with the key (i.e. withkey), the player gets 1 point
and the key object disappears.

• TerminationSet: defines the termination conditions for the game. Each line
corresponds to a separate condition, and properties can be optionally speci-
fied for each condition. For example, in Zelda the following two termination
conditions are specified:

SpriteCounter stype=goal win=True
SpriteCounter stype=avatar win=False

The first condition means that whenever the number of goal sprites reaches 0,
i.e. the avatar with the key collided with the goal and the goal disappeared, the
player wins the game. The second condition, instead, means that the player
loses the game whenever it is killed, i.e. the number of avatars in the game
reaches 0.

64 Test Environments

wwwwwwwwwwwww
wA.......w..w
w..w........w
w...w...w.+ww
www.w2..wwwww
w.......w.g.w
w.2.........w
w.....2.....w
wwwwwwwwwwwww

Figure 3.2: Representation of a level of Zelda with VGDL.

The level description describes the layout of the two-dimensional space of the
game and the initial position of all the objects. It consists in a text file with a
matrix of symbols, each of which represents a different type of object in the game.
The symbols used in the level description are (a subset of) the ones defined in
the LevelMapping block of the game description. Note that an arbitrary number of
different levels can be designed for the same game. As an example, Figure 3.2 gives a
level description for the game of Zelda and the corresponding graphical visualization.

VGDL is always coupled with software that can parse the game rules and create
the corresponding implementation of the game. Each object defined in the SpriteSet
of the game description corresponds to one of the classes implemented in the soft-
ware. The class of an object is identified by the type specified for it, and the class
parameters correspond to the properties that are defined in the game description for
the object. The effects of collisions specified in the InteractionSet of the game de-
scription are implemented in methods provided in the software. If specific properties
are specified for the effect of a collision, they correspond to parameters of the classes
that implement the effects. The software also contains the implementation of pre-
defined methods that test the termination conditions for the games. Once the game
model has been built, the software can parse the level description and create the
initial state of the corresponding game level by placing the objects at their position
in the grid that represents the space of the game.

3.2.2 Game Management

As opposed to the Stanford GGP project, for which agents can be implemented
independently from the game manager as long as the communication protocol is re-
spected, the GVG-AI project requires agents to be directly integrated in the frame-
work that manages the games. This framework is known as the GVG-AI framework
(Perez-Liebana et al., 2016; Perez-Liebana, 2018), is implemented in Java and of-
fers various functionalities that are necessary to run video games. The fact that
the GVG-AI project requires all agents to be integrated in the GVG-AI framework
means that they all have to run on the same hardware. If compared to game man-
agement in the Stanford GGP project, this set up makes sure that the hardware
characteristics do not influence the relative performance of the agents.

A single-player video game in the GVG-AI framework is managed as follows. The

3.2 — General Video Game AI 65

game flow is discretized into game ticks with a duration of a few milliseconds in order
to simulate the real-time nature of the games. First of all, the framework retrieves
the VGDL game and level descriptions and parses them to build a game model, called
forward model in the framework. This game model contains information about the
initial state of the game and can be advanced to future states using the player’s
actions. With this game model the framework keeps track of the flow of the game,
of the position of the objects and their collisions. It also can detect when the game
is over and how the score of the player changes. At this point, the agent that has
to play the game is created, is assigned to play the avatar role and is given a short
amount of time to prepare to play the game. Once the initialization time for the
agent is over, the framework starts running the game. At the start of each game
tick, the agent is given a copy of the game model and is queried for the next action
to play. Depending on the game, the agent can select an action among a subset
of the following actions: {UP ,LEFT ,DOWN ,RIGHT ,USE ,NIL}. A game tick
usually lasts a few milliseconds, therefore the agent has a short amount of time to
select the next action. Before the end of the game tick, the agent can use its copy of
the game model to simulate the effect of its actions on the game. However, games
might be non-deterministic, therefore there is no guarantee that the state returned
by the game model of the agent will be the same as the one that would be reached
by playing the same action in the actual game. The game continues until a terminal
state is reached or until 2000 ticks have been performed.

Although the concept is similar to the one of the Stanford GGP project, analyz-
ing the way game management is implemented in the GVG-AI framework highlights
substantial differences between the two projects. First of all, in the GVG-AI frame-
work agents have access only to the game model and not to the VGDL description of
the game. Stanford GGP agents, instead, can analyze the GDL game rules directly.
Moreover, the real-time nature of the GVG-AI games poses an extra challenge. Stan-
ford GGP agents have a few seconds to prepare to play the game and then a few
seconds per turn to select an action. In the GVG-AI framework the initialization
time is usually around 1s, while the time to select a move for each tick is just a
few milliseconds. This means that in GVG-AI agents that are based on tree search
algorithms will be able to visit a smaller portion of the game tree. Finally, another
difference is the branching factor. In GVG-AI the set of available actions for the
player contains at most 6 actions, while games developed for the Stanford GGP
project have varying branching factors.

3.2.3 Single-Player Planning Competition

To foster research on GVGP and to provide a common test environment for GVGP
agents the GVG-AI competition has been running since 2014 (Perez-Liebana et al.,
2016). The first editions of the competition only featured the single-player planning
track. This track evaluates the participating agents on a set of singe-player games,
which are not revealed until the competition starts. Each game has 5 different levels,
and the agents have to play each of them multiple times. For the competition, the
initialization time for the agents is set to 1s, while the tick duration is set to 40ms.
If the agent takes more than 40ms to return an action, but less than 50ms, then its

66 Test Environments

action is substituted by the NIL action as a penalty and the game continues. If the
agent takes more than 50ms to return an action, it will be disqualified.

For each played game, the participating agents are ranked according to three
different criteria, listed below in order of importance:

• Wins: number of wins achieved by the agent over all the played runs of the
game.

• Score: average score obtained by the agent over all the played runs of the
game.

• Time: total number of ticks that the agent spent playing all the runs of the
game.

Players are awarded points for each game in the set according to their rank, following
the Formula 1 scoring system. Therefore, players will get 25, 18, 15, 12, 10, 8, 6, 4,
2 or 1 points if they placed first, second, third, etc., respectively. The final winner
is decided by summing for each agent the points gained for each game.

So far, five editions of the single-player planning track of the GVG-AI compe-
tition have taken place, some of which were divided into multiple legs. Many of
the agents that participated in the first edition were based on tree search methods,
including the winner, OLETS (Perez-Liebana et al., 2016), which was using an open-
loop version of MCTS. In later editions of the competition the participating agents
showed a wider variety of approaches. Other than using tree search and MCTS,
like MaastCTS2 (Soemers et al., 2016), the winner of the 2016 edition of the com-
petition, agents started using techniques based on evolutionary approaches and on
hyper-heuristics. An example of the latter category is YOLOBOT (Joppen et al.,
2018), which won several editions of the competition. This agent implements heuris-
tic Best-First Search for deterministic games and MCTS for stochastic games.

3.2.4 GVG-AI Agents
The agents used in this thesis have all been implemented in the GVG-AI framework,
therefore in Java. To play single-player video games, agents have to extend the Ab-
stractPlayer class in the framework and provide the implementation of the following
two public methods:

• Agent(StateObservation so, ElapsedCpuTimer elapsedTimer) a con-
structor for the agent that takes as input the observation of the initial state
containing the game model, and a timer that tells the agent how much time is
available to complete the execution of the constructor. The agent can use this
time to prepare to play the game.

• Types.ACTIONS act(StateObservation stateObs, ElapsedCpuTimer
elapsedTimer): a method in which the agent has to select an action for the
controlled avatar, given the observation of the current state and the timer that
enables the agent to know how much time it has available to complete the
execution of this method. This method is called once per tick to request to
the agent the next move that the avatar has to play.

3.2 — General Video Game AI 67

Using the StateObservation the agent can query the game model and retrieve
information about the game. For example, it can request the current game tick,
the current score and whether the state is terminal, and if so, who the winner is.
Moreover, the agent can request information about the avatar it is controlling (e.g.
its legal actions, its position, its speed, etc.), about other objects in the game and
about all the collisions that have happened so far.

For the experiments performed in this thesis on the single-player planning track
of the GVG-AI competition, the following two agents are considered: sampleM-
CTS and MaastCTS2. Experiments focus mainly on MaastCTS2, while sam-
pleMCTS has been used for an experiment that supports the discussion on on-line
parameter tuning presented in Subsection 6.4.9. The characteristics of these agents
are reported below.

sampleMCTS. This agent is already provided in the GVG-AI framework. It
implements “open-loop” MCTS with the UCT selection strategy and a random
play-out strategy. This agent uses the heuristic in Formula 3.1 to evaluate a
game state s, and update the statistics in the nodes.

V alue(s) =

 score(s)− 10 000 000 if the agent loses in s
score(s) + 10 000 000 if the agent wins in s
score(s) otherwise.

(3.1)

When used to compute the UCT value of an action in a node, the value com-
puted by the heuristic is rescaled in the interval [0, 1].

MaastCTS2. This is the winning agent of the Single-Player Planning track of the
2016 GVG-AI Competition (Soemers et al., 2016). This agent uses an “open-
loop” implementation of MCTS extended with the following enhancements:

• Tree Reuse in between game ticks, for which tree statistics are decayed
with a factor γ = 0.6.
• PH as selection strategy enhancement, with exploration constant C = 0.6

and bias W = 1.
• NST to enhance the play-out strategy, with ε = 0.5, fpuNST = max,

where max is the maximum score obtained so far in the game, maximum
N-Gram length L = 3 and the minimum number of times that an N-
Gram has to be visited in order to be included in the computation of
the value of an action N = 7. When using NST, MaastCTS2 takes the
position of the avatar into account as well, because the performance of
an action in GVG-AI usually depends on the position of the avatar when
the action is played. Therefore, NST statistics are updated for N-Grams
of (action, avatar_position) pairs instead of N-Grams of actions only.

• Breadth-First Tree Initialization before the start of MCTS, which consists
in a repeated 1-ply Breadth-First Search (BFS) to estimate the value of
all the root successors. Moreover, Safety Prepruning is performed, which
means that only the successors of the root that had the least number of
losses when visited with BFS are kept.

68 Test Environments

• Loss Avoidance, which tries to ignore losses by immediately searching for
a better alternative whenever a loss is encountered the first time a node
is visited. This enhancement improves the performance on games where
many losses are causing MCTS to underestimate the values of nodes, even
if they could be easily avoided.

• Novelty-Based Pruning, an enhancement that uses the idea of novelty
tests introduced by Geffner and Geffner (2015) for the Iterated Width
algorithm. This idea is applied to MCTS to only keep novel nodes and
prune the ones that lead to redundant paths in the search. Note that,
whether a node is novel or not might depend on the particular state that
has been generated by the non-deterministic game model. Therefore,
when reusing the tree in between game ticks, nodes that were pruned in
the previous step are unpruned and they are checked for novelty again.

• Knowledge-Based Evaluations for the states. This enhancement is in-
spired by the work of Perez-Liebana, Samothrakis, and Lucas (2014) and
consists in using domain knowledge to generate a heuristic evaluation
function for non-terminal states. This function evaluates a state depend-
ing on the position of certain objects in it, rewarding the agent for explor-
ing the effects of interacting with the objects and subsequently moving
closer to objects that influence the score positively and away from objects
that influence the score negatively.

• Deterministic Game Detection, a mechanism that is implemented by
many GVG-AI successful agents, like Return42 (Perez-Liebana et al.,
2018) and YOLOBOT (Joppen et al., 2018). When this mechanism de-
tects a game that is likely to be deterministic, some aspects of the search
are modified to better deal with this type of games. More precisely, in
MaastCTS2 the term q̄(s,a) in the PH formula (Formula 2.4) is substi-
tuted by 3

4×q̄(s,a)+ 1
4×qMax(s,a), where qMax(s,a) is the maximum score

observed so far in the subtree rooted in the node reached by performing
a in s. Moreover, tree statistics are not decayed anymore when reusing
the tree and nodes pruned after testing their novelty are not unpruned
when the game tick changes.

3.3 Discussion
This chapter introduced the environments used in this thesis to test the application
of MCTS on general game playing: the Stanford GGP project and the GVG-AI
project. Although these environments share some common characteristics, like the
assumption of no prior or game-specific knowledge for the agents, the necessity
of on-line learning and a limited amount of time to select a move for each game
turn, they offer different challenges to MCTS. The Stanford GGP project focuses
on turn-based, perfect information games, while GVG-AI introduces the challenge
of non-determinism and real-time decisions.

MCTS is suitable to tackle all these challenges because of its characteristic of
being aheuristic, anytime and selective (see Section 1.4), and it has already been

3.3 — Discussion 69

shown to be promising for GGP. However, to further improve its performance in
these environments, the following three aspects of the search are worth considering:

Search speed. The performance of MCTS is directly influenced by the number of
simulations that it is able to perform to collect its samples (Robilliard et al.,
2014). The higher the number of performed simulations, the more accurate
the collected statistics are. Given that the choices of MCTS are based on
such statistics, more accurate estimates lead the agent to play better actions
in the game. This holds true both when MCTS is applied to the games pro-
vided by the Stanford GGP project and the games provided by the GVG-AI
project. In both environments, the number of simulations that an agent can
perform in a fixed amount of time depends on how fast the agent can rea-
son on the game. Reasoning on the game is achieved by constructing a game
model that implements the computation of the players’ legal moves and goals
in a state, the computation of state terminality and of state transitions. In
GVG-AI the implementation of the game model is provided by the framework,
therefore improving the reasoning speed of the agent is out of the control of
the programmer. For the Stanford GGP competition, instead, it is up to the
agent to construct the game model from the GDL game rules and implement
a component, the reasoner, with a mechanism to reason on them. It is worth
investigating how the reasoner can be improved because an efficient represen-
tation of the game model can substantially speed up the search. Chapter 4 of
this thesis deals with this issue.

Search strategies. The performance of MCTS also depends on how the visited
actions are chosen during the simulation, both in the selection and in the play-
out phase of the search. Enhancing the selection and play-out strategies using
further information acquired on-line improves the accuracy with which actions
are selected during a simulation. Therefore, MCTS can converge to optimal
values within a smaller number of simulations. Given the short amount of
time they have available to perform the search, it is worth investigating more
informed strategies for the MCTS agents, and analyzing how the information
should be collected by such strategies. Chapter 5 of this thesis investigates how
collecting information globally or locally with respect to the state being visited
influences the selection strategy of MCTS in the Stanford GGP environment.

Search adaptation. Equally important is to detect if and how the acquired in-
formation should be exploited during the game. In GGP, agents have to face
games with different characteristics, for which the information exploited by a
certain search strategy might be more or less relevant, also depending on the
current point of the search. Moreover, different search strategies might perform
differently on different games. It is thus worth investigating how the search
can be adapted to each new game being played, modifying the way information
is exploited during the search, or even deciding which search enhancements to
(de)activate depending on the game. In both the environments considered
in this thesis, agents have to deal with heterogeneous sets of games, without
knowing them in advance. Therefore, it might be worth devising techniques

70 Test Environments

to adapt the search to each new game on-line. This is investigated in Chapter
6 of this thesis.

The discussed aspects can be seen as interdependent. On the one hand, incre-
menting the simulation speed can improve the performance of the search strategies or
give more time to adapt the search strategy to the game. On the other hand, a more
informed search strategy that possibly adapts to the played game can compensate
for a slower reasoning process.

Chapter 4

Optimizing Propositional
Networks

This chapter is based on:

• Sironi, Chiara F., and Winands, Mark H.M. (2017). Optimizing Propo-
sitional Networks. Computer Games, Vol. 705 of CCIS, pp. 133–151.
Springer.

• Siwek, Cezary and Kowalski, Jakub and Sironi, Chiara F. and Winands,
Mark H.M. (2018). Implementing Propositional Networks on FPGA. AI
2018: Advances in Artificial Intelligence (eds. T. Mitrovic, B. Xue, and
X. Li), Vol.11320 of LNCS, pp. 133–145, Springer.

General game-playing agents that deal with games written in GDL require a
reasoner to be able to interpret the game rules and search for the best actions to
play in the game. One method for interpreting the game rules consists of trans-
lating the GDL game description into an alternative representation that the player
can use to reason more efficiently on the game. The Propositional Network (Prop-
Net) (Cox et al., 2009; Schkufza et al., 2008; Genesereth and Thielscher, 2014) is
an example of such method. The use of PropNets for GDL games can speed up
the reasoning process by several orders of magnitude compared to custom-made or
Prolog-based GDL reasoners, improving the quality of the search for the best actions.
This holds true also for MCTS, which, with a faster GDL reasoner, could perform a
higher number of simulations and improve its performance (Robilliard et al., 2014).
This chapter answers the first research question by analyzing the performance of a
PropNet-based reasoner and evaluates four different optimizations for the PropNet
structure that can help further increase its reasoning speed in terms of visited game
states per second. The chapter also discusses research on implementing a reasoner
that encodes the PropNet on a Field-Programmable Gate Array (FPGA), which has
the potential of achieving an even higher speed up of the reasoning process.

This chapter is structured as follows. First, Section 4.1 introduces the PropNets.
Next, Section 4.2 gives details about the implementation of the PropNet and of the

72 Optimizing Propositional Networks

reasoner based on it that is tested in this chapter. Subsequently, Section 4.3 presents
the empirical evaluation of the PropNet reasoner and Section 4.4 discusses research
on the implementation of a reasoner that encodes the PropNet on an FPGA. Finally,
Section 4.5 concludes the chapter and discusses possible future research.

4.1 Background

Many different approaches have been proposed to parse the GDL game rules. Three
main methods to interpret GDL can be identified (Schiffel and Björnsson, 2014): (1)
Prolog-based interpreters, that translate the game rules from GDL into Prolog and
then use a Prolog engine to reason on them, (2) custom-made interpreters written for
the sole purpose of interpreting GDL rules, and (3) reasoners that translate the GDL
description into an alternative representation that the player can use to efficiently
reason on the game. A description and performance evaluation of available GDL
reasoners is given by Schiffel and Björnsson (2014).

A faster GDL reasoner, which in a given amount of time can analyze a higher
number of game states than other reasoners, can positively influence Monte-Carlo
based search. PropNets (Cox et al., 2009; Schkufza et al., 2008; Genesereth and
Thielscher, 2014) have become popular in GGP because they can speed up the rea-
soning process by several orders of magnitude compared to custom-made or Prolog-
based GDL reasoners. Since 2011, most of the best agents that participated in
the Stanford GGP competition used a PropNet-based reasoner (Draper and Rose,
2014; Schreiber and Landau, 2016).

In the next subsection the structure of a PropNet is described, and an example
on how a PropNet can be built from a GDL game description is given.

4.1.1 Propositional Networks

A PropNet (Schkufza et al., 2008; Cox et al., 2009; Genesereth and Thielscher,
2014) can be seen as a graph representation of GDL. A PropNet is a directed graph
where each component represents either a GDL proposition or a connective, and can
assume a truth value, true or false). Each component has incoming arcs from its
input components and outgoing arcs to its output components. The truth value of a
component depends on the truth value of its inputs and is propagated to its outputs.
There are four types of connectives: and, or and not logic gates, and transitions,
identity gates that output their input value with one step delay. Propositions in the
PropNet can be divided into three categories: input, that have no input components,
base, that have one single transition as input, and all other propositions, identified
as view. The truth values of base propositions represent the state of the game. Their
input, the transition, controls their value for the next state. Having no inputs, input
proposition have their value set by the game-playing agent, which sets to true the
ones corresponding to the actions it decides to simulate for each player in the game.
View propositions express players’ goals and legal moves, and terminality of game
states. A unique truth assignment to base propositions in the PropNet determines
the unique truth values of view propositions. The combination of truth assignments

4.1 — Background 73

(role player)
(light p) (light q)
(<= (base (on ?x)) (light ?x))
(<= (input player (turnOn ?x)) (light ?x))
(<= (legal player (turnOn ?x)) (not (true (on ?x))) (light ?x))
(<= (next (on ?x)) (does player (turnOn ?x)))
(<= (next (on ?x)) (true (on ?x)))
(<= terminal (true (on p)) (true (on q)))
(<= (goal player 100) (true (on p)) (true (on q)))

Figure 4.1: GDL game description for a simple game.

(role player)
(light p) (light q)
(base (on p))
(base (on q))
(input player (turnOn p))
(input player (turnOn q))
(<= (legal player (turnOn p)) (not (true (on p))))
(<= (legal player (turnOn q)) (not (true (on q))))
(<= (next (on p)) (does player (turnOn p)))
(<= (next (on p)) (true (on p)))
(<= (next (on q)) (does player (turnOn q)))
(<= (next (on q)) (true (on q)))
(<= terminal (true (on p)) (true (on q)))
(<= (goal player 100) (true (on p)) (true (on q)))

Figure 4.2: Grounded GDL game description for a simple game.

to base and input proposition uniquely determines the truth assignment for the next
state.

Each GDL game description can be translated into a PropNet with the same dy-
namics. In order to do so, the game description has to be grounded first, which means
being transformed into an equivalent description that does not contain any variable.
For example, Figure 4.1 shows the GDL description of a simple game, where a player
can independently turn on two lights (p and q). After being turned on, each light
will remain on. The game ends when both lights are on and in this state the player
achieves a goal with score 100. Figure 4.2 shows the grounded version of this game
description. More details about grounding game descriptions are given by Schiffel
(2017). Once the grounded description has been computed, the PropNet propo-
sitions can be created and linked using connectives as specified by the GDL rules.
Figure 4.3 shows the PropNet that can be built using the given grounded description.
Base propositions, which are used to represent the game state, are identified from
the base relation, while input propositions, which are used to represent that a player
is performing an action, are identified from the input relation. All other propositions

74 Optimizing Propositional Networks

VIEW
(legal

player

(turnOn q))

NOT NOT

VIEW
(legal

player

(turnOn p))

(does

player

(turnOn q))

INPUT

OR

VIEW

TRANSITION

BASE

(true

(on q))

BASE

(true

(on p))

INPUT
(does

player

(turnOn p))

OR

TRANSITION

VIEW

VIEW

terminal

VIEW

(goal

player 100)

AND

Figure 4.3: PropNet structure example.

are identified from the rules in the grounded game description and are integrated in
the PropNet accordingly. For example, from the rule (<= (legal player (turnOn
p)) (not (true (on p)))) the proposition (legal player (turnOn p)) is iden-
tified. Its truth value depends on the negation of the base proposition (true (on
p)), therefore in the PropNet it is connected to such proposition with a not gate
in-between. Rules with the next relation are treated differently. A proposition iden-
tified by the next relation is not added to the PropNet and the conditions that make
it true are modeled in the PropNet and connected to the transition that leads to
the corresponding base proposition. For example, the proposition (next (on p)))
is true if either (does player (turnOn p)) or (true (on p)) are true, therefore
the outputs of such propositions are connected to an or gate, which is connected to
the transition that leads to the base proposition (true (on p)). The empty view
proposition in the figure is created to collect the output of the or gate.

4.2 — PropNet Implementation 75

4.2 PropNet Implementation
In this section, the implementation of the tested PropNet is discussed. First, Sub-
section 4.2.1 describes how the PropNet built from the GDL game description is
initialized. How the PropNet is optimized is described in Subsection 4.2.2, and
Subsection 4.2.3 explains how the PropNet is used by the reasoner.

4.2.1 Initialization

The PropNet tested in this chapter is implemented for the agents developed in the
GGP Base Package (Schreiber and Landau, 2016). Given a GDL game description,
to create the PropNet the algorithm provided in the GGP Base Package is used.1
This algorithm is implemented in the create(List<Gdl> description) method of
the OptimizingPropNetFactory class and builds the PropNet according to the rules
in the given GDL description.

The final product of the algorithm is a set of all the components in the PropNet,
each of which has been connected to its input and output components. This set can
then be used to initialize a PropNet object. The algorithm distinguishes six different
types of components: constants (TRUE and FALSE), propositions, transitions and
three different gates (AND, OR, NOT).

The GGP Base Package also provides a PropNet class that can be initialized using
the created set of components. We use this class as a starting point and implement
some changes to the initialization process to ensure that the PropNet respects certain
constraints that are needed for the optimizations algorithms to work consistently.
The first step of the initialization iterates over all the components in the PropNet
and inserts them in different lists according to their type. While iterating over all
the components, the following are the main actions that the initialization algorithm
performs:

• Identify a single TRUE and a single FALSE constant, creating them if they
do not exist, or removing the redundant ones.

• Identify the type of each proposition. Each proposition must be associated to
one type only. A proposition that has a transition as input is identified as
BASE type and a proposition that corresponds to a GDL relation with the
does keyword is identified as INPUT type. The propositions corresponding
to GDL relations with the legal, goal or terminal keyword are identified as
LEGAL, GOAL and TERMINAL type, respectively. To all other propositions
the type OTHER is assigned.

• Ensure that all the INPUT and LEGAL propositions are in a 1-to-1 relation.
If a proposition is detected as being an INPUT but there is no corresponding
LEGAL in the PropNet, then it can be removed since we are sure that the
corresponding move will never be chosen by the player. On the contrary, if
there is a LEGAL proposition with no corresponding INPUT, the INPUT

1The version used in this thesis is more recent and improved with respect to the one tested by
Schiffel and Björnsson (2014).

76 Optimizing Propositional Networks

1: procedure Opt0(propnet)
Input: The structure of the PropNet, propnet.

2: OT ← propnet.TRUE .outputs
3: OF ← propnet.FALSE .outputs
4: while OT 6= ∅ or OF 6= ∅ do
5: RemoveFromTrue(propnet,OT ,OF)
6: RemoveFromFalse(propnet,OT ,OF)

Algorithm 4: Remove constant-value components.

proposition is added to the PropNet, since the LEGAL proposition might
become true at a certain point of the game and the player might choose to
play the corresponding move.

• Ensure that only constants (i.e. TRUE and FALSE) and INPUT propositions
have no input components. If a different component is detected as having
no inputs, set one of the two constants as its input. This action is needed
because as a by-product of the PropNet creation some OR gates and non-
INPUT propositions might have no inputs. The behavior of the PropNet has
been empirically tested to be consistent when such components are connected
to the FALSE constant.

4.2.2 Optimizations
The PropNets built by the algorithm given in the GGP Base Package contain usu-
ally many components that are not strictly necessary to reason about the game.
This subsection presents four optimizations (Opt0, Opt1, Opt2 and Opt3) that can
be performed on the PropNet structure to reduce the number of these components.
Opt0 removes components that are known to have a constant truth value, Opt1
removes propositions that do not have a particular meaning for the game, Opt2
detects more components with a constant truth value and removes them, and Opt3
removes components that have no output and are not influential. The algorithms
that perform such optimizations have been suggested by Landau (Schreiber and Lan-
dau, 2016). However, they have never been thoroughly investigated. The PropNet
optimization algorithms described in this thesis contain some minor modifications
with respect to the original GGP Base Package version in order to adapt them to
the changes that were performed on the PropNet class structure.

Opt0: Remove Constant-value Components

This optimization removes from the PropNet the components that are known to be
always true or always false and at the same time do not have a particular meaning
for the game. For example, an AND gate that has an input that is always false will
also always output false, thus the gate can be removed and all its outputs can be
connected directly to the FALSE constant of the PropNet.

Algorithm 4 shows the main steps of Opt0. The sets OT and OF , at any mo-
ment, contain, respectively, the outputs of the TRUE and the outputs of the FALSE

4.2 — PropNet Implementation 77

1: procedure RemoveFromTrue(propnet,OT ,OF)
Input: The structure of the PropNet, propnet, the set of output components
of the TRUE constant that still have to be checked for removal, OT , the set
of output components of the FALSE constant that still have to be checked for
removal, OF .

2: while OT 6= ∅ do
3: c← OT .RemoveElement()
4: switch c.compType do
5: case TRANSITION
6: if |c.outputs| = 0 then
7: propnet.Remove(c)
8: case NOT
9: connect c.outputs to FALSE

10: OF ← OF ∪ c.outputs
11: propnet.Remove(c)
12: case AND
13: if |c.inputs| = 1 then . Only TRUE as input
14: connect c.outputs to TRUE
15: OT ← OT ∪ c.outputs
16: propnet.Remove(c)
17: else if |c.inputs| = 2 then . Only 2 inputs, one is TRUE
18: connect c.outputs to other input
19: propnet.Remove(c)
20: else . More than 2 inputs, one is TRUE
21: disconnect c from TRUE
22: case OR
23: connect c.outputs to TRUE
24: OT ← OT ∪ c.outputs
25: propnet.Remove(c)
26: case PROPOSITION
27: connect c.outputs to TRUE
28: OT ← OT ∪ c.outputs
29: if c.propType ∈{OTHER, BASE} then
30: propnet.Remove(c)
31: end switch

Algorithm 5: Remove true components.

constant that still have to be checked for removal. At the beginning OT contains all
the outputs of the TRUE constant and OF contains all the outputs of the FALSE
constant (Lines 2 and 3).

The procedure RemoveFromTrue(propnet,OT ,OF) (Line 5) and the proce-
dure RemoveFromFalse(propnet,OT ,OF) (Lines 6) check the outputs of the TRUE
and of the FALSE constant, respectively. Algorithm 5 shows exactly which compo-
nents the first procedure removes. The algorithm for the second procedure removes

78 Optimizing Propositional Networks

1: procedure Opt1(propnet)
Input: The structure of the PropNet, propnet.

2: for all c ∈ propnet.propositions do
3: if c.propType = OTHER then
4: connect c.input with c.outputs
5: propnet.Remove(c)

Algorithm 6: Remove anonymous propositions.

the outputs of the FALSE constant in a similar way. In the case of the FALSE con-
stant, also always false GOAL and LEGAL propositions are removed since they will
never be used. Moreover, whenever a LEGAL proposition is removed also the corre-
sponding INPUT proposition is removed, since it is certain that the corresponding
move will never be played. Note that whenever a component is removed or detected
as having always a constant value, it means that also its output is constant, thus its
output components are connected directly to one of the two constants. In this case
each output component will be added to the appropriate set (either OT or OF) to
be checked in the next steps.

Algorithm 4 alternates between the two procedures mentioned above until both
sets, OT and OF , are empty. This repetition is needed because of the NOT gate.
Whenever this gate is removed from the outputs of a constant, its outputs are
connected to the other constant, thus the set of outputs to be checked for that
constant will still have at least one element.

Examples of how Opt0 changes the structure of the PropNet are given in Figure
4.4. Double circles are used to represent the TRUE and FALSE constants. The
first six examples clearly show the advantage of this optimization, as it removes
components from the PropNet. In the last two examples no components are removed
from the PropNet. However, after applying Opt0, two components become direct
outputs of a constant. Thus, they might be removed in the next iteration of the
algorithm or their outputs (if any) will be also analyzed by Opt0.

Opt1: Remove Anonymous Propositions

This optimization is trivial, nevertheless useful as it removes many useless compo-
nents from the PropNet. When the PropNet is created, many proposition without
a special meaning for the game are created to collect the outputs of various combi-
nations of components. Once the PropNet has been created, these propositions can
be removed. During initialization such propositions are identified as being of type
OTHER, therefore the algorithm for Opt1 (Algorithm 6) simply iterates over all the
propositions in the PropNet and removes the ones with this type, connecting their
input directly to each of their outputs. For example, Figure 4.5 shows the PropNet
presented in Figure 4.3 with the type of all the propositions identified. The figure
presents the structure of the PropNet before and after performing Opt1.

4.2 — PropNet Implementation 79

F

AND

T

OR

T

NOT

F T F

T

AND

T F

F

NOT

T

T F T F

F

OR

���0 ���0 ���0 ���0

���0 ���0 ���0 ���0

Figure 4.4: Examples of changes to the PropNet structure after applying Opt0.

80 Optimizing Propositional Networks

LEGAL
(legal

player

(turnOn q))

NOT

(does

player

(turnOn q))

INPUT

OR

OTHER

TRANSITION

BASE

(true

(on q))

BASE

(true

(on p))

INPUT
(does

player

(turnOn p))

OR

TRANSITION

OTHER

TERMINAL

terminal

GOAL

(goal player

100)

AND

NOT

LEGAL
(legal

player

(turnOn p))

LEGAL
(legal

player

(turnOn q))

NOT

(does

player

(turnOn q))

INPUT

OR

TRANSITION

BASE

(true

(on q))

BASE

(true

(on p))

INPUT
(does

player

(turnOn p))

OR

TRANSITION

TERMINAL

terminal

GOAL

(goal player

100)

AND

NOT

LEGAL
(legal

player

(turnOn p))

���1

Figure 4.5: Changes to the PropNet structure after applying Opt1.

Opt2: Detect and Remove Constant-value Components

This optimization can be seen as an extension of Opt0 where, before removing from
the PropNet the constant value components directly connected to the TRUE and
FALSE constant, the algorithm detects if there are other constant value components
that have not been discovered yet.

The pseudocode for this optimization is given in Algorithm 7, while Figure 4.6
gives an example of how this optimization works for the PropNet introduced in
Figure 4.3. Note that, in order to have a visible effect of Opt2 on the PropNet, the
example assumes that the proposition (on p) is true in the initial state.

Opt2 associates to each component c in the PropNet a set Wc that contains all
the truth values that such component can assume during the whole game. There
are only four possible sets of truth values, namely:

• N = ∅: if the corresponding component can assume neither of the truth
values.

• T = {true}: if the corresponding component can only be true during all the
game.

• F = {false}: if the corresponding component can only be false during all the
game.

• B = {true, false}: if the corresponding component can assume both values
during the game.

The idea behind the algorithm is to start from the components for which the truth
value in the initial state of the game is known. Then, for each of these components c,

4.2 — PropNet Implementation 81

1: procedure Opt2(propnet)
Input: The structure of the PropNet, propnet.

2: Initialize all the parameters and the stack
3: while stack 6= ∅ do
4: (c,Xcin)← stack.Pop()
5: Yc ← ToOutputValueSet(c,Xcin)
6: Xc ← Yc \Wc

7: if Xc 6= N then
8: Wc ←Wc ∪ Xc
9: for all cout ∈ c.outputs do

10: stack.Push(cout,Xc)
11: if c.compType = PROPOSITION and c.propType = LEGAL then
12: i← c.correspondingInputProposition
13: stack.Push(i,Xc)
14: for all c ∈ propnet.components do
15: if Wc = T or Wc = F then
16: Connect c to the appropriate constant
17: Opt0(propnet)

Algorithm 7: Detect and remove constant-value components.

the algorithm propagates the initial value to each of their outputs cout, updating the
corresponding truth value set Wcout

. Whenever the truth value set of a component
is updated, the algorithm propagates such changes on to its output components.
This process will eventually end when the truth values sets of all components stop
changing. Termination is guaranteed since only the truth values just added to the
truth value set of a component are propagated to its outputs and the number of
possible truth values is finite.

When the algorithm starts, the set Wc of each component c is set to N , since
it is not known yet which values the component can assume. For each AND gate
a the algorithm keeps track of TIa, i.e. the number of inputs of a that can assume
the true value. Similarly, for each OR gate o the algorithm keeps track of FIo, i.e.
the number of inputs of o that can assume the false value. This parameters are
used to detect when an AND gate and an OR gate can assume respectively the true
(if TIa = |a.inputs|) and the false (if FIo = |o.inputs|) value. These values are
initialized to 0 for all the gates.

The algorithm exploits a stack structure stack to keep track of the components
for which the set of truth values that their input(s) can assume is changed. A pair
(c,Xcin) is added to the stack when the algorithm detects that an input cin of the
component c can also assume the values in the set Xcin ⊆ Wcin , and such values
must be propagated to the component c. At the beginning the stack is filled with
the following pairs:

• (TRUE, T). The TRUE constant can assume value true.

• (FALSE,F). The FALSE constant can assume value false.

82 Optimizing Propositional Networks

(legal

player

(turnOn p))

(does

player

(turnOn p))

N

OTHER

N

BASE

(true

(on q))

BASE

(true

(on p))

N

N

OTHER

TERMINAL
terminal

GOAL
(goal

player 100)

N

N N

FT

NN

N

LEGAL

INPUT

F

N

�� � �

�� � � �� � �

(legal

player

(turnOn q))

LEGAL

N

(does

player

(turnOn q))

INPUT

F

N

FALSE

F

TRUE

T

(legal

player

(turnOn p))

(does

player

(turnOn p))

B

OTHER

B

BASE

(true

(on q))

BASE

(true

(on p))

T

T

OTHER

TERMINAL
terminal

GOAL
(goal

player 100)

B

T B

BT

BB

F

LEGAL

INPUT

F

F

�� � �

�� � � �� � �

(legal

player

(turnOn q))

LEGAL

B

(does

player

(turnOn q))

INPUT

B

B

FALSE

F

TRUE

T

T

(legal

player

(turnOn p))

(does

player

(turnOn p))

B

OTHER

B

BASE

(true

(on q))

BASE

(true

(on p))

T

T

OTHER

TERMINAL
terminal

GOAL
(goal

player 100)

B

B

BT

BB

LEGAL

INPUT

F

F

�� � �

�� � � �� � �

(legal

player

(turnOn q))

LEGAL

B

(does

player

(turnOn q))

INPUT

B

B

F

FALSE TRUE

T

F

B

B

OTHER

B

BASE

(true

(on q))

TERMINAL
terminal

GOAL
(goal

player 100)

B

BB

�� � �

(legal

player

(turnOn q))

LEGAL

B

(does

player

(turnOn q))

INPUT

B

B

FALSE

F

TRUE

T

1. Initialization: 2. Result of value propagation:

3. Connection to constants 4. Result after performing ����:

Figure 4.6: Examples of changes to the PropNet structure after applying Opt2.

4.2 — PropNet Implementation 83

• (i,F), for each INPUT proposition i in the PropNet. Each INPUT proposition
can be false since we assume that no game exists where one player can only
play a single move for the whole game.

• (b, T), for each BASE proposition b in the PropNet that is true in the initial
state.

• (b,F), for each BASE proposition b in the PropNet that is false in the initial
state.

The upper left part of Figure 4.6 shows the initialization of the sets of truth values
of each component and of the counters for the AND and OR gates for the considered
PropNet.

During each iteration, the algorithm pops a pair (c,Xcin) from the stack (Line 4)
and checks if, given the new truth values Xcin that the input cin can assume, also
the truth values Wc of its output c will change. Note that not for each type of
component the set of truth values that its input can assume corresponds to the
set of truth values that the component itself can output. The NOT component n,
for example, has Wn = T if its input nin has Wnin

= F . Moreover, for an AND
gate a, (true ∈ Wa ⇔ ∀ain ∈ a.inputs, true ∈ Wain). The same holds for the
false value for an OR gate. This means that the algorithm hast to change first
the values in Xcin according to the type of the component c, obtaining the new set
of truth values Yc that c can output. This is performed at Line 5 by the function
ToOutputValueSet(c,Xcin). Subsequently, the algorithm checks if in Yc there
are some values Xc that were not in Wc yet (Line 6), and if so, it adds them to the
set Wc (Line 8) and records on the stack that they have to be propagated to all the
outputs cout of c (Lines 9-10). Here the algorithm treats each LEGAL propositions
as if it was a direct input of the corresponding INPUT proposition, thus whenever
the truth values set of a LEGAL proposition changes, the values are propagated to
the corresponding INPUT proposition (Lines 11-13). The second part of Figure 4.6
shows the result of applying the just described propagation method on the PropNet
used in the example.

When no more changes are detected in the truth values sets (Line 3), the process
terminates. At this point, the truth values set of each component is checked (Line
15) and if it equals the set T or F it is certain that the component will always
be respectively true or false. It can then be disconnected from its input(s) and
connected to the correct constant (Line 16). This is shown in the third part of Figure
4.6 for the PropNet considered in the example. The last step that the algorithm
performs consists in running the same algorithm that was proposed as Opt0 to
remove all the newly detected constant components (Line 17). The result of this
algorithm on the PropNet considered in the example is shown in the last part of
Figure 4.6.

Opt3: Remove Components with no Outputs

This optimization is quite straightforward, but helps remove more useless compo-
nents. For some games, the algorithm that creates the PropNet leaves some gates

84 Optimizing Propositional Networks

LEGALGOAL

OTHER

AND

OTHER OTHER

LEGALGOAL
AND

OTHER OTHER

LEGALGOAL

OTHER OTHER

Figure 4.7: Changes to the PropNet structure when applying Opt3.

1: procedure Opt3(propnet)
Input: The structure of the PropNet, propnet.

2: C ← propnet.components
3: while C 6= ∅ do
4: c← C.RemoveElement()
5: if ((c.compType = PROPOSITION and c.propType = OTHER)

or c.compType ∈ {AND, OR, NOT}) and |c.outputs| = 0 then
6: C ← C ∪ c.inputs
7: propnet.remove(c)

Algorithm 8: Remove components with no outputs.

that have no outputs in the structure. These gates can be safely removed by Opt3,
because they do not influence the process of reasoning on the game. Other than
gates, Opt3 removes also propositions that have no output and are of type OTHER,
and therefore have no influence on the game.

Algorithm 8 shows this procedure: all the components in the PropNet are checked,
if they are gates or propositions of type OTHER and they have no output they are
removed from the PropNet. Every time a component is removed, its inputs are
added again to the set of components to be checked, since they might have been
left without any output. Figure 4.7 gives an example of how multiple iterations of
the loop in Algorithm 8 change the structure of the PropNet. First the OTHER
proposition is removed, leaving the AND gate without outputs. Then, this gate is
removed in the following iteration.

Note that the propositions of type OTHER could be ignored by Opt3, assuming
that Opt1 takes care of removing them. However, in this case Opt3 would become
dependent on Opt1, meaning that there would be components that Opt3 could
remove only if Opt1 has been performed first. For example, Opt3 would have no
effect on the portion of PropNet showed in Figure 4.7 and it could remove the
AND gate only after Opt1 has been performed. The choice of removing OTHER
propositions as well has been made in order for Opt3 to be self-contained (i.e. the
same components are removed by Opt3 independently of when it is performed with
respect to other optimization).

4.2 — PropNet Implementation 85

4.2.3 PropNet-based Reasoner
The reasoner is the component of the game-playing agent that, given a GDL game
description, takes care of parsing it to build the game model. When the PropNet
is used as representation of the game model, its creation and optimization is taken
care of by the reasoner. Moreover, all the methods that a search algorithm needs
to call on the game model in order to reason on the game are implemented as part
of this component. The methods provided by the PropNet-based reasoner tested in
this thesis are listed below, together with a brief explanation of how they operate
on the PropNet to compute the corresponding game information. All of them use
the following encoding for the components of the state machine of a game:

• State: the state is represented as a sequence of bits, each corresponding to one
of the base proposition in the PropNet. A bit is set to 1 if the corresponding
proposition in the PropNet is true, to 0 otherwise.

• Action: an action is represented as the index of the corresponding PropNet
proposition in the list of input propositions.

• Role: a role is represented as its index in the list of roles extracted from the
GDL game description.

The following are the methods that the reasoner offers to the agent to reason on
the game:

• s GetInitialState(): this method returns the initial state s of the game
in the PropNet encoding. To identify the base propositions that are true in
the initial state the init relation is used. The propositions that are identified
by the init relation are extracted from the GDL game description and the
corresponding base propositions have their bit set to true in the state.

• ~a GetLegalActions(s, i): given a state s and a player i, this method
returns all the actions ~a that are legal for the player in the state. To compute
the legal actions for a player, this method first sets the truth values of the
base propositions according to the values specified by the state s, and then
updates the values of all the PropNet components that are influenced by the
base propositions. Finally, it returns the actions of the player for which the
value in the PropNet is set to true.

• s′ GetNextState(s,~a): given a state s and a joint action ~a, this method
returns the state s′ reached by performing such joint action in s. To compute
the next state, this method sets the truth values of the base propositions
according to the values specified by the state s. Moreover, it sets to true the
input propositions that correspond to the actions specified in ~a and to false
all other input propositions. Subsequently, it updates the values of all the
components that are influenced by the base and input propositions. Finally,
it creates a new state where the value of each bit is set to the value of the
transition component that inputs in the base proposition corresponding to
such bit. Note that at this point the values of the base propositions represent
the current state, while the values of the transitions represent the next state.

86 Optimizing Propositional Networks

• boolean Terminal(s): given a state s, this method returns true if the state
is terminal and false otherwise. The procedure to compute state terminality
with the PropNet is the same as the one to compute legal actions, except that
the method returns the value of the terminal proposition after updating the
truth values of the PropNet components.

• ~q Payoff(s): given a state s, this method returns the payoff obtained by
each player. The same procedure that is used to compute legal actions and
state terminality is applied, but in the end the score identified by the true goal
propositions is returned for each player.

4.3 Experiments
In this section an empirical evaluation of the performance of the PropNet and its
optimizations is presented. Subsection 4.3.1 describes the setup of the performed
experiments. Subsections 4.3.2 and 4.3.3 discuss the results of the experiments that
compare the performance of the reasoners based on the PropNet with single opti-
mizations and combinations of them respectively. The reasoner based on the com-
bination of PropNet optimizations that performs overall best is then compared with
the Prover reasoner provided in the GGP Base Package. Subsection 4.3.4 presents
a comparison of the PropNet and Prover reasoners in terms of their speed, while
Subsection 4.3.5 presents a comparison in terms of their game-playing performance.

4.3.1 Setup
To evaluate the performance of the PropNet reasoner multiple series of experiments
are performed. Each of them tests the performance of the reasoner with different
PropNet optimizations and combinations of them. Each series of experiments poses
the bases to decide which other combinations of optimizations to check.

To test the different PropNet optimizations and their combinations, the PropNet
reasoner is tested performing Flat-MCS on a set of heterogeneous games. For each
optimized PropNet the search is run from the initial state of the game with a time
limit of 20s. This experiment is repeated 100 times for each of the chosen games.
Such games are the following: Amazons, Battle, Breakthrough, Chinese Checkers
with 1, 2, 3, 4 and 6 players, Connect Four, Othello, Pentago, Skirmish and Tic
Tac Toe. They are the same used by Schiffel and Björnsson (2014) to compare
different GDL reasoners, and have been selected for having different complexities
and being representative of the type of games commonly used in the Stanford GGP
competition. A description of the rules and the relevant properties of these games
can be found in Appendix B.1, while their GDL descriptions can be found on the
GGP Base repository (Schreiber, 2016).2

One of the reasons behind the choice of repeating each experiment multiple times
for each game is that for every repetition of the game a different seed is used for
the random number generator that controls the random exploration of the search

2The GDL descriptions used for the experiments were downloaded from the repository on
03/02/2016.

4.3 — Experiments 87

tree with the MCS algorithm. Thus, for different seeds different results might be
obtained and different parts of the search space explored.

Another reason is that the number of components that the PropNet of a game has
when created by the basic algorithm (i.e. without optimizations) is not always con-
stant. This variance in the number of components is caused by the non-determinism
of the order in which game rules are translated into PropNet components for differ-
ent runs of the algorithm. This can cause a different grounding order of the GDL
description, originating more or fewer propositions and can also cause gates and
propositions to be connected in different equivalent orders. The non-determinism
within the creation of the PropNet is also the reason why in the experiments per-
formed in this and subsequent chapters, whenever the instances of the agent are
using the PropNet to play a game, a new PropNet is generated for each game run.
Moreover, the same optimized PropNet structure is used by all the agents taking
part in the game run and each of them keeps its own copy of the state of the PropNet
(i.e. which truth values are assigned to each component). This guarantees that in a
game run none of the agent instances is penalized by a PropNet with a less efficient
structure.

The reasoner with the PropNet optimizations that showed the best overall per-
formance in the first series of experiments is compared with the Prover. The Prover
is a custom-made interpreter for the GDL rules, which is provided as the standard
GDL reasoner in the GGP Base Package. Both reasoners are also tested with the ad-
dition of a cache that memorizes previously computed information about the states.
More precisely, the cache is represented as a map where each entry corresponds to
a game state and maps to an object containing information about such state. This
information includes the legal actions and the goals of each player in the state, the
reachable next states, and whether the state is terminal. The first time the reasoner
is queried to compute any of this information on a state, the result is saved in the
corresponding cache entry. Whenever a query is performed the cache is checked first,
and the reasoner is queried only if no result was found in the cache.

The series of experiments that compares the PropNet with the Prover matches
two Flat-MCS players that use the Prover, one with cache and one without, against
each other, and two Flat-MCS players that use the reasoner with the best optimized
PropNet, one with cache and one without, against each other. The same 13 games
that were used for the other experiments are used. Each player has 10s per move to
perform the search. A new PropNet is built for each game run in advance, before the
game playing starts. When used by an agent, the cache is empty at the beginning
of each new game run, and at the end of each turn the entries that have not been
accessed in the last two turns are removed. For each game, if r is the number of
roles in the game, there are 2r different ways in which two types of players can be
assigned to the roles (Sturtevant, 2008). Two of the configurations involve only the
same player type assigned to all the roles, thus are not interesting and excluded from
the experiments. Each configuration is run the same number of times until at least
100 games have been played in total. For a single game run, the speed of a reasoner
is computed as the median speed in nodes per second over all the turns. The median
is used to prevent the estimated speed from being influenced by likely low values in
the initial turns and likely high values in the endgame. For each of the 13 games,

88 Optimizing Propositional Networks

the speed is computed as the average of the median speed over all the runs of the
game. Since the focus of this experiment is on the reasoning speed, the 10s search
time per move is not considered strictly. This means that, whenever the search time
for a turn expires, each player that is still performing a Monte-Carlo simulation is
allowed to terminate it before returning a move.

The final series of experiments aims at evaluating the impact of the reasoners
on the win rate of a game-playing agent. These experiments match against each
other two instances of the MCTS agents implemented in the GGP Base Package
(see Subsection 3.1.4). Both instances use the UCT selection strategy with C = 0.7
and the random play-out strategy. One of them uses the fastest version of the Prover
(i.e. with the cache) and the other uses the fastest optimized PropNet reasoner (also
with the cache). The settings are the same as in the previous experiment, except
that the minimum number of played games is increased to 200. Moreover, for this
experiment the 10s search time per move is considered strictly. Note that these
agent instances, being MCTS-based, are using a transposition table to memorize
the tree. The instance that uses the PropNet reasoner represents each state in
the transposition table as a sequence of bits, while the one that uses the Prover
represents each state as the set of GDL propositions that are true in it.

Before running any of the described experiments, the reasoners based on the
PropNet and all its optimized versions were tested against the Prover for consistency.
For each game (301 at the time of download) in the GGP Base repository (Schreiber,
2016), for a duration of 60s, the same random simulations were performed querying
both the Prover and the currently tested version of the PropNet reasoner for next
states, legal moves, terminality and goals in terminal states. The results returned
by the PropNet reasoner were compared with the ones returned by the Prover for
consistency. All the PropNet reasoners passed this test on all the games in the
repository, except for 12 games for which the PropNet construction could not be
completed in the given time.

In all experiments, a limit of 10 minutes was given to the program to build the
PropNet. The experiments that compare the speed of PropNet and Prover with and
without cache were performed on a Linux server consisting of 48 AMD Opteron 6174
2.2-GHz cores. All other experiments were performed on a Linux server consisting
of 64 AMD Opteron 6274 2.2-GHz cores.

4.3.2 Comparison of Single Optimizations

The first series of experiments compares the reasoner based on the basic version of
the PropNet (BasicPN) with the reasoners based on each of the previously described
optimizations of the PropNet applied singularly (Opt0, Opt1, Opt2, Opt3). Table 4.1
shows the obtained results. For each PropNet variant, for each game the first block
of the table gives the average simulation speed of the corresponding reasoner in
nodes per second, the second block gives the average number of components of the
PropNet and the third block gives the average total initialization time (creation
+ optimization + state initialization) of the PropNet in milliseconds. The line at
the bottom of each block reports the average of the percentage-wise increase of the
considered values over the 13 games, relative to the basic version of the PropNet.

4.3 — Experiments 89

Table 4.1: Comparison of single optimizations.

Game BasicPN Opt0 Opt1 Opt2 Opt3

A
vg

.
sp
ee
d
(n
od

es
/s
ec
on

d
)

Amazons 35.1 41.4 32.7 41 40.2
Battle 34 957 49 666 37 877 51 257 35 276

Breakthrough 50 557 50 932 65 518 51 357 51 058
Chin.Checkers1P 426 374 427 773 550 230 444 671 424 516
Chin.Checkers2P 125 581 128 623 189 368 128 910 127 519
Chin.Checkers3P 155 886 157 242 169 352 161 000 159 267
Chin.Checkers4P 105 766 106 738 127 886 107 153 105 660
Chin.Checkers6P 119 650 118 547 126 863 113 700 118 783

Connect Four 110 081 113 484 105 081 112 920 109 672
Othello 290 1 610 235 1 604 295
Pentago 76 336 76 786 116 065 76 721 96 782
Skirmish 5 887 6 022 6 780 6 230 6 151

Tic Tac Toe 223 403 228 056 248 769 234 915 222 952
Avg. rel. increase – 40.59% 15.51% 41.44% 3.95%

A
vg

.
nu

m
b
er

of
co
m
p
on

en
ts

Amazons 1 497 649 1 254 742 741 874 1 192 364 1 023 913
Battle 51 197 14 267 36 863 14 262 50 721

Breakthrough 10 745 10 678 5 933 10 678 10 584
Chin.Checkers1P 793 785 559 785 789
Chin.Checkers2P 1 540 1 524 1 179 1 524 1 532
Chin.Checkers3P 2 411 2 389 1 845 2 236 2 400
Chin.Checkers4P 3 159 3 119 2 465 2 999 3 133
Chin.Checkers6P 4 451 4 411 3 473 4 123 4 431

Connect Four 2 164 2 063 1 724 1 291 2 114
Othello 1 311 988 274 940 1 033 197 274 940 1 305 515
Pentago 3 696 3 706 1 470 3 708 2 111
Skirmish 126 019 124 267 108 171 124 267 78 575

Tic Tac Toe 312 291 249 291 302
Avg. rel. increase – -14.28% -29.21% -18.62% -9.49%

A
vg

.
to
ta
l
in
it
.
ti
m
e
(m

s)

Amazons 311 335 313 719 314 455 417 097 315 637
Battle 5 756 6 027 5 897 6 303 5 869

Breakthrough 3 989 4 007 4 012 4 358 3 910
Chin.Checkers1P 2 699 2 651 2 659 2 653 2 707
Chin.Checkers2P 2 848 2 773 2 810 2 873 2 775
Chin.Checkers3P 3 162 3 140 3 159 3 251 3 149
Chin.Checkers4P 3 258 3 261 3 241 3 473 3 244
Chin.Checkers6P 3 225 3 203 3 204 3 639 3 205

Connect Four 2 437 2 465 2 456 2 698 2 430
Othello 35 756 36 486 37 074 39 417 36 544
Pentago 4 249 4 230 4 278 4 390 4 232
Skirmish 11 887 11 702 11 664 12 089 11 824

Tic Tac Toe 1 525 1 529 1 523 1 522 1 508
Avg. rel. increase – 0.13% 0.24% 7.69% -0.19%

90 Optimizing Propositional Networks

Although the main interest is the speed increase that the optimizations induce
on the PropNet, the number of PropNet components and the initialization time are
also relevant aspects. A low number of components means less memory usage, and
a shorter initialization time means more time for metagaming at the beginning of a
match (or more chances to avoid timing out when the start clock is short). From the
table it seems that for most of the games, as expected, the increase in the simulation
speed is related to the decrease in the number of components in the PropNet.

As can be seen, none of the optimizations outperforms the others in speed for
all games. Opt0 and Opt2 seem to have the best performance in Amazons, Battle,
Connect Four and Othello, while Opt1 performs best in the other games. Opt3
produces the lowest speed increase over all the games. When looking at the initial-
ization time, Opt2 is the one that increases it the most for almost all the games.
Another observation is that the performance of Opt2 is overall better than the one
of Opt0. This was expected because Opt2 is an extension of Opt0, thus for the same
PropNet it always removes at least the same number of components as Opt0.

The speed is used as main criterion to choose which of the four optimizations
to use as starting point for further experiments that involve testing combinations of
optimizations. If we consider the speed, Opt0 and Opt2 are the ones that, on average,
produce the highest increase. However, the high average is due to the considerable
relative increase that they produce in Othello. If we consider the optimization that
produces the highest speed increase in most of the games, then Opt1 is the most
suitable to be selected. Moreover, Opt1 is the optimization that reduces the most
the number of components of the PropNet without consistently slowing down the
initialization process.

4.3.3 Comparison of Combined Optimizations

In this series of experiments Opt1 is combined with other optimizations applied in
sequence. In general, OptXY refers to the PropNet optimization obtained by apply-
ing OptX and OptY in sequence. These experiments first compare the combinations
of optimizations Opt12, Opt102 and Opt13. The combination Opt10 has been ex-
cluded from the test since it is considered less interesting. As previously mentioned,
Opt0 always removes a subset of the components that are removed by Opt2, thus
Opt10 is expected to perform less than Opt12. However, Opt0 has less negative
impact than Opt2 on the total initialization time. Therefore, these experiments in-
clude the test of Opt102 to see if the application of Opt0 before Opt2 can speed up
the initialization process by having Opt2 run on a smaller PropNet.

The results of this series of experiments can be seen in columns 3, 4 and 5 of
Table 4.2. The structure of this table is the same as Table 4.1. The average per-
centage increase reported in the last line of each block is still computed with respect
to the basic version of the PropNet (BasicPN). As the table shows, regarding the
speed, Opt12 seems to be the one achieving the best overall performance. However,
the performance of Opt102 is rather close, as expected, because these two combina-
tions should reduce each PropNet to the same number of components. The small
difference in performance is probably due the reasons already mentioned in Subsec-
tion 4.3.1. Both the difference in the random seed used for each repetition of the

4.3 — Experiments 91

Table 4.2: Comparison of combined optimizations.

Game BasicPN Opt12 Opt102 Opt13 Opt1023

A
vg

.
sp
ee
d
(n
od

es
/s
ec
on

d
)

Amazons 35.0 38.5 41.4 32.3 41.0
Battle 34 957 59 308 59 697 39 981 60 419

Breakthrough 50 557 66 943 66 551 66 833 66 991
Chin.Checkers1P 426 374 570 858 562 737 541 682 561 634
Chin.Checkers2P 125 581 194 442 192 048 190 161 193 752
Chin.Checkers3P 155 886 175 410 176 162 170 722 176 185
Chin.Checkers4P 105 766 130 362 130 279 129 194 130 451
Chin.Checkers6P 119 650 127 535 128 111 127 619 129 000

Connect Four 110 081 127 053 126 535 105 978 129 272
Othello 290 1 934 1 894 245 1 979
Pentago 76 336 116 353 115 064 117 127 121 108
Skirmish 5 887 7 075 7 042 7 403 7 600

Tic Tac Toe 223 403 259 980 257 285 247 246 257 525
Avg. rel. increase – 70.32% 69.39% 17.38% 73.48%

A
vg

.
nu

m
b
er

of
co
m
p
on

en
ts

Amazons 1 497 649 623 460 623 460 711 596 596 240
Battle 51 197 11 084 11 077 36 676 10 902

Breakthrough 10 745 5 900 5 900 5 869 5 836
Chin.Checkers1P 793 556 556 559 556
Chin.Checkers2P 1 540 1 172 1 172 1 179 1 172
Chin.Checkers3P 2 411 1 718 1 718 1 845 1 718
Chin.Checkers4P 3 159 2 362 2 362 2 465 2 362
Chin.Checkers6P 4 451 3 238 3 238 3 473 3 238

Connect Four 2 164 1 063 1 063 1 724 1 056
Othello 1 311 988 208 510 208 510 1 031 580 206 846
Pentago 3 696 1 464 1 473 1 338 1 337
Skirmish 126 019 107 296 107 296 62 427 61 552

Tic Tac Toe 312 239 239 249 239
Avg. rel. increase – -42.34% -42.32% -32.52% -45.65%

A
vg

.
to
ta
l
in
it
.
ti
m
e
(m

s)

Amazons 311 335 411 905 400 113 312 793 401 559
Battle 5 756 6 367 6 233 5 968 6 329

Breakthrough 3 989 4 354 4 415 3 982 4 328
Chin.Checkers1P 2 699 2 693 2 654 2 707 2 652
Chin.Checkers2P 2 848 2 848 2 843 2 817 2 842
Chin.Checkers3P 3 162 3 214 3 186 3 160 3 167
Chin.Checkers4P 3 258 3 405 3 330 3 275 3 379
Chin.Checkers6P 3 225 3 423 3 430 3 207 3 395

Connect Four 2 437 2 536 2 555 2 417 2 525
Othello 35 756 39 170 36 689 35 359 37 804
Pentago 4 249 4 269 4 286 4 308 4 325
Skirmish 11 887 12 386 12 285 11 870 12 577

Tic Tac Toe 1 525 1 532 1 535 1 524 1 555
Avg. rel. increase – 6.38% 5.18% 0.18% 5.66%

92 Optimizing Propositional Networks

game and the variance in the number of components generated by the algorithm
that creates the initial PropNet can influence the performance.

One more thing that can be noticed from Table 4.2 is that running Opt0 before
Opt2 helps reducing the initialization time for large games, while it seems to have
almost no effect on smaller games. Moreover, Opt13 is the one that, regarding the
speed, performs worse in this series of experiments, thus it has been excluded from
further tests. Among Opt12 and Opt102, it has been chosen to keep testing on top
of Opt102 because of its shorter initialization time for games with large PropNets,
given that its speed is still comparable with the one of Opt12.

Using Opt102 as starting point, there is only one more interesting combination of
optimizations left to test: Opt1023. No further gain in performance can be obtained
by repeating the same optimizations multiple times in a row, since no further change
will take place in the structure of the PropNet. Thus, it is not interesting to evaluate
combinations of optimizations that extend Opt1023.

The last column of Table 4.2 shows the statistics for Opt1023. For most of the
games, Opt1023 seems to be the fastest. It is also the one that reduces the number
of PropNet components the most. As for the initialization time, this optimization is
between a few milliseconds and a bit more than 1 second slower that the basic version
of the PropNet, except for Amazons. Optimizing the large PropNet of Amazons can
slow down the initialization time by more than a minute.

4.3.4 Comparison of PropNet Reasoner and Prover

In this series of experiments the reasoner based on the overall fastest combination of
optimizations among the tested ones (Opt1023) is compared with the Prover. More
precisely, the PropNet reasoner and the Prover are compared measuring their speed
over complete games (as opposed to previous experiments that were comparing the
speed only over the first step of the game). Moreover, for both of them also a cached
version is tested (i.e. CachedProver and CachedOpt1023).

The results of these experiments are shown in Table 4.3. The last row of this
table reports for both CachedProver and CachedOpt1023 the average percentage
increase of the speed with respect to their non-cached versions. From the table
it is visible how the reasoner with the optimized PropNet achieves a much better
performance than the Prover in the considered games. When adding the cache to
both reasoners the difference in performance is reduced for some games. Although,
the cached PropNet reasoner is still faster than the cached Prover in all of them.

The use of a cache provides some benefits increasing the overall performance of
both reasoners with respect to their non-cached version. However, the cache gives
more benefits to the Prover. For the Prover the speed is increased for almost all the
games, while for the PropNet reasoner it is increased for some, but decreased for
others. To be noticed is that the increase in speed provided by the cache is especially
relevant in the games of Chinese Checkers with 1 player and Tic Tac Toe. These
two games have a relatively small search space, therefore cached query results are
reused often and searching in the cache is not too time consuming with only a low
number of entries.

Moreover, observing the results for all the Chinese Checkers versions it is clear

4.3 — Experiments 93

Table 4.3: Comparison of the PropNet reasoner with the Prover and effect of the cache.

Game Prover CacheProver Opt1023 CacheOpt1023

A
vg

.
m

ed
ia

n
sp

ee
d

(n
od

es
/s

ec
on

d
) Amazons 7 7 28 29

Battle 43 44 44 260 39 945
Breakthrough 233 238 58 763 53 945

Chin.Checkers1P 2 281 538 930 536 264 921 637
Chin.Checkers2P 1 456 3 205 170 609 213 181
Chin.Checkers3P 1 105 1 296 127 493 99 527
Chin.Checkers4P 544 659 87 252 88 167
Chin.Checkers6P 608 682 61 627 55 242

Connect Four 180 217 132 211 177 567
Othello 3 3 611 643
Pentago 150 152 99 338 81 016
Skirmish 23 24 3 007 3 036

Tic Tac Toe 1 709 323 599 224 083 568 255
Avg. rel. increase – 3 274 % – 17.45 %

that the speed of the cached Prover and the speed of the cached PropNet reasoner
both decrease when increasing the number of players. However, for the PropNet
reasoner this decrease is slower. For Chinese Checkers with 1 player the cached
PropNet reasoner is about 2 times faster than the cached Prover, while for the
version with 6 players it is 81 times faster.

When performing the experiments it was also noticed that in many games the
cache decreases the speed of the PropNet reasoner during the initial steps. This
loss is then balanced towards the endgame, when the chance of finding cached query
results increases. It takes some time for the cache to be filled with a sufficient number
of entries and thus have a positive impact on the speed of the PropNet reasoner.
The same effect was not observed for the Prover. For the first steps of the games
the cache did not decrease the speed of the Prover for any of the games, and for
some of them increased it. The explanation for this is that the time for computing
the answer of a query with the Prover is in general much higher than the one of the
PropNet. Thus, for the Prover finding in the cache even a small number of query
results saves enough computational time to compensate the extra time spent looking
in the cache for results that are not present yet. Detailed results for the performance
of the cache on each single game are reported in Appendix C.

The results of Table 4.3 also help putting the PropNet reasoner into perspective
with the other GDL reasoners analyzed by Schiffel and Björnsson (2014). Even if
they use different experimental settings than in this chapter, some general observa-
tions can still be made. Considering the performance of the reasoners that, like the
PropNet reasoner, rely on an alternative representation of the GDL description, it
seems that the implementation of the PropNet reasoner presented in this chapter
provides for most of the games a speed increase of the same order of magnitude when
compared to the Prover. Moreover, for Amazons, Othello, Chinese Checkers with

94 Optimizing Propositional Networks

Table 4.4: Win percentage of the PropNet agent against the Prover agent.

Game Opt1023
Battle 100.0(±0.00)

Breakthrough 100.0(±0.00)
Chin.Checkers2P 96.0(±2.72)
Chin.Checkers3P 77.5(±5.75)
Chin.Checkers4P 68.1(±6.32)
Chin.Checkers6P 64.7(±5.73)

Connect Four 99.3(±1.09)
Pentago 100.0(±0.00)
Skirmish 100.0(±0.00)

4 and 6 players, and Skirmish it seems that the reasoner based on the optimized
PropNet, could even achieve a better performance in similar circumstances.

4.3.5 Game-Playing Performance

In this series of experiments an instance of the MCTS agent that uses the cached
PropNet reasoner with the fastest combination of optimizations (Opt1023) is matched
against an instance that uses the cached Prover. Because Subsection 4.3.4 showed
the cache to be overall beneficial for both reasoners, it has been included in this ex-
periment. Table 4.4 shows the win percentage of the cached PropNet agent against
the cached Prover agent with a 95%-confidence interval. The table does not include
the results for the single-player version of Chinese Checkers because this game is
tested separately and the score is used to measure the performance of the agent in-
stances. The search space of this game is relatively small, so both instances achieved
the maximum score in every match. The score for Tic Tac Toe is not included be-
cause its state space is so small that both instances can easily reach a sufficient
number of simulations to play optimally, resulting in a tie. No results are shown
for Amazons and Othello because for both games, during the first game turns, the
cached Prover agent could not return a move within the given time limit. Even
with the cache, during the first turns the number of memorized query results is not
sufficient to allow the Prover agent to complete even one MCTS simulation within
the time limit.

Looking at the results for the remaining games, for most of them the cached
PropNet agent achieves a win percentage close or equal to 100%. The games in
which the performance of the cached PropNet agent seems to drop are the ones
with more than 2 players. Chinese Checkers with 4 and 6 players are the ones
where the win percentage for the cached PropNet agent is the lowest, but it is still
significantly better than the one of the cached Prover agent. Another reason for
the lower performance of the PropNet agent on Chinese Checkers is that agents are
using random play-outs, which have been shown to perform poorly on this game.
Chinese Checkers presents actions that do not make the game progress toward the

4.4 — Encoding PropNets on Field Programmable Gate Arrays 95

termination of the game (e.g. pieces can be moved back and forth on the board
without getting closer to the goal). This causes random play-outs to often be stopped
before reaching a terminal state, thus returning uninformative results. With the
higher number of simulations performed by the PropNet agent, the performance of
random play-outs worsens more than for the Prover agent.

4.4 Encoding PropNets on
Field Programmable Gate Arrays

The reasoner evaluated in the previous section is based on a software implemen-
tation of the PropNet. However, the resemblance of the PropNet structure to a
logic circuit makes it suitable to be encoded on a Field-Programmable Gate Array
(FPGA) (Brown et al., 2012). FPGAs are integrated logic circuits that can be con-
figured by the end-user. They are made out of thousands of interconnected Universal
Logic Modules (ULMs), which can be individually programmed to perform simple
logic operations and arbitrarily connected with each other. Encoding a PropNet
on an FPGA could result in a significant increase of the computational speed used
for propagating the truth values of the PropNet components. Therefore, the use
of a reasoner based on FPGA-PropNets has the potential to speed up MCTS by
increasing the number of simulations that can be performed in a fixed amount of
time. Another characteristic of FPGAs is that they can be re-programmed when
necessary, being particularly suitable for a domain like the Stanford GGP project,
which requires to encode a new PropNet whenever a new game is being played.

This section presents results obtained by testing a reasoner based on an FPGA-
PropNet. Subsection 4.4.1 gives an overview of the implementation of a reasoner
based on an FPGA-PropNet, while Subsection 4.4.2 presents the results obtained
by testing such reasoner.

4.4.1 FPGA-PropNet Reasoner Implementation

To implement a reasoner based on the FPGA-PropNet the software version of the
PropNet is first generated and optimized as described previously (i.e. applying the
sequence of optimizations that performed overall fastest, Opt1023). Subsequently,
its structure is coded in Verilog, one of the Hardware Description Languages that are
commonly used to define the structure and the behavior of FPGAs. Each PropNet
component is coded as an instance of a Verilog module that implements the behavior
of the corresponding component type, and these modules are connected according
to the structure of the software version of the PropNet. Once the PropNet has
been coded in Verilog, all the defined modules are fitted on the FPGA by a built-in
algorithm that decides the placement of each module on the physical board.

Meta-information about the FPGA-PropNet is also recorded, which contains
the FPGA-PropNet initial state, the encoding of the actions and other information
necessary to operate on the FPGA-PropNet. This meta-information is used to ini-
tialize a driver library programmed in Java, which enables communication between

96 Optimizing Propositional Networks

the search agent and the FPGA-PropNet. The library offers the following three
methods to interact with the FPGA-PropNet:

• s getInitialState(): returns the initial state of the game in the FPGA
encoding.

• (Ai,j,
−−−→
(s,~a)) getNextStates(s): given a state s in the FPGA encoding,

returns a matrix Ai,j where each row i corresponds to the list of legal moves
for player i in s, and a list of pairs (s′,~a) where ~a is one of the available joint
actions in s and s′ is the state reached by performing such joint action. States
and actions are returned in the FPGA encoding.

• ~q getScores(s,n): given an FPGA state s and an integer n, performs n
random play-outs from state s and returns the list of payoffs ~q, where each
entry qi is the average payoff obtained by player i over all the n play-outs.

These methods are mostly different from the ones available to interact with the
software implementation of the PropNet (see Subsection 4.2.3). This is because
communication between the software implementing the game-playing agent and the
hardware encoding the FPGA-PropNet is time-consuming. Therefore, most of the
computation is delegated to the hardware and communication is reduced to the
minimum. Given a state, it is more efficient to compute legal actions for all the roles
and possible next states all at once, instead of having multiple calls to the FPGA-
PropNet to compute them separately. Similarly, it is more efficient to delegate
to the FPGA-PropNet the computation of an entire random play-out rather than
selecting each random action on the software side and communicating with the
FPGA-PropNet to generate intermediate states. Therefore, efficiency is increased
further if a batch of random play-outs is performed all at once at a leaf node.

There are, however, some disadvantages to this implementation. First of all,
faster play-outs do not always mean that more information is collected about dif-
ferent parts of the game. There is a tradeoff between play-out speed and number of
distinct Monte-Carlo evaluations. Figure 4.8 gives examples of this tradeoff. Given a
fixed number of play-outs, it is faster to use all of them to evaluate a single state, like
it is done for the first tree in the figure, because the time-consuming communication
with the FPGA PropNet to call the getScore(s,n) method happens only once.
However, it is less informative than dividing the play-outs over more states. For the
third tree in the figure it takes more time to perform the same number of play-outs,
because each of them is performed from a different node and therefore the number
of calls to the getScore(s,n) method equals the number of play-outs. However,
more information is collected, because more nodes are added to the tree (one for
each play-out instead of one in total). The second tree in the figure presents a sit-
uation that is in-between, with fewer nodes being evaluated than in the third tree,
but more information being collected than for the first tree. Moreover, the accuracy
of the state evaluations changes depending on how play-outs are distributed. The
more play-outs are used to evaluate the same node, the more accurate the estimate,
but at the same time fewer nodes are added to the tree and evaluated. This situa-
tion shares a similarity with leaf parallelization of MCTS (Chaslot, Winands, and

4.4 — Encoding PropNets on Field Programmable Gate Arrays 97

����� ����

����� ���ℎ
�
��� ≫

���������-
����

1 � ���� ���ℎ
�
���
� 4 � ���������-
���

2 � ���� ���ℎ
�
���
� 4 � ���������-
���

4 � ���� ���ℎ
�
���
� 4 � ���������-
���

�	
���	��
�
���
� � � �

�	���
���
��	

���	���������

� � �

Figure 4.8: Tradeoff between MCTS play-out speed and distinct Monte-Carlo evaluations.

van den Herik, 2008a), which evaluates a leaf node during one MCTS simulation by
multiple parallel play-outs instead of using a single play-out. Like using the FPGA
to perform multiple play-outs from the same node, using leaf parallelization enables
the agent to collect more accurate samples for a single game state. However, it
increases the amount of time that is spent on average on a single MCTS simulation,
although for a different reason. Leaf parallelization increases this amount of time
because it always has to wait for the longest among the parallel play-outs to be over
before starting a new MCTS simulation.

Another disadvantage of the implementation of the FPGA-PropNet methods is
that the play-out strategy is encoded in the hardware. Whenever a new play-out
strategy has to be tested it must first be encoded in the hardware. Thus, no other
play-out strategy that might be already implemented by the game-playing agent can
be tested with the FPGA-PropNet reasoner. Finally, if the FPGA-PropNet reasoner
has to be used by a game-playing agent based on “open-loop” MCTS, similar to the
one tested in this thesis, a modification to the algorithm is required. To reduce the
number of calls to the methods of the FPGA library, each node in the MCTS tree
has to memorize all possible joint moves and corresponding next states. In this way
the getNextStates(s) method can be called only once whenever a new node is
added to the tree. However, this causes an increase in the memory used by the tree.

4.4.2 FPGA-PropNet Reasoner Performance
This section presents results obtained by testing a reasoner based on an FPGA-
PropNet.3 To test the speed of the reasoner the number of states visited during

3Cezary Siwek and Jakub Kowalski, from the University of Wrocław, Poland, implemented
the FPGA-PropNet reasoner and ran the experiments that test its speed, initialization time and
memory usage.

98 Optimizing Propositional Networks

Table 4.5: Comparison of the FPGA-PropNet (FPGA-PN) with the software PropNet
(Opt1023) and the Prover, based on running random simulations from the initial game
state. The speed of the FPGA-PropNet is equivalent to the clock frequency, which is
probed in 1.0Mhz steps.

Game FPGA-PN Opt1023 Prover

A
vg

.
sp
ee
d

(n
od

es
/s
ec
.) Horseshoe 8 500 000 192 583 3.8

Connect Four 7 000 000 285 908 561
Pentago 7 000 000 119 111 342

Joint Connect Four 4 500 000 171 575 270
Breakthrough 1 400 000 38 015 601

Reversi 1 171 875 4 806 19

random play-outs from the initial game state is used. The performance is compared
both with the reasoner that uses the software implementation of the PropNet and
with the Prover. The initialization times of the FPGA-PropNet and the software
implementation of the PropNet are also compared and their memory usage analyzed.

The experiments use the TerasIC DE1-SoC board containing the Altera’s Cy-
clone V series SoC: 5CSEMA5F31C6. The algorithm that uses the FPGA-PropNet
reasoner is run on a computer embedded in the before-mentioned SoC with ARM
Cortex A9, Dual core @925Mhz with 1 GB RAM, running Debian 9 Strech 32-
bit. The FPGA project compilation is performed on Intel Core i5-4670 with 16 GB
DDR3 @1600Mhz RAM using Ubuntu 16.04 server 64-bit and Intel Quartus Prime
Lite Edition 17.0 as IDE. The reasoner that uses the software implementation of the
PropNet and the Prover are tested on a Linux server consisting of 64 AMD Opteron
6174 2.2-GHz cores and 252 GB RAM.

The reasoners are tested on the following games: Horseshoe, Connect Four, Pen-
tago, Joint Connect Four, Breakthrough and Reversi. This set of games differs from
the one used in the experiments presented in Section 4.3 for two main reasons. First,
some of the games used previously have a PropNet that is too big to fit on the FPGA
board. Second, the initial design of the FPGA-PropNet was set-up to manage only
2-player games. Therefore, a new set of games has been selected, trying to include
games with different complexities and different PropNet sizes. The rules and rel-
evant properties of these games can be found in Appendix B.1. Differently from
the experiments performed in Section 4.3, the GDL descriptions of the games used
in this series of experiments can be found on the Stanford Gamemaster repository
(Schreiber, 2018). Note that the GDL description of a game, although expressing
the same game rules, might differ over different game repositories. Therefore, the
software PropNet might have different average speed depending on the GDL game
description that is used for a particular game.

The results of the experiments that compare the speed of the reasoners are pre-
sented in Table 4.5. They are based on 1 million simulations for the FPGA-PropNet
reasoner, and more than 250 000 simulations for the other reasoners, except for Re-
versi, for which only 1 000 simulations have been performed. This choice is due to

4.4 — Encoding PropNets on Field Programmable Gate Arrays 99

Table 4.6: Initialization time and memory usage of the FPGA-PropNet (FPGA-PN) and
the software PropNet (Opt1023).

Game
Initialization time Memory usage

FPGA-PN Opt1023 #Propnet FPGA chip
(min) (sec) components utilization

Horseshoe 4:20 0.45 350 7%
Connect Four 5:37 0.67 814 12%

Pentago 5:20 2.70 1 291 13%
Joint Connect Four 5:53 1.00 1 614 16%

Breakthrough 12:03 1.35 17 752 72%
Reversi 14:08 23.91 56 014 41%

the higher amount of time required to simulate this game with respect to the other
tested games. As expected, the usage of FPGAs substantially increases the reasoner
efficiency. For all games except Reversi, the improvement factors with respect to the
software PropNet are between 24.5 (Connect Four) and 58 (Pentago). For Reversi,
which produces the largest PropNet among the tested games, the FPGA-PropNet
reasoner computes states over 243 times faster than the software PropNet. This high
speed increase is mainly due to the hardware PropNet optimizations performed when
fitting the PropNet on the board. The closer the graph structure of the PropNet is
to being planar, which seems to be the case for Reversi, the easier it is to reduce chip
utilization when fitting it on the board, therefore increasing computational speed.

The downside of moving from software to hardware is a considerable increase
of initialization time, as shown in Table 4.6. Instead of a few seconds, like for the
initialization of the software PropNet, it takes around 5 to 6 minutes for small and
medium games, and for larger it is almost 15 minutes. Such times prevent game-
playing agents from being ready to play during the typical initialization clock of the
Stanford GGP competition.

A preliminary study has also been performed, which tests the performance of an
MCTS agent that uses the presented FPGA-PropNet reasoner as described in Sub-
section 4.4.1. This study showed that, when performing MCTS, the communication
between the software implementing the search and the hardware encoding the Prop-
Net introduces too much overhead for the FPGA-PropNet agent to be competitive
with the agent that uses the software implementation of the PropNet. More pre-
cisely, when performing MCTS play-outs with the FPGA-PropNet, a high batch size
enables the FPGA-PropNet reasoner to perform a higher number of simulations than
the software PropNet reasoner. However, each batch of simulations is performed on
a single node only, causing the tree to be expanded less often, therefore not reaching
the same size as the tree built using the software PropNet reasoner. Conversely, a
small batch size enables the FPGA-PropNet agent to expand more nodes, but the
overhead caused by the communication between software and hardware increases
consistently, once again preventing the MCTS tree to grow as much as it does for
the software PropNet agent.

100 Optimizing Propositional Networks

4.5 Chapter Conclusions and Future Research

In this chapter the performance of a PropNet-based reasoner has been evaluated,
together with four optimizations of the structure of the PropNet and their impact
on the performance. Moreover, a reasoner based on the encoding of the PropNet
on FPGAs has been tested. Even though the tested implementation of the PropNet
is based on the code provided by the GGP Base Package, the principles behind its
representation and its optimizations can also be applied in general.

Experiments show that the use of a software implementation of the PropNet
substantially increases the reasoning speed by, on average, at least two orders of
magnitude with respect to the GGP Base Prover. Moreover, the addition of a
combination of optimizations that reduce the size of the PropNet increases the rea-
soning speed further. Results suggest that both optimizations that simply remove
components that are not meaningful for the game, such as Opt1 and Opt3, and op-
timizations that remove components and re-arrange the connections between them
after analyzing their truth values, such as Opt0 and Opt2, are beneficial. It is also
important to consider the order in which optimizations are performed to reduce the
overhead that they cause on the initialization time.

The addition of a cache has been shown to have an overall positive effect on the
speed of the software PropNet. For small games its effect is already visible in the
first turns, while for most of the other games it helps only during later game turns,
sometimes slowing down the speed in the initial turns. Given that the outcome
of the game might be decided already by choices made in the first turns, a slower
PropNet speed due to the use of a cache might be detrimental. Therefore, the use
of the cache is recommended only for games with a small search space.

Experiments also show that the speed increase has a positive effect on the per-
formance of the software PropNet-based instance of an MCTS agent. This agent
achieves a win rate close to 100% in most of the games for which it is matched
against an equivalent agent based on the Prover. Finally, research on implementing
the PropNet on an FPGA showed that FPGA-PropNets are a faster alternative to
software PropNets for reasoning on GDL game descriptions, opening up a promising
research direction. Given the experimental results, it may be concluded that using
a PropNet with an optimized structure to represent game rules written in GDL is
beneficial for MCTS-based agents. A reasoner based on optimized PropNets enables
MCTS to perform a higher number of simulations within a fixed time frame.

Future research could further investigate the use of the cache for the software
implementation of the PropNet, for example by devising a strategy to detect for
each game if and when the use of a cache is helpful. Another interesting aspect that
future research could consider is the impact that the use of different strategies to
propagate truth values among the components of the PropNet would have on the
reasoning speed. For the software implementation of the PropNet truth values are
computed for one component at a time. This offers two main propagation options
that could be tested. The first is forward propagation, which, whenever a component
changes truth value, immediately propagates the change to its outputs. The second
is backward propagation, which, whenever the truth value of a component needs to
be computed, first computes the truth values of its inputs recursively.

4.5 — Chapter Conclusions and Future Research 101

The use of the FPGA-PropNet reasoner can also be further investigated. First,
its performance when integrated in an MCTS agent can be improved by compen-
sating the increased communication overhead. This could be done, for example, by
embedding MCTS on the FPGA, or by using hardware with shorter communication
latency. Moreover, if the integration of the FPGA-PropNet reasoner within MCTS
can be improved to achieve a higher simulation speed, it would be interesting to
test other MCTS play-out strategies, to see how the speed increase influences their
performance.

102 Optimizing Propositional Networks

Chapter 5

Rapid Action Value Estimation
Variants

This chapter is based on:

• Sironi, Chiara F., andWinands, Mark H.M. (2016). Comparison of Rapid
Action Value Estimation Variants for General Game Playing. Compu-
tational Intelligence and Games (CIG), 2016 IEEE Conference on, pp.
309–316.

During the selection phase of MCTS the tree is traversed from the root to a leaf
node using a selection strategy to decide which joint action to visit in each node.
A commonly used selection strategy is UCT (Kocsis and Szepesvári, 2006). Previ-
ous research has shown that enhancing the UCT strategy can consistently improve
the overall performance of MCTS (Chaslot et al., 2008b; Finnsson and Björnsson,
2010; Nijssen and Winands, 2011; Gelly and Silver, 2011; Cazenave, 2015). Many
enhancements have been proposed to improve UCT. Some have been proposed for
particular games as they rely on game-specific knowledge (Chaslot et al., 2008b).
This makes them less interesting for GGP. Others, instead, are intrinsically domain-
independent (Finnsson and Björnsson, 2010; Gelly and Silver, 2011) or are domain-
independent modifications of game-specific methods (Nijssen and Winands, 2011),
and are thus suitable to be applied in GGP.

Among the domain-independent enhancements for the selection phase of MCTS
that have been shown to be successful in GGP is the Rapid Action Value Estimation
technique (RAVE) (Gelly and Silver, 2007; Gelly and Silver, 2011; Finnsson and
Björnsson, 2010). One of the most successful agents that took part in the Stanford
GGP competition, CadiaPlayer, has implemented the RAVE technique. Recently,
a generalization of RAVE, the Generalized Rapid Action Value Estimation (GRAVE)
technique, has been proposed (Cazenave, 2015) and has been shown to perform
better than RAVE on some variants of Go and some other games. What RAVE
and GRAVE have in common is that they both bias action selection in a state
using information about the general performance of the actions in the game. The

104 Rapid Action Value Estimation Variants

difference is that RAVE uses information collected locally for the state where the
action is being selected, while GRAVE uses information collected for an ancestor
state when the current state has been visited only a few times. Using more local or
more global information to enhance the search might influence the performance of
MCTS differently.

This chapter answers the second research question by proposing another variant
of RAVE, History Rapid Action Value Estimation (HRAVE). Differently from RAVE
and GRAVE, HRAVE always uses information collected for the current root state of
the search tree. The performance of the RAVE, GRAVE and HRAVE strategies is
compared to verify how the search is influenced by the use of information at different
levels (from more local in RAVE to more global in HRAVE, with GRAVE being in
between). In addition, it is also shown how the performance of these RAVE variants
is influenced by a play-out strategy that is more informed than the random play-
out strategy. This is done by combining RAVE, GRAVE and HRAVE with MAST
(Finnsson and Björnsson, 2008). The Stanford GGP project is used as test domain.

This chapter is structured as follows. Section 5.1 introduces the All-Moves-As-
First (AMAF) statistics, on which the presented RAVE variants are based. Sub-
sequently, Section 5.2 describes the RAVE, GRAVE and HRAVE strategies. The
experimental setup and the obtained results are discussed in Section 5.3. Finally,
Section 5.4 gives the conclusion and mentions possible future research.

5.1 All-Moves-As-First

All the RAVE variants evaluated in this chapter are based on the idea of the All-
Moves-As-First (AMAF) heuristic (Brügmann, 1993), which collects actions statis-
tics assuming that the order in which actions are visited in a simulation from the
current node is irrelevant. This way of collecting statistics enables a search agent to
accumulate a higher number of samples in a shorter amount of time. The AMAF
statistics are collected updating the expected value of an action in a state not only
when the action has been selected immediately in the state, like UCT does, but
every time the action has been selected at any moment after the state was visited.
More precisely, suppose that after a simulation the statistics of a visited state s are
being updated. The UCT backpropagation updates the expected value q̄(s,ai) only
for the action ai that has been selected for player i in s during the simulation. The
AMAF backpropagation, instead, updates the expected value AMAF (s,ai) of all the
actions ai that have been selected during the simulation in any state visited after s.

Figure 5.1 compares the UCT backpropagation with the AMAF backpropagation.
The tree in the figure represents a one-player game. The actions of the only player,
Player 1, are identified as a1,j , where the subscript j is used to distinguish among
the actions of the player. The bold edges identify the path visited during the last
performed simulation. For this simulation, the figure reports the action statistics
that are updated by UCT (q̄(s,ai)) and the action statistics that are updated by the
AMAF backpropagation (AMAF (s,ai)).

5.2 — RAVE Variants 105

��,���,� ��,�

������� ,����	

��

��,
��,�

������� ,����	

��

����� ,�	
�	 ��,� ��,

�

�

����� ,�
��	

����
�
,�
���

	

������
�
,�
���

	

������� ,����	

������� ,����	

Figure 5.1: UCT vs AMAF statistics update.

5.2 RAVE Variants

This section describes the RAVE variants. RAVE is presented in Subsection 5.2.1,
GRAVE in Subsection 5.2.2 and HRAVE in Subsection 5.2.3.

5.2.1 Rapid Action Value Estimation

The Rapid Action Value Estimation (RAVE) strategy has been proposed in order
to speed up the learning process inside the MCTS tree, and it has been successfully
applied in Go (Gelly and Silver, 2007; Gelly and Silver, 2011) and in GGP (Finnsson
and Björnsson, 2010). The UCT strategy bases the selection of an action in a node
on the estimated value obtained by sampling this action in the node multiple times.
However, especially when the state space is large, UCT requires many simulations
before it can sample all the actions in a node and more simulations before it can
accumulate enough samples for the actions to reduce the variance of their estimated
payoff. To overcome this issue, RAVE combines the UCT value of the actions with
their AMAF value, therefore it memorizes in each tree node, for each action ai of
each player i, the following statistics:

• The expected payoff q̄(s,ai) obtained from all the simulations in which move
ai is selected for player i in state s. This is the same value used in the UCT
formula (Formula 2.9).

106 Rapid Action Value Estimation Variants

• The expected payoff AMAF (s,ai) obtained from all the simulations in which
move ai is selected for player i further down the path that passes by node s.

This means that, when backpropagating the result of a simulation in a certain
node s of the tree, the value q̄(s,ai) is updated for the action ai that was directly
played in the state, and the value AMAF (s,ai) is updated for all the legal actions ai
in s that have been encountered at a later stage of the simulation. In this way RAVE
can collect more samples and use them to reduce the variance of the action value
estimates for the nodes that do not have many visits. Using the AMAF statistics
enables to gather more information faster, although this information is more global
than the UCT statistics. AMAF statistics are useful for less visited nodes, but
when the number of visits increases, the UCT statistics become more reliable and
the influence of the AMAF statistics should progressively decrease. This is why
the RAVE strategy keeps track of the two scores separately and uses a weight β to
reduce the importance of the AMAF statistics over time.

Different variants for the RAVE action evaluation formula and for the β parame-
ter computation have been proposed (Gelly and Silver, 2007; Teytaud and Teytaud,
2010; Gelly and Silver, 2011). This chapter uses the same formula that has been first
used in GGP by the CadiaPlayer agent (Björnsson and Finnsson, 2009). RAVE
selects an action a∗i for player i in a state s according to Formula 5.1).

a∗i = argmax
ai∈A(s,i)

{
UCTRAVE(s, ai)

}
UCTRAVE(s, ai) = (1− βs)× q̄(s,ai) + βs ×AMAF (s,ai) + C ×

√
lnns
n(s,ai)

βs =

√
K

3× ns +K

(5.1)

The parameter K is known as the equivalence parameter and indicates for how many
simulations the UCT and the AMAF statistics of an action are weighted equal. Note
the similarity of the RAVE formula with the UCT formula (Formula 2.9). The only
difference is that the expected value of an action is computed as a weighted average
of the expected action value used by the original UCT formula and the AMAF
expected action value.

5.2.2 Generalized Rapid Action Value Estimation

GRAVE (Cazenave, 2015) is a modification of RAVE that has been proposed to
overcome one of its drawbacks. A problem of RAVE is that for the nodes close to
the leaves of the tree not only the UCT statistics are based on a low number of
samples, but also the AMAF statistics. Therefore, in these nodes the estimates of
the moves values have less accuracy.

To solve this problem, for the nodes that have a number of visits lower than
a given ref threshold, GRAVE uses the AMAF statistics of an ancestor node to
compute the value of the actions. Each node in the tree memorizes its own AMAF

5.2 — RAVE Variants 107

�
��
� 90

�
��
� 60

�
��
� 30

GRAVE������

GRAVE������

GRAVE������

�

Figure 5.2: Use of AMAF statistic for the GRAVE strategy.

statistics, but keeps also a reference to the closest ancestor that has a sufficient
number of visits for its AMAF statistics to be considered reliable. When a node s
has sufficient visits (ns > ref), it starts using its own AMAF statistics instead of
the ones of an ancestor, and the strategy in that node starts behaving like RAVE.
Note that, if ref = 0, GRAVE behaves exactly like RAVE from the beginning of the
search. Figure 5.2 gives an example for the GRAVE strategy. Assume that node S
(in gray) is the node where the strategy has to select an action. Each node relevant
for the example reports its number of visits. The figure shows in which node GRAVE
would look for the AMAF statistics depending on how the ref parameter is set.

The GRAVE strategy enables the agent to increase the accuracy of the estimates
for the less visited nodes. However, the AMAF scores of an ancestor might be less
relevant for its descendants, because these scores refer to a different game state.
Another aspect to be mentioned is the increased memory usage of GRAVE with
respect to RAVE. The latter needs only to store an extra statistic for each legal move
in the node. With GRAVE, instead, the AMAF scores in a node might be used for
other nodes lower in the tree that have a different set of legal moves. Therefore, each
node has to memorize the AMAF scores for all the moves that can be encountered
at any lower level in the tree.

108 Rapid Action Value Estimation Variants

5.2.3 History Rapid Action Value Estimation

HRAVE is exactly the same as GRAVE, except that it always uses the AMAF
statistics of the current root of the tree (i.e. the ref parameter is set to infinity).
Note that HRAVE shares similarities with the domain-independent selection strategy
known as Progressive History (PH) (Nijssen and Winands, 2011). As described in
Subsection 2.5.1, PH adds to the UCT formula a bonus that depends on the relative
history of the move being evaluated. This relative history is defined as the average
result of all the simulations where the move was played. The influence of this bonus
decreases over time as the number of visits of the node increases and the UCT
estimate becomes more reliable. In the case of HRAVE, the AMAF estimate that is
used to compute the value of an action can be compared to the Progressive History
bonus. This is because both the AMAF estimate and the PH bonus are computed
using the same statistics. In each turn of the game, the AMAF statistics in the
root of the tree correspond exactly to the history heuristic statistics used by PH.
Moreover, like in PH, the influence of the AMAF statistics decreases over time and
makes the move evaluation formula converge to a pure UCT strategy.

A difference between HRAVE and PH is that the decrease of the influence of
the AMAF statistics for HRAVE only depends on the increase in number of visits
of a node, while for PH it also depends on the number of losses associated with
the action being evaluated (Nijssen and Winands, 2011). In this way, PH makes
sure that actions that have been performing generally well in a state are biased
longer than actions that have been performing poorly. Another difference between
HRAVE and PH is that, for HRAVE, at the beginning of the search for a given
turn, the root node already contains some statistics collected during previous turns.
PH, instead, starts each turn with no statistics (Nijssen, 2013). For HRAVE it was
decided to collect the statistics in each node also during the previous turns to have
a fair comparison with GRAVE and RAVE. Both RAVE and GRAVE, at every turn
except the first, start the search already having some AMAF statistics in the nodes
of the tree. In order to collect statistics that can be reused in subsequent turns,
HRAVE memorizes the AMAF statistics in the same way as GRAVE does, thus
their memory consumption is the same.

HRAVE can also be seen as the opposite of RAVE. While the latter uses the
most local AMAF statistics, the former uses the most global ones. GRAVE can be
placed in between, it starts with more global AMAF statistics and then converges to
the most local ones. Figure 5.2 gives an example of the use of AMAF statistics for
the three RAVE variants. The number reported in the relevant nodes is the number
of their visits. For the selection of an action in the gray node S, the figure shows in
which node each strategy looks for the AMAF statistics to use, assuming ref = 50
for GRAVE.

5.3 Experiments

In this section an empirical evaluation of the performance of RAVE, GRAVE and
HRAVE is presented. Subsection 5.3.1 introduces the games used in the exper-
iments, while Subsection 5.3.2 describes the setup of the performed experiments.

5.3 — Experiments 109

Next, Subsection 5.3.3 shows the results obtained by tuning the equivalence param-
eter K. The RAVE variants are matched against UCT in Subsection 5.3.4 and in
Subsection 5.3.5 they are matched against UCT with the addition of the MAST play-
out strategy. Next, the RAVE variants are matched against each other in Subsection
5.3.6. Finally, Subsection 5.3.7 analyzes the memory usage of RAVE, GRAVE and
HRAVE.

5.3.1 Games

The discussed RAVE variants have been tested on 15 different games: 3D Tic Tac
Toe, Breakthrough, Knightthrough, Skirmish, Battle, Chinook, Chinese Checkers
with three players, Checkers, Connect Five, Othello, Quad (the version played on
a 7 × 7 board), Sheep and Wolf, Tic-Tac-Chess-Checkers-Four (TTCC4) with 2
and 3 players, and Zhadu. Appendix B.1 gives an overview of the rules and the
main properties of these games. This set of games has been chosen because of its
heterogeneity due to various game properties (i.e. number of players, constant-sum
or variable-sum, simultaneous or sequential move). Some of these games differ from
the ones used to test the GDL reasoners in chapter 4 because this chapter is only
considering games that have already been used in previous literature to test RAVE
and MAST in GGP (Finnsson, 2012b; Tak et al., 2014b).

In the experiments that tune the equivalence parameter K for the strategies
only the games 3D Tic Tac Toe, Breakthrough, Knightthrough, Skirmish, Battle,
Chinook, Chinese Checkers with three players have been used to void overfitting the
values of K to the whole set of tested games. All the other experiments, instead,
have been run on all the 15 games. The GDL description of the considered games
can be found on the GGP Base repository (Schreiber, 2016), and their rules and
properties are reported in Appendix B.1.

5.3.2 Setup

The aforementioned RAVE variants were implemented for the agent developed in
the GGP Base Package (see Subsection 3.1.4). The agent tested in the experiments
uses a reasoner based on the software implementation of the PropNet with the
combination of optimizations that performed best in the experiments presented in
Chapter 4 (i.e. Opt1023). No cache is used for the PropNet because the game
space of the tested games might be too large for the cache to have a positive effect
already in the initial game turns. In all the series of experiments, two instances of
the agent at a time are matched against each other. As mentioned in Subsection
4.3.1, the creation of the PropNet is non-deterministic and PropNets with different
structures might be generated for the same game. Therefore, for each game run,
the PropNet of the game is generated in advance and both agent instances use the
same structure. This prevents one of the agents from getting an advantage due to
a more efficient PropNet. Play-clock and start-clock are set to 1s, except for the
experiments presented in Subsection 5.3.4 that are repeated also with start-clock
and play-clock set to 10s.

For each game, if r is the number of roles in the game, there are 2r different ways

110 Rapid Action Value Estimation Variants

in which 2 types of agents can be assigned to the roles (Sturtevant, 2008). Two of
the configurations involve only the same agent type assigned to all the roles, thus are
not interesting and excluded from the experiments. Each configuration is run the
same number of times until the desired number of games runs have been performed.

For each of the performed experiments, the reported result is the average winning
percentage of one of the two tested agent instances with a 95%-confidence interval.
For each game run the instance that achieves the highest score is considered the
winner and gets 1 point, while the other gets 0 points. When both instances achieve
the same score, the outcome of the game run is considered a draw and both instances
get 0.5 points (half win).

Two baselines to compare the different selection strategies are used, an instance
of the agent implementing the MCTS algorithm with UCT selection and random
play-out strategy (PUCT) and an instance of the agent implementing the MCTS
algorithm with UCT selection strategy and MAST play-out strategy (PUCT-MAST).
The UCT selection strategy uses the Formula 2.9 with C = 0.7. For the MAST
strategy ε is set to 0.4, because it is the value that overall performed better when
evaluated in (Tak et al., 2012). The first-play urgency for MAST, fpuMAST, is set to
100 (i.e. the maximum score that can be obtained as payoff). Moreover, the MAST
statistics are decayed after playing every move with a factor ω = 0.2 (i.e. 20% of the
statistics is kept for the next turn). This value is set lower than the one that was
found to be the best by Tak et al. (2014b) because for each turn the agents perform
a higher number of simulations. This means that the number of collected statistics
is higher and their influence needs to be decreased more strongly. A comparison of
the two baseline agents can be found in Appendix D. The results in the appendix
confirm the superiority of the agent that uses the more informed MAST play-out
strategy over the agent that uses a random play-out strategy.

The aim of the first series of experiments is to tune the equivalence parameter
K used to compute the weight βs in Formula 5.1). The tested values for K are 10,
50, 100, 250, 500, 750, 1 000 and 2 000, and the parameter is tuned using the subset
of games mentioned in Subsection 5.3.1. The agent instances PRAVE, PGRAVE and
PHRAVE have been implemented and matched singularly against PUCT for each value
of K for at least 500 runs per game. As selection strategy they use RAVE, GRAVE
and HRAVE, respectively, and they all use the random play-out strategy. All of
them use the value 0.2 for the C constant because a lower value than the one used
for the plain UCT strategy empirically showed to achieve a better performance. For
PGRAVE the ref parameter is set to 50. For each of the three agent instances, the
value of K that performed overall best in these series of experiments is also used in
subsequent experiments.

In the second series of experiments, the agent instances PRAVE, PGRAVE and
PHRAVE with the best value of K are matched against PUCT on all the games.
Testing the instances on a wider set of games enables to detect a potential over-
fitting of the K value to the games used for tuning. Moreover, it enables to check
whether the tuned value works well also on other games. These experiments are
performed with a start-clock and play-clock of 1s and then repeated with a start-
clock and play-clock of 10s. This is to verify how an increased amount of time, and
thus of simulations, influences the performance of the three RAVE variants. The

5.3 — Experiments 111

minimum number of played runs per game is increased to 1000. This provides a
more precise estimate of the average winning percentage, detecting with a higher
confidence which of the strategies performs best.

The aim of the third series of experiments is to verify the effect of adding the
MAST play-out strategy to the three variants of RAVE. For this series of experiments
the random play-out strategy has been replaced with MAST to obtain the agent in-
stances PRAVE-MAST, PGRAVE-MAST and PHRAVE-MAST. These instances have been
matched only for the best value of K against PUCT-MAST on all the games with 1000
runs per game. Each of these instances has the same settings of the corresponding
version without MAST and for the MAST strategy the settings are the same as
PUCT-MAST. Moreover, to verify whether it is beneficial to use MAST in combi-
nation with RAVE, GRAVE and HRAVE, the agents PRAVE-MAST, PGRAVE-MAST
and PHRAVE-MAST are matched against PRAVE, PGRAVE and PHRAVE, respectively.
These pairs of agents are tested on all the games with 1000 runs per game.

As a validation of the results obtained in the previous series of experiments,
the last series of experiments matches PRAVE, PGRAVE and PHRAVE against each
other two at a time and PRAVE-MAST, PGRAVE-MAST and PHRAVE-MAST against each
other two at a time. A total of at least 1000 runs per game have been played. All
the experiments presented in the next sections were performed on a Linux server
consisting of 64 AMD Opteron 6274 2.2-GHz cores.

5.3.3 Tuning the Equivalence Parameter K

Table 5.1 shows the performance of PRAVE, PGRAVE and PHRAVE against PUCT for
different values of K. For each agent instance, the value of K that achieves the
highest robustness is selected to be used in subsequent experiments. The robustness
of a certain K for an agent instance is computed by summing 1 point for each game
in which the instance with such K achieved a statistically significant improvement
over PUCT and subtracting 1 point for each game in which it obtained a statistically
significant worsening of the performance. In case more values of K have the same
robustness, the one with highest average win percentage over all the games is chosen.

For PRAVE none of the values of K reaches the maximum robustness, however,
for more than one value the agent instance achieves a statistically significant im-
provement in all games but one. Among these values, K = 250 is chosen because it
is the one with the highest average win percentage. For PGRAVE the value K = 250
is selected because among the values with highest robustness is also the one with
highest average win percentage. Finally, for PHRAVE the value K = 50 is selected
because it is the only one that reaches the highest robustness.

5.3.4 Matching RAVE Variants against UCT

In this series of experiments, PRAVE, PGRAVE and PHRAVE are matched against
PUCT, both with 1s and 10s play-clock. Table 5.2 shows the performance of PRAVE,
PGRAVE and PHRAVE with the best K against PUCT with 1s play-clock and start-
clock. PHRAVE is the only one that achieves a significant improvement over PUCT
in all games, despite not being the one with the highest average win percentage.

112 Rapid Action Value Estimation Variants

T
able

5.1:
W

in
percentage

of
P

R
A
V

E ,P
G

R
A
V

E
and

P
H

R
A
V

E
against

P
U

C
T
for

different
values

of
K
.

G
am

e
K

=
1
0

K
=

5
0

K
=

1
0
0

K
=

2
5
0

K
=

5
0
0

K
=

7
5
0

K
=

1
0
0
0

K
=

2
0
0
0

PRAVE vs PUCT

3D
T
ic

T
ac

T
oe

68.7(±
4.06)

70.2(±
4.00)

72.3(±
3.91)

80.3(±
3.47)

75.0(±
3.78)

81.9(±
3.36)

79.5(±
3.53)

74.4(±
3.81)

B
reakthrough

58.2(±
4.33)

60.6(±
4.29)

63.8(±
4.22)

65.8(±
4.16)

72.2(±
3.93)

72.0(±
3.94)

71.6(±
3.96)

65.8(±
4.16)

K
nightthrough

68.4(±
4.08)

70.8(±
3.99)

71.4(±
3.96)

73.6(±
3.87)

70.6(±
4.00)

71.2(±
3.97)

71.2(±
3.97)

70.8(±
3.99)

Skirm
ish

64.7(±
4.16)

57.1(±
4.28)

53.5(±
4.34)

49.3(±
4.35)

41.2(±
4.26)

41.9(±
4.27)

40.8(±
4.27)

39.7(±
4.23)

B
attle

58.0(±
3.83)

60.2(±
3.78)

54.3(±
3.86)

57.2(±
3.81)

55.8(±
3.88)

58.0(±
3.85)

54.0(±
3.94)

52.5(±
4.00)

C
hinook

45.2(±
4.04)

51.5(±
4.06)

55.2(±
4.10)

59.2(±
4.05)

57.2(±
4.09)

59.3(±
4.01)

55.9(±
4.12)

52.4(±
4.11)

C
hin.C

heckers3P
63.9(±

4.20)
61.1(±

4.26)
63.9(±

4.20)
58.7(±

4.30)
64.3(±

4.19)
64.9(±

4.17)
59.6(±

4.28)
58.5(±

4.31)
A
vg.

W
in%

61.0(±
1.57)

61.6(±
1.56)

62.1(±
1.56)

63.4(±
1.55)

62.3(±
1.56)

64.2(±
1.54)

61.8(±
1.57)

59.2(±
1.59)

R
obustness

5
6

6
6

5
5

5
3

PGRAVE vs PUCT

3D
T
ic

T
ac

T
oe

63.5(±
4.21)

71.4(±
3.96)

75.0(±
3.78)

75.3(±
3.78)

80.1(±
3.49)

80.7(±
3.45)

79.9(±
3.51)

77.9(±
3.61)

B
reakthrough

52.8(±
4.38)

58.4(±
4.32)

61.2(±
4.28)

65.0(±
4.19)

67.8(±
4.10)

68.6(±
4.07)

65.2(±
4.18)

62.2(±
4.25)

K
nightthrough

72.6(±
3.91)

72.0(±
3.94)

74.0(±
3.85)

71.2(±
3.97)

70.6(±
4.00)

74.4(±
3.83)

68.0(±
4.09)

68.6(±
4.07)

Skirm
ish

62.2(±
4.20)

57.0(±
4.28)

51.2(±
4.34)

55.7(±
4.30)

46.1(±
4.31)

44.6(±
4.27)

42.0(±
4.28)

42.2(±
4.28)

B
attle

68.7(±
3.38)

72.7(±
3.33)

71.7(±
3.29)

69.6(±
3.36)

71.6(±
3.31)

72.6(±
3.25)

69.6(±
3.46)

67.5(±
3.46)

C
hinook

55.0(±
4.08)

64.4(±
4.00)

66.6(±
3.89)

67.3(±
3.80)

69.6(±
3.80)

70.5(±
3.70)

66.5(±
3.87)

64.2(±
3.94)

C
hin.C

heckers3P
63.9(±

4.20)
67.5(±

4.09)
63.3(±

4.21)
63.6(±

4.20)
60.0(±

4.28)
64.9(±

4.17)
62.5(±

4.23)
57.7(±

4.32)
A
vg.

W
in%

62.7(±
1.55)

66.2(±
1.52)

66.1(±
1.52)

66.8(±
1.51)

66.5(±
1.51)

68.0(±
1.49)

64.8(±
1.54)

62.9(±
1.55)

R
obustness

6
7

6
7

6
5

5
5

PHRAVE vs PUCT

3D
T
ic

T
ac

T
oe

66.5(±
4.12)

63.1(±
4.22)

71.9(±
3.93)

76.1(±
3.74)

76.1(±
3.71)

75.4(±
3.75)

77.0(±
3.67)

68.5(±
4.04)

B
reakthrough

53.6(±
4.38)

57.0(±
4.34)

62.6(±
4.25)

65.2(±
4.18)

65.4(±
4.17)

60.4(±
4.29)

63.2(±
4.23)

59.2(±
4.31)

K
nightthrough

74.0(±
3.85)

72.4(±
3.92)

74.0(±
3.85)

77.4(±
3.67)

74.0(±
3.85)

73.8(±
3.86)

70.4(±
4.01)

68.2(±
4.09)

Skirm
ish

62.6(±
4.21)

57.4(±
4.31)

52.0(±
4.33)

48.9(±
4.33)

46.2(±
4.32)

41.8(±
4.26)

44.2(±
4.30)

37.0(±
4.18)

B
attle

72.3(±
3.21)

75.7(±
3.25)

73.2(±
3.17)

69.2(±
3.37)

70.9(±
3.34)

67.4(±
3.44)

73.5(±
3.26)

69.4(±
3.48)

C
hinook

54.9(±
4.10)

66.0(±
3.89)

66.4(±
3.94)

74.9(±
3.54)

72.9(±
3.58)

75.4(±
3.55)

73.4(±
3.63)

73.8(±
3.61)

C
hin.C

heckers3P
67.9(±

4.08)
64.1(±

4.19)
66.3(±

4.13)
65.5(±

4.16)
62.7(±

4.23)
60.3(±

4.28)
61.3(±

4.26)
60.2(±

4.27)
A
vg.

W
in%

64.5(±
1.53)

65.1(±
1.54)

66.6(±
1.51)

68.2(±
1.49)

66.9(±
1.51)

64.9(±
1.53)

66.1(±
1.52)

62.3(±
1.56)

R
obustness

6
7

6
6

6
5

5
5

5.3 — Experiments 113

Table 5.2: Win percentage of PRAVE, PGRAVE and PHRAVE with best K against PUCT with
1s play-clock and start-clock.

Game PRAVE PGRAVE PHRAVE
3D Tic Tac Toe 78.4(±2.54) 74.3(±2.70) 64.0(±2.97)
Breakthrough 66.6(±2.92) 67.6(±2.90) 57.8(±3.06)
Knightthrough 73.0(±2.75) 73.6(±2.73) 71.3(±2.81)

Skirmish 47.5(±3.07) 54.5(±3.05) 59.3(±3.02)
Battle 57.0(±2.69) 69.7(±2.34) 73.7(±2.29)

Chinook 59.6(±2.84) 68.3(±2.71) 65.1(±2.74)
Chin.Checkers3P 61.9(±3.00) 63.2(±2.98) 64.4(±2.96)

Checkers 63.5(±2.83) 70.8(±2.65) 60.7(±2.84)
Connect Five 70.8(±2.76) 75.5(±2.62) 66.8(±2.89)

Othello 36.9(±2.96) 42.9(±2.99) 57.4(±3.02)
Quad 75.1(±2.67) 73.6(±2.72) 73.3(±2.73)

Sheep and Wolf 66.0(±2.94) 62.9(±3.00) 56.7(±3.07)
TTCC4 2P 72.9(±2.73) 71.2(±2.77) 62.3(±3.00)

Zhadu 69.3(±2.86) 67.4(±2.91) 71.3(±2.80)
TTCC4 3P 52.1(±3.03) 52.6(±3.03) 53.4(±3.05)
Avg. Win% 63.4(±0.75) 65.9(±0.74) 63.8(±0.75)
Robustness 11 12 15

Table 5.3: Simulations per second of PUCT, PRAVE, PGRAVE and PHRAVE.

Game PUCT PRAVE PGRAVE PHRAVE
3D Tic Tac Toe 3 093 2 831 2 920 2 877
Breakthrough 1 453 1 378 1 430 1 435
Knightthrough 2 285 2 100 2 146 2 210

Skirmish 106 105 104 106
Battle 2 149 2 001 1 898 1 916

Chinook 2 178 2 085 2 150 2 144
Chin.Checkers3P 4 995 4 108 4 235 4 229

Checkers 532 518 511 518
Connect Five 1 191 1 160 1 144 1 148

Othello 39 39 39 38
Quad 2 767 2 617 2 627 2 684

Sheep and Wolf 2 110 2 071 2 063 2 097
TTCC4 2P 1 124 1 277 1 321 1 368

Zhadu 494 484 477 480
TTCC4 3P 2 058 2 207 2 220 2 257

114 Rapid Action Value Estimation Variants

Table 5.4: Win percentage of PRAVE, PGRAVE and PHRAVE with K = 250 against PUCT

with 10s play-clock and start-clock.

Game PRAVE PGRAVE PHRAVE
3D Tic Tac Toe 69.7(±2.81) 68.2(±2.86) 60.7(±2.99)
Breakthrough 67.5(±2.90) 65.1(±2.96) 60.4(±3.03)
Knightthrough 84.8(±2.23) 84.1(±2.27) 84.4(±2.25)

Skirmish 60.2(±3.01) 60.0(±3.00) 55.8(±3.07)
Battle 59.1(±2.19) 57.2(±2.29) 54.6(±2.35)

Chinook 39.8(±2.78) 56.6(±2.84) 71.8(±2.52)
Chin.Checkers3P 54.0(±3.08) 54.7(±3.07) 49.7(±3.09)

Checkers 52.2(±2.77) 56.3(±2.73) 61.8(±2.69)
Connect Five 66.9(±2.36) 59.9(±2.50) 53.3(±2.47)

Othello 61.8(±2.97) 62.0(±2.97) 60.6(±2.97)
Quad 10.7(±1.87) 8.5(±1.68) 7.9(±1.64)

Sheep and Wolf 69.6(±2.85) 69.0(±2.87) 67.2(±2.91)
TTCC4 2P 61.1(±2.90) 66.4(±2.80) 65.7(±2.80)

Zhadu 63.4(±2.94) 66.5(±2.86) 68.5(±2.82)
TTCC4 3P 54.4(±2.97) 58.5(±2.95) 50.3(±3.02)
Avg. Win% 58.3(±0.75) 59.5(±0.75) 58.2(±0.75)
Robustness 10 13 11

PRAVE and PGRAVE still obtain a significant improvement in most of the games,
only in Othello they are significantly outperformed by PUCT. Table 5.3 reports for
each game the average median number of simulations per second that each of the
agent instances can perform. This shows how the overhead, which each strategy
introduces, influences the search speed. As can be seen, for most of the games the
instances that use a RAVE variant seem to be slightly slower than the instance that
uses plain UCT. However, given the results in Table 5.2, the extra information used
by these strategies seems to make up for this difference.

Table 5.4 shows the results obtained by repeating the experiment with 10s play-
clock and start-clock. For PHRAVE, results for the valueK = 250 are reported instead
ofK = 50. The valueK = 50 is the one with highest robustness for PHRAVE in Table
5.1. However, in this series of experiments it makes PHRAVE achieve noticeably lower
results than PRAVE and PGRAVE, reaching an average win percentage of only 53.0
and a robustness of 7. For this reason, PHRAVE has been tested also with the value
of K that produced the highest average win percentage in Table 5.1 (i.e. K = 250),
showing that with an increased amount of thinking time, this value performs better.

As can be seen, in most of the games the longer search time reduces the per-
formance increase of PRAVE, PGRAVE and PHRAVE against PUCT. In Quad it even
makes the use of RAVE, GRAVE and HRAVE detrimental, substantially reducing
the win percentage around 10%. As it will be seen in Chapter 6, this game seems to
be particularly sensitive to how parameter values are set. With an increased search
time parameter settings for the RAVE variants might become sub-optimal for this

5.3 — Experiments 115

Table 5.5: Win percentage of PRAVE-MAST, PGRAVE-MAST and PHRAVE-MAST with best K
against PUCT-MAST.

Game PRAVE-MAST PGRAVE-MAST PHRAVE-MAST
3D Tic Tac Toe 64.9(±2.76) 65.3(±2.75) 57.3(±2.89)
Breakthrough 78.5(±2.55) 74.6(±2.70) 72.3(±2.78)
Knightthrough 81.9(±2.39) 74.7(±2.70) 75.6(±2.66)

Skirmish 56.1(±3.04) 53.6(±3.04) 64.9(±2.92)
Battle 72.5(±2.32) 76.9(±2.20) 80.8(±2.03)

Chinook 32.2(±2.60) 61.3(±2.85) 58.3(±2.91)
Chin.Checkers3P 58.7(±3.04) 57.5(±3.05) 56.1(±3.07)

Checkers 65.1(±2.80) 67.1(±2.74) 59.1(±2.85)
Connect Five 60.2(±2.25) 58.4(±2.29) 46.6(±2.41)

Othello 36.8(±2.94) 42.6(±3.00) 50.1(±3.06)
Quad 34.5(±2.80) 29.2(±2.65) 29.8(±2.67)

Sheep and Wolf 56.3(±3.08) 56.6(±3.07) 57.3(±3.07)
TTCC4 2P 63.3(±2.92) 66.2(±2.85) 46.6(±3.04)

Zhadu 73.8(±2.73) 64.8(±2.96) 65.1(±2.96)
TTCC4 3P 56.0(±2.98) 55.6(±2.98) 55.9(±3.01)
Avg. Win% 59.4(±0.75) 60.3(±0.75) 58.4(±0.76)
Robustness 9 11 8

game, causing the low win rate. Only in Knightthrough, Othello, and Sheep and
Wolf more search time increases the performance of all the three RAVE variants with
respect to UCT. It could be that these games benefit from more accurate AMAF
statistics, for which more samples are collected using more search time.

A reason why in most of the games the difference in performance between RAVE
variants and UCT decreases with more search time might be related to the law of
diminishing returns (Heinz, 2001). This rule states that the performance gain of
a search algorithm decreases with the increase of search effort (e.g. longer search
time, higher number of simulations). It is possible that for the agents using RAVE,
GRAVE and HRAVE this decrease is faster than for UCT in most of the games, thus
more search time closes the gap between the performance of the RAVE variants and
UCT. At the same time, the opposite could be true for Knightthrough, Othello,
and Sheep and Wolf. For these games UCT might be the strategy for which the
performance gain decreases faster when using a longer search time.

5.3.5 Matching RAVE Variants against UCT with MAST

Table 5.5 shows the performance of PRAVE-MAST, PGRAVE-MAST and PHRAVE-MAST
with the best K against PUCT-MAST. For most of the games the addition of MAST
as play-out strategy seems to benefit more PUCT-MAST. The agents PRAVE-MAST,
PGRAVE-MAST and PHRAVE-MAST perform significantly better than PUCT-MAST in
most of the games. However, for many of these games the difference in performance

116 Rapid Action Value Estimation Variants

Table 5.6: Win percentage of PRAVE-MAST against PRAVE, PGRAVE-MAST against PGRAVE

and PHRAVE-MAST against PHRAVE. The win percentage always refers to the first of the
two agents.

Game
PRAVE-MAST PGRAVE-MAST PHRAVE-MAST

vs vs vs
PRAVE PGRAVE PHRAVE

3D Tic Tac Toe 51.5(±3.04) 54.3(±3.03) 58.0(±3.00)
Breakthrough 78.1(±2.56) 80.6(±2.45) 82.5(±2.36)
Knightthrough 87.6(±2.04) 87.4(±2.06) 84.4(±2.25)

Skirmish 39.9(±3.00) 44.9(±3.04) 43.4(±3.05)
Battle 15.4(±2.15) 6.5(±1.39) 6.7(±1.38)

Chinook 64.3(±2.47) 79.1(±2.33) 74.6(±2.49)
Chin.Checkers3P 67.5(±2.90) 60.9(±3.02) 60.4(±3.03)

Checkers 74.2(±2.53) 75.8(±2.45) 71.9(±2.63)
Connect Five 75.5(±2.34) 68.2(±2.48) 66.5(±2.68)

Othello 59.6(±2.99) 58.0(±2.99) 63.0(±2.93)
Quad 43.2(±3.03) 38.9(±2.95) 38.2(±2.96)

Sheep and Wolf 37.0(±2.99) 37.3(±3.00) 41.4(±3.05)
TTCC4 2P 83.8(±2.23) 80.7(±2.38) 76.6(±2.60)

Zhadu 64.1(±2.97) 56.1(±3.07) 57.4(±3.06)
TTCC4 3P 60.3(±2.96) 56.9(±2.97) 59.6(±2.96)
Avg. Win% 60.1(±0.76) 59.0(±0.77) 59.0(±0.77)
Robustness 6 7 7

achieved by PRAVE-MAST, PGRAVE-MAST and PHRAVE-MAST against PUCT-MAST is
not as high as the difference in performance achieved by PRAVE, PGRAVE and
PHRAVE against PUCT. Some examples are the games 3D Tic Tac Toe, Connect
Five and TTCC4 with 2 players.

The game for which MAST has the biggest impact is Quad. In this game, all
RAVE variants were obtaining an improvement over UCT when a random play-out
strategy was used by all agents. Moreover, results for Quad reported in Appendix D
show that the agent using the MAST play-out strategy together with UCT achieves
a much higher win rate than the UCT agent that uses random play-outs. However,
when the RAVE variants are combined with MAST the performance in Quad drops
significantly with respect to using only MAST. A reason for this could be, once
again, the fact that Quad is sensitive to parameter values. The combination of
the MAST play-out strategy with the RAVE variants might require different values
for the parameter settings of such selection strategies, therefore making the default
values sub-optimal. Another reason might be that, as it will be seen in Chapter
7, Quad is the game that seems to benefit the most from the diversification of the
search. Combining selection and play-out strategies that try to bias the search
mostly towards generally good actions might make the search too focused for this
game.

5.3 — Experiments 117

Among the RAVE variants, the one that seems to get more benefit from being
combined with MAST is RAVE. This could be explained by considering that the
AMAF scores used by RAVE in the nodes with a low number of visits only have a
small number of samples. MAST can compensate the lack of local information near
the leaf nodes of the tree. Using its global statistics, MAST steers the simulations
towards more promising parts of the state space during the play-out improving its
quality. The quality of a simulation for GRAVE and HRAVE, instead, is already
improved near the leaf nodes by the use of the AMAF statistics of an ancestor.
Thus, the addition of MAST in the play-out has less added benefit to the overall
simulation quality.

Although MAST seems to improve more the performance of the UCT selection
strategy rather than the one of the RAVE variants, it is still positive to use MAST
together with RAVE, GRAVE and HRAVE. This is confirmed by the results shown in
Table 5.6, obtained by matching PRAVE-MAST against PRAVE, PGRAVE-MAST against
PGRAVE and PHRAVE-MAST against PHRAVE, respectively. For most of the games,
the agents that use MAST perform significantly better than the ones that do not.
Only in four games MAST is shown to decrease the performance independently of the
RAVE variant it is combined with: Skirmish, Battle, Quad, and Sheep and Wolf.
For Skirmish, Battle, and Sheep and Wolf also plain UCT, when combined with
MAST, shows a decrease in the performance, as visible from the results reported
in Appendix D. In Quad, instead, MAST and any of the RAVE variants have a
positive impact on the search when used separately, but when combined with each
other they are detrimental for the search.

5.3.6 Matching RAVE Variants against Each Other

As a validation of previous results the agents based on the three RAVE variants
have been matched two at a time against each other. Table 5.7 shows the obtained
results. For each pair of strategies the table reports a column of results without
MAST and a column with MAST.

These results are in line to what has been observed in previous experiments.
PGRAVE performs better than PRAVE in some games and equally in others. The
performance of PRAVE and PHRAVE is more game dependent. In some games they
perform equally, in games such as 3D Tic Tac Toe and Breakthrough PRAVE performs
best and in games such as Skirmish and Battle PHRAVE performs best. A similar
game-dependent performance can be observed for PGRAVE and PHRAVE, but in this
case there are more games in which PGRAVE performs best. When MAST is added
to all the agents, the difference in their performance diminishes. PGRAVE-MAST
and PRAVE-MAST perform similarly, one outperforming the other in a few games
and vice-versa. MAST also benefits both PRAVE-MAST and PGRAVE-MAST against
PHRAVE-MAST.

Finally, the results obtained for Knightthrough by PGRAVE against PRAVE can
be compared with the ones reported by Cazenave (2015). It can be noticed that
the agent instances evaluated in this section did not achieve the same performance
increase. Cazenave (2015) shows that the agent based on GRAVE achieves a win
rate of 67.8% against the one based on RAVE when both of them have a limit of 1 000

118 Rapid Action Value Estimation Variants

T
able

5.7:
W

in
percentage

of
all

possible
com

binations
of

agents
w
ith

and
w
ithout

M
A
ST

.
T
he

w
in

percentage
alw

ays
refers

to
the

first
of

the
tw

o
agents.

G
am

e
P

G
R

A
V

E
P

G
R

A
V

E
-M

A
S
T

P
H

R
A
V

E
P

H
R

A
V

E
-M

A
S
T

P
G

R
A
V

E
P

G
R

A
V

E
-M

A
S
T

vs
vs

vs
vs

vs
vs

P
R

A
V

E
P

R
A
V

E
-M

A
S
T

P
R

A
V

E
P

R
A
V

E
-M

A
S
T

P
H

R
A
V

E
P

H
R

A
V

E
-M

A
S
T

3D
T
ic

T
ac

T
oe

50.4(±
3.09)

51.1(±
2.93)

40.1(±
3.01)

41.9(±
2.89)

63.0(±
2.97)

57.1(±
2.91)

B
reakthrough

46.9(±
3.09)

46.1(±
3.09)

38.8(±
3.02)

44.6(±
3.08)

57.1(±
3.07)

54.6(±
3.09)

K
nightthrough

52.8(±
3.10)

38.7(±
3.02)

49.6(±
3.10)

40.3(±
3.04)

48.7(±
3.10)

45.6(±
3.09)

Skirm
ish

52.3(±
3.04)

54.0(±
3.04)

62.6(±
2.97)

59.5(±
3.02)

40.7(±
3.02)

44.2(±
3.01)

B
attle

66.8(±
2.34)

54.5(±
2.65)

68.4(±
2.38)

62.6(±
2.52)

50.0(±
2.46)

48.4(±
2.67)

C
hinook

58.3(±
2.76)

70.1(±
2.41)

55.4(±
2.76)

70.8(±
2.38)

54.0(±
2.79)

49.7(±
2.84)

C
hin.C

heckers3P
55.1(±

3.07)
50.1(±

3.09)
55.3(±

3.08)
49.4(±

3.10)
46.2(±

3.09)
50.1(±

3.10)
C
heckers

53.4(±
2.91)

53.1(±
2.91)

46.5(±
2.94)

43.0(±
2.91)

54.3(±
2.90)

58.5(±
2.89)

C
onnect

F
ive

57.9(±
2.97)

47.3(±
2.19)

51.0(±
3.04)

39.6(±
2.17)

58.7(±
2.99)

57.8(±
2.22)

O
thello

52.8(±
3.04)

54.5(±
3.04)

65.0(±
2.91)

65.0(±
2.90)

37.5(±
2.95)

36.4(±
2.93)

Q
uad

50.5(±
3.09)

42.4(±
2.90)

48.9(±
3.07)

44.4(±
2.89)

52.5(±
3.06)

53.4(±
2.93)

Sheep
and

W
olf

51.0(±
3.10)

49.2(±
3.10)

43.8(±
3.08)

48.8(±
3.10)

57.2(±
3.07)

49.8(±
3.10)

T
T
C
C
4
2P

52.3(±
3.03)

54.2(±
2.96)

43.7(±
3.03)

37.7(±
2.92)

60.9(±
2.96)

66.0(±
2.85)

Zhadu
50.1(±

3.10)
42.0(±

3.06)
52.3(±

3.10)
40.2(±

3.04)
46.7(±

3.09)
49.5(±

3.10)
T
T
C
C
4
3P

48.6(±
3.02)

50.0(±
2.98)

52.8(±
3.04)

50.4(±
3.01)

48.7(±
3.03)

48.5(±
3.01)

A
vg.

W
in%

53.3(±
0.78)

50.5(±
0.76)

51.6(±
0.78)

49.2(±
0.76)

51.7(±
0.78)

51.3(±
0.76)

R
obustness

4
1

0
−
4

3
3

5.3 — Experiments 119

Table 5.8: Average number of move statistics per node of PRAVE and PGRAVE.

Game PRAVE PGRAVE
3D Tic Tac Toe 4.58 9.11
Breakthrough 3.49 21.14
Knightthrough 3.16 13.44

Skirmish 4.02 54.38
Battle 8.40 19.92

Chinook 2.46 13.81
Chin.Checkers3P 2.59 16.01

Checkers 2.58 41.94
Connect Five 4.47 9.69

Othello 2.41 14.87
Quad 3.66 7.57

Sheep and Wolf 2.95 32.04
TTCC4 2P 2.27 28.82

Zhadu 2.73 23.12
TTCC4 3P 2.47 13.32

simulations per turn, and a win rate of 67.2% when the limit is 10 000 simulations per
turn. However, this difference might be due to the different formula that is used for β
and to the fact that in the experiments performed in this chapter agents do not have
a limit on the number of simulations per turn but on the amount of time. Moreover,
the implementation of RAVE presented in this chapter is achieving a higher win rate
against UCT than in the experiments performed by Cazenave (2015), where the win
rate of RAVE is 69.4% for 1, 000 simulations per turn and 56.2% for 10 000. This,
therefore, reduces the potential gain by GRAVE in the experiments performed in
this chapter.

5.3.7 Memory Usage

As mentioned in Subsection 5.2.2, GRAVE needs to memorize in each node the
AMAF statistics for all the actions that are encountered during every simulation
that passes through the node. The RAVE strategy, instead, only needs to memorize
in each node the AMAF statistics for the moves that are legal in the corresponding
game state.

Table 5.8 shows for RAVE and GRAVE the average number of distinct AMAF
statistics that are memorized in each node for every game. These results give an
idea of the difference between the strategies in memory usage. The space required
by GRAVE ranges between 2 times the space required by RAVE in 3D Tic Tac
Toe and 16 times the space required by RAVE in Checkers. The number of AMAF
statistics memorized by RAVE is proportional to the branching factor of the search
tree. For GRAVE, instead, it depends also on whether or not distinct actions are
legal at different stages of the game. If the descendant of a node are often presenting

120 Rapid Action Value Estimation Variants

different legal moves than the ones available in the node, then the space required to
memorize AMAF statistics for GRAVE will be much higher than the one required
by RAVE.

Note that, given that the strategies are remembering all the statistics between
turns, the memory usage of HRAVE is the same of GRAVE. As mentioned in Sub-
section 5.2.3, HRAVE requires the same statistics as GRAVE in order to reuse them
in subsequent turns of the search.

5.4 Chapter Conclusions and Future Research

In this chapter the performance of three selection strategies, RAVE, GRAVE and
HRAVE was compared. These three strategies bias the selection phase of MCTS
towards actions that perform well in general in the game. The difference is that
RAVE uses more local information about the performance of the actions, HRAVE
uses more global information, and GRAVE uses information in-between. These
RAVE variants have been tested in order to verify the effect of using more local or
more global information to bias action selection in MCTS, when MCTS is applied to
GGP. Moreover, they have been tested also in combination with the MAST play-out
strategy to verify how a more informed play-out strategy affects their performance.

When combined with a random play-out strategy, it may be concluded that the
performance of GRAVE is, in the worst case, comparable with the one of RAVE both
when using 1s or 10s play-clock. GRAVE never has an inferior performance than
RAVE, except in Connect Five when using a 10s play-clock. Regarding HRAVE,
it may be concluded that its performance is more game dependent when a random
play-out strategy is used. In some games HRAVE is either better or comparable to
RAVE and GRAVE, but there are some games where it performs worse. Moreover,
when looking at the average win percentage, in none of the experiments its overall
performance proved to be better than both RAVE and GRAVE.

When combined with the MAST play-out strategy, GRAVE still seems to be
overall better than RAVE. However, it does not have the same advantage over RAVE
that it has when both strategies are combined with the random play-out. MAST,
apparently, compensates the lack of information near the leaf nodes for RAVE,
closing the performance gap between RAVE and GRAVE. There are also a few games
where the combination GRAVE-MAST actually performs worse than RAVE-MAST.
Moreover, when using MAST, HRAVE is the strategy that appears to be the least
beneficial among the three strategies. However, experiments confirm that combining
RAVE, GRAVE and HRAVE with the MAST play-out strategy has more benefit
than combining them with a random play-out. Therefore, subsequent chapters will
consider an agent that uses MAST as play-out strategy.

As seen in the experiments, the difference in performance between RAVE, GRAVE
and HRAVE is not large. However, in a context like GGP, GRAVE might be the
most suitable strategy to use. In all the experiments its overall win percentage is
never inferior to the one of RAVE and HRAVE. Moreover, GRAVE shows to be ro-
bust over all the performed series of experiments, and it is important for a strategy
in GGP to be robust over a heterogeneous set of games. Therefore, it may be con-

5.4 — Chapter Conclusions and Future Research 121

cluded that a strategy that starts biasing action selection with global information
and uses more local information the more the nodes have been visited is the most
suitable to enhance MCTS for GGP.

Future research could investigate further the strengths of GRAVE over RAVE
and HRAVE by tuning also its ref parameter. Moreover, the formula proposed more
recently by Gelly and Silver (2011) to compute the β parameter could be tested.
According to their findings, with this formula the performance of the three RAVE
variants could improve further. Moreover, in this chapter these strategies were only
tested in combination with MAST. Other play-out strategies might influence them
in a different way. Testing the combination with the NST play-out strategy could
be an idea for future research.

122 Rapid Action Value Estimation Variants

Chapter 6

On-line Search-Control
Parameter Tuning for MCTS

This chapter is based on:

• Sironi, Chiara F., and Winands, Mark H.M. (2018a). On-Line Parameter
Tuning for Monte-Carlo Tree Search in General Game Playing. Computer
Games, pp. 75–95.

• Sironi, Chiara F. and Liu, Jialin and Perez-Liebana, Diego and Gaina,
Raluca D. and Bravi, Ivan and Lucas, Simon M. and Winands, Mark
H.M. (2018). Self-Adaptive MCTS for General Video Game Playing.
21st International Conference on the Applications of Evolutionary Com-
putation (eds. K. Sim and P. Kaufmann), Vol. 10784 of LNCS, pp.
358–375, Springer, Berlin, Germany.

• Sironi, Chiara F., and Winands, Mark H.M. (2018b). Analysis of Self-
Adaptive Monte Carlo Tree Search in General Video Game Playing.
Computational Intelligence and Games (CIG), 2018 IEEE Conference
on, pp. 397–400.

• Sironi, Chiara F., and Winands, Mark H.M. (2018c). On-Line Parame-
ter Tuning for Monte-Carlo Tree Search in General Game Playing. Pro-
ceedings of the 30th Benelux Conference on Artificial Intelligence, pp.
235–236. Extended Abstract.

• Sironi, Chiara F., Liu, Jialin, and Winands, Mark H.M. (2019). Self-
Adaptive Monte-Carlo Tree Search in General Game Playing. IEEE
Transactions on Games. In press.

Search-control strategies and enhancements have been proposed for MCTS in
various domains (Browne et al., 2012) and many have successfully been applied
in GGP (Finnsson and Björnsson, 2010; Tak et al., 2012; Soemers et al., 2016).
The behavior of MCTS strategies is normally controlled by a certain number of
parameters, and the performance of such strategies depends on how parameter values
are set. Sometimes, extensive off-line tuning is required to find the best values.

124 On-line Search-Control Parameter Tuning for MCTS

Parameters might also be inter-constrained, so either a large amount of time is spent
testing all possible combinations of values or the parameters are tuned separately
ignoring the inter-dependency. Research has also shown that in some cases the best
values for the parameters could be game dependent (Cazenave, 2015; Nijssen and
Winands, 2011; Tak et al., 2014a) and tuning parameters per game might improve
the performance of MCTS. An example of this has been seen also in Chapter 5,
where for each RAVE variant no value of the parameter K was clearly superior to
all the others, but the performance depended on the game.

In the context of GGP, off-line tuning of parameters per game is infeasible because
agents have to deal with a theoretically unlimited number of games, treating each of
them as a new game that they have never seen before. This is why off-line parameter
tuning in GGP usually looks for a single combination of values to use for all games,
picking the one that performs overall best on a certain (preferably heterogeneous)
set of benchmark games. Tuning search-control parameters for each game in GGP
is still possible if done on-line. A Self-Adaptive MCTS (SA-MCTS) can be designed
by devising an on-line tuning method that adjusts the parameter values for each
new game being played. Such method should also aim at tuning the parameters in
combination, because parameter values are usually interdependent. In this case, the
number of possible combinations of parameters can become very large. Therefore, an
efficient strategy has to be designed to decide how to allocate the available samples
to test them.

This chapter answers the third research question by proposing a method that
tunes search-control parameters on-line for MCTS. On-line parameter tuning is in-
terleaved with the search, achieving a self-adaptive MCTS strategy (SA-MCTS).
This on-line tuning method uses each MCTS simulation to evaluate a different com-
bination of parameter values. An allocation strategy is required to decide how many
simulations must be used to evaluate each combination of values. This chapter
presents and evaluates seven allocation strategies: Multi-Armed Bandit (MAB) al-
location (Auer et al., 2002; Ontañón, 2013), Hierarchical Expansion (HE) (Roelofs,
2015; Roelofs, 2017), Naïve Monte-Carlo (NMC) (Ontañón, 2013; Ontañón, 2017),
Linear Side Information (LSI) (Shleyfman, Komenda, and Domshlak, 2014), an Evo-
lutionary Algorithm (EA), the N-Tuple Bandit Evolutionary Algorithm (NTBEA)
(Kunanusont et al., 2017; Lucas, Liu, and Perez-Liebana, 2018) and the Covari-
ance Matrix Adaptation Evolutionary Strategy (CMA-ES) (Hansen, Müller, and
Koumoutsakos, 2003). The first six allocation strategies consider a discrete domain
for parameter values, while the last one considers a continuous domain. This chapter
evaluates the robustness of the allocation strategies by testing them on MCTS-based
agents with different skills, on an increasing number of tuned parameters, for differ-
ent time constraints and in a real-time domain.

The remainder of this chapter is structured as follows. First, Section 6.1 intro-
duces previous work related to parameter tuning. Next, how to design a SA-MCTS
algorithm using on-line parameter tuning and how to formulate the tuning problem
is discussed in Section 6.2. Subsequently, Section 6.3 describes the seven allocation
strategies. Results obtained by testing these strategies in the context of GGP are
presented in Section 6.4, and finally, Section 6.5 gives the conclusion and outlines
possible future research.

6.1 — Related Work 125

6.1 Related Work

In the research area of game playing, on-line tuning of search parameters has not been
well explored. An example of work in this direction is performed by Björnsson and
Marsland (2003). They present both an off-line and an on-line approach for learning
search-extension parameters for αβ-search. The method is based on gradient descent
and looks for the parameter values that minimize the growth rate (in the number of
visited nodes) of the search.

More attention has been given to automatic off-line tuning of search parame-
ters. An example is the work of Kocsis, Szepesvári, and Winands (2006b), which
uses an enhanced version of the Simultaneous Perturbation Stochastic Approxima-
tion (SPSA) algorithm to tune parameters for Poker and Lines of Action. Another
approach, which recalls the structure of evolutionary approaches, is presented by
Chaslot et al. (2008c), which propose to tune parameters for the game of Go using
the Cross-Entropy Method (CEM). This method keeps a probability distribution
over possibly good parameter values and uses the evaluation of samples drawn from
it to refine the distribution over time. A genetic algorithm is the solution proposed
by Cole, Louis, and Miles (2004) to tune the parameters that control the behav-
ior of a rule-based agent for a first-person shooter game. CLOP (Coulom, 2012)
is another algorithm proposed for tuning game parameters and is based on local
quadratic regression. What most of these methods have in common is the need for
a high number of samples (e.g. game simulations) against a benchmark player in
order to find an optimal parameter configuration, which could then be evaluated by
playing against an “identical” agent with manually tuned parameters.

Other research focuses on designing Hyper-Heuristics, which are “a search method
or learning mechanism for selecting or generating heuristics to solve computational
search problems” (Burke et al., 2013). This concept has been applied to devise a
hyper-agent (Mendes, Togelius, and Nealen, 2016) for the GVG-AI framework. The
agent’s hyper-heuristic is trained off-line to recognize from a portfolio of sub-agents
the best one for the game at hand. The hyper-heuristic approach presented in
(Świechowski and Mańdziuk, 2014), instead, devises an on-line mechanism to select
from a portfolio of strategies the one that is best suited for the current game. A
similar concept is algorithm selection (Bischl et al., 2016), which consists in choosing
the most appropriate algorithm for the instance at hand, given a set of problem
instances and a set of algorithms that present a varying performance depending on
the instance they are applied to.

The research presented in this chapter is similar to the idea of hyper-heuristic and
algorithm selection. Some parameters can decide whether to (de)activate a certain
search-control strategy depending on the value that is assigned to them, actually
originating multiple search algorithms. Parameter tuning can be seen as a hyper-
heuristic to choose which strategies or algorithms to use from a portfolio determined
by the available parameter configurations.

Moreover, three of the allocation strategies discussed in this chapter are based
on evolutionary algorithms. Evolutionary computation (Ashlock, 2006) is a set of
nature-inspired optimization algorithms. In general, a population of individuals
(candidate solutions) is randomly initialized when the optimization process starts,

126 On-line Search-Control Parameter Tuning for MCTS

������������	
��

��������� 	
���
��� �������� ���������

�����������

��	
���� �������

�	 �
���
����
�

�
��

��� 	
�

�	
���	���

�
������� �	

�
� �
��

��
�
������

��	
���� ���

������	������
�

�
������

�
��
����� ���

�
	�������

���������
�

�
��

����
��

����������

�����

�������

�����
�

����
���

�
��
��������������

�	���������	���

�������������	���

�
����������	���
��

��
�����
�������

���
����
�����

��	
�����

�
		�����
��

�������	���
��

��
�����
���	
�

�
����

����

���
���	�

����
 ����
 ����
 ����
 ����
 ����

Figure 6.1: Interleaving on-line tuning with MCTS (Inspired by Chaslot et al., 2008b).

then updated iteratively by evaluation, selection and reproduction until stopping
conditions are met. The population can be composed by one or multiple individ-
uals. Evolutionary computation techniques can be classified by different ways of
reproduction, the size of the population, the use of a discrete or continuous search
space, etc. The previously mentioned works of Chaslot et al. (2008c) and Cole et al.
(2004) are examples of applications of evolutionary computation techniques to game
playing. Other applications to game playing focus on evolving sequences of actions
to play (Gaina et al., 2017), or evolving game parameters or game levels (Liu et al.,
2017; Kunanusont et al., 2017).

6.2 Design of Self-Adaptive MCTS
This section presents the two main aspects of the proposed SA-MCTS. First, Sub-
section 6.2.1 discusses how on-line parameter tuning can be integrated within the
MCTS algorithm to make it adaptive. Next, Subsection 6.2.2 presents the formula-
tion of the parameter-tuning problem.

6.2.1 Integration of Parameter Tuning with MCTS
Figure 6.1 shows how parameter tuning is interleaved with MCTS simulations to
be performed on-line. For each iteration of the algorithm a tuner uses an allocation
strategy to choose a combination of values for the parameters being tuned. Next, the
four standard phases of MCTS are performed using the selected parameter values to
control the search. The result obtained by the simulation is used to update statistics

6.2 — Design of Self-Adaptive MCTS 127

about the quality of the chosen parameter combination. This process continues
until the end of the game, such that the parameters are tuned on-line for the whole
duration of the search.

In two- or multi-player games two possible ways to set up on-line parameter
tuning were identified. The first consists in selecting before each MCTS simulation
a single combination of parameter values for all the roles in the game, and using
the payoff obtained by the role played by the agent to update the statistics of such
combination. The second consists in separating the on-line parameter tuning prob-
lem into multiple instances, one for each role. Therefore, a different combination of
parameter values is selected before each MCTS simulation for each role in the game
independently, and the statistics of each combination are updated with the payoff of
the role for which the combination controlled the search. The advantage of using the
second option is that a different model for each role can be tuned, possibly obtaining
a more efficient search. Different roles might benefit from searching with different
strategies instead of using all the same. For this reason, this is the solution that this
chapter investigates.

6.2.2 Formulation of the Parameter Tuning Problem
An allocation strategy is required to decide how to divide the available number of
samples among all the combinations of parameter values that have to be evaluated.
An ideal allocation strategy for the on-line parameter tuning problem should aim
to assign most of the samples to good value combinations, reducing the number
of samples assigned to bad value combinations. This is because each evaluated
combination has an impact on the quality of the actual search. If bad combinations
are evaluated too often, the quality of the search results will decrease.

The main idea behind the formulation of the tuning problem is based on the work
of Świechowski and Mańdziuk (2014). They discusses multiple allocation strategies
for a problem similar to the one tackled in this chapter: on-line adaptation of the
search strategy to the played game. Among all the approaches they show that the
one considering the simulation allocation as a MAB problem combined with UCB
selection is the one that assigns the highest number of samples to the best search
strategy and the lowest to the worst. Moreover, a bandit-based approach is also
used by Baier (2015) to perform automated off-line parameter tuning for search-
based game-playing agents. An UCB1 variant is used to decide how to distribute
test games to evaluate different parameter settings, so that the number of tests spent
on inferior settings is reduced.

The action-space of the on-line parameter tuning problem has a combinatorial
structure (i.e. the action of choosing a parameter setting consists of multiple sub-
actions, each of which assign a certain value to one of the parameters). For this
reason, instead of considering the tuning problem as a MAB, this chapter considers it
as a Combinatorial Multi-Armed Bandit (CMAB), either with discrete or continuous
variables, and bases the design of the allocation strategies on this formulation.

The CMAB with discrete variables is defined by the following three components:

• Set of d variables, P = {P1, ..., Pd}, where each variable Pi can takemi different
values Vi = {vi,1, ..., vi,mi

}.

128 On-line Search-Control Parameter Tuning for MCTS

• Payoff distribution Q : V1 × ...× Vd → R that depends on the combination of
values assigned to the variables.

• Function LEGAL : V1 × ... × Vd → {true, false} that determines which com-
binations of values are legal.

Analogously, the CMAB with continuous variables can be defined by the following
three components:

• Set of d variables, P = {P1, ..., Pd}, where each variable Pi can take a value in
the interval Ii = [minPi

,maxPi
].

• Payoff distribution Q : I1 × ... × Id → R that depends on the combination of
values assigned to the variables.

• Function LEGAL : I1 × ... × Id → {true, false} that determines which com-
binations of values are legal.

For the parameter tuning problem, the parameters are considered as the variables
of the CMAB.

6.3 Allocation Strategies
This section introduces seven allocation strategies: Multi-Armed Bandit (MAB) al-
location (Auer et al., 2002; Ontañón, 2013), Hierarchical Expansion (HE) (Roelofs,
2015; Roelofs, 2017), Naïve Monte-Carlo (NMC) (Ontañón, 2013; Ontañón, 2017),
Linear Side Information (LSI) (Shleyfman et al., 2014), an Evolutionary Algorithm
(EA), the N-Tuple Bandit Evolutionary Algorithm (NTBEA) (Kunanusont et al.,
2017; Lucas et al., 2018) and the Covariance Matrix Adaptation Evolutionary Strat-
egy (CMA-ES) (Hansen et al., 2003). The first six consider a discrete domain for the
parameter values and are introduced in Subsection 6.3.1, while the latter considers
a continuous domain and is introduced in Subsection 6.3.2.

When reporting the pseudocode of the different allocation strategies, it is as-
sumed that each of them has access to the set of parameters being tuned P , the set
of feasible values Vi for each parameter Pi and the legality function LEGAL. For
the sake of simplicity, the pseudocode is given for one-player games, assuming that
each allocation strategy implicitly ensures that no illegal combinations of parameter
values are generated.

When tuning parameters for two- or multi-player games, all the allocation strate-
gies compute a different combination of parameters for each role in the game in-
dependently, therefore considering a separate CMAB representation of the tuning
problem for each role. All the computed combinations of parameters are then used
to control the same MCTS simulation. In this way, parameter value combinations
are co-evolved for all the roles. Note that having a different parameter combina-
tion for each role means that during the MCTS simulation different instantiations
of the selection or the play-out strategies might be used to choose the actions for
the different roles.

6.3 — Allocation Strategies 129

1: procedure MabParameterTuning(πMAB)
Input: The policy πMAB to select an action from the MAB problem.

2: MAB ← MAB problem with an arm for each legal parameter combination
3: while game not over do
4: ~p← πMAB.ChooseCombination(MAB)
5: q ← PerformMctsSimulation(~p)
6: MAB .UpdateArmStatistics(~p, q)

Algorithm 9: Pseudocode for the MAB allocation strategy.

When generating combinations of parameter values to be evaluated, the following
is the general procedure used by the allocation strategies to ensure that they are all
legal. When the allocation strategy is selecting a combination of parameter values
all at once, all the illegal combinations are excluded in advance from the selection.
When the allocation strategy is selecting the value for one parameter at a time, the
check for illegal values is split into multiple steps. More precisely, given the partial
combination of values selected so far and the next parameter to be set, all the values
of such parameter that will make the partial combination illegal are excluded from
the selection.

6.3.1 Discrete Allocation Strategies

This section presents the six allocation strategies that consider the tuning problem
for a player as a CMAB with a discrete domain. The first strategy has already
been proposed to be applied to MAB problems, to which CMAB problems can be
reduced. The next three strategies, HE, NMC and LSI, have been proposed by
previous research to specifically deal with CMABs. EA and NTBEA, being based
on evolutionary computation, have not been specifically designed for CMABs, but
can still be applied in this context.

Multi-Armed Bandit Allocation

A straightforward solution for dealing with a CMAB problem is to translate it back
to a MAB (Auer et al., 2002; Ontañón, 2013), where each arm corresponds to a
possible legal combination of values for the parameters. Algorithm 9 shows the
pseudocode for the MAB allocation strategy. This strategy uses a policy πMAB to
select the next parameter combination ~p to sample from the MAB problem (MAB).
The parameter combination is used to control the next MCTS simulation, performed
by the procedure PerformMctsSimulation(~p), and the result of the simulation
is used to update the expected value of ~p in the MAB. The procedure PerformM-
ctsSimulation(~p), other than running an MCTS simulation with the parameters ~p
and implementing the four MCTS phases, takes care of checking the search budget
for each game turn and playing a move in the real game when this budget expires.
This procedure is the same for all the allocation strategies discussed in this section.

When using the MAB allocation strategy, however, the information on the com-
binatorial structure of the parameter values is lost. Often, a value that is good (or

130 On-line Search-Control Parameter Tuning for MCTS

� �

⟨����, ����, ����⟩

MAB

HE

⟨�	
�, ��
�, ����⟩

⟨����, ����, ����⟩⟨����, ��� , �!"#⟩⟨�$%&, �'(), �*+,⟩⟨�-./, �012, �345⟩

⟨�678, �9:;, �<=>⟩⟨�?@A, �BCD, �EFG⟩

��HIJ, �KLM⟩ ��NOP, �QRS⟩��TUV, �WXY⟩

⟨�Z[\⟩⟨�]^_⟩

��`ab, �cde⟩

� �

⟨�fgh, �ijk, �lmn⟩⟨�opq, �rst, �uvw⟩⟨�xyz, �{|}, �~��⟩⟨����, ����, ����⟩

⟨����, ����, ����⟩⟨����, ����, ����⟩ ⟨����, �� ¡, �¢£¤⟩ ⟨�¥¦§, �¨©ª, �«¬­⟩

Figure 6.2: MAB and HE representation of the combinatorial action-space of the parameter
tuning problem.

bad) for a parameter in a certain combination of values, is also good (or bad) in
general or in many other combinations. With a MAB this information is ignored
and cannot be exploited.

Hierarchical Expansion

The HE strategy was proposed by Roelofs (2015; 2017) to offer an alternative to the
representation of a combinatorial space with respect to the one used by the MAB
problem. The main idea behind HE is to represent the combinatorial parameter
space as a tree, where each level corresponds to a different parameter for which a
value must be selected. Each node in a level has one child for each available legal
value of the corresponding parameter. In this way, the depth of the search for a
combination of parameters is increased, but the branching factor is reduced.

Figure 6.2 shows how the problem of tuning 3 parameters, each with 2 possible
values, is represented both with the MAB and with the HE approach. To build
the parameter tree used by HE an order must first be imposed on the parameters.
Each node of the tree corresponds to a partial combination of parameter values (the
root corresponds to the empty combination). At every level of the tree the partial
combination is extended by assigning a value to the next parameter in the order,
until the combination is complete. The parameter tree is then used to sample a
combination of parameters for each game simulation. MCTS can be applied to the
parameter tree, reducing to a MAB problem the choice of the next value to add to
the combination.

Algorithm 10 gives the pseudocode for the HE allocation strategy. The proce-
dure HeParameterTuning(πHE) implements the structure discussed in Subsection

6.3 — Allocation Strategies 131

1: procedure HeParameterTuning(πHE)
Input: The policy πHE to select an action at each node of the parameter tree.

2: paramTree← parameter tree with one level per parameter
3: while game not over do
4: ~p← ChooseParameterValues(paramTree, πHE)
5: q ← PerformMctsSimulation(~p)
6: UpdateStatistics(paramTree, ~p, q)

7: procedure ChooseParameterValues(paramTree, πHE)
Input: Tree, paramTree, where each level corresponds to one of the tunable
parameters, and the policy πHE to select an action at each node of this tree.
Output: Combination of parameter values ~p = 〈p1, ..., pd〉.

8: ~p = 〈p1, . . . , pd〉 ← empty array of size d
9: node← paramTree.GetRoot()

10: for i← 1, ..., d do
11: pi ← πHE.ChooseValue(node)
12: node← paramTree.GetNextNode(node, pi)
13: return ~p

14: procedure UpdateStatistics(paramTree, ~p, q)
Input: Tree, paramTree, where each level corresponds to one of the tunable
parameters, chosen parameter values ~p, payoff q obtained from the simulation
controlled by parameter values ~p.

15: node← paramTree.GetRoot()
16: for i← 1, ..., d do
17: node.UpdateArmStatistics(pi, q)
18: node← paramTree.GetNextNode(node, pi)

Algorithm 10: Pseudocode for the HE allocation strategy.

6.2.1. First of all, this procedure requires the tree, paramTree, that represents the
search space of the parameters and is built as discussed previously. A combination
of parameters ~p is chosen from the tree and used to control an MCTS simulation.
The result of the simulation is then used to update the statistics in the tree for the
selected combination of parameters.

The procedure ChooseParameterValues(paramTree, πHE) selects a param-
eter combination ~p by visiting the tree representation of the parameter-space. Start-
ing from the root, the procedure visits one path in the tree. In each visited node
a policy πHE is used to select the value for the next parameter, and this value is
added to the partial combination computed so far. The procedure UpdateStatis-
tics(paramTree, ~p, q) propagates in the tree the payoff q obtained by the game
simulation controlled by ~p.

132 On-line Search-Control Parameter Tuning for MCTS

1: procedure NmcParameterTuning(π0, πl, πg)
Input: The policy π0 to select among performing the exploration and exploita-
tion step, the policy πl to select an action from the local MAB problems, the
policy πg to select an action from the global MAB problem.

2: MABg ← MAB problem with no arms
3: for i← 1, ..., d do
4: MAB i ← MAB problem with an arm for each legal value of parameter
Pi

5: while game not over do
6: ~p← ChooseParameterValues(π0, πl, πg)
7: q ← PerformMctsSimulation(~p)
8: UpdateStatistics(~p, q)

9: procedure ChooseParameterValues(π0, πl, πg)
Output: Combination of parameter values ~p = 〈p1, ..., pd〉.

10: phase ← π0.choosePhase()
11: if phase = exploration then . Generate combination
12: ~p = 〈p1, . . . , pd〉 ← empty array of size d
13: for i← 1, ..., d do
14: pi ← πl.ChooseValue(MAB i)
15: MABg.Add(~p)
16: else if phase = exploitation then . Evaluate combination
17: ~p← πg.ChooseCombination(MABg)
18: return ~p

19: procedure UpdateStatistics(~p, q)
Input: Chosen parameter values ~p, payoff q obtained from the simulation con-
trolled by parameter values ~p.

20: MABg.UpdateArmStatistics(~p, q)
21: for i← 1, ..., d do
22: MAB i.UpdateArmStatistics(pi, q)

Algorithm 11: Pseudocode for the NMC allocation strategy.

Naïve Monte-Carlo

This strategy was first proposed by Ontañón (2013; 2017) and applied to real-time
strategy games, which are known for having a combinatorial action-space. Algo-
rithm 11 shows the pseudocode for NMC. The procedure NmcParameterTun-
ing(π0, πl, πg) implements the structure discussed in Subsection 6.2.1. The proce-
dure ChooseParameterValues(π0, πl, πg) shows how NMC chooses the combina-
tion of parameter values to test before an MCTS simulation. Two main steps are
distinguished, the exploration, which generates new parameter combinations, and the
exploitation, which evaluates the combinations generated so far. These two steps are
interleaved and for each iteration a policy π0 chooses which one to perform. Figure

6.3 — Allocation Strategies 133

Probability ��� ���: EXPLOIT

��

����

��,�

��,� ��,�

��

����

��,�

��,� ��,�

����

��,�

��

��,� ��,�

Probability ��: EXPLORE

����

⟨��,� , ��,� , ��,��⟨��,� , ��,� , ��,�� ⟨��,� , ��,� , ��,��⟨��,� , ��,�, ��,��

Figure 6.3: Overview of the exploration and exploitation phases of NMC.

6.3 gives an overview of the two phases of NMC using as an example the problem
of tuning three parameters, P1, P2 and P3, each of which can assume two different
values. The exploration phase of NMC is based on the naïve assumption, shown in
Formula 6.1.

Q(~p = 〈p1, ..., pd〉) ≈
d∑
i=1

Qi(pi). (6.1)

Here, ~p is a vector representing a possible assignment of values 〈p1, ..., pd〉 to the pa-
rameters. This assumption means that the expected payoff of a certain configuration
of parameter values can be approximated by a linear combination of expected pay-
offs of single parameter values, as if considering the parameters to be independent.
More precisely, the exploration considers d local MABs, one per parameter, and uses
them independently to generate a new combination of parameter values. Each local
MAB has an arm for each possible value of the associated parameter. A policy πl is
used to select one value pi for each parameter Pi using the corresponding local MAB
(i.e. MAB i). The resulting combination of values, if not yet present, is added to the
global MAB (i.e. MABg) used during the exploitation. MABg considers each arm
to be associated to a possible parameter combination. Initially it has no arms and

134 On-line Search-Control Parameter Tuning for MCTS

�� simulations: EVALUATE

�� simulations: GENERATE

• Simulations per

value ��,�:
��

|�|

Generate �

combinations
using

distribution �

⟨��,� , ��,� , ��,��

⟨��,� , ��,� , ��,��

⟨��,� , ��,� , ��,��

⟨��,� , ��,� , ��,��

��

Sequential halving from ��:

• Iterations: log� |��|

• Simulations per
combination during

iteration �:
��

|��| ���� |��|

� ��

��,�

��,�

��

��,�

��,�

�	

�	,�

�	,�

Figure 6.4: Overview of the generation and evaluation phases of LSI.

is filled during exploration. The evaluation uses a policy πg to select from MABg a
parameter combination to evaluate.

The procedure UpdateStatistics(~p, q) shows how the payoff of the MCTS sim-
ulation is used to update statistics about the chosen parameter values. Statistics
are updated in the global MAB for the given combination and in the local MABs
for each value in the combination.

Linear Side Information

The LSI algorithm (Shleyfman et al., 2014) is similar to NMC. It distinguishes two
main steps, called generation and evaluation. The generation step, like the explo-
ration step of NMC, generates new combinations of parameter values considering
them as independent (i.e. making a naïve assumption), while the evaluation step,
like the exploitation step of NMC, evaluates the generated combinations. The main
difference with NMC is that LSI performs these two steps in sequence instead of in-
terleaving them, and a total predefined budget of available samples Ntot = Ng +Ne
is divided among them.

Algorithm 12 gives the pseudocode for LSI, while Figure 6.4 gives an overview
of the two phases of LSI using as example the problem of tuning three parameters,

6.3 — Allocation Strategies 135

1: procedure LsiParameterTuning(Ng , Ne, k)
Input: Number of samples Ng for the generation phase, number of samples Ne for the evalu-
ation phase, number of candidates k to generate.

2: C∗ ← Generate(Ng , k)
3: ~p ∗ ← Evaluate(C∗, Ne)
4: while game not over do
5: PerformMctsSimulation(~p ∗)

6: procedure Generate(Ng , k)
Input: Number of samples Ng for the generation phase, number of candidates k to generate.
Output: Set of candidate parameter combinations to evaluate, C∗.

7: Q̂← SideInfo(Ng)
8: C∗ ← ∅
9: for k times do
10: ~p = 〈p1, . . . , pd〉 ← empty array of size d
11: V ←

⋃d
i=1 Vi

12: while V 6= ∅ do
13: vi,j ∼ D[Q̂ �V]
14: V ← V \ Vi
15: pi ← vi,j

16: C∗ ← C∗ ∪ {~p }
17: return C∗

18: procedure SideInfo(Ng)
Input: Number of samples Ng for the generation phase.
Output: Weight function Q̂ over single parameter values.

19: V ←
⋃d

i=1 Vi
20: x←

⌊
Ng

|V|

⌋
21: for x times do
22: for each vi,j ∈ V do
23: ~p← RandomlyExtend(vi,j)
24: q ← PerformMctsSimulation(~p)
25: average Q̂(vi,j) with q
26: return Q̂

27: procedure Evaluate(C∗, Ne)
Input: Set of parameter combinations to evaluate C∗, number of samples Ne for the evaluation
phase.
Output: Best parameter combination.

28: C0 ← C∗

29: for i← 0 to (
⌈
log2 |C∗|

⌉
− 1) do

30: x←
⌊

Ne

|Ci|dlog2 |C∗|e

⌋
31: for x times do
32: for each ~p ∈ Ci do
33: q ← PerformMctsSimulation(~p)
34: average expected value of ~p with q
35: Ci+1 ←

⌈
|Ci|/2

⌉
elements with highest estimated value

36: return the only combination ~p ∈ Cdlog2 |C∗|e

Algorithm 12: Pseudocode for the LSI allocation strategy.

136 On-line Search-Control Parameter Tuning for MCTS

with two feasible values each. The procedure LsiParameterTuning(Ng, Ne, k) im-
plements the main logic of LSI. The generation uses up to Ng samples (i.e. MCTS
simulations) to generate a set C∗ ⊆ C = V1× ...×Vd of at most k legal combinations
of parameters. The evaluation uses up to Ne samples to evaluate the combinations
of values in C∗ and recommend the best one, ~p ∗. When both phases of LSI are
over, the recommended best combination ~p ∗ is used to control the rest of the MCTS
simulations until the game terminates. The PerformMctsSimulation(~p) proce-
dure, before returning the control to the LSI procedure to continue the tuning, takes
care of playing a move in the real game if the timeout for the current game step is
reached.

The procedure SideInfo(Ng) constructs the function Q̂ :
⋃d
i=1 Vi → R, that

associates to each parameter value vi,j the average payoff Q̂(vi,j) obtained by all
the MCTS simulations that were allocated to vi,j . To construct Q̂ the procedure
divides equally over all the parameter values the total number of generation samples
Ng. Each time a parameter value vi,j is sampled using an MCTS simulation the
other parameters are set to random values. Note that for multi-player games, when
parameters are tuned for all the roles, it is necessary to randomize the order in which
values are iterated over in Line 32, to avoid a value for a role to always be tested
against the same values for the other roles.

The procedure Generate(Ng, k) uses the function Q̂ to generate up to k com-
binations of parameter values. To do so, the function Q̂ is normalized to create a
probability distribution over (a subset of) its domain. The notation D[Q̂ �V] in-
dicates the probability distribution induced by Q̂ over the subset V of its domain.
Each combination is generated by repeatedly sampling a value from the distribution
D[Q̂ �V]. The first time V =

⋃d
i=1 Vi (i.e. all the domain). For each subsequent step

the set of available values Vi for the last set parameter Pi is removed from V.
The procedure Evaluate(C∗, Ne) uses sequential halving (Karnin, Koren, and

Somekh, 2013) to repeatedly evaluate the generated combinations and finally recom-
mend one. Sequential halving performs multiple iterations dividing equally among
them the available samples Ne. During each iteration the combinations are sam-
pled uniformly and only half of them is kept for the next iteration (the half with
the highest expected value). This process ends when only one combination is left.
Line 30 shows how the number of simulations per combination is computed for each
iteration.

Note that when LSI is used to tune parameters for all the roles in a multi-player
game it is necessary to randomize the order in which the parameter combinations
of each role are evaluated during one iteration of sequential halving. Randomizing
ensures that each combination for a role is not always evaluated against the same
combinations for the opponents.

It is important to note that LSI, as opposed to the other allocation strategies,
is based on a fixed number of samples Ntot that must be set in advance. Choosing
a value for Ntot is not trivial, if the value is too high the search is likely controlled
by parameter values selected randomly, because the game might terminate before
LSI reaches the evaluation step. On the contrary, if the value is too low the search
is likely controlled by a sub-optimal combination, recommended using only a low
number of samples. Ideally, Ntot should correspond to the total number of available

6.3 — Allocation Strategies 137

simulations for the game. Because in GGP is not possible to know this exact number
in advance, Ntot is estimated during the start-clock according to Formula 6.2.

Ntot = cps× playclock × turns

cps = κ× #sim

startclock

(6.2)

First, the average number of parameter combinations that can be evaluated in a
second for the game, cps, is computed dividing the total number of simulations per-
formed during the start-clock, #sim, by the duration of the start-clock, startclock,
and multiplying the result by a factor κ. This factor is used to avoid underestimat-
ing the actual average number of combinations per second that can be evaluated
over all the game. During the start-clock, simulations are longer than on average
over all the game, therefore fewer of them can be performed per second. Without
using κ, cps would be underestimated. Subsequently, cps is used to estimate Ntot

by multiplying it by the estimated number of game turns, turns and the duration
of the play-clock for each turn, playclock. The average number of turns for the
game, turns, is also estimated during the start-clock as the average length of all the
performed simulations.

An alternative to deal with the necessity of knowing the available search budget
in advance could be to modify LSI to tune parameters per move instead of per game.
In this way the known play clock time can be used to estimate the available budget
for the tuning. The search time T available for each move can be divided among
a generation phase and an evaluation phase, T = Tg + Te, and used to control the
execution of the phases of LSI instead of the total simulations budget Ntot . However,
preliminary results obtained by testing this strategy showed that it does not improve
upon the implementation of LSI that estimates Ntot during the start-clock.

Evolutionary Algorithm Allocation

A subset of evolutionary computation is Evolutionary Algorithms (EAs) (Ashlock,
2006), which, at each generation, select a subset of individuals from the current
population as elite, and reproduce the population using the elite by crossover and
mutation. EAs do not rely on any assumption on the fitness function or fitness land-
scape. For the tuning problem, an EA can be seen as an allocation strategy which
decides to spend more or less budget on some individuals, thus parameter settings
of the agent. A combination of parameter values is considered as an individual and
each single parameter as gene. The fitness of an individual is computed as the payoff
obtained by the MCTS simulation controlled by the corresponding parameter values.

Algorithm 13 shows the pseudocode for the EA allocation strategy and Figure
6.5 gives an overview of this strategy using the same example used for NMC and
LSI, tuning three parameters with two possible values each. The main algorithm
is implemented by the procedure EaParameterTuning(λ, µ, pcross). The initial
population Λ of size λ is generated randomly. Until the game is over, the current
population is evaluated using MCTS simulations and evolved. When evolving, the
µ elite individuals of the population (i.e. the ones with highest fitness) are used to

138 On-line Search-Control Parameter Tuning for MCTS

1: procedure EaParameterTuning(λ, µ, pcross)
Input: Population size λ, elite size µ, probability of generating an individual
by uniform crossover pcross .

2: Λ← ∅ . Empty population set
3: for i← 1, ..., λ do
4: ~p← GenerateRandomIndividual()
5: Λ← Λ

⋃
{~p }

6: while game not over do
7: for ~p ∈ Λ do
8: q ← PerformMctsSimulation(~p)
9: UpdateFitness(~p, q)

10: if game over then
11: return
12: M ← get µ individuals in Λ with highest fitness
13: Λ←M
14: for i← µ+ 1, ..., λ do
15: ~p← GenerateIndividual(M , pcross)
16: Λ← Λ

⋃
{~p}

17: procedure GenerateIndividual(M , pcross)
Input: Set M of elite individuals in the population, probability of generating
an individual by uniform crossover pcross .
Output: The generated individual.

18: if Rand(0, 1) < pcross then
19: parent1 ← random individual in M
20: parent2 ← random individual in M
21: return UniformCrossover(parent1, parent2)
22: else
23: parent ← random individual in M
24: return SingleRandomMutation(parent)

Algorithm 13: Pseudocode for the EA allocation strategy.

generate λ− µ new individuals. These new individuals, together with the elite will
form the new population.

The procedure GenerateIndividual(M,pcross) shows how a new individual
is generated. With probability pcross a new individual is generated by uniform
crossover of two randomly selected elite individuals. Otherwise it is generated by
random mutation of a single parameter value of a randomly selected elite individual.

N-Tuple Bandit Evolutionary Algorithm

The N-Tuple Bandit Evolutionary Algorithm (NTBEA) has been proposed by Lu-
cas et al. (2018), which also used it to tune the parameters of a game-playing agent.
It has also been applied by Kunanusont et al. (2017) to achieve automatic game
parameter tuning. Like the previously presented EA, NTBEA considers each com-

6.3 — Allocation Strategies 139

1: procedure Init(L)
Input: Set L with the length of the n-tuples that have to be considered.

2: nTuples ← ∅
3: for l ∈ L do
4: lTuples ← generate from the set of parameters P all n-tuples of length l
5: nTuples ← nTuples ∪ lTuples

6: for t ∈ nTuples do
7: LUT t ← ∅

8: procedure UpdateStatistics(~p, q)
Require: Initialized set of n-tuples, nTuples.
Input: Combination of parameter values, ~p, and payoff q obtained from the
simulation controlled by parameter values ~p.

9: for t ∈ nTuples do
10: if not LUTt .contains(~p |t) then
11: LUTt .put(~p |t)
12: entry ← LUTt .get(~p |t)
13: entry .rsum ← entry .rsum + q
14: entry .n ← entry .n + 1
15: LUTt .n ← LUTt .n + 1

16: procedure UcbValue(~p , CNTBEA)
Require: Initialized set of n-tuples, nTuples.
Input: Parameter value combination ~p for which to compute the UCB value,
exploration constant CNTBEA for the UCB formula.
Output: UCB value of the given parameter combination.

17: UCB ← 0
18: count ← 0
19: for t ∈ nTuples do
20: entry ← LUTt .get(~p |t)
21: if entry 6= null then
22: UCB~p |t ←

entry.rsum
entry.n + CNTBEA ×

√
ln(LUT t.n)

entry.n

23: UCB ← UCB + UCB~p |t
24: count ← count + 1

25: if count > 0 then
26: return UCB

count
27: else
28: return 0

Algorithm 14: Pseudocode for LModel.

140 On-line Search-Control Parameter Tuning for MCTS

⟨����, ����, �����

⟨�	
�, ��
�, �����

⟨����, ����, �����

⟨����, ��� , �!"#� �$%&' � 0.5

�()*+ � �. �

�,-./ � �.8

�0123 � 0.0

Population of size λ

Elite of size μ

⟨�456, �789, �:;<�

⟨�=>?, �@AB, �CDE�

⟨�FGH, �IJK, �LMN�

⟨�OPQ, �RST, �UVW�

⟨�XYZ, �[\], �^_`�

⟨�abc, �def, �ghi�

New population

of size λ

3. Generate �λ � μ
 new individuals using the elite:

- Probability �j: UNIFORM CROSSOVER
- Probability �1 � �k
: SINGLE RANDOM MUTATION

1. Evaluate each individual

with an MCTS simulation

2. Extract best μ individuals 4. Repeat

…...

Figure 6.5: Overview of the execution of EA.

1: procedure NtbeaParameterTuning(X, L, CNTBEA)
Input: Number of neighbors X to generate during evolution, set L with the
length of the n-tuples that have to be considered, exploration constant CNTBEA
to compute the UCB values.

2: LModel .Init(L)
3: ~p← GenerateRandomIndividual()
4: while game not over do
5: q ← PerformMctsSimulation(~p)
6: LModel .UpdateStatistics(~p, q)
7: N ← generate X neighbors of ~p by single random mutation
8: ~p← argmax~p ′∈N (LModel .UcbValue(~p ′, CNTBEA))

Algorithm 15: Pseudocode for the NTBEA allocation strategy.

bination of parameters as an individual that is evolved over time by mutating single
parameter values. Three components can be identified for NTBEA, the main Evo-
lutionary Algorithm, a noisy fitness evaluator (represented in the parameter tuning
problem by the MCTS simulations that evaluate parameter combinations), and an
n-tuple bandit fitness landscape model (LModel , Algorithm 14).

NTBEA uses LModel to memorize statistics (e.g. mean, standard deviation,
number of evaluations) of every legal value of every parameter and uses this model
in combination with a bandit approach to decide which of the individuals should be
evaluated next. Similar to the NMC approach, beside modeling each parameter as
a MAB and each value of a parameter as an arm, each tuple formed by a subset
of the available parameters is modeled as a macro-arm (e.g. if all the 2-tuples of a
d-dimensional problem are considered, then d(d−1)

2 macro-arms will be used).
Algorithm 14 gives the pseudocode for the implementation of LModel. Given

a d-dimensional search space, this model sub-samples its dimensions with a num-

6.3 — Allocation Strategies 141

4. Use

������

statistics to

estimate

UCB1
value of

neighbors

⟨����, ����, �����

⟨�	
�, ��
�, �����⟨����, ����, �����

⟨����, ��� , �!"#�

N-Tuple fitness landscape model

�$

�%&' �()*

+,-. / 01 2

3456 7 89 :

�;

�<=> �?@A

BCDE F GH I

�J

�KLM �NOP

QRST U VW X

⟨�YZ[, �\]^, �_`a�

⟨�bcd, �efg, �hij�⟨�klm, �nop, �qrs�

⟨�tuv, �wxy, �z{|�

N-Tuple fitness landscape model

�}

�~�� ����

��

���� ����

��

���� ����

2. Update

������

statistics

NTBEA

⟨����, ����, �����

����� 	 0.5

3.Generate

neighbors with a
single random

mutation

Initial individual

1. Evaluate

current individual
with MCTS

⟨�� ¡, �¢£¤, �¥¦§�

⟨�¨©ª, �«¬­, �®¯°� ±²³´ µ ¶· ¸

⟨�¹º», �¼½¾, �¿ÀÁ� ÂÃÄÅ Æ ÇÈÉ

ÊËÌÍ Î ÏÐÑÒ

⟨�ÓÔÕ, �Ö×Ø, �ÙÚÛ�

5. Get best

individual

6. Repeat

……

Figure 6.6: Overview of the execution of NTBEA.

ber of n-tuples with lengths that can range from 1 to d. Not all lengths in the
range [1, d] must necessarily be considered, but a set L ⊆ {1, . . . , d} with the lengths
l that have to be used can be specified. The procedure Init(L) shows how the
landscape model is initialized. Given the set of parameters P , for each of the spec-
ified lengths l ∈ L all the possible l-tuples t are generated, and for each of them
an empty look-up table LUTt is created. For example, given P = {P1, P2, P3}
and L = {1, 2, 3} the following n-tuples with their own LUT would be created:
〈P1〉, 〈P2〉, 〈P3〉, 〈P1, P2〉, 〈P1, P3〉, 〈P2, P3〉, 〈P1, P2, P3〉.

Whenever a combination of parameter values ~p is evaluated by performing an
MCTS simulation, the obtained payoff q is used to update the LUT of each n-
tuple as shown in the procedure UpdateStatistics~p, q. The notation ~p |t indicates
the vector of values in ~p that are assigned to the parameters considered by the n-
tuple t. For example, given the set of parameters P = {P1, P2, P3}, the parameter
combination ~p = 〈p1, p2, p3〉, and the n-tuple t = 〈P1, P3〉: ~p |〈P1,P3〉 = 〈p1, p3〉. For
each n-tuple t, the entry in LUT t that corresponds to the value assignment ~p |t is
updated by increasing by 1 the number of visits and by q the total payoff sum.
Finally, the number of visits of LUT t is also increased by 1.

The procedure UcbValue(~p , CNTBEA) computes the UCB value of a given com-
bination of parameters ~p using LModel . First, for each vector of values ~p |t with at

142 On-line Search-Control Parameter Tuning for MCTS

least one visit the UCB1 value UCB~p |t is computed, considering the corresponding
LUT t as a MAB. This means that each arm of the MAB corresponds to an entry in
LUT t, and thus to a possible assignment of values to the parameters considered by
the n-tuple t. Then, all the UCB~p |t values are averaged to obtain the UCB value
for combination ~p.

Algorithm 15 gives the pseudocode of the NTBEA allocation strategy and shows
how it uses LModel . Figure 6.6 uses an example with three parameters, each with
two possible values, to give an overview of the execution of NTBEA. This strategy
starts with a randomly generated parameter combination ~p, evaluates it with an
MCTS simulation and uses the obtained payoff q to update statistics in LModel .
Then, it generates x neighbors of ~p using single random mutations and computes
their UCB value using LModel . The neighbor with the highest UCB value becomes
the currently considered solution and the procedure is repeated.

6.3.2 Continuous Allocation Strategy
This subsection describes how CMA-ES is used as allocation strategy that considers
the tuning problem as a CMAB with a continuous domain.

Covariance Matrix Adaptation Evolutionary Strategy

A powerful evolutionary computation technique is CMA-ES (Hansen et al., 2003),
a second-order method using the covariance matrix estimated iteratively by finite
differences. It has been proved to be efficient for optimizing non-linear non-convex
problems in the continuous domain without a-priori domain knowledge, thus no
knowledge of the fitness landscape or the gradient function is required. Moreover, it
has also been used to implement game-playing agents for domains with a continuous
state or action space (Hausknecht et al., 2014; Samothrakis et al., 2014).

For each generation (g+1), CMA-ES generates a population of λ new individuals
~p

(g+1)
j by sampling the multivariate normal distribution N (~0 ,C(g)) as follows:

~p
(g+1)
j ∼ ~x (g) + σ(g)N

(
~0 ,C(g)

)
. (6.3)

Here, ~x (g), σ(g) and C(g) are the mean value of the search distribution, the step-size
and the covariance matrix at generation g, respectively. After computing the fitness
of the population at generation (g + 1), the highest ranked individuals are used to
update ~x, σ and C for the next generation. More details can be found in the tutorial
(Hansen, 2016).

As allocation strategy for the tuning problem an existing implementation of
CMA-ES is used.1 Algorithm 16 shows how it has been integrated in the code. The
procedure CmaEsParameterTuning(~x, σ, α) shows how the strategy works. The
variable cma refers to an instance of the CMA-ES algorithm initialized with the
given start point ~x and step-size σ. Until CMA-ES meets one of its termination
criteria, cma.SamplePopulation() samples a new population and its fitness is
used to update the distribution by the procedure cma.UpdateDistribution(~f).

1Code and details available at cma.gforge.inria.fr.

6.3 — Allocation Strategies 143

1: procedure CmaEsParameterTuning(~x, σ, α)
Input: Initial point (distribution mean) ~x and initial standard deviation (i.e. step-size) σ for
the CMA-ES strategy, factor α used to compute the fitness penalty for infeasible solutions.

2: cma ←InitializeCmaEs(~x, σ)
3: while not(cma.IsStopped()) do
4: Λ← cma.SamplePopulation()
5: ~f ← new vector of size |Λ|
6: for ~pj ∈ Λ do
7: fj ← ComputeFitness(~pj)
8: cma.UpdateDistribution(~f)
9: ~p← cma.GetMeanSolution()
10: f ← ComputeFitness(~p)
11: cma.SetFitnessOfMean(f)
12: ~p ∗ ← cma.GetBestSolution()
13: (~p ∗, penalty)← RepairIndividual(~p ∗, α)
14: ~p ∗ ← DenormalizeIndividual(~p ∗)
15: while game not over do
16: PerformMctsSimulation(~p ∗)

17: procedure ComputeFitness(~p)
Input: Individual for which to compute the fitness ~p.
Output: The fitness value of the given individual.

18: (~p , penalty)← RepairIndividual(~p , α)
19: ~p← DenormalizeIndividual(~p)
20: q ← PerformMctsSimulation(~p)
21: return (100− q + penalty)

22: procedure RepairIndividual(~p , α)
Input: Individual ~p to be repaired if at least one of its values is infeasible (/∈ [0, 1]).
Output: The repaired individual with its penalty.

23: ~p ′ ← new vector of size |~p |
24: for pi ∈ ~p do
25: if pi /∈ [0, 1] then
26: if pi < 0 then
27: p′i ← 0
28: else
29: p′i ← 1

30: else
31: p′i ← pi

32: penalty ← α
∥∥~p− ~p ′∥∥

33: return (~p ′, penalty)

34: procedure DenormalizeIndividual(~p)
Input: Individual ~p for which each value pi ∈ ~p must be denormalized from [0, 1] to its interval
of feasible values [minPi

,maxPi
].

Output: Individual with denormalized values.
35: ~p ′ ← new vector of size |~p |
36: for pi ∈ ~p do
37: p′i ← minPi

+ pi(maxPi
−minPi

)

38: return ~p ′

Algorithm 16: Pseudocode for the CMA-ES allocation strategy.

144 On-line Search-Control Parameter Tuning for MCTS

Upon termination, the mean value of the distribution is evaluated and its fitness
updated. The overall best solution (parameter combination) is used to control the
rest of the search.

Note that the computation of the fitness of an individual shown in procedure
ComputeFitness(~p) needs some precautions. First of all, CMA-ES minimizes the
fitness function, while for the tuning problem it should be maximized, thus the fit-
ness is computed as (maxq − q), where maxq is the maximum achievable payoff for
the game and q is the payoff obtained by the MCTS simulation controlled by the
given parameter combination ~p . Moreover, when tuning with CMA-ES each param-
eter is considered to be feasible in the interval [0, 1] and the optimum is expected to
be in the hyper-cube [0, 1]d (d number of parameters). This has two implications:
(i) CMA-ES could still sample individuals with some values outside [0, 1] and (ii) the
actual interval of feasible values for the parameters might be different from [0, 1]. In
the first case, whenever an individual is infeasible, its fitness is computed as the fit-
ness of a repaired individual to which a penalty is added. This has been implemented
according to the tutorial (Hansen, 2016) and is shown in the procedure RepairIndi-
vidual(~p , α). In the second case, before evaluating a combination of parameters
with an MCTS simulation, all the values are denormalized from [0, 1] to their own
interval of feasible values as shown in the procedure DenormalizeIndividual(~p).

6.4 Empirical Evaluation
This section presents an empirical evaluation of on-line parameter tuning and a
comparison of the discussed allocation strategies. First, the setup of the performed
experiments is presented in Subsection 6.4.1. Subsequently, Subsections 6.4.2, 6.4.3,
6.4.4, 6.4.5, 6.4.6, 6.4.7 and 6.4.8 report the obtained results. Finally, a discussion
on how to select which parameters to tune is reported in Subsection 6.4.9.

6.4.1 Setup

On-line search-control parameter tuning has been tested on MCTS agents both for
the Stanford GGP project and for the GVG-AI project. The Stanford GGP project
has been used to evaluate all the different allocation strategies, while the GVG-AI
project has been used to evaluate in a real-time domain the NTBEA and the MAB
allocation strategies. The MAB strategy has been included in the experiments on
the GVG-AI project in order to have a comparison of NTBEA with a strategy
that does not exploit the combinatorial structure of the parameter space. First,
this subsection presents the settings for the allocation strategies. Subsequently, it
describes the experimental setup for the Stanford GGP project, and the experimental
setup for the GVG-AI project.

Allocation Strategies Settings

MAB. The policy πMAB is set to UCB1 with C = 0.7 (this value was shown to
perform best among a predefined set of tested values). While performing
experiments for the Stanford GGP project, it was noticed that this allocation

6.4 — Empirical Evaluation 145

strategy introduces a high overhead on each MCTS simulation because of the
exponential number of combinations that it has to check. To alleviate this
issue the MAB allocation strategy chooses a new parameter combination every
10 simulations instead of 1. In this way for each selected combination 10
samples are collected all at once and the overhead is distributed over them. A
comparison of the standard implementation of MAB with the implementation
that uses a batch of simulations is reported in Appendix E. For the experiments
on the GVG-AI project domain, instead, no batch is used. This decision is
due to the low number of simulations that can be performed in such domain,
therefore performing simulations in batches would reduce the number of visited
distinct parameter combinations too much.

HE. The policy πHE is set to the UCB1 policy with C = 0.7. When building the
HE tree, the order of the parameters is randomized before every run of a game.
This choice was determined by the fact that experiments with a fixed order for
the parameters did not show a particular improvement in the performance of
the agent. Detailed results of these experiments are reported in Appendix E

NMC. The policy π0 is set to an ε-greedy strategy, which performs exploration
with probability ε0 = 0.75 and exploitation with probability (1 − ε0) = 0.25.
These values are the same as in (Ontañón et al., 2013). The policies πl and
πg are both set to UCB1 with exploration constants Cl = Cg = 1, thus with
high exploration. Experiments with different values of C were performed and
the results seemed to suggest that the performance might increase with more
exploration. These results are reported in Appendix E.

LSI. The total number of available samples Ntot is estimated during start-clock
using κ = 3. Three values for κ have been tested, and the one that seemed to
perform best has been selected. Results for this test are reported in appendix
E. Ntot is divided among the generation and evaluation steps as follows:
Ng = 0.75 × N and Ne = 0.25 × N (this keeps the proportion between gen-
eration and evaluation the same as the proportion between exploration and
exploitation in NMC). When tuning only two parameters the number of gener-
ated combinations k is set to 20, while when tuning more than two parameters
k = 2 000.

EA. The population size λ is set to 50 and the elite size µ is set to 25. The
probability of generating a new individual by uniform crossover pcross is set to
0.5. Smaller values for µ were tested, but resulted in a decreased performance,
as shown in Appendix E.

NTBEA. The number of neighbors that are generated X is set to 5 (higher val-
ues cause a decrease in performance for the agent). The length considered to
generate the n-tuples are set to L = {1, d}, where d is the number of tuned pa-
rameters. Experiments considering all possible lengths for the n-tuples showed
no improvement in performance and a decrease in simulations per second per-
formed by the agents. The exploration constant CNTBEA used to compute
UCB1 values in LModel is set to 0.2. Appendix E reports detailed results for

146 On-line Search-Control Parameter Tuning for MCTS

Table 6.1: Default values, discrete and continuous domains of the parameters considered
in the experiments on the Stanford GGP project.

Param. Default Discrete domain Continuous
value domain

C 0.2 {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} [0, 1]
εMAST 0.4 {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} [0, 1]
K 250 {0, 10, 50, 100, 250, 500, 750, 1 000, 2 000,∞} [0, 2 000]
ref 50 {0, 50, 100, 250, 500, 1 000, 10 000,∞} [0, 10 000]
V O 0.01 {0.001, 0.005, 0.01, 0.015, 0.02, 0.025} [0, 0.025]
T 0 {0, 5, 10, 20, 30, 40, 50, 100, 200,∞} [0, 200]

the experiments that tested different values for X and the use of all possible
lengths for the n-tuples.

CMA-ES. According to the suggestions in the tutorial by Hansen (2016), the initial
point ~x is set to a random point in [0, 1]d and σ is set to 0.3. The value of α
used to compute the penalty of infeasible individuals is set to 100. In addition,
all termination criteria regarding the fitness function are disabled, so that
the optimization continues even if the minimum fitness is reached or if no
significant change in fitness is observed. The motivation behind this choice
is that the best parameter combination for MCTS might change over time,
thus the strategy should keep exploring the search space. All other settings
for CMA-ES are left to the default values (see tutorial by Hansen (2016)).

Stanford GGP Project Setup

On-line parameter tuning for the Stanford GGP project has been implemented for
the agent developed in the GGP Base package (see Subsection 3.1.4). More precisely,
it is applied to tune the search parameters of the following two agent instances:

• SP: an MCTS agent instance that uses UCT as selection strategy and MAST
as play-out strategy.

• AP: a more advanced MCTS agent instance that uses GRAVE as selection
strategy and MAST as play-out strategy.

The purpose of using a more advanced agent instance is twofold. First of all, AP
has more search-control parameters and enables the experiments to verify how the
allocation strategies scale when the search space increases. Second, it can be used
to verify how on-line parameter tuning performs with a more informed selection
strategy. When reporting the results of the experiments, the names SP and AP
will identify the off-line tuned instances of the agent. When tuning the parameters
on-line, the agent instances are represented with a subscript indicating the type of
allocation strategy used (e.g. SPMAB to indicate the SP instance being tuned on-line
with the MAB allocation strategy).

6.4 — Empirical Evaluation 147

The parameters that are considered tunable for the agent in subsequent experi-
ments are the following:

• C: exploration constant used to compute the UCB1 value of an action in the
UCT and GRAVE selection strategies.

• εMAST: probability of selecting a random action with the MAST play-out
strategy.

• K: equivalence parameter of GRAVE (note that when K = 0 the selection
strategy becomes pure UCT).

• ref : visit threshold used by GRAVE to choose the ancestor from which to
compute the AMAF values (note that when ref = 0 the selection strategy
becomes RAVE and when ref =∞ the selection strategy becomes HRAVE).

• V O: value offset used to implement the random tie-breaking rule during action
selection.

• T : this parameter is used to modify the MCTS selection strategy. During the
selection for state s, if s has been visited less than T times, the next action is
selected using the play-out strategy instead of the selection strategy (Coulom,
2007a).

Note that the parameters K and ref are relevant only for the AP instance of the
agent, which is implementing GRAVE. Table 6.1 reports all the tunable parameters
used by either SP or AP. Their default values are obtained by tuning them off-
line in sequence on the following set of games taken from the GGP Base repository
(Schreiber, 2016): 3D Tic Tac Toe, Breakthrough, Knightthrough, Skirmish, Battle,
Chinook, and Chinese Checkers with 3 players. For K, ref and T the continuous
domain has been restricted to a value much smaller than infinity (i.e. 2 000, 10 000
and 200, respectively) because after a certain threshold all values have more or less
the same effect on the search. All combinations of parameter values are considered
legal, except combinations with K = 0, that are legal only if the ref parameter is not
considered in the combination. This is because when K = 0 the GRAVE strategy is
not used, thus the ref parameter has no influence on the search.

In one of the series of experiments, the last available version of CadiaPlayer2

(Finnsson, 2012b) is used as a benchmark to compare the performance of the best
on-line tuning agent instance with the one of the off-line tuned agent instance.

Note that in the Stanford GGP project it is assumed that agents cannot re-
member previously learned knowledge in-between games. This means that both the
game tree built by MCTS and the parameter statistics collected by the allocation
strategies will be reset before each new game run.

All agent types are tested on a set of 14 heterogeneous games taken from the GGP
Base repository (Schreiber, 2016): 3D Tic Tac Toe, Breakthrough, Knightthrough,
Chinook, Chinese Checkers with 3 players, Checkers, Connect 5, Quad (the version

2Version of 18-11-2012. Downloaded from http://cadia.ru.is/wiki/public:cadiaplayer:
main

148 On-line Search-Control Parameter Tuning for MCTS

played on a 7 × 7 board), Sheep and Wolf, Tic-Tac-Chess-Checkers-Four (TTCC4)
with 2 and 3 players, Connect 4, Pentago and Reversi.3 Most of these games are
the same used in Chapter 5. On-line parameter tuning is expected to require a
certain number of simulations to possibly have an effect on the search, therefore the
games of Skirmish and Zhadu have been removed from the set. For these games the
agents can perform on average a lower number of simulations per second than on
the other games. Two more games for which the number of simulations per second
reaches the same order of magnitude as the other games have been added, Connect
Four and Pentago. Othello, although having a low number of simulations as well,
instead of being removed has been substituted with a version that has a different
GDL description. This GDL description, identified as Reversi, enables the agent
to perform a slightly higher number of simulations per second, even if an order of
magnitude lower than for all the other games.

For each experiment, two agent types at a time are matched against each other.
All agent instances use the software implementation of the PropNet. A new PropNet
is created before each game run and the same structure is given to both the involved
agent instances to prevent any of them from having an advantage due to a faster
structure. For each game, all possible assignments of agent types to the roles are
considered, except the two configurations that assign the same agent to each role. All
configurations are run the same number of times until at least 500 games have been
played. Each game run has 1s start- and play-clock, except for the experiments
that involve CadiaPlayer. In these experiments CadiaPlayer uses 10s start-
and play-clock while the instances of the other agent use 1s start- and play-clock,
because they are using a PropNet-based reasoner, and thus can perform a higher
number of simulations per second. Experimental results always report the average
win percentage of one of the two involved agent types with a 95%-confidence interval.
The average win percentage of an agent type for a game is computed by assigning 1
point to the agent type that achieved the highest score and 0 to the other. If they
both achieve the same score, they are given 0.5 points each.

GVG-AI Project Setup

To be tested on the GVG-AI project, on-line parameter tuning has been implemented
in the GVG-AI framework for the single-player planning track agent MaastCTS2
(see Subsection 3.2.4). The parameters that are considered tunable for this agent in
subsequent experiments are the following:

• C: exploration constant used to compute the UCB1 value of an action in the
PH selection strategy.

• εNST: probability of selecting a random action with the NST play-out strategy.

• W : weight used by the PH selection strategy.

3In this case Reversi has the same rules as Othello, but with a different formulation. This
chapter is using a different GDL description of the game from the one used in Chapters 4 and 5.
The name Reversi is used in this chapter to be consistent with the name used in the GGP Base
repository to distinguish the GDL description of the game from the one identified as Othello.

6.4 — Empirical Evaluation 149

Table 6.2: Default values, discrete domains and sub-optimal values of the parameters
considered in the experiments on the GVG-AI project.

Param. Default Discrete domain Sub-optimal
value value

C 0.6 {0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0} 2.0
εNST 0.5 {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} 0.0
W 1 {0.1, 0.25, 0.5, 1, 3, 5, 7.5, 10, 20, 50} 0.1
N 7 {1, 3, 5, 7, 10, 15, 20, 30, 50} 50
L 3 {1, 2, 3, 4, 5} 1

• N : visit threshold used by NST to decide whether to use an N-Gram when
computing the value of an action.

• L: maximum N-Gram length used by NST.

Table 6.2 reports all the tunable parameters for MaastCTS2, together with
their default values, their discrete domains and their (expected to be) sub-optimal
values. The latter are extreme values in the discrete domain that are expected to
perform more poorly than the other values (e.g. C = 2.0 makes UCT explore too
much and exploit too little, εNST makes the play-out strategy too greedy, etc.).
The sub-optimal values are used to verify how much parameter settings are actually
influencing the search. The default values are the ones to which parameters are set
in the original implementation of the MaastCTS2 agent.

As for the Stanford GGP project, also for the GVG-AI project it is assumed that
agents cannot remember previously learned knowledge in-between games. Therefore,
both the game tree built by MCTS and the parameter statistics collected by the
allocation strategies will be reset before each new game run.

The agent is tested on a set of 20 heterogeneous single-player games from the
GVG-AI framework (Perez-Liebana et al., 2016; Perez-Liebana, 2018): Aliens, Bait,
Butterflies, Camel Race, Chase, Chopper, Crossfire, Dig Dug, Escape, Hungry
Birds, Infection, Intersection, Lemmings, Missile Command, Modality, Plaque At-
tack, Roguelike, Sea Quest, Survive Zombies, and Wait for Breakfast. These games
are the same used by Gaina et al. (2017) for studying the parameters of a GVG-AI
agent based on a vanilla Rolling Horizon Evolutionary Algorithm. They have been
selected uniformly at random from a list of games on which a simple MCTS agent
has been shown to perform differently (Nelson, 2016; Bontrager et al., 2016). In
each series of experiments, the considered agent is tested equally on all 5 levels of
these games until 500 samples per game have been collected.

Two series of experiments have been performed, one for which the agent has
40ms per game tick to choose an action and one for which the agent has 100ms per
game tick. In all the games, there is no draw. A game terminates if the agent wins or
loses the game before 2 000 game ticks have passed, otherwise the game is forced to
terminate as a loss for the agent. This is the same setting as in the GVG-AI Single-
Playing Planning competition. The only difference is that if the agent exceeds the

150 On-line Search-Control Parameter Tuning for MCTS

time limit per game tick it will not be disqualified and can still apply its selected
move. Experimental results always report the average win percentage of the tested
agent type with a 95%-confidence interval.

6.4.2 On-line Parameter Tuning for the SP Agent

This series of experiments evaluated the application of on-line tuning to the MCTS
agent SP. Table 6.3 shows the results obtained by the agents that tune the parameters
C and εMAST on-line with each of the presented allocation strategies against the off-
line tuned SP agent. The on-line tuning agents SPNMC, SPLSI, SPEA and SPNTBEA
reach at least the same overall performance of the off-line tuned agent, with SPNTBEA
seeming slightly better. Although the agents SPMAB, SPHE and SPCMA-ES seem to
have an overall lower performance than the SP agent, they are still quite close.

The agent that performs overall best is SPNTBEA. Among all tuning agents this
is the one that achieves the highest win rate in most of the games. The performance
of SPNMC, SPLSI and SPEA is also better than the one of SP in many of the games.
Each of these agents achieves the best performance in one or two of the tested
games. Particularly remarkable is the performance of SPLSI in Quad. For this game
this agent reaches a much higher win rate than the other agents (81.2%). Also
SPMAB, SPHE and SPCMA-ES are shown to perform better than SP in a few games,
despite not being the ones with the best performance among the on-line tuning
agents. However, they also show an evident decrease in performance in some of the
games. For example, in Knightthrough SPCMA-ES wins only 20.8% of the times and
in Breakthrough only 35.6% of the times. Moreover, SPMAB and SPHE show a low
performance in Chinook, Connect Five and Quad.

6.4.3 On-line Tuning for the AP Agent

These series of experiments evaluated the application of on-line tuning to the more
advanced MCTS agent AP. These series of experiments were performed for two (K
and ref), four (C, εMAST, K and ref) and six (C, εMAST, K, ref , V O and T) on-line
tuned parameters, and results are reported in Tables 6.4, 6.5 and 6.6, respectively.
These tables show the results obtained by each of the agents that use one of the
allocation strategies against the agent that is tuned manually off-line.

When tuning two parameters, other than the combination K and ref ,also the
combination C and ε was tested, but the latter achieved a worse performance. For
this reason, only results for K and ref are reported. Looking at the results in Table
6.4, for two tuned parameters APNMC, APLSI, APEA and APNTBEA achieve overall
at least the same performance of the off-line tuned agent. APMAB and APHE have
a close performance to the off-line tuned AP as well. APCMA-ES is the one with
the lowest overall performance, while APEA is the one with the highest. However,
if compared with the results obtained by tuning the simpler agent SP, in this case
none of the allocation strategies seems to be superior to all the others. Each of them
is one of the best in a few of the games. This suggests that it is more difficult to
tune parameters for an agent that uses a more informed search strategy. Moreover,
parameter values might have less influence than on a less informed search strategy.

6.4 — Empirical Evaluation 151

T
ab

le
6.
3:

W
in

pe
rc
en
ta
ge

of
th
e
on

-li
ne

tu
ne

d
SP

ag
en
t
th
at

tu
ne

s
tw

o
pa

ra
m
et
er
s
w
it
h
di
ffe

re
nt

al
lo
ca
ti
on

st
ra
te
gi
es

ag
ai
ns
t
th
e
SP

ag
en
t
w
it
h
de

fa
ul
t
pa

ra
m
et
er

va
lu
es
.

G
am

e
S
P

M
A

B
S
P

H
E

S
P

N
M

C
S
P

L
S
I

S
P

E
A

S
P

N
T
B

E
A

S
P

C
M

A
-E

S
3D

T
ic

T
ac

T
oe

43
.0
(±

4.
14
)

42
.9
(±

4.
20
)

42
.9
(±

4.
18
)

48
.9
(±

4.
12
)

43
.6
(±

4.
16
)

48
.0
(±

4.
13
)

42
.9
(±

4.
11
)

B
re
ak

th
ro
ug

h
60
.8
(±

4.
28
)

58
.2
(±

4.
33
)

61
.0
(±

4.
28
)

51
.2
(±

4.
39
)

51
.0
(±

4.
39
)

61
.0
(±

4.
28
)

35
.6
(±

4.
20
)

K
ni
gh

tt
hr
ou

gh
45
.4
(±

4.
37
)

45
.0
(±

4.
37
)

48
.0
(±

4.
38
)

35
.2
(±

4.
19
)

40
.0
(±

4.
30
)

48
.8
(±

4.
39
)

20
.8
(±

3.
56
)

C
hi
no

ok
35
.2
(±

3.
24
)

33
.6
(±

3.
25
)

39
.4
(±

3.
41
)

40
.6
(±

3.
50
)

56
.1
(±

3.
58
)

65
.7
(±

3.
37
)

58
.9
(±

3.
51
)

C
hi
n.
C
he
ck
er
s3
P

41
.7
(±

4.
31
)

33
.1
(±

4.
11
)

45
.0
(±

4.
35
)

40
.7
(±

4.
29
)

44
.6
(±

4.
34
)

46
.8
(±

4.
36
)

42
.5
(±

4.
32
)

C
he
ck
er
s

59
.8
(±

4.
15
)

66
.6
(±

3.
91
)

69
.4
(±

3.
83
)

47
.6
(±

4.
17
)

70
.9
(±

3.
79
)

74
.6
(±

3.
63
)

48
.7
(±

4.
17
)

C
on

ne
ct

F
iv
e

33
.5
(±

3.
18
)

34
.2
(±

3.
20
)

39
.6
(±

3.
24
)

45
.9
(±

3.
37
)

45
.6
(±

3.
42
)

46
.0
(±

3.
28
)

42
.0
(±

3.
51
)

Q
ua

d
34
.0
(±

3.
97
)

32
.2
(±

3.
95
)

37
.5
(±

4.
04
)

81
.2
(±

3.
22
)

50
.9
(±

4.
10
)

43
.8
(±

4.
12
)

58
.0
(±

4.
11
)

Sh
ee
p
an

d
W
ol
f

42
.8
(±

4.
34
)

43
.8
(±

4.
35
)

44
.0
(±

4.
36
)

52
.2
(±

4.
38
)

47
.0
(±

4.
38
)

44
.4
(±

4.
36
)

49
.2
(±

4.
39
)

T
T
C
C
4
2P

63
.5
(±

4.
16
)

61
.1
(±

4.
17
)

69
.0
(±

3.
97
)

60
.9
(±

4.
24
)

70
.9
(±

3.
88
)

73
.3
(±

3.
80
)

57
.1
(±

4.
28
)

T
T
C
C
4
3P

41
.8
(±

4.
17
)

44
.0
(±

4.
18
)

48
.2
(±

4.
28
)

45
.7
(±

4.
23
)

45
.8
(±

4.
26
)

44
.4
(±

4.
20
)

46
.1
(±

4.
26
)

C
on

ne
ct

Fo
ur

56
.2
(±

4.
15
)

50
.4
(±

4.
18
)

51
.1
(±

4.
21
)

79
.7
(±

3.
36
)

62
.8
(±

4.
06
)

58
.3
(±

4.
11
)

71
.9
(±

3.
77
)

P
en
ta
go

61
.0
(±

4.
23
)

56
.8
(±

4.
27
)

63
.0
(±

4.
16
)

63
.2
(±

4.
10
)

66
.2
(±

4.
04
)

69
.8
(±

3.
90
)

63
.5
(±

4.
13
)

R
ev
er
si

45
.0
(±

4.
28
)

46
.6
(±

4.
27
)

49
.3
(±

4.
32
)

41
.6
(±

4.
23
)

55
.5
(±

4.
31
)

48
.8
(±

4.
32
)

44
.1
(±

4.
29
)

A
vg

.
W

in
%

47
.4
(±

1.
12
)

46
.3
(±

1.
11
)

50
.5
(±

1.
12
)

52
.5
(±

1.
12
)

53
.6
(±

1.
12
)

55
.3
(±

1.
11
)

48
.7
(±

1.
12
)

152 On-line Search-Control Parameter Tuning for MCTS

T
able

6.4:
W

in
percentage

of
the

on-line
tuned

A
P

agent
w
ith

different
allocation

strategies
that

tune
tw

o
param

eters
against

the
A
P

agent
w
ith

default
param

eter
values.

G
am

e
A
P

M
A

B
A
P

H
E

A
P

N
M

C
A
P

L
S
I

A
P

E
A

A
P

N
T
B

E
A

A
P

C
M

A
-E

S
3D

T
ic

T
ac

T
oe

43.9(±
4.05)

46.2(±
4.09)

47.2(±
4.10)

42.0(±
4.00)

52.0(±
4.13)

46.0(±
4.11)

41.5(±
4.00)

B
reakthrough

49.2(±
4.39)

43.6(±
4.35)

51.4(±
4.39)

40.8(±
4.31)

47.8(±
4.38)

48.6(±
4.39)

35.2(±
4.19)

K
nightthrough

53.4(±
4.38)

57.8(±
4.33)

58.0(±
4.33)

49.6(±
4.39)

46.2(±
4.37)

46.8(±
4.38)

47.2(±
4.38)

C
hinook

53.7(±
3.97)

53.4(±
3.95)

56.6(±
4.04)

55.0(±
4.11)

60.2(±
3.98)

63.5(±
3.95)

65.0(±
3.88)

C
hin.C

heckers3P
50.6(±

4.37)
52.4(±

4.36)
52.8(±

4.36)
49.4(±

4.37)
52.6(±

4.36)
51.0(±

4.37)
44.2(±

4.34)
C
heckers

47.8(±
4.09)

46.7(±
4.08)

44.2(±
4.06)

48.2(±
4.11)

47.8(±
4.10)

47.6(±
4.13)

41.8(±
4.04)

C
onnect

F
ive

45.1(±
3.13)

44.2(±
3.20)

44.6(±
3.12)

49.2(±
3.16)

46.2(±
3.08)

45.7(±
3.05)

42.9(±
3.17)

Q
uad

53.1(±
4.18)

56.0(±
4.04)

57.0(±
4.14)

64.3(±
3.91)

60.4(±
3.99)

60.1(±
4.05)

52.2(±
4.14)

Sheep
and

W
olf

48.8(±
4.39)

53.4(±
4.38)

50.4(±
4.39)

49.4(±
4.39)

53.2(±
4.38)

52.2(±
4.38)

50.8(±
4.39)

T
T
C
C
4
2P

49.4(±
4.24)

49.1(±
4.26)

49.2(±
4.23)

52.0(±
4.25)

52.9(±
4.22)

51.5(±
4.19)

44.4(±
4.22)

T
T
C
C
4
3P

46.9(±
4.23)

49.7(±
4.20)

48.4(±
4.21)

53.0(±
4.21)

49.5(±
4.26)

48.4(±
4.26)

43.0(±
4.22)

C
onnect

Four
53.8(±

4.19)
49.3(±

4.21)
54.1(±

4.12)
53.3(±

4.14)
55.3(±

4.15)
55.6(±

4.18)
50.8(±

4.12)
P
entago

48.5(±
4.22)

44.9(±
4.23)

54.1(±
4.25)

48.5(±
4.26)

56.2(±
4.17)

55.3(±
4.21)

51.9(±
4.18)

R
eversi

44.1(±
4.29)

48.9(±
4.32)

48.0(±
4.32)

45.2(±
4.28)

47.1(±
4.28)

46.9(±
4.33)

39.4(±
4.23)

A
vg.

W
in%

49.2(±
1.11)

49.7(±
1.11)

51.1(±
1.11)

50.0(±
1.11)

52.0(±
1.11)

51.4(±
1.12)

46.4(±
1.11)

6.4 — Empirical Evaluation 153

T
ab

le
6.
5:

W
in

pe
rc
en
ta
ge

of
th
e
on

-li
ne

tu
ne

d
A
P

ag
en
t
w
it
h
di
ffe

re
nt

al
lo
ca
ti
on

st
ra
te
gi
es

th
at

tu
ne

fo
ur

pa
ra
m
et
er
s
ag
ai
ns
t
th
e
A
P

ag
en
t
w
it
h
de

fa
ul
t
pa

ra
m
et
er

va
lu
es
.

G
am

e
A
P

M
A

B
A
P

H
E

A
P

N
M

C
A
P

L
S
I

A
P

E
A

A
P

N
T
B

E
A

A
P

C
M

A
-E

S
3D

T
ic

T
ac

T
oe

20
.8
(±

3.
38
)

34
.5
(±

3.
97
)

39
.8
(±

4.
05
)

42
.3
(±

4.
11
)

48
.7
(±

4.
15
)

39
.5
(±

4.
08
)

37
.1
(±

4.
00
)

B
re
ak

th
ro
ug

h
8.
0(
±
2.
38
)

53
.6
(±

4.
38
)

60
.6
(±

4.
29
)

37
.2
(±

4.
24
)

59
.8
(±

4.
30
)

55
.2
(±

4.
36
)

18
.2
(±

3.
39
)

K
ni
gh

tt
hr
ou

gh
20
.0
(±

3.
51
)

69
.8
(±

4.
03
)

74
.2
(±

3.
84
)

53
.8
(±

4.
37
)

68
.4
(±

4.
08
)

68
.2
(±

4.
09
)

28
.6
(±

3.
96
)

C
hi
no

ok
21
.5
(±

3.
31
)

30
.8
(±

3.
70
)

36
.7
(±

3.
75
)

24
.8
(±

3.
55
)

52
.3
(±

4.
05
)

51
.0
(±

4.
05
)

48
.9
(±

4.
17
)

C
hi
n.
C
he
ck
er
s3
P

38
.7
(±

4.
26
)

34
.9
(±

4.
17
)

36
.9
(±

4.
22
)

36
.1
(±

4.
20
)

39
.5
(±

4.
27
)

42
.7
(±

4.
32
)

40
.3
(±

4.
29
)

C
he
ck
er
s

8.
3(
±
2.
23
)

33
.6
(±

3.
92
)

37
.8
(±

3.
91
)

19
.7
(±

3.
28
)

42
.4
(±

4.
00
)

40
.4
(±

4.
06
)

30
.2
(±

3.
84
)

C
on

ne
ct

F
iv
e

13
.8
(±

2.
29
)

25
.9
(±

3.
01
)

30
.7
(±

3.
11
)

40
.3
(±

3.
27
)

29
.1
(±

2.
95
)

28
.6
(±

3.
07
)

20
.3
(±

2.
68
)

Q
ua

d
46
.8
(±

4.
23
)

29
.9
(±

3.
76
)

37
.9
(±

4.
04
)

75
.6
(±

3.
56
)

35
.3
(±

3.
98
)

51
.9
(±

4.
21
)

45
.9
(±

4.
09
)

Sh
ee
p
an

d
W
ol
f

42
.6
(±

4.
34
)

43
.2
(±

4.
35
)

45
.2
(±

4.
37
)

49
.0
(±

4.
39
)

47
.6
(±

4.
38
)

44
.8
(±

4.
36
)

47
.4
(±

4.
38
)

T
T
C
C
4
2P

22
.4
(±

3.
63
)

38
.6
(±

4.
15
)

44
.6
(±

4.
25
)

22
.6
(±

3.
60
)

45
.4
(±

4.
25
)

49
.7
(±

4.
20
)

34
.4
(±

4.
08
)

T
T
C
C
4
3P

43
.9
(±

4.
25
)

40
.6
(±

4.
14
)

40
.4
(±

4.
17
)

47
.3
(±

4.
24
)

43
.2
(±

4.
21
)

43
.1
(±

4.
18
)

45
.4
(±

4.
26
)

C
on

ne
ct

Fo
ur

42
.0
(±

4.
14
)

37
.0
(±

4.
09
)

42
.9
(±

4.
15
)

59
.1
(±

4.
18
)

50
.1
(±

4.
19
)

46
.8
(±

4.
20
)

49
.4
(±

4.
24
)

P
en
ta
go

26
.1
(±

3.
75
)

40
.6
(±

4.
14
)

38
.8
(±

4.
07
)

48
.8
(±

4.
22
)

41
.7
(±

4.
16
)

43
.5
(±

4.
15
)

41
.2
(±

4.
16
)

R
ev
er
si

31
.1
(±

4.
00
)

41
.5
(±

4.
26
)

39
.8
(±

4.
24
)

27
.1
(±

3.
83
)

42
.9
(±

4.
28
)

45
.1
(±

4.
33
)

34
.9
(±

4.
12
)

A
vg

.
W

in
%

27
.6
(±

1.
01
)

39
.6
(±

1.
10
)

43
.3
(±

1.
11
)

41
.7
(±

1.
11
)

46
.2
(±

1.
12
)

46
.5
(±

1.
12
)

37
.3
(±

1.
09
)

154 On-line Search-Control Parameter Tuning for MCTS

T
able

6.6:
W

in
percentage

of
the

on-line
tuned

A
P

agent
w
ith

different
allocation

strategies
that

tune
six

param
eters

against
the

A
P

agent
w
ith

default
param

eter
values.

G
am

e
A
P

M
A

B
A
P

H
E

A
P

N
M

C
A
P

L
S
I

A
P

E
A

A
P

N
T
B

E
A

A
P

C
M

A
-E

S
3D

T
ic

T
ac

T
oe

1.1(±
0.89)

24.0(±
3.55)

27.3(±
3.71)

28.3(±
3.74)

35.2(±
3.99)

38.6(±
4.05)

36.1(±
3.89)

B
reakthrough

1.0(±
0.87)

34.0(±
4.16)

28.6(±
3.96)

23.0(±
3.69)

37.4(±
4.25)

31.6(±
4.08)

18.0(±
3.37)

K
nightthrough

1.6(±
1.10)

45.8(±
4.37)

46.2(±
4.37)

28.4(±
3.96)

45.6(±
4.37)

50.2(±
4.39)

39.2(±
4.28)

C
hinook

4.1(±
1.52)

13.8(±
2.72)

18.3(±
3.21)

9.5(±
2.23)

21.7(±
3.40)

31.6(±
3.94)

48.6(±
4.22)

C
hin.C

heckers3P
19.8(±

3.49)
36.7(±

4.21)
28.0(±

3.92)
41.1(±

4.30)
30.2(±

4.01)
28.0(±

3.92)
35.9(±

4.19)
C
heckers

1.7(±
0.97)

14.7(±
2.83)

17.7(±
3.13)

19.3(±
3.25)

17.2(±
3.06)

20.9(±
3.42)

19.6(±
3.32)

C
onnect

F
ive

5.4(±
1.52)

20.4(±
2.74)

24.6(±
2.98)

41.2(±
3.31)

25.5(±
2.89)

33.2(±
3.26)

37.6(±
3.21)

Q
uad

3.1(±
1.48)

16.4(±
3.04)

16.2(±
3.02)

63.5(±
4.01)

15.2(±
3.00)

17.2(±
3.13)

19.0(±
3.26)

Sheep
and

W
olf

30.0(±
4.02)

43.8(±
4.35)

40.2(±
4.30)

48.8(±
4.39)

46.2(±
4.37)

46.2(±
4.37)

49.4(±
4.39)

T
T
C
C
4
2P

2.0(±
1.23)

26.6(±
3.82)

26.2(±
3.74)

17.9(±
3.32)

28.7(±
3.91)

33.6(±
4.03)

25.0(±
3.73)

T
T
C
C
4
3P

24.2(±
3.70)

41.0(±
4.20)

34.0(±
4.04)

38.7(±
4.18)

38.9(±
4.12)

39.4(±
4.15)

40.6(±
4.23)

C
onnect

Four
9.6(±

2.49)
29.4(±

3.80)
35.0(±

3.97)
53.8(±

4.15)
43.8(±

4.14)
30.6(±

3.89)
36.6(±

4.05)
P
entago

5.0(±
1.89)

34.6(±
4.03)

35.2(±
4.05)

40.2(±
4.17)

42.3(±
4.19)

42.1(±
4.18)

42.8(±
4.22)

R
eversi

16.9(±
3.22)

32.2(±
4.00)

33.9(±
4.08)

31.4(±
4.01)

32.2(±
4.02)

33.5(±
4.07)

34.2(±
4.11)

A
vg.

W
in%

9.0(±
0.65)

29.5(±
1.03)

29.4(±
1.03)

34.7(±
1.07)

32.9(±
1.06)

34.0(±
1.07)

34.5(±
1.07)

6.4 — Empirical Evaluation 155

Results in Tables 6.5 and 6.6 show that for all tuning agents the overall per-
formance decreases with the increase in number of tuned parameters. It might be
that not all parameters have the same importance and by tuning them some noise
is being introduced in the process. Moreover, more parameters mean a larger search
space, with fewer good parameter combinations. For this reason, it could be more
difficult for the tuning agents to converge to an optimal combination and they keep
evaluating sub-optimal ones. It might also be that, by the time they identify bet-
ter parameter combinations, the AP agent has already an advantage in the game
because it was making better decisions from the start due to already tuned param-
eters. In particular, APMAB is the agent that loses the most in performance when
increasing the number of parameters.

The poor performance of APMAB is because of the high number of possible values
combinations. This prevents the agent to be able to sample each combination a suf-
ficient number of times to start converging. Another reason for its poor performance
is that every time a combination must be selected there is quite some computational
overhead due to the necessity of iterating over all possible combinations to compute
the one with the highest UCB1 value. This reduces the number of simulations that
can be performed. Performing the evaluation of each parameter combination using
a batch of simulations instead of a single simulation is still not sufficient to increase
the performance to the same level as the off-line tuned agent.

Despite the statistically significant worsening of the performance in most of the
games, it still seems to be beneficial to tune four parameters for a few of them.
For Knightthrough and Breakthrough, for example, APNMC, APEA and APNTBEA
perform better than AP when tuning four parameters rather than only two. The
performance of PLSI also increases when tuning four parameters for Quad. A reason
for this might be that for these games the fixed parameters of AP are not optimal,
but it could also be that optimal values are changing during the search and on-line
tuning detects this.

Comparing the tuning agents with each other, for four parameters APEA and
APNTBEA show the overall best performance. For six parameters APLSI, APNTBEA
and APCMA-ES are the ones performing best, having a win percentage around 34.0%.
Over all the experiments, APNTBEA seems to be the best performing agent.

An aspect worth investigating that might be influencing the performance of the
on-line tuning agents is the impact of the overhead of selecting parameter values.
Table 6.7 gives as reference the speed (i.e. average median of number of visited nodes
per second) of the off-line tuned AP agent. For the self-adaptive AP agents that tune
four parameters the table reports the percentage of speed variation with respect to
the off-line tuned AP. For almost all games parameter tuning decreases the speed,
especially for APMAB because of the previously mentioned high overhead. Also for
APNMC and APNTBEA the speed seems to decrease more than for APLSI, APEA and
APCMA-ES. When looking at the speed decrease for two and six parameters as well
it was noticed that for APLSI, APEA and APCMA-ES it is on average between −0.8%
and −4.9%, while for APNMC it goes from −2.0% for two parameters to −25.5% for
six, and for APNTBEA from −8.5% for two parameters to −12.7% for six. This can
be explained by the frequency with which these two agents have to perform costly
UCB1 evaluations to select parameters. The speed decrease of APHE is somewhere

156 On-line Search-Control Parameter Tuning for MCTS

T
able

6.7:
V
ariation

(%
)
of

visited
nodes

per
second

of
the

on-line
tuned

A
P
agent

that
tunes

four
param

eters
w
ith

respect
to

the
off-line

tuned
A
P

agent.

G
am

e
A
P

sp
eed

A
P

M
A

B
A
P

H
E

A
P

N
M

C
A
P

L
S
I

A
P

E
A

A
P

N
T
B

E
A

A
P

C
M

A
-E

S
3D

T
ic

T
ac

T
oe

58731
-44.7%

-7.7%
-18.4%

0.2%
-6.9%

-19.7%
-8.0%

B
reakthrough

51089
-44.4%

-6.5%
-11.9%

-3.3%
-4.2%

-14.6%
-4.5%

K
nightthrough

42691
-47.1%

-6.0%
-12.9%

-2.2%
-5.1%

-18.7%
-7.5%

C
hinook

33817
-27.0%

-4.1%
-9.8%

-0.5%
-3.1%

-11.2%
-4.5%

C
hin.C

heckers3P
106074

-36.8%
-6.4%

-27.9%
-1.8%

-1.4%
-20.1%

-5.9%
C
heckers

29767
-4.2%

1.8%
-1.4%

1.9%
1.8%

1.1%
0.9%

C
onnect

F
ive

37488
-19.5%

-5.4%
-10.7%

3.2%
-1.9%

-9.4%
-4.8%

Q
uad

42358
-32.5%

-5.2%
-14.1%

-2.6%
-4.9%

-15.2%
-6.5%

Sheep
and

W
olf

51036
-18.2%

-3.2%
-22.0%

-1.1%
-1.3%

-8.6%
-4.0%

T
T
C
C
4
2P

26936
-11.3%

-3.5%
-6.5%

-1.9%
-2.2%

-6.2%
-3.1%

T
T
C
C
4
3P

23462
-24.8%

-5.9%
-15.7%

-1.9%
0.6%

-8.1%
-6.8%

C
onnect

Four
114623

-62.6%
-7.1%

-24.3%
-6.0%

-3.9%
-23.6%

-9.3%
P
entago

86132
-25.5%

-2.3%
-12.7%

0.1%
1.4%

-9.0%
-3.1%

R
eversi

8533
-1.1%

0.1%
-1.9%

-0.5%
0.1%

-0.5%
-1.6%

6.4 — Empirical Evaluation 157

in-between, because it is goes from −4.1% for two parameters to −9.0% for six.
APHE has to perform UCB1 evaluations for each parameter, but differently from
APNMC and APNTBEA these evaluations are always on MABs that choose values
for single parameters and never for global MABs with many possible parameter
combinations.

A decrease in visited nodes per second, however, does not seem to always imply a
negative performance. Table 6.8 gives the percentage variation in MCTS iterations
per second performed by the agents that tune four parameters on-line with respect
to the number of iterations per second (average of the median) reached by the AP
agent. From these results it is visible that in many games the on-line tuned AP
agents can perform more iterations than the off-line tuned AP agent, and for some
games this might have a positive effect on the search. This might be happening
for the games of Quad and Connect Four with APLSI. This agent for these games
has an increase of 13.2% and 15.5% in number of iterations per second, respectively,
and it shows a better performance than AP. The explanation for the increase in
iterations might be that the constantly changing search-control parameters cause
the agents to explore different parts of the search space (with shorter paths) than
the ones explored by the off-line tuned AP.

6.4.4 On-line Parameter Tuning Validation

This series of experiments is designed to verify if on-line parameter tuning has an ad-
vantage over fixed parameter values when such values are performing poorly. Given
that NTBEA seems to be the allocation strategy that performs best in previous
experiments, this series of experiments considers the SPNTBEA agent tuning two pa-
rameters (C and εMAST), and the APNTBEA agents tuning two (K and ref), four (C,
εMAST, K and ref) and six parameters (C, εMAST, K, ref , V O and T). Each agent
is matched against the corresponding non-tuning agent that, before each game run,
sets its parameters to randomly chosen values among the available ones. Each of
these non-tuning agents will randomize only the values of the parameters that the
corresponding self-adaptive agent is tuning. Testing the tuning agents against all
possible agents with fixed settings is too time consuming because of the large num-
ber of available parameter combinations. Therefore, randomization is used in these
experiments to guarantee that many of the fixed parameter combinations used by
the non-tuning agents will be performing poorly. Results are shown in Table 6.9. For
almost all games, the self-adaptive agents have a significantly better performance
than the agents that randomize parameter values before each game run, proving
that on-line parameter tuning can converge to better parameter settings when the
opponent’s parameters are set to sub-optimal values.

6.4.5 Parameters Inter-dependency

All the proposed allocation strategies are designed to take into account that there
is inter-dependency among the tuned parameters. As a validation of this inter-
dependency assumption, this series of experiments tests the performance of an agent,
APLOCAL, that tunes four parameters, C, εMAST, K, and ref , considering no inter-

158 On-line Search-Control Parameter Tuning for MCTS

T
able

6.8:
V
ariation

(%
)
of

M
C
T
S
iterations

per
second

of
the

on-line
tuned

A
P

agent
that

tunes
four

param
eters

w
ith

respect
to

the
off-line

tuned
A
P

agent.

G
am

e
A
P

sp
eed

A
P

M
A

B
A
P

H
E

A
P

N
M

C
A
P

L
S
I

A
P

E
A

A
P

N
T
B

E
A

A
P

C
M

A
-E

S
3D

T
ic

T
ac

T
oe

5143
-26.5%

15.1%
11.0%

17.3%
27.4%

10.6%
19.2%

B
reakthrough

4258
-29.1%

7.0%
6.0%

-4.1%
22.6%

9.6%
13.0%

K
nightthrough

5426
-29.6%

7.9%
3.0%

4.3%
20.4%

1.3%
14.2%

C
hinook

3562
-16.0%

-7.3%
-7.5%

7.2%
-1.2%

-9.2%
0.4%

C
hin.C

heckers3P
5027

-37.3%
-2.6%

-20.3%
-7.3%

3.8%
-12.9%

-5.6%
C
heckers

624
1.6%

3.6%
3.3%

2.2%
5.9%

3.5%
1.3%

C
onnect

F
ive

2172
-0.2%

15.8%
16.1%

1.9%
26.7%

19.3%
17.1%

Q
uad

3641
-14.3%

6.8%
3.9%

13.2%
14.5%

4.6%
9.7%

Sheep
and

W
olf

2411
-14.2%

0.5%
-19.0%

-4.7%
4.2%

-5.2%
-6.3%

T
T
C
C
4
2P

1422
0.8%

7.4%
6.8%

-3.2%
13.5%

10.7%
9.5%

T
T
C
C
4
3P

2119
-28.0%

-0.5%
-8.5%

-6.5%
5.9%

-2.3%
-5.6%

C
onnect

Four
8300

-45.9%
2.3%

-7.5%
15.5%

13.9%
-7.2%

12.9%
P
entago

4149
-29.2%

3.1%
-5.0%

-3.0%
10.2%

1.0%
0.2%

R
eversi

290
-2.0%

0.4%
-1.3%

-0.4%
0.6%

-0.1%
-0.7%

6.4 — Empirical Evaluation 159

Table 6.9: Win percentage of SPNTBEA and APNTBEA against agents that randomize pa-
rameter values before each game run.

Game SPNTBEA APNTBEA
2 param. 2 param. 4 param. 6 param.

3D Tic Tac Toe 58.4(±4.11) 59.3(±4.06) 65.4(±3.94) 64.0(±4.03)
Breakthrough 80.6(±3.47) 65.2(±4.18) 88.4(±2.81) 80.8(±3.46)
Knightthrough 80.6(±3.47) 55.0(±4.37) 87.2(±2.93) 83.6(±3.25)

Chinook 77.8(±2.83) 62.8(±3.91) 77.1(±3.43) 63.7(±4.04)
Chin.Checkers3P 54.5(±4.35) 56.0(±4.34) 58.1(±4.31) 49.2(±4.37)

Checkers 78.9(±3.34) 59.1(±4.10) 74.7(±3.57) 57.6(±4.15)
Connect Five 62.4(±3.30) 58.5(±3.19) 46.5(±3.73) 54.5(±3.73)

Quad 41.4(±4.12) 60.6(±4.02) 54.6(±4.21) 35.5(±4.08)
Sheep and Wolf 53.6(±4.38) 51.8(±4.38) 47.6(±4.38) 51.4(±4.39)

TTCC4 2P 77.1(±3.63) 62.8(±4.10) 78.8(±3.47) 71.3(±3.92)
TTCC4 3P 52.4(±4.24) 56.6(±4.24) 50.8(±4.29) 49.5(±4.30)

Connect Four 44.6(±4.20) 65.6(±4.02) 52.6(±4.23) 51.3(±4.27)
Pentago 60.3(±4.01) 61.1(±4.15) 55.4(±4.13) 57.9(±4.16)
Reversi 63.1(±4.15) 56.2(±4.27) 58.1(±4.28) 54.3(±4.32)

Avg. Win% 63.2(±1.07) 59.3(±1.10) 63.9(±1.08) 58.9(±1.12)

dependency. This agent chooses which combination to evaluate by selecting each
parameter value using a separate MAB (like using only local MABs with NMC).
Two instances of this agent are considered, one that selects the parameter values
from the local MABs using UCB1 with exploration constant Cl = 0.7 and one that
selects parameter values using UCB1 with exploration constant Cl = 1. Results are
reported in Table 6.10. The last column of the table reports for each game the highest
win percentage from Table 6.5, therefore the highest that was achieved by any of the
instances of the AP agent that tune four parameters. The overall win percentage
of both instances of APLOCAL against AP is lower than the win percentage of all
the tuning agents that achieve the highest win percentage in at least one game of
Table 6.10 (i.e. APNMC, APLSI, APEA and APNTBEA). It was also observed that
for most games at least one of the allocation strategies that exploit parameter inter-
dependency can significantly outperform the strategy that does not. This can be
seen as a confirmation that there is a dependency and it should be exploited.

6.4.6 Tuning Six Parameters with Different Time Constraints

This series of experiments verifies how different time constraints affect the perfor-
mance of on-line parameter tuning for six parameters, C, εMAST, K, ref , V O and
T . The agents APNMC, APLSI, APEA and APNTBEA that tune six parameters are
matched against AP for increasing time constraints. Figure 6.7 shows for each agent
how the average win percentage over all the tested games changes when using longer
start- and play-clock. Results for 1s differ from the ones presented in Table 6.6

160 On-line Search-Control Parameter Tuning for MCTS

Table 6.10: Win percentage of the on-line tuning APLOCAL agent that does not consider
interdependency among parameters, and of the on-line tuning AP agents that achieve the
highest win percentage against off-line tuned AP. The on-line tuning agents are tuning four
parameters.

Game APLOCAL Best on-line
Cl = 0.7 Cl = 1 tuning AP

3D Tic Tac Toe 37.2(±4.03) 34.8(±3.95) 48.7(±4.15)
Breakthrough 54.8(±4.37) 53.4(±4.38) 60.6(±4.29)
Knightthrough 70.2(±4.01) 66.4(±4.14) 74.2(±3.84)

Chinook 30.0(±3.56) 26.1(±3.47) 52.3(±4.05)
Chin.Checkers3P 30.6(±4.03) 31.3(±4.05) 42.7(±4.32)

Checkers 34.3(±3.95) 33.1(±3.82) 42.4(±4.00)
Connect Five 30.6(±3.23) 27.1(±3.07) 40.3(±3.27)

Quad 30.3(±3.79) 34.6(±3.90) 75.6(±3.56)
Sheep and Wolf 45.4(±4.37) 48.8(±4.39) 49.0(±4.39)

TTCC4 2P 34.8(±4.07) 38.3(±4.14) 49.7(±4.20)
TTCC4 3P 41.3(±4.09) 45.6(±4.19) 47.3(±4.24)

Connect Four 36.7(±4.03) 35.6(±3.98) 59.1(±4.18)
Pentago 37.6(±4.11) 37.0(±4.04) 48.8(±4.22)
Reversi 33.1(±4.05) 38.5(±4.17) 45.1(±4.33)

Avg. Win% 39.1(±1.09) 39.3(±1.09) 52.5(±1.12)

��

��

��

��

�	

�

�

��

��

� � ��

�
�
�
��
��
��
�
�
��
�
�
�	

�
�

����������	
���

��������	
��������
���������

���

���

��

�� !"

Figure 6.7: Win percentage of APNMC, APLSI, APEA and APNTBEA tuning six parameters
with different time constraints.

6.4 — Empirical Evaluation 161

Table 6.11: Win percentage of AP and APNTBEA (1s start- and play-clock) against Cadi-
aPlayer (10s start- and play-clock).

Game AP APNTBEA
2 param. 4 param. 6 param.

3D Tic Tac Toe 92.1(±2.36) 91.9(±2.34) 90.4(±2.55) 86.7(±2.89)
Breakthrough 63.2(±4.23) 61.8(±4.26) 68.0(±4.09) 45.8(±4.37)
Knightthrough 50.8(±4.39) 52.2(±4.38) 74.8(±3.81) 45.0(±4.37)

Chinook 82.8(±3.22) 88.0(±2.74) 81.3(±3.28) 63.4(±4.10)
Checkers 90.6(±2.32) 91.2(±2.28) 87.6(±2.71) 52.6(±4.12)

Connect Five 70.4(±3.18) 68.2(±3.29) 45.5(±3.78) 51.9(±3.95)
Quad 98.8(±0.96) 99.2(±0.78) 99.4(±0.68) 93.0(±2.24)

Sheep and Wolf 56.8(±4.35) 60.4(±4.29) 51.6(±4.38) 50.0(±4.39)
Connect Four 68.2(±3.90) 69.7(±3.92) 63.2(±4.06) 48.0(±4.24)

Pentago 73.0(±3.80) 78.1(±3.52) 71.3(±3.80) 62.6(±4.10)
Avg. Win% 74.7(±1.16) 76.1(±1.14) 73.3(±1.19) 59.9(±1.32)

because the experiment ran on a different server, where the agents could perform
fewer simulations per second. With more time all agents increase their performance,
even if none of them can reach the performance of the off-line tuned agent. Among
the on-line tuning agents APNMC is the one that benefits the least from the increase
in thinking time, while APLSI is the one that benefits the most. Overall, APNTBEA
seems to be the best performing agent, though for 5s and 10s its confidence interval
overlaps with the one of APEA.

6.4.7 Best On-line Tuning Agent vs CadiaPlayer

In this series of experiments the off-line tuned agent AP and the best on-line tuning
agent APNTBEA are matched against CadiaPlayer. Three versions of APNTBEA
are considered, the ones that tunes two (K and ref), four (C, εMAST, K and ref) and
six (C, εMAST, K, ref , V O and T) parameters. Table 6.11 shows the obtained re-
sults. Four games (Chinese Checkers with 3 players, TTCC4 with 2 and 3 players,
and Reversi) are excluded from the experiments because CadiaPlayer encoun-
tered some errors while playing them. Results show that both AP and APNTBEA
that tunes two, four and six parameters are better than CadiaPlayer on average.
For most of the games at least one among APNTBEA that tunes two or four param-
eters performs better than AP. The APNTBEA instance that tunes six parameters,
instead, performs always worse than AP. In line with previous results, APNTBEA that
tunes four parameters performs overall worse than APNTBEA that tunes only two
parameters, and APNTBEA that tunes six parameters performs overall worse than
APNTBEA that tunes four parameters. However, the difference in performance be-
tween tuning two or four parameters is not very large, while the gap in performance
between tuning four or six parameters is much larger. Overall, APNTBEA that tunes
two parameters seems to be the one that performs best against CadiaPlayer.

162 On-line Search-Control Parameter Tuning for MCTS

6.4.8 On-line Parameter Tuning in Real-time Settings

This series of experiments evaluates on-line parameter tuning in the real-time domain
of the GVG-AI project. More precisely, the MAB and NTBEA allocation strate-
gies are used to tune on-line the parameters of the MCTS-based MaastCTS2 agent.
Table 6.12 shows the results obtained by testing MaastCTS2 with default fixed pa-
rameter values (MP), with sub-optimal fixed parameter values (MPSUB-OPT), tuned
with the MAB strategy (MPMAB) and tuned with the NTBEA strategy (MPNTBEA)
with the game-tick duration set to 40ms (i.e. the default time settings of the GVG-
AI competition). The on-line tuning agents have been tested for two (C and W),
three (C, W and εNST) and five (C, W , εNST, N and L) tuned parameters. Looking
at the overall win percentage, all agent instances seem quite close in performance.
Even the performance of MPSUB-OPT is not as low as it would be expected for an
agent that is using sub-optimal parameters. While tuning a small number of pa-
rameters seemed beneficial in the Stanford GGP project domain, it does not make
any difference in the GVG-AI project domain. Also increasing the number of tuned
parameters does not impact the performance as much as it does on the games of
the Stanford GGP project. The performance of MPNTBEA stays overall unchanged
independently of how many parameters are tuned. The performance of MPMAB,
given its high overhead, would be expected to suffer from a significant performance
decrease in most of the games, especially when tuning many parameters. However,
only for five tuned parameters its overall performance slightly decreases, and only in
six games the performance is significantly worse than the one of MP (Bait, Chase,
Crossfire, Escape, Missile Command and Roguelike).

Modality is the only game for which some instances of the on-line tuning agents
show a significant increase in the performance. The win rate of MPSUB-OPT for
this game suggests that some of the default parameter values are actually sub-
optimal, and the parameter values that are expected to be sub-optimal are actually
performing better. Parameter tuning is able to find better values for parameters that
are set to a sub-optimal value. For Modality, it seems that tuning the parameter εNST
causes the performance increase. Also interesting is to look at the performance of on-
line tuning on the games where MPSUB-OPT performs significantly worse than MP:
Camel Race, Missile Command, Plaque Attack, Roguelike and Wait For Breakfast.
For these games almost all instances of MPMAB and all instances of MPNTBEA
manage to reach a close performance to the one of MP. This suggests that it is still
beneficial to tune parameters on-line rather than keeping them fixed to values that
might be sub-optimal for the game being played.

However, in GVG-AI on-line parameter tuning does not seem to have in general
an impact on the performance as significant as for the Stanford GGP project. One
explanation for this might be that the effect of the tuned parameters on the search
is only limited for the considered games. Moreover, all the considered games are
single-player. It could be that parameter tuning affects the search more for two- or
multi-player games, where the opponents are actually modeled in the search tree.
Another reason could be the low number of simulations that the agents can perform
in 40ms. Table 6.13 shows the average median number of simulations per tick of the
MP agent. Moreover, for all the considered instances of the on-line tuning agent,

6.4 — Empirical Evaluation 163

T
ab

le
6.
12
:
W

in
pe

rc
en
ta
ge

of
M

a
a
st

C
T

S
2
w
it
h
fix

ed
pa

ra
m
et
er

va
lu
es

(M
P
),

w
it
h
su
b-
op

ti
m
al

fix
ed

pa
ra
m
et
er

va
lu
es

(M
P

S
U

B
-O

P
T
),

tu
ne

d
on

-li
ne

w
it
h
th
e
M
A
B

st
ra
te
gy

(M
P

M
A

B
)
an

d
tu
ne

d
on

-li
ne

w
it
h
th
e
N
T
B
E
A

st
ra
te
gy

(M
P

N
T

B
E
A
),

w
it
h
ga
m
e
ti
ck

se
t
to

4
0
m
s.

M
P

M
A

B
an

d
M
P

N
T

B
E
A
tu
ne

tw
o
th
re
e
an

d
fiv

e
pa

ra
m
et
er
s.

G
am

e
M

P
M

P
S
U

B
-O

P
T

2
p
ar

am
et

er
s

3
p
ar

am
et

er
s

5
p
ar

am
et

er
s

M
P

M
A

B
M

P
N

T
B

E
A

M
P

M
A

B
M

P
N

T
B

E
A

M
P

M
A

B
M

P
N

T
B

E
A

A
li
en

s
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
99

.8
(±

0.
39

)
10

0.
0(
±
0.
00

)
99

.6
(±

0.
55

)
10

0.
0(
±
0.
00

)
B
ai
t

31
.8
(±

4.
09

)
25

.8
(±

3.
84

)
32

.8
(±

4.
12

)
31

.2
(±

4.
07

)
31

.2
(±

4.
07

)
32

.0
(±

4.
09

)
22

.0
(±

3.
63

)
31

.6
(±

4.
08

)
B
ut
te
rfl
ie
s

98
.6
(±

1.
03

)
99

.0
(±

0.
87

)
99

.4
(±

0.
68

)
98

.8
(±

0.
96

)
99

.0
(±

0.
87

)
99

.8
(±

0.
39

)
99

.4
(±

0.
68

)
10

0.
0(
±
0.
00

)
C
am

el
R
ac
e

44
.4
(±

4.
36

)
33

.8
(±

4.
15

)
41

.0
(±

4.
32

)
40

.6
(±

4.
31

)
39

.4
(±

4.
29

)
41

.6
(±

4.
32

)
39

.2
(±

4.
28

)
42

.4
(±

4.
34

)
C
ha

se
28

.0
(±

3.
94

)
28

.2
(±

3.
95

)
29

.2
(±

3.
99

)
24

.4
(±

3.
77

)
26

.8
(±

3.
89

)
28

.2
(±

3.
95

)
20

.2
(±

3.
52

)
26

.8
(±

3.
89

)
C
ho

pp
er

99
.8
(±

0.
39

)
99

.2
(±

0.
78

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
99

.6
(±

0.
55

)
99

.6
(±

0.
55

)
C
ro
ss
fi
re

31
.8
(±

4.
09

)
27

.6
(±

3.
92

)
29

.6
(±

4.
01

)
29

.8
(±

4.
01

)
28

.8
(±

3.
97

)
29

.4
(±

4.
00

)
17

.2
(±

3.
31

)
28

.4
(±

3.
96

)
D
ig

D
ug

1.
6(
±
1.
10

)
0.
8(
±
0.
78

)
1.
4(
±
1.
03

)
0.
8(
±
0.
78

)
1.
6(
±
1.
10

)
1.
8(
±
1.
17

)
1.
8(
±
1.
17

)
1.
2(
±
0.
96

)
E
sc
ap

e
93

.4
(±

2.
18

)
93

.2
(±

2.
21

)
90

.6
(±

2.
56

)
91

.0
(±

2.
51

)
92

.4
(±

2.
33

)
91

.0
(±

2.
51

)
80

.4
(±

3.
48

)
92

.2
(±

2.
35

)
H
un

gr
y
B
ir
ds

10
0.
0(
±
0.
00

)
99

.8
(±

0.
39

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
In
fe
ct
io
n

10
0.
0(
±
0.
00

)
99

.8
(±

0.
39

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
99

.8
(±

0.
39

)
10

0.
0(
±
0.
00

)
In
te
rs
ec
ti
on

10
0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
10

0.
0(
±
0.
00

)
L
em

m
in
gs

0.
0(
±
0.
00

)
0.
0(
±
0.
00

)
0.
0(
±
0.
00

)
0.
0(
±
0.
00

)
0.
0(
±
0.
00

)
0.
0(
±
0.
00

)
0.
0(
±
0.
00

)
0.
0(
±
0.
00

)
M
is
si
le

C
om

m
an

d
96

.8
(±

1.
54

)
89

.6
(±

2.
68

)
97

.0
(±

1.
50

)
97

.2
(±

1.
45

)
94

.4
(±

2.
02

)
96

.6
(±

1.
59

)
92

.6
(±

2.
30

)
94

.6
(±

1.
98

)
M
od

al
it
y

25
.6
(±

3.
83

)
43

.4
(±

4.
35

)
25

.0
(±

3.
80

)
25

.0
(±

3.
80

)
40

.4
(±

4.
31

)
41

.4
(±

4.
32

)
32

.0
(±

4.
09

)
41

.0
(±

4.
32

)
P
la
qu

e
A
tt
ac
k

94
.8
(±

1.
95

)
90

.0
(±

2.
63

)
95

.8
(±

1.
76

)
96

.6
(±

1.
59

)
94

.2
(±

2.
05

)
94

.8
(±

1.
95

)
94

.2
(±

2.
05

)
95

.8
(±

1.
76

)
R
og

ue
li
ke

4.
6(
±
1.
84

)
1.
8(
±
1.
17

)
5.
4(
±
1.
98

)
4.
0(
±
1.
72

)
3.
0(
±
1.
50

)
4.
0(
±
1.
72

)
0.
8(
±
0.
78

)
3.
2(
±
1.
54

)
Se

a
Q
ue

st
58

.4
(±

4.
32

)
59

.6
(±

4.
31

)
56

.8
(±

4.
35

)
53

.4
(±

4.
38

)
57

.6
(±

4.
34

)
50

.2
(±

4.
39

)
53

.8
(±

4.
37

)
54

.6
(±

4.
37

)
Su

rv
iv
e
Z
om

bi
es

42
.4
(±

4.
34

)
40

.2
(±

4.
30

)
42

.0
(±

4.
33

)
41

.4
(±

4.
32

)
40

.4
(±

4.
31

)
42

.2
(±

4.
33

)
38

.2
(±

4.
26

)
40

.8
(±

4.
31

)
W
ai
t
F
or

B
re
ak

fa
st

99
.0
(±

0.
87

)
83

.4
(±

3.
26

)
98

.6
(±

1.
03

)
98

.4
(±

1.
10

)
99

.0
(±

0.
87

)
99

.0
(±

0.
87

)
98

.0
(±

1.
23

)
98

.0
(±

1.
23

)
A
vg

.
W

in
%

62
.6
(±

0.
95

)
60

.8
(±

0.
96

)
62

.2
(±

0.
95

)
61

.6
(±

0.
95

)
62

.4
(±

0.
95

)
62

.6
(±

0.
95

)
59

.4
(±

0.
96

)
62

.5
(±

0.
95

)

164 On-line Search-Control Parameter Tuning for MCTS

T
able

6.13:
V
ariation

(%
)
ofM

C
T
S
iterations

per
tick

(4
0
m
s)

of
M

a
a
st

C
T

S
2
tuned

on-line
w
ith

the
M
A
B
strategy

(M
P

M
A

B)
and

tuned
on-line

w
ith

the
N
T
B
E
A

strategy
(M

P
N

T
B

E
A
)
w
ith

respect
to

M
a
a
st

C
T

S
2
w
ith

fixed
param

eter
values

(M
P
).T

he
variation

is
reported

for
M
P

M
A

B
and

M
P

N
T

B
E
A
that

tune
tw

o,three
and

five
param

eters.

G
am

e
M
P

2
p
aram

eters
3
p
aram

eters
5
p
aram

eters
M
P

M
A

B
M
P

N
T

B
E
A

M
P

M
A

B
M
P

N
T

B
E
A

M
P

M
A

B
M
P

N
T

B
E
A

A
liens

14.70
-4.7%

-6.5%
-5.7%

-5.5%
-41.0%

-1.6%
B
ait

91.18
-11.7%

-31.9%
-48.1%

-22.5%
-88.7%

-36.8%
B
utterflies

12.13
-17.9%

-20.9%
-18.5%

-20.2%
-41.5%

-4.5%
C
am

elR
ace

8.84
-23.4%

-25.7%
-23.6%

-25.3%
-39.9%

-3.8%
C
hase

11.05
-10.2%

-12.2%
-9.3%

-11.6%
-42.5%

-6.6%
C
hopper

5.38
-2.6%

-5.2%
-0.4%

-2.2%
-40.3%

-8.2%
C
rossfire

6.53
-14.9%

-16.2%
-13.9%

-15.2%
-45.3%

-9.2%
D
ig

D
ug

4.98
-11.2%

-14.7%
-9.8%

-15.3%
-44.4%

-14.7%
E
scape

33.83
-15.8%

-58.7%
-30.7%

-56.9%
-75.7%

-53.0%
H
ungry

B
irds

18.35
-11.7%

-13.7%
-12.2%

-12.8%
-44.5%

-8.1%
Infection

10.58
-7.9%

-7.7%
-8.1%

-6.0%
-46.8%

-4.0%
Intersection

15.62
-6.4%

-7.8%
-10.2%

-9.6%
-59.4%

-19.9%
Lem

m
ings

11.09
-2.1%

-1.6%
-4.6%

-4.8%
-68.1%

-53.9%
M
issile

C
om

m
and

17.70
-20.0%

-23.4%
-21.9%

-23.0%
-51.9%

-8.0%
M
odality

302.56
-15.6%

-40.4%
-51.2%

-49.9%
-95.7%

-54.5%
P
laque

A
ttack

5.97
-12.7%

-15.7%
-16.2%

-16.8%
-45.6%

-5.2%
R
oguelike

4.43
-14.0%

-22.6%
-17.8%

-17.2%
-47.0%

-20.5%
Sea

Q
uest

20.33
-9.9%

-11.4%
-13.6%

-12.3%
-57.1%

-5.1%
Survive

Zom
bies

9.52
-7.1%

-8.7%
-7.0%

-8.9%
-44.0%

-5.1%
W
ait

For
B
reakfast

28.86
-10.7%

-13.7%
-9.3%

-8.0%
-58.0%

-8.1%

6.4 — Empirical Evaluation 165

T
ab

le
6.
14
:
W

in
pe

rc
en
ta
ge

of
M

a
a
st

C
T

S
2
w
it
h
fix

ed
pa

ra
m
et
er

va
lu
es

(M
P
),
w
it
h
su
b-
op

ti
m
al

pa
ra
m
et
er

va
lu
es

(M
P

S
U

B
-O

P
T
),
tu
ne

d
on

-li
ne

w
it
h
th
e
M
A
B
st
ra
te
gy

(M
P

M
A

B
)
an

d
tu
ne

d
on

-li
ne

w
it
h
th
e
N
T
B
E
A

st
ra
te
gy

(M
P

N
T

B
E
A
),
w
it
h
ga
m
e
ti
ck

se
t
to

1
0
0
m
s.

M
P

M
A

B

an
d
M
P

N
T

B
E
A
tu
ne

tw
o
th
re
e
an

d
fiv

e
pa

ra
m
et
er
s.

G
am

e
M

P
M

P
S
U

B
-O

P
T

2
p
ar

am
et

er
s

3
p
ar

am
et

er
s

5
p
ar

am
et

er
s

M
P

M
A

B
M

P
N

T
B

E
A

M
P

M
A

B
M

P
N

T
B

E
A

M
P

M
A

B
M

P
N

T
B

E
A

B
ai
t

51
.8
(±

4.
38
)

49
.4
(±

4.
39
)

48
.6
(±

4.
39
)

40
.8
(±

4.
31
)

40
.8
(±

4.
31
)

34
.8
(±

4.
18
)

31
.2
(±

4.
07
)

36
.6
(±

4.
23
)

C
am

el
R
ac
e

95
.8
(±

1.
76
)

93
.8
(±

2.
12
)

94
.6
(±

1.
98
)

92
.4
(±

2.
33
)

90
.2
(±

2.
61
)

89
.4
(±

2.
70
)

85
.4
(±

3.
10
)

90
.8
(±

2.
54
)

C
ha

se
56
.2
(±

4.
35
)

50
.0
(±

4.
39
)

49
.8
(±

4.
39
)

52
.0
(±

4.
38
)

46
.8
(±

4.
38
)

50
.6
(±

4.
39
)

43
.0
(±

4.
34
)

51
.6
(±

4.
38
)

C
ro
ss
fir
e

84
.8
(±

3.
15
)

80
.4
(±

3.
48
)

79
.8
(±

3.
52
)

81
.2
(±

3.
43
)

79
.6
(±

3.
54
)

79
.8
(±

3.
52
)

68
.2
(±

4.
09
)

81
.8
(±

3.
39
)

D
ig

D
ug

0.
0(
±
0.
00
)

0.
2(
±
0.
39
)

0.
2(
±
0.
39
)

0.
2(
±
0.
39
)

0.
2(
±
0.
39
)

0.
2(
±
0.
39
)

0.
4(
±
0.
55
)

0.
0(
±
0.
00
)

L
em

m
in
gs

0.
0(
±
0.
00
)

0.
0(
±
0.
00
)

0.
0(
±
0.
00
)

0.
0(
±
0.
00
)

0.
0(
±
0.
00
)

0.
0(
±
0.
00
)

0.
0(
±
0.
00
)

0.
0(
±
0.
00
)

M
od

al
it
y

26
.2
(±

3.
86
)

25
.2
(±

3.
81
)

26
.4
(±

3.
87
)

23
.8
(±

3.
74
)

40
.0
(±

4.
30
)

40
.6
(±

4.
31
)

38
.8
(±

4.
28
)

40
.4
(±

4.
31
)

R
og
ue
lik

e
32
.6
(±

4.
11
)

34
.0
(±

4.
16
)

32
.6
(±

4.
11
)

31
.8
(±

4.
09
)

34
.4
(±

4.
17
)

36
.8
(±

4.
23
)

28
.4
(±

3.
96
)

32
.0
(±

4.
09
)

Se
a
Q
ue
st

58
.6
(±

4.
32
)

59
.8
(±

4.
30
)

57
.2
(±

4.
34
)

59
.8
(±

4.
30
)

60
.8
(±

4.
28
)

61
.4
(±

4.
27
)

61
.8
(±

4.
26
)

56
.2
(±

4.
35
)

Su
rv
iv
e
Z
om

bi
es

49
.0
(±

4.
39
)

49
.0
(±

4.
39
)

44
.4
(±

4.
36
)

46
.4
(±

4.
38
)

46
.6
(±

4.
38
)

46
.0
(±

4.
37
)

44
.8
(±

4.
36
)

45
.4
(±

4.
37
)

A
vg

.
W

in
%

45
.5
(±

1.
38
)

44
.2
(±

1.
38
)

43
.4
(±

1.
37
)

42
.8
(±

1.
37
)

43
.9
(±

1.
38
)

44
.0
(±

1.
38
)

40
.2
(±

1.
36
)

43
.5
(±

1.
37
)

166 On-line Search-Control Parameter Tuning for MCTS

the table reports the speed variation with respect to MP. The speed of the MPMAB
is shown to substantially decrease with the increase of tuned parameters, while the
speed of MPNTBEA is shown to be less affected by the number of tuned parameters.
This explains the drop in performance of MPMAB when tuning five parameters.
However, the number of simulations might be in general too low for all the agents.
A low number of simulations might have two implications for on-line parameter
tuning: (i) the allocation strategies cannot find optimal values early enough in the
game to make a positive difference in the performance, and (ii) even if there are bad
values among the feasible ones, the number of simulations controlled by them is not
high enough to be detrimental.

To verify how more simulations influence the performance, the same series of
experiments has been performed increasing the tick duration to 100ms. Only the
games where, given more time, MaastCTS2 has more room for improvement are
considered, and the ones where it is performing close to 100% with a tick of 40ms
are excluded. Results of this series of experiments are presented in Table 6.14. A
longer search time significantly increases the performance of MaastCTS2 in many
of the games. With more search time there seems to be no particular difference
in performance between MP and MPSUB-OPT in any of the games. There are also
a few games for which more search time seems to make on-line parameter tuning
detrimental. For example, for Bait, Camel Race and Chase the win percentage of
many of the on-line tuning agents’ instances significantly decreases with respect to
MP. The overall results with game ticks of 100ms are still mostly in line with what is
observed for 40ms. All the agent instances are close in performance, and only when
tuning five parameters the decrease in performance of MPMAB with respect to MP
becomes statistically significant (although the difference is still not as high as for the
Stanford GGP project games). Once again, when εNST is tuned, the agents achieve
a much higher win rate than MP in Modality. Differently from what was observed
with a tick of 40ms, with a longer search time the sub-optimal parameter values do
not seem to have a positive effect on the performance in Modality. This might mean
that optimal parameter values for this game also depend on how much search time
is available and on-line parameter tuning is able to adjust them accordingly.

The performance increase in Modality, both with a 40ms and a 100ms tick
duration, suggest that on-line parameter tuning has the potential to be useful even
when decisions have to be made in a short amount of time.

6.4.9 Discussion

An important aspect that should be taken into account when tuning MCTS param-
eters on-line is the choice of such parameters. Not all the parameters that control
some aspects of MCTS are suitable to be tuned on-line with the method proposed
in this chapter. First of all, the chosen parameters should directly influence each
MCTS simulation, and be used to decide how the simulation is performed. There-
fore, parameters like decay factors for the collected statistics that are used once per
turn or once every few simulations should not be considered. Such parameters can
only be evaluated once their effect on the search has taken place. For example, it
would be possible to evaluate a statistics decay factor that is applied after every

6.5 — Chapter Conclusions and Future Research 167

move, only at the end of the turn or even at the end of the complete game, making
the number of samples that can be collected to evaluate its possible values too low
to perform on-line tuning.

Second, parameters that influence the simulation, and thus how the game tree is
visited, should do so by changing how actions are selected in each state, and not by
changing which parts of the tree are allowed to be visited. An example of parameter
that would change the portion of the tree that can be visited is the simulation depth.
Changing this parameter for each simulation would cause the same path in the tree
to have different payoffs every time it is visited with a different depth. Depending
on the depth limit, the visit of a path will end at different states, which also have
different payoffs. This might cause the parameter values to be wrongly evaluated,
given that these payoffs are used as evaluation by the on-line tuning strategy.

This has been confirmed by experiments on the single-player planning track of
the GVG-AI project. These experiments apply on-line parameter tuning to the
sampleMCTS agent (see Subsection 3.2.4), considering the simulation depth as
a parameter to be tuned on-line with values between 1 and 15. Results showed
that, for most of the games, the most used value is 1, although an instance of the
sampleMCTS agent that uses 1 as fixed default value for the depth is usually per-
forming poorly. This is an example of how on-line parameter tuning might wrongly
evaluate a parameter. What happens is that, the deeper an agent visits the game
tree the more likely it is to find terminal states. Therefore, in the games where
terminal states mostly correspond to losses, the on-line tuning mechanism will com-
pute a lower evaluation the higher the depth value is. This phenomenon is further
accentuated by the heuristic used by the agent to evaluate a state (Formula 3.1),
which gives a high penalty to losing states and a high reward to winning states. In
this way, a depth of 1 is preferred by the agent, even if with a higher depth value it
would be able to detect losing states earlier in the search and possibly avoid them.

6.5 Chapter Conclusions and Future Research

This chapter presented an on-line tuning method for search-control parameters that
enables MCTS to be self-adaptive during game play. The performance of this method
was evaluated on the Stanford GGP project and on the GVG-AI project. Seven dif-
ferent allocation strategies were introduced and tested for parameter tuning: MAB,
HE, NMC, LSI, EA, NTBEA and CMA-ES.

Comparing the on-line tuning approaches, NTBEA seems to have the best per-
formance overall, but EA is also quite close. NTBEA performs well on most of the
games and for different numbers of tuned parameters. This is likely due to the fact
that it merges the use of evolutionary computation with the multi-armed bandit
approach. It also seems that a discrete domain for the parameters is sufficient to
achieve a good performance. It could be expected that, given its continuous pa-
rameter domains, CMA-ES could converge to more accurate optimal values for the
parameters, which the discretization of the domain might exclude. However, re-
sults showed that it was not performing better than most of the discrete allocation
strategies, especially for two and four tuned parameters.

168 On-line Search-Control Parameter Tuning for MCTS

Results for the Stanford GGP project show that, when tuning two parameters,
with most of the allocation strategies the agents can reach at least the same per-
formance or surpass the off-line tuned agent. When tuning four parameters for the
more advanced agent, the overall performance of the on-line tuning agent is lower
than the off-line tuned agent, but still quite close for some of the allocation strate-
gies. This is especially remarkable because only a single run of a game is used to tune
the parameters, instead of a few hundred. On-line tuning of six parameters is much
harder, especially when the thinking time is low. Independently of the number of
tuned parameters, agents that use on-line parameter tuning with NTBEA were also
shown to perform overall better than agents with random fixed parameter settings.
It may be concluded that the proposed approach is useful when off-line parameter
tuning is infeasible, or in a context like GGP, where parameters cannot be tuned in
advance for each game, or when off-line tuning incurs in the risk of overfitting the
values to the set of games selected for the purpose of tuning.

Results also show that both the off-line tuned and the on-line tuning agents
using NTBEA perform overall better than an agent with a different implementation
of MCTS, CadiaPlayer. Moreover, against CadiaPlayer the agent that tunes
two parameter on-line with NTBEA has a better performance than the off-line tuned
agent. Thus, it may be concluded that on-line parameter tuning is robust against
different types of opponents. This also suggests that on-line parameter tuning can
adapt to the opponent style of play and could be a valid approach to create agents
that change their behavior according to the level of their (human) opponent.

Results for the GVG-AI project suggest that it is harder to tune parameters
on-line with much shorter time settings, even when the number of tuned parameters
is small. However, it may still be better to tune parameters on-line when fixed
parameter settings might be sub-optimal, such as was observed in the game Modality.

In future research, it might be interesting to investigate other evolutionary strate-
gies for continuous domains, such as Differential Evolution (Storn and Price, 1997),
to see if they can improve with respect to the performance of CMA-ES. Moreover,
given the good performance of NTBEA, future work could look into using other
parameter optimization methods that are based on a model of the parameters land-
scape. An example is Sequential Model-based Algorithm Configuration (SMAC)
(Hutter, Hoos, and Leyton-Brown, 2011), which builds explicit regression models
to predict the performance of parameters. This method was shown to be compara-
ble to NTBEA when tuning the parameters of an agent for the Planet Wars game
(Lucas et al., 2019).

Finally, it would be interesting to see if the devised on-line parameter tuning
method can be successfully applied to other domains as well. In addition, the fact
that the self-adaptive agents are not able to choose which and how many parameters
to tune is a limitation of this work. These choices can be seen as extra parameters of
the agent and for the experiments in this chapter their values were selected manually
by off-line testing. Future work should design agents that consider these choices as
part of the on-line automatic adaptation. Moreover, performing this decision on-
line could help automatically reduce the size of the combinatorial search space by
excluding less relevant parameters.

It could also be interesting to investigate how much the randomization introduced

6.5 — Chapter Conclusions and Future Research 169

by on-line parameter tuning is actually influencing the search. The constantly chang-
ing parameter values because of on-line tuning might already make a difference in
the search, whether or not they are optimal values. One of the allocation strategies,
LSI, actually has a highly random component. Parameters in the first phase of this
strategy, the generation phase, are evaluated uniformly at random. Although not
the best over all the allocation strategies, LSI still performs well on a few games,
among which the ones with the most notable performance are Quad and Connect
Four. The randomization aspect introduced by on-line parameter tuning is further
investigated in Chapter 7.

170 On-line Search-Control Parameter Tuning for MCTS

Chapter 7

Comparing Randomization
Strategies for Search-Control
Parameters in MCTS

This chapter is based on:

• Sironi, Chiara F., and Winands, Mark H.M. (2018b). Analysis of Self-
Adaptive Monte Carlo Tree Search in General Video Game Playing. 2018
IEEE Conference on Computational Intelligence and Games (CIG), pp.
397–400.

• Sironi, Chiara F., and Winands, Mark H.M. (2019). Comparing Random-
ization Strategies for Search-Control Parameters in MCTS. 2019 IEEE
Conference on Games (COG).

Previous research has shown that adding randomization to certain components of
the search might increase its diversification and improve the performance. Different
approaches have been proposed to add randomization to the search, such as adding
a random term to the state evaluation function used by the search algorithm (Beal
and Smith, 1994), or adding some randomness when choosing actions during the
selection or the play-out phase of MCTS (Bošanskỳ et al., 2016; Chen, 2012).

In a domain that tackles many games with different characteristics, like Gen-
eral Game Playing (GGP), trying to diversify the search might be a good strategy.
This is also suggested by the results presented in Chapter 6 for on-line parameter
tuning. These results showed that on-line parameter tuning is beneficial for MCTS,
especially if the number of tuned parameters is low and if the agents can perform a
sufficient number of simulations to evaluate the combinations of values. Part of the
explanation for the performance of on-line parameter tuning might be that changing
parameter settings helps the agents diversify the search process. Therefore, they
explore more parts of the tree which would not be explored much when parameter
values are fixed. There might be games for which this diversification is beneficial.

172 Comparing Randomization Strategies for Search-Control Parameters in MCTS

A way to verify whether this is true would be trying to randomize parameter
values on-line. This would remove from the agents the ability to make an informed
choice when selecting the values, while still letting the parameters change over time.
This chapter answers the fourth research question by comparing four different strate-
gies that randomize search-control parameters for MCTS in GGP. These strategies
randomize parameters once per game run, once per turn, once per simulation and
once per visited state, respectively. The randomization strategy that performs best
is further analyzed to verify how it influences the performance with respect to fixed
parameter values. Moreover, this randomization strategy is compared with on-line
parameter tuning both directly and by evaluating the performance against an agent
with fixed sub-optimal parameter values and against a benchmark GGP agent, Ca-
diaPlayer (Björnsson and Finnsson, 2009). Finally, a comparison of the best per-
forming randomization strategy with fixed parameter values and on-line parameter
tuning is performed also in a real-time GGP environment.

The chapter is organized as follows. First, Section 7.1 discusses related work.
Next, the parameter randomization strategies are described in Section 7.2. Subse-
quently, Section 7.3 reports the results of the performed experiments. Finally, in
Section 7.4 the conclusion is given and future work is discussed.

7.1 Related Work

Previous research has shown how tree search might benefit from adding random-
ization to some of its aspects. A first example can be found in the work of Beal
and Smith (1994), which shows the effects of using random numbers as intermediate
state evaluations when performing minimax search in Chess. An agent using only
random evaluations for intermediate states is shown to outperform the same agent
that uses 0 as heuristic instead. Adding a random term to existing heuristic func-
tions is shown to be beneficial as well. This effect is explained by considering that
random evaluations are able to capture some aspects of the structure of the tree,
biasing the search toward states where the player has more mobility.

Bošanskỳ et al. (2016) proposed the use of a random tie-breaking rule when
MCTS has to select among multiple actions of a player that have the same UCT
value. They test an UCT agent that, for each role, selects an action randomly among
those that have the UCT value within a predefined small offset from the highest UCT
value. Results on a set of simultaneous move games show that this agent converges
to a better approximation of the optimal strategy with respect to the agent that uses
a deterministic tie-breaking rule instead. This happens because with a tie-breaking
rule the agent is mixing the strategies that it uses to sample the actions, instead of
sampling always according to the same mixed strategy.

Chen (2012) proposed two randomization techniques for MCTS in the game of
Go. The first technique consists in randomizing a set of parameters that control
the selection phase. During a simulation, each of these parameters is randomized
in a predefined range of values before selecting a move in each of the visited tree
nodes. The second technique is used to add randomization to the play-out phase of
MCTS by hierarchically randomizing the order of a set of predefined move generators

7.2 — Search-Control Parameter Randomization 173

before selecting a move in each state visited during the play-out. These random-
ization techniques diversify the sampling of the actions and are shown to improve
the performance of the MCTS agent for different search budgets and sizes of the Go
board.

7.2 Search-Control Parameter Randomization

In order to implement search-control parameter randomization for a tree search
algorithm, the following three steps are performed:

• Identify a finite set of d parameters, P = {P1, ..., Pd}, that will be randomized.

• For each parameter Pi ∈ P , define the finite set of mi different values that the
parameter can assume, Vi = {vi,1, ..., vi,mi}.

• Design a randomization strategy that decides when and how to randomize the
parameters.

Note that also a continuous domain for the parameters could be considered.
However, this thesis focuses only on a discrete domain because results presented in
Chapter 6 showed that considering a continuous domain was not adding any benefit
to the performance of on-line parameter tuning.

Four different strategies to randomize search-control parameters are considered
in this chapter: per game run, per turn, per simulation and per state. All of them
randomize the values of the selected parameters for each role in the game separately.
This choice has been made to be consistent with the on-line parameter tuning mech-
anism evaluated in Chapter 6, which was designed to tune parameters independently
for each role. The randomization strategies are described below and an overview of
when randomization takes place for each of them is given in Figure 7.1.

Per game run. Before the start of the search for an entire run of the game, this
strategy sets for each role each considered parameter to a random value in its
set of feasible values. The combinations of parameters for each role are then
kept fixed for the search performed in each turn, until the run of the game is
over.

Per turn. For each role in the game, this strategy sets a random combination of
feasible values for the considered parameters before starting the search for each
game turn.

Per simulation. This strategy sets for each role a new random combination of
feasible parameter values before the start of each new MCTS simulation. This
strategy is the one that most resembles on-line parameter tuning, which is
also modifying the combination of parameter values for each role before each
simulation. The difference is that on-line parameter tuning uses the previously
learned information to bias the selection of parameter values.

174 Comparing Randomization Strategies for Search-Control Parameters in MCTS

Turn 1

��������� 	
��

��������� 	
���
��� �������� ���������������

MCTS

Turn 2

……….……

MCTS
��������� �����

��������� 	
���
��� �������� ���������������

RANDOMIZE

Turn1

���� !"#$ %&'()

��������� 	
���
��� �������� ���������������

MCTS

Turn 2

……….……

MCTS
*+,-./012 34567

��������� 	
���
��� �������� ���������������

RANDOMIZE

RANDOMIZE

Randomization per game run: Randomization per turn:

Randomization per simulation: Randomization per state:

RANDOMIZE

RANDOMIZE

RANDOMIZE

RANDOMIZE

RANDOMIZE

RANDOMIZE

Play-out

Selection

Expansion

RANDOMIZE

Play-out

Selection

Expansion

Figure 7.1: Randomization strategies.

7.3 — Empirical Evaluation 175

Per state. Every time a state is visited during a simulation, both during the selec-
tion and the play-out phase, this strategy randomizes for each role the values of
the parameters used to perform the search in the state. This strategy is similar
to the one proposed by Chen (2012), although Chen assigns the same random
parameter values to all the roles. As previously mentioned, this chapter con-
siders parameter randomization for all roles independently to be consistent
with the on-line parameter tuning mechanism analyzed in Chapter 6.

7.3 Empirical Evaluation

This section presents an analysis of parameter randomization for MCTS, by per-
forming multiple series of experiments. Subsection 7.3.1 describes the experimental
setup. Results obtained by performing experiments on the Stanford GGP project are
given in Subsections 7.3.2, 7.3.3, 7.3.4 and 7.3.5. An analysis of the search tree built
by different agent instances is presented in Subsection 7.3.6. Finally, experimental
results on the GVG-AI project are reported in Subsection 7.3.7.

7.3.1 Setup

Like on-line search-control parameter tuning, on-line search-control parameter ran-
domization has been tested on MCTS agents both for the Stanford GGP project
and for the GVG-AI project. First, a thorough evaluation of parameter random-
ization is performed on the Stanford GGP project, on which the four parameter
randomization strategies are compared. Subsequently, the randomization strategy
that performed best is further tested and compared with on-line parameter tuning
also on the GVG-AI project. When comparing parameter randomization with on-
line parameter tuning, only the NTBEA strategy is considered because it is the one
that seemed to perform best in the previous chapter. The settings for NTBEA are
the same as in Subsection 6.4.1. This subsection presents the experimental setup for
both the Stanford GGP project, and the GVG-AI project.

Stanford GGP Project Setup

The experiments presented in this chapter for the Stanford GGP project use as
baseline the same agent instance of Chapter 6, AP, which implements MCTS with
the GRAVE selection strategy and the MAST play-out strategy. Also the parameters
that can be randomized/tuned on-line are the same: the UCT exploration constant
C, the probability used by MAST, εMAST, the equivalence parameterK and the visit
threshold ref used by GRAVE, the value offset for random tie-breaking in UCT, V O,
and the visit threshold T used to decide whether to use the play-out strategy for
a node during the selection phase of MCTS. The default values and the discrete
domains for these parameters are the same given in Table 6.1 and in this chapter are
reported again for completeness in Table 7.1, together with the sub-optimal value of
each parameter used in the series of experiments presented in Subsection 7.3.5. When
randomizing or tuning the parameters on-line, the agent instances are represented
with a subscript indicating the type of randomization or allocation strategy used,

176 Comparing Randomization Strategies for Search-Control Parameters in MCTS

Table 7.1: Default values, discrete domains and sub-optimal values of the parameters
considered in the experiments on the Stanford GGP project.

Param. Default Discrete domain Sub-optimal
value value

C 0.2 {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} 0.9
εMAST 0.4 {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} 0.0
K 250 {0, 10, 50, 100, 250, 500, 750, 1 000, 2 000,∞} ∞
ref 50 {0, 50, 100, 250, 500, 1 000, 10 000,∞} ∞
V O 0.01 {0.001, 0.005, 0.01, 0.015, 0.02, 0.025} 0.025
T 0 {0, 5, 10, 20, 30, 40, 50, 100, 200,∞} 200

respectively. The four randomization strategies are identified, in order, as GAME-
RND, TURN-RND, SIM-RND and STATE-RND.

In one of the series of experiments, the last available version of CadiaPlayer1

(Finnsson, 2012b) is used as a benchmark to compare the performance of the best
parameter randomizing agent instance with the one of the on-line tuning and the
off-line tuned agent instances.

All the experiments presented in the next subsections for the Stanford GGP
project are performed on the same set of 14 games used in Chapter 6 (Schreiber,
2016): 3D Tic Tac Toe, Breakthrough, Knightthrough, Chinook, Chinese Checkers
with 3 players, Checkers, Connect 5, Quad (the version played on a 7 × 7 board),
Sheep and Wolf, Tic-Tac-Chess-Checkers-Four (TTCC4) with 2 and 3 players, Con-
nect Four, Pentago and Reversi. Each experiment matches two agent types at a time
against each other, ensuring that each of them is assigned to each role in the game
the same number of times over all the game runs. For 3-player games, all possible
assignments of agent types to the roles are considered, except the two configurations
that assign the same type to each role. All configurations are run the same number
of times until each agent type has played at least 500 games in total. All agent in-
stances use the software implementation of the PropNet. A new PropNet is created
before each game run and the same structure is given to both the involved agent
instances to prevent any of them from having an advantage due to a faster structure.
For each agent, start- and play-clock are set to 1s, except for CadiaPlayer, which
uses 10s start- and play-clock in order to reach a number of simulations similar to
the other agents.

Different series of experiments have been performed, one that compares all the
randomization strategies, one that compares randomization of single parameters with
fixed parameter values, one that compares parameter randomization with on-line
parameter tuning directly, and one that compares parameter randomization and on-
line parameter tuning with fixed parameter values, both directly and against different
types of opponents (i.e. an agent with sub-optimal values and CadiaPlayer).
Experimental results always report the average win percentage of one of the two

1Version of 18-11-2012. Downloaded from http://cadia.ru.is/wiki/public:cadiaplayer:
main

7.3 — Empirical Evaluation 177

Table 7.2: Default values, discrete domains and sub-optimal values of the parameters
considered in the experiments on the GVG-AI project.

Param. Default Discrete domain Sub-optimal
value value

C 0.6 {0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0} 2.0
εNST 0.5 {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} 0.0
W 1 {0.1, 0.25, 0.5, 1, 3, 5, 7.5, 10, 20, 50} 0.1
N 7 {1, 3, 5, 7, 10, 15, 20, 30, 50} 50
L 3 {1, 2, 3, 4, 5} 1

involved agent types with a 95%-confidence interval. The average win percentage of
an agent type for a game is computed by assigning 1 point to the agent type that
achieved the highest score and 0 to the other. If they both achieve the same score,
they are given 0.5 points each. Bold results indicate the agent type with the highest
win rate for the corresponding game and number of randomized/tuned parameters.
Experiments were performed on a Linux server consisting of 64 AMD Opteron 6274
2.2-GHz cores, except the ones presented in Tables 7.5 and 7.6, which were performed
on a Linux server consisting of 48 AMD Opteron 6344 2.6-GHz cores.

GVG-AI Project Setup

As for testing on-line parameter tuning in a real-time domain in Chapter 6, pa-
rameter randomization has been implemented in the GVG-AI framework for the
single-player planning track agent MaastCTS2. The same parameters reported in
Subsection 6.4.1 are considered to be randomized or tuned: the UCT exploration
constant C, the probability used by NST, εNST, the Progressive History weight W ,
and the visit threshold N and the maximum N-Gram length L used by NST. The
default values, the discrete domain and the sub-optimal values for these parameters
are also the same as in Chapter 6, and are reported in Table 7.2.

The agent is tested on the same set of 20 heterogeneous single-player games
used in Chapter 6 and taken from the GVG-AI framework (Perez-Liebana et al.,
2016; Perez-Liebana, 2018): Aliens, Bait, Butterflies, Camel Race, Chase, Chopper,
Crossfire, Dig Dug, Escape, Hungry Birds, Infection, Intersection, Lemmings, Missile
Command, Modality, Plaque Attack, Roguelike, Sea Quest, Survive Zombies, and
Wait for Breakfast. In each experiment, the considered agent is tested equally on
all 5 levels of these games until 500 samples per game have been collected.

Two series of experiments have been performed, one for which the agent has 40ms
per game tick to choose an action and one for which the agent has 100ms per game
tick. Contrary to the setting of the GVG-AI Single-Playing Planning competition,
in these experiments if the agent exceeds the time limit per game tick it will not
be disqualified and can still apply its selected move. Experimental results always
report the average win percentage of the tested agent type with a 95%-confidence
interval. All the experiments for the GVG-AI project were performed on a Linux
server consisting of 64 AMD Opteron 6274 2.2-GHz cores.

178 Comparing Randomization Strategies for Search-Control Parameters in MCTS

�

��

��

��

��

	

��

 ������ � ������ � ���� !

"
#
$
%
&
'(
)

*+,-./0123 456789:;<=

>?@ABCDE FGHIJKLM NOPQRST UVWXYZ[\]

Figure 7.2: Win percentage of the agents with the parameter randomization strategies
against the agent with fixed default parameter values.

7.3.2 Comparison of Parameter Randomization Strategies

This series of experiments evaluates the randomization strategies by directly match-
ing the agent instances that implement them against each other and by comparing
them when matched against the agent instance with fixed default parameters. Table
7.3 shows the results obtained by performing a round-robin tournament with all the
instances of the AP agent that use one of the parameter randomization strategies
(i.e. APGAME-RND, APTURN-RND, APSIM-RND and APGAME-RND). Each block of
the table corresponds to a different number of parameters being randomized, each
row corresponds to an agent, each column to a game. Results represent the average
win percentage of the row agent against all other agents. The agents consider K
and ref when randomizing two parameters, K, ref , C and εMAST when randomizing
four parameters and K, ref , C, εMAST, V O and T when randomizing six.

As can be seen, for most of the games, independently of the number of parameters
being considered, the agent that randomizes parameters per simulation seems to be
the best performing one. This does not contradict the findings of Chen (2012).
Although the author mentions that randomizing parameters per simulation did not
perform as well as per state, the comparison was performed only in the game of Go.
When tested on more games, there are still a few games where randomization per
state performs significantly better (e.g. Quad for two parameters, Connect Five for
four, and Knightthrough for six), but randomizing per simulation seems overall best.

The performance of the randomizing agents against the agent with default fixed
values is shown in Fig. 7.2. For different number of parameters, the figure reports the
average win percentage of each of the randomizing agents over all the tested games.

7.3 — Empirical Evaluation 179

T
ab

le
7.
3:

C
om

pa
ri
so
n
of

pa
ra
m
et
er

ra
nd

om
iz
at
io
n
st
ra
te
gi
es

ag
ai
ns
t
ea
ch

ot
he

r
fo
r
di
ffe

re
nt

nu
m
be

rs
of

ra
nd

om
iz
ed

pa
ra
m
et
er
s.

2
p
ar

am
et

er
s

3D
T
ic

T
ac

T
oe

B
re
ak

th
ro
ug

h
K
ni
gh

tt
hr
ou

gh
C
hi
no

ok
C
hi
n.
C
he
ck
er
s3
P

C
he
ck
er
s

C
on

ne
ct

F
iv
e

A
P

G
A

M
E
-R

N
D

46
.8
(±

2.
38
)

49
.7
(±

2.
53
)

53
.3
(±

2.
53
)

44
.9
(±

2.
33
)

49
.5
(±

2.
52
)

38
.7
(±

2.
35
)

45
.3
(±

1.
92
)

A
P

T
U

R
N

-R
N

D
46
.8
(±

2.
39
)

48
.1
(±

2.
53
)

51
.5
(±

2.
53
)

40
.7
(±

2.
29
)

51
.1
(±

2.
52
)

43
.4
(±

2.
40
)

42
.2
(±

1.
90
)

A
P

S
IM

-R
N

D
59

.5
(±

2.
31
)

52
.9
(±

2.
53
)

51
.1
(±

2.
53
)

58
.1
(±

2.
33
)

49
.9
(±

2.
52
)

58
.8
(±

2.
36
)

54
.6
(±

1.
82
)

A
P

S
T
A
T

E
-R

N
D

46
.9
(±

2.
35
)

49
.4
(±

2.
53
)

44
.1
(±

2.
51
)

56
.4
(±

2.
33
)

49
.5
(±

2.
52
)

59
.1
(±

2.
35
)

57
.8
(±

1.
85
)

Q
ua

d
Sh

ee
p
an

d
W
ol
f

T
T
C
C
4
2P

T
T
C
C
4
3P

C
on

ne
ct

Fo
ur

P
en
ta
go

R
ev
er
si

A
P

G
A

M
E
-R

N
D

38
.4
(±

2.
32
)

47
.3
(±

2.
53
)

41
.5
(±

2.
42
)

49
.6
(±

2.
45
)

41
.3
(±

2.
38
)

48
.0
(±

2.
49
)

44
.4
(±

2.
40
)

A
P

T
U

R
N

-R
N

D
37
.5
(±

2.
31
)

49
.0
(±

2.
53
)

45
.6
(±

2.
46
)

48
.5
(±

2.
46
)

45
.8
(±

2.
41
)

48
.1
(±

2.
48
)

46
.0
(±

2.
41
)

A
P

S
IM

-R
N

D
56
.2
(±

2.
37
)

53
.5
(±

2.
52
)

60
.5
(±

2.
39
)

50
.0
(±

2.
45
)

60
.8
(±

2.
34
)

52
.2
(±

2.
49
)

57
.0
(±

2.
39
)

A
P

S
T
A
T

E
-R

N
D

67
.9
(±

2.
20
)

50
.1
(±

2.
53
)

52
.3
(±

2.
45
)

51
.9
(±

2.
46
)

52
.1
(±

2.
42
)

51
.7
(±

2.
49
)

52
.5
(±

2.
39
)

4
p
ar

am
et

er
s

3D
T
ic

T
ac

T
oe

B
re
ak

th
ro
ug

h
K
ni
gh

tt
hr
ou

gh
C

h
in

o
o
k

C
hi
n.
C
he
ck
er
s3
P

C
he
ck
er
s

C
on

ne
ct

F
iv
e

A
P

G
A

M
E
-R

N
D

43
.9
(±

2.
40
)

49
.5
(±

2.
53
)

55
.9
(±

2.
51
)

50
.3
(±

2.
41
)

50
.7
(±

2.
52
)

52
.4
(±

2.
40
)

46
.4
(±

2.
17
)

A
P

T
U

R
N

-R
N

D
34
.9
(±

2.
33
)

45
.5
(±

2.
52
)

50
.7
(±

2.
53
)

42
.7
(±

2.
38
)

41
.4
(±

2.
48
)

30
.4
(±

2.
21
)

32
.6
(±

2.
02
)

A
P

S
IM

-R
N

D
68

.2
(±

2.
22
)

61
.1
(±

2.
47
)

51
.7
(±

2.
53
)

63
.9
(±

2.
32
)

59
.0
(±

2.
48
)

59
.8
(±

2.
36
)

54
.9
(±

2.
11
)

A
P

S
T
A
T

E
-R

N
D

53
.0
(±

2.
39
)

43
.9
(±

2.
51
)

41
.7
(±

2.
50
)

43
.1
(±

2.
41
)

48
.9
(±

2.
52
)

57
.4
(±

2.
40
)

66
.1
(±

2.
02
)

Q
ua

d
Sh

ee
p
an

d
W
ol
f

T
T
C
C
4
2P

T
T
C
C
4
3P

C
on

ne
ct

Fo
ur

P
en
ta
go

R
ev
er
si

A
P

G
A

M
E
-R

N
D

44
.3
(±

2.
45
)

52
.6
(±

2.
53
)

48
.9
(±

2.
51
)

49
.2
(±

2.
48
)

47
.2
(±

2.
44
)

51
.5
(±

2.
45
)

49
.3
(±

2.
49
)

A
P

T
U

R
N

-R
N

D
40
.3
(±

2.
42
)

50
.1
(±

2.
53
)

46
.8
(±

2.
51
)

46
.1
(±

2.
48
)

46
.1
(±

2.
45
)

39
.9
(±

2.
40
)

48
.1
(±

2.
49
)

A
P

S
IM

-R
N

D
72

.3
(±

2.
19
)

52
.9
(±

2.
53
)

58
.1
(±

2.
47
)

53
.5
(±

2.
48
)

61
.5
(±

2.
38
)

62
.4
(±

2.
36
)

51
.4
(±

2.
49
)

A
P

S
T
A
T

E
-R

N
D

43
.0
(±

2.
45
)

44
.5
(±

2.
52
)

46
.2
(±

2.
51
)

51
.2
(±

2.
50
)

45
.1
(±

2.
45
)

46
.1
(±

2.
45
)

51
.3
(±

2.
50
)

6
p
ar

am
et

er
s

3D
T
ic

T
ac

T
oe

B
re
ak

th
ro
ug

h
K
ni
gh

tt
hr
ou

gh
C
hi
no

ok
C
hi
n.
C
he
ck
er
s3
P

C
he
ck
er
s

C
on

ne
ct

F
iv
e

A
P

G
A

M
E
-R

N
D

44
.3
(±

2.
41
)

52
.5
(±

2.
53
)

44
.5
(±

2.
52
)

52
.6
(±

2.
42
)

45
.4
(±

2.
51
)

43
.2
(±

2.
40
)

40
.7
(±

2.
16
)

A
P

T
U

R
N

-R
N

D
28
.0
(±

2.
21
)

45
.1
(±

2.
52
)

41
.3
(±

2.
49
)

37
.3
(±

2.
35
)

40
.0
(±

2.
47
)

25
.3
(±

2.
10
)

30
.4
(±

2.
06
)

A
P

S
IM

-R
N

D
71

.8
(±

2.
15
)

53
.6
(±

2.
52
)

54
.1
(±

2.
52
)

54
.7
(±

2.
41
)

57
.8
(±

2.
49
)

67
.2
(±

2.
26
)

67
.9
(±

2.
01
)

A
P

S
T
A
T

E
-R

N
D

55
.9
(±

2.
38
)

48
.7
(±

2.
53
)

60
.1
(±

2.
48
)

55
.4
(±

2.
43
)

56
.8
(±

2.
50
)

64
.3
(±

2.
33
)

61
.0
(±

2.
14
)

Q
ua

d
Sh

ee
p
an

d
W
ol
f

T
T
C
C
4
2P

T
T
C
C
4
3P

C
on

ne
ct

Fo
ur

P
en
ta
go

R
ev
er
si

A
P

G
A

M
E
-R

N
D

38
.6
(±

2.
40
)

49
.8
(±

2.
53
)

49
.5
(±

2.
52
)

48
.1
(±

2.
49
)

42
.5
(±

2.
43
)

46
.4
(±

2.
46
)

43
.2
(±

2.
48
)

A
P

T
U

R
N

-R
N

D
34
.1
(±

2.
34
)

46
.5
(±

2.
53
)

39
.0
(±

2.
46
)

45
.3
(±

2.
48
)

37
.8
(±

2.
39
)

36
.1
(±

2.
37
)

42
.2
(±

2.
48
)

A
P

S
IM

-R
N

D
75

.3
(±

2.
11
)

55
.6
(±

2.
52
)

60
.4
(±

2.
47
)

53
.1
(±

2.
50
)

67
.2
(±

2.
28
)

64
.0
(±

2.
37
)

57
.2
(±

2.
47
)

A
P

S
T
A
T

E
-R

N
D

52
.0
(±

2.
47
)

48
.1
(±

2.
53
)

51
.1
(±

2.
53
)

53
.5
(±

2.
50
)

52
.5
(±

2.
46
)

53
.5
(±

2.
47
)

57
.5
(±

2.
47
)

180 Comparing Randomization Strategies for Search-Control Parameters in MCTS

Detailed results per game are presented in Appendix F. Once again, the agent
that randomizes parameters per simulation is the one showing the best performance
overall when compared to the other randomizing agents. However, none of the agents
seems to be overall better than the agent that uses fixed default values. Moreover,
the results suggest that the performance of the randomizing agents drops with the
increase in the number of randomized parameters.

7.3.3 Randomization per Simulation vs Fixed Parameters

These series of experiments further analyze the randomization strategy that per-
formed overall best in the previous series of experiments: randomization per sim-
ulation. The purpose is to verify if randomization of parameter values during the
search brings any contribution to the performance of the MCTS agent with respect
to keeping parameter values fixed for the whole game. Each series of experiments
focuses on one single parameter, considering the agents that keep the parameter
fixed to one of its feasible values and the agent that randomizes such parameter
per simulation (APSIM-RND). All other parameters for APSIM-RND are set to their
default values. These agents are matched against each other in a round-robin tour-
nament and, for each game, the average win percentage of each agent against all
other agents is reported in the results.

Tables 7.4, 7.5 and 7.6 show the results of such experiments for the parameter C,
εMAST and K, respectively. Being quite time-consuming, these series of experiments
have been performed only for the parameters that seemed to be more relevant for
the search. First of all, it is interesting to notice that for a few games randomizing
the parameter values during the search achieves one of the highest win percentages.
This can be observed in Quad and Pentago for the parameter C, in TTCC4 with 3
players and Pentago for the parameter εMAST and in about half of the games for the
parameter K. Randomization seems to be particularly effective for this parameter.

In general, for many of the games randomization per simulation seems to perform
better than a few of the fixed values of the parameter. Moreover, there are a few
games where randomizing parameter values, even if not the best choice, still performs
better than the default fixed value. For some games, this happens because the
default value, despite being optimal over all the set of games on which it was tuned,
is actually not optimal for the specific game. Examples are Quad, Connect Four and
Pentago for C, Quad, Sheep and Wolf, TTCC4 with 3 players and Connect Four for
εMAST, and Quad, TTCC4 with 2 players, Connect Four and Pentago for K.

It is also interesting to notice that part of the results presented in this subsection
can be compared to some of the results presented in Chapter 5 to verify their con-
sistency, and, in some cases, give more insights. For example, results in Table 7.5
can be compared with the ones in Table 5.6. First of all, results in Table 7.5 seem
to confirm that combining the GRAVE selection strategy with the MAST play-out
strategy has in general a positive effect on the search. Secondly, the agents that use
εMAST = 0.4 and εMAST = 1.0 correspond to the agents PGRAVE-MAST and PGRAVE,
respectively (note that MAST with εMAST = 1.0 corresponds to a random play-out
strategy). Therefore, their results can be directly compared with the ones presented
in the third column of Table 5.6. For the games that are present in both tables, Ta-

7.3 — Empirical Evaluation 181

T
ab

le
7.
4:

C
om

pa
ri
ng

al
lf
ea
si
bl
e
va
lu
es

of
C

w
it
h
va
lu
e
ra
nd

om
iz
at
io
n
of
C

pe
r
si
m
ul
at
io
n.

3D
T
ic

T
ac

T
oe

B
re
ak

th
ro
ug

h
K
ni
gh

tt
hr
ou

gh
C
hi
no

ok
C
hi
n.
C
he

ck
er
s3
P

C
he

ck
er
s

C
on

ne
ct

F
iv
e

C
=

0
.1

51
.5
(±

1.
38
)

66
.0
(±

1.
38
)

63
.9
(±

1.
40
)

42
.2
(±

1.
35
)

48
.2
(±

1.
45
)

54
.2
(±

1.
37
)

45
.7
(±

1.
07
)

C
=

0
.2

55
.6
(±

1.
36
)

78
.2
(±

1.
21
)

69
.0
(±

1.
35
)

63
.8
(±

1.
31
)

58
.9
(±

1.
43
)

65
.8
(±

1.
31
)

53
.0
(±

1.
05
)

C
=

0
.3

54
.9
(±

1.
36
)

71
.0
(±

1.
33
)

62
.5
(±

1.
41
)

66
.9
(±

1.
30
)

57
.8
(±

1.
44
)

61
.3
(±

1.
34
)

51
.9
(±

1.
04
)

C
=

0
.4

52
.5
(±

1.
35
)

58
.3
(±

1.
44
)

54
.0
(±

1.
46
)

63
.4
(±

1.
32
)

54
.7
(±

1.
45
)

56
.4
(±

1.
37
)

52
.7
(±

1.
05
)

C
=

0
.5

50
.8
(±

1.
35
)

45
.6
(±

1.
46
)

47
.6
(±

1.
46
)

56
.5
(±

1.
36
)

51
.5
(±

1.
45
)

50
.7
(±

1.
38
)

52
.7
(±

1.
04
)

C
=

0
.6

50
.0
(±

1.
37
)

39
.0
(±

1.
43
)

42
.4
(±

1.
44
)

47
.6
(±

1.
37
)

48
.5
(±

1.
45
)

47
.2
(±

1.
38
)

51
.9
(±

1.
06
)

C
=

0
.7

47
.5
(±

1.
36
)

35
.8
(±

1.
40
)

38
.6
(±

1.
42
)

39
.3
(±

1.
34
)

45
.1
(±

1.
45
)

41
.3
(±

1.
36
)

49
.6
(±

1.
10
)

C
=

0
.8

46
.8
(±

1.
36
)

33
.2
(±

1.
38
)

37
.9
(±

1.
42
)

35
.2
(±

1.
30
)

44
.8
(±

1.
45
)

38
.7
(±

1.
35
)

47
.1
(±

1.
09
)

C
=

0
.9

43
.7
(±

1.
35
)

30
.0
(±

1.
34
)

41
.0
(±

1.
44
)

33
.0
(±

1.
28
)

41
.5
(±

1.
43
)

36
.9
(±

1.
34
)

46
.1
(±

1.
09
)

A
P

S
IM

-R
N

D
46
.8
(±

1.
35
)

42
.8
(±

1.
45
)

43
.0
(±

1.
45
)

52
.1
(±

1.
38
)

49
.0
(±

1.
45
)

47
.6
(±

1.
38
)

49
.3
(±

1.
07
)

Q
ua

d
Sh

ee
p
an

d
W
ol
f

T
T
C
C
4
2P

T
T
C
C
4
3P

C
on

ne
ct

Fo
ur

P
en
ta
go

R
ev
er
si

C
=

0
.1

24
.0
(±

1.
16
)

59
.6
(±

1.
43
)

39
.1
(±

1.
39
)

49
.6
(±

1.
42
)

29
.5
(±

1.
26
)

34
.6
(±

1.
35
)

61
.2
(±

1.
40
)

C
=

0
.2

37
.5
(±

1.
34
)

55
.3
(±

1.
45
)

61
.5
(±

1.
39
)

52
.1
(±

1.
41
)

48
.5
(±

1.
40
)

51
.6
(±

1.
41
)

59
.9
(±

1.
41
)

C
=

0
.3

53
.2
(±

1.
39
)

51
.7
(±

1.
46
)

62
.7
(±

1.
38
)

51
.1
(±

1.
42
)

54
.5
(±

1.
39
)

54
.6
(±

1.
39
)

54
.1
(±

1.
43
)

C
=

0
.4

59
.9
(±

1.
36
)

49
.7
(±

1.
46
)

58
.3
(±

1.
40
)

51
.0
(±

1.
42
)

56
.4
(±

1.
39
)

53
.5
(±

1.
38
)

50
.1
(±

1.
44
)

C
=

0
.5

59
.5
(±

1.
37
)

47
.8
(±

1.
46
)

52
.0
(±

1.
43
)

51
.2
(±

1.
42
)

54
.5
(±

1.
40
)

50
.9
(±

1.
39
)

49
.0
(±

1.
44
)

C
=

0
.6

59
.2
(±

1.
38
)

48
.2
(±

1.
46
)

48
.9
(±

1.
43
)

48
.8
(±

1.
42
)

54
.2
(±

1.
40
)

51
.1
(±

1.
39
)

46
.4
(±

1.
44
)

C
=

0
.7

55
.5
(±

1.
40
)

46
.4
(±

1.
46
)

45
.7
(±

1.
43
)

49
.7
(±

1.
42
)

50
.7
(±

1.
41
)

51
.7
(±

1.
39
)

44
.0
(±

1.
43
)

C
=

0
.8

48
.5
(±

1.
41
)

46
.9
(±

1.
46
)

42
.0
(±

1.
42
)

49
.7
(±

1.
42
)

49
.5
(±

1.
41
)

51
.2
(±

1.
39
)

44
.2
(±

1.
43
)

C
=

0
.9

40
.7
(±

1.
39
)

45
.3
(±

1.
45
)

40
.8
(±

1.
41
)

46
.8
(±

1.
42
)

49
.7
(±

1.
41
)

46
.4
(±

1.
39
)

45
.3
(±

1.
43
)

A
P

S
IM

-R
N

D
62

.0
(±

1.
35
)

49
.0
(±

1.
46
)

49
.1
(±

1.
43
)

50
.0
(±

1.
43
)

52
.5
(±

1.
40
)

54
.5
(±

1.
38
)

45
.8
(±

1.
43
)

182 Comparing Randomization Strategies for Search-Control Parameters in MCTS

T
able

7.5:
C
om

paring
allfeasible

values
of
εM

A
S
T
w
ith

value
random

ization
of
εM

A
S
T
per

sim
ulation.

3D
T
ic

T
ac

T
oe

B
reakthrough

K
nightthrough

C
hinook

C
hin.C

heckers3P
C
heckers

C
onnect

F
ive

εM
A

S
T
=

0
.0

43.0(±
1.25)

64.2(±
1.27)

73.7(±
1.16)

38.8(±
1.17)

32.3(±
1.23)

42.2(±
1.22)

37.8(±
1.00)

εM
A

S
T
=

0
.1

47.0(±
1.25)

59.3(±
1.30)

67.4(±
1.24)

58.8(±
1.20)

45.8(±
1.31)

58.4(±
1.23)

46.6(±
0.98)

εM
A

S
T
=

0
.2

46.3(±
1.25)

57.3(±
1.31)

63.2(±
1.27)

64.7(±
1.16)

50.8(±
1.32)

64.2(±
1.19)

50.4(±
0.98)

εM
A

S
T
=

0
.3

48.2(±
1.25)

57.4(±
1.31)

57.3(±
1.31)

63.4(±
1.17)

55.1(±
1.31)

64.8(±
1.19)

51.1(±
0.97)

εM
A

S
T
=

0
.4

48.4(±
1.25)

56.6(±
1.31)

54.7(±
1.32)

61.1(±
1.19)

55.5(±
1.31)

61.2(±
1.21)

54.1(±
0.96)

εM
A

S
T
=

0
.5

49.8(±
1.26)

55.2(±
1.31)

53.7(±
1.32)

58.8(±
1.20)

57.4(±
1.30)

56.7(±
1.23)

56.3(±
0.97)

εM
A

S
T
=

0
.6

53.1(±
1.25)

53.0(±
1.32)

50.9(±
1.32)

54.3(±
1.22)

54.5(±
1.31)

51.1(±
1.24)

57.6(±
0.95)

εM
A

S
T
=

0
.7

55.4(±
1.25)

51.3(±
1.32)

47.5(±
1.32)

50.2(±
1.22)

53.9(±
1.31)

46.5(±
1.25)

58.5(±
0.97)

εM
A

S
T
=

0
.8

59.7(±
1.23)

46.8(±
1.32)

40.9(±
1.30)

43.2(±
1.21)

50.9(±
1.32)

42.8(±
1.23)

58.1(±
1.00)

εM
A

S
T
=

0
.9

57.4(±
1.25)

37.3(±
1.28)

31.5(±
1.23)

36.3(±
1.18)

48.2(±
1.32)

39.3(±
1.22)

53.9(±
1.05)

εM
A

S
T
=

1
.0

44.0(±
1.29)

22.9(±
1.11)

16.7(±
0.98)

25.4(±
1.06)

42.5(±
1.30)

35.8(±
1.19)

36.2(±
1.13)

A
P

S
IM

-R
N

D
47.7(±

1.26)
38.7(±

1.29)
42.6(±

1.31)
44.9(±

1.20)
53.0(±

1.31)
36.8(±

1.20)
39.3(±

1.01)
Q
uad

Sheep
and

W
olf

T
T
C
C
4
2P

T
T
C
C
4
3P

C
onnect

Four
P
entago

R
eversi

εM
A

S
T
=

0
.0

18.6(±
0.98)

38.7(±
1.29)

40.5(±
1.26)

41.6(±
1.25)

26.9(±
1.11)

46.1(±
1.27)

43.2(±
1.28)

εM
A

S
T
=

0
.1

26.2(±
1.10)

41.4(±
1.30)

60.7(±
1.25)

47.3(±
1.27)

29.9(±
1.15)

49.2(±
1.27)

54.0(±
1.30)

εM
A

S
T
=

0
.2

33.7(±
1.19)

42.2(±
1.31)

67.0(±
1.20)

50.2(±
1.27)

35.6(±
1.20)

51.0(±
1.28)

60.5(±
1.27)

εM
A

S
T
=

0
.3

39.7(±
1.23)

44.7(±
1.31)

67.3(±
1.19)

52.2(±
1.27)

39.5(±
1.23)

52.1(±
1.28)

61.3(±
1.27)

εM
A

S
T
=

0
.4

47.6(±
1.26)

47.1(±
1.32)

62.9(±
1.23)

53.2(±
1.27)

45.4(±
1.25)

52.5(±
1.28)

59.1(±
1.28)

εM
A

S
T
=

0
.5

53.8(±
1.26)

48.8(±
1.32)

58.2(±
1.26)

54.0(±
1.27)

51.7(±
1.25)

51.4(±
1.28)

56.9(±
1.29)

εM
A

S
T
=

0
.6

61.5(±
1.23)

51.9(±
1.32)

50.4(±
1.28)

52.7(±
1.27)

56.8(±
1.25)

49.3(±
1.27)

52.9(±
1.30)

εM
A

S
T
=

0
.7

67.0(±
1.18)

55.1(±
1.31)

43.1(±
1.27)

51.5(±
1.27)

62.3(±
1.22)

49.7(±
1.27)

49.7(±
1.30)

εM
A

S
T
=

0
.8

69.4(±
1.17)

56.3(±
1.31)

37.9(±
1.25)

49.2(±
1.27)

65.0(±
1.20)

48.9(±
1.28)

45.4(±
1.29)

εM
A

S
T
=

0
.9

68.4(±
1.19)

60.4(±
1.29)

30.8(±
1.19)

48.4(±
1.28)

67.7(±
1.18)

49.2(±
1.28)

38.2(±
1.26)

εM
A

S
T
=

1
.0

57.2(±
1.29)

60.8(±
1.29)

25.8(±
1.13)

45.6(±
1.27)

66.5(±
1.19)

48.1(±
1.28)

29.2(±
1.18)

A
P

S
IM

-R
N

D
56.8(±

1.25)
52.4(±

1.32)
55.2(±

1.27)
54.0(±

1.27)
52.9(±

1.26)
52.5(±

1.27)
49.6(±

1.30)

7.3 — Empirical Evaluation 183

T
ab

le
7.
6:

C
om

pa
ri
ng

al
lf
ea
si
bl
e
va
lu
es

of
K

w
it
h
va
lu
e
ra
nd

om
iz
at
io
n
of
K

pe
r
si
m
ul
at
io
n.

3D
T
ic

T
ac

T
oe

B
re
ak

th
ro
ug

h
K
ni
gh

tt
hr
ou

gh
C
hi
no

ok
C
hi
n.
C
he

ck
er
s3
P

C
he

ck
er
s

C
on

ne
ct

F
iv
e

K
=

0
47
.8
(±

1.
32
)

46
.2
(±

1.
38
)

57
.8
(±

1.
37
)

40
.1
(±

1.
26
)

51
.1
(±

1.
38
)

33
.1
(±

1.
26
)

48
.6
(±

1.
06
)

K
=

1
0

51
.2
(±

1.
33
)

50
.0
(±

1.
39
)

59
.9
(±

1.
36
)

40
.9
(±

1.
27
)

51
.4
(±

1.
38
)

41
.5
(±

1.
31
)

52
.6
(±

1.
04
)

K
=

5
0

53
.2
(±

1.
31
)

53
.6
(±

1.
38
)

56
.8
(±

1.
37
)

45
.3
(±

1.
28
)

52
.4
(±

1.
38
)

55
.7
(±

1.
31
)

54
.5
(±

1.
01
)

K
=

1
0
0

53
.2
(±

1.
31
)

54
.2
(±

1.
38
)

54
.5
(±

1.
38
)

51
.9
(±

1.
28
)

52
.2
(±

1.
38
)

61
.7
(±

1.
28
)

55
.0
(±

1.
01
)

K
=

2
5
0

56
.4
(±

1.
30
)

56
.8
(±

1.
37
)

53
.8
(±

1.
38
)

55
.8
(±

1.
27
)

52
.0
(±

1.
38
)

66
.6
(±

1.
24
)

58
.0
(±

0.
98
)

K
=

5
0
0

56
.5
(±

1.
30
)

56
.9
(±

1.
37
)

51
.9
(±

1.
39
)

57
.4
(±

1.
26
)

52
.4
(±

1.
38
)

63
.5
(±

1.
26
)

57
.8
(±

0.
98
)

K
=

7
5
0

57
.1
(±

1.
30
)

55
.2
(±

1.
38
)

51
.0
(±

1.
39
)

57
.2
(±

1.
26
)

52
.0
(±

1.
38
)

58
.7
(±

1.
30
)

55
.2
(±

0.
98
)

K
=

1
0
0
0

56
.5
(±

1.
30
)

54
.0
(±

1.
38
)

50
.5
(±

1.
39
)

55
.5
(±

1.
27
)

51
.9
(±

1.
38
)

53
.9
(±

1.
31
)

53
.3
(±

0.
99
)

K
=

2
0
0
0

53
.6
(±

1.
31
)

52
.7
(±

1.
38
)

50
.4
(±

1.
39
)

54
.6
(±

1.
27
)

49
.7
(±

1.
38
)

42
.7
(±

1.
31
)

47
.9
(±

0.
99
)

K
=
∞

8.
9(
±
0.
77
)

16
.7
(±

1.
03
)

16
.6
(±

1.
03
)

29
.3
(±

1.
16
)

34
.4
(±

1.
31
)

8.
4(
±
0.
73
)

10
.2
(±

0.
62
)

A
P

S
IM

-R
N

D
55
.7
(±

1.
30
)

53
.6
(±

1.
38
)

46
.8
(±

1.
38
)

62
.0
(±

1.
24
)

50
.3
(±

1.
38
)

64
.3
(±

1.
26
)

56
.9
(±

0.
98
)

Q
ua

d
Sh

ee
p
an

d
W
ol
f

T
T
C
C
4
2P

T
T
C
C
4
3P

C
on

ne
ct

Fo
ur

P
en
ta
go

R
ev
er
si

K
=

0
49
.0
(±

1.
31
)

51
.6
(±

1.
39
)

28
.4
(±

1.
23
)

49
.9
(±

1.
34
)

41
.6
(±

1.
30
)

37
.4
(±

1.
31
)

53
.4
(±

1.
36
)

K
=

1
0

50
.2
(±

1.
32
)

49
.9
(±

1.
39
)

33
.0
(±

1.
27
)

51
.5
(±

1.
34
)

44
.2
(±

1.
31
)

38
.9
(±

1.
32
)

58
.3
(±

1.
34
)

K
=

5
0

50
.8
(±

1.
31
)

50
.8
(±

1.
39
)

43
.6
(±

1.
34
)

53
.3
(±

1.
33
)

48
.4
(±

1.
32
)

44
.6
(±

1.
34
)

61
.1
(±

1.
33
)

K
=

1
0
0

50
.8
(±

1.
31
)

50
.4
(±

1.
39
)

50
.7
(±

1.
34
)

50
.6
(±

1.
33
)

50
.0
(±

1.
31
)

48
.7
(±

1.
35
)

61
.5
(±

1.
32
)

K
=

2
5
0

51
.7
(±

1.
31
)

50
.6
(±

1.
39
)

59
.5
(±

1.
31
)

51
.7
(±

1.
33
)

54
.3
(±

1.
31
)

55
.7
(±

1.
33
)

57
.6
(±

1.
35
)

K
=

5
0
0

53
.4
(±

1.
31
)

50
.2
(±

1.
39
)

63
.2
(±

1.
28
)

52
.2
(±

1.
33
)

55
.9
(±

1.
31
)

58
.0
(±

1.
32
)

52
.0
(±

1.
36
)

K
=

7
5
0

54
.6
(±

1.
31
)

50
.0
(±

1.
39
)

63
.9
(±

1.
28
)

51
.1
(±

1.
33
)

56
.8
(±

1.
31
)

60
.1
(±

1.
30
)

48
.9
(±

1.
36
)

K
=

1
0
0
0

55
.7
(±

1.
30
)

49
.6
(±

1.
39
)

63
.4
(±

1.
28
)

50
.9
(±

1.
33
)

57
.1
(±

1.
31
)

60
.5
(±

1.
31
)

44
.0
(±

1.
36
)

K
=

2
0
0
0

57
.3
(±

1.
30
)

49
.8
(±

1.
39
)

59
.0
(±

1.
32
)

49
.2
(±

1.
34
)

56
.7
(±

1.
30
)

60
.2
(±

1.
31
)

38
.7
(±

1.
33
)

K
=
∞

10
.6
(±

0.
83
)

45
.5
(±

1.
38
)

21
.9
(±

1.
13
)

39
.1
(±

1.
31
)

25
.3
(±

1.
15
)

23
.9
(±

1.
15
)

19
.5
(±

1.
08
)

A
P

S
IM

-R
N

D
65

.9
(±

1.
25
)

51
.6
(±

1.
39
)

63
.5
(±

1.
29
)

50
.4
(±

1.
34
)

59
.8
(±

1.
30
)

62
.0
(±

1.
30
)

55
.0
(±

1.
36
)

184 Comparing Randomization Strategies for Search-Control Parameters in MCTS

ble 7.5 confirms that using the MAST play-out strategy with εMAST = 0.4 is better
than using a random play-out strategy, except for Quad and Sheep and Wolf.

A similar comparison can be performed for the agents that use K = 0 and
K = 250 in Table 7.6. These two agents correspond to the agents PUCT-MAST and
PGRAVE-MAST analyzed in Table 5.5, respectively (K = 0 means deactivating the
GRAVE strategy, using only UCT). The only difference is that all agents tested in
Table 7.6 have the C constant set to 0.2, while the C constant for PUCT-MAST in
Table 5.5 is set to 0.7. For most of the games that are present in both tables, results
reported in Table 7.6 seem to confirm the ones reported in Table 5.5, showing that
the GRAVE selection strategy with K = 250 has at least an equal performance
to the UCT selection strategy when combined with MAST. An exception are the
games of Knightthrough and Quad, for which results in the two tables seem to differ.
For Knightthrough, Table 7.6 suggests that, when combined with MAST, UCT (i.e.
K = 0) is better than GRAVE with K = 250, but in Table 5.5 PGRAVE-MAST is
shown to be significantly better than PUCT-MAST. For Quad, instead, Table 7.6
suggests that there is not much difference between combining with MAST the UCT
selection strategy or the GRAVE selection strategy with K = 250, but Table 5.5
shows PGRAVE-MAST to perform significantly worse than PUCT-MAST. This difference
is caused by the fact that the agent that uses the UCT selection strategy have
a different value for the C constant in the two tables. Results suggest that, for
Knightthrough, C = 0.7 is a sub-optimal value for the agent that uses UCT and
MAST, therefore the agent that uses GRAVE performs better against it than against
the UCT-MAST agent with C = 0.2. Conversely, C = 0.2 is sub-optimal for the
UCT-MAST agent in Quad, causing the performance of this agent to worsen against
the agent that uses GRAVE-MAST.

Table 7.6 also suggest that, while being among the best values of K for most
of the games, the default value of K = 250 is actually sub-optimal for the game of
Knightthrough. This would contribute to explain why many instances of the on-line
tuning agents in Tables 6.4, 6.5 and 6.6 show to benefit the agent for this game
more than for most of the other games. On-line parameter tuning is able to find
better values for the parameter than the sub-optimal one. For further confirma-
tion, the APNTBEA agent instance that tunes four parameters has been matched
on Knightthrough for 1 000 game runs against the non-tuning instance of the AP
agent that uses the value of K = 10 (i.e. the one that in Table 7.6 shows the best
performance for the game). Moreover, 500 more game runs have been performed
matching on Knightthrough the APNTBEA agent against the AP agent that uses the
default value of K = 250, to obtain a total of 1 000 game runs. In this case, the
win percentage of APNTBEA decreases from 66.6(±2.92) when the opponent’s K is
set to a sub-optimal value, to 59.6(±3.04), when the opponent’s K is set to the best
among the tested values. The significant difference in win percentage shows that it
is beneficial to tune parameters on-line when the parameters might otherwise be set
to a sub-optimal fixed value. However, the fact that the on-line parameter tuning
agent is still performing better than the non-tuning agent could indicate that there
are other factors at play. For example, for Knightthrough optimal parameter values
might depend on the phase of the game. On-line parameter tuning might be able to
find the best parameter values for each game phase.

7.3 — Empirical Evaluation 185

Table 7.7: Parameter randomization against parameter tuning.

Game APSIM-RND
2 param. 4 param. 6 param.

3D Tic Tac Toe 47.1(±4.01) 52.1(±4.07) 51.7(±4.16)
Breakthrough 39.8(±4.29) 8.8(±2.49) 12.6(±2.91)
Knightthrough 40.8(±4.31) 10.6(±2.70) 15.6(±3.18)

Chinook 50.8(±4.08) 19.7(±3.24) 36.9(±4.11)
Chin.Checkers3P 44.6(±4.34) 47.2(±4.36) 56.3(±4.33)

Checkers 49.7(±4.10) 25.9(±3.63) 62.5(±4.04)
Connect Five 48.1(±3.15) 66.1(±3.32) 66.7(±3.53)

Quad 55.2(±4.17) 65.8(±3.99) 93.0(±2.06)
Sheep and Wolf 48.8(±4.39) 52.2(±4.38) 51.4(±4.39)

TTCC4 2P 50.3(±4.22) 22.7(±3.61) 34.5(±4.12)
TTCC4 3P 50.9(±4.27) 53.9(±4.26) 59.1(±4.22)

Connect Four 49.1(±4.21) 59.7(±4.19) 67.6(±3.92)
Pentago 47.7(±4.15) 54.7(±4.04) 57.5(±4.12)
Reversi 48.1(±4.31) 42.1(±4.26) 57.4(±4.27)

Avg. Win% 47.9(±1.11) 41.5(±1.11) 51.6(±1.14)

Quad is another example that shows that the benefit of on-line parameter tuning
does not only depend on having otherwise sub-optimal fixed values. Looking at Table
7.6, also for this game K = 250 seems sub-optimal, but in Tables 6.5 and 6.6 only
the agent using the LSI allocation strategy has a particularly good performance on
it. As opposed to all other strategies, which try from the start to exploit good value
combinations for the parameters, LSI in the initial phase is evaluating all parameter
values uniformly at random. This suggests that the way the samples are allocated to
evaluate the parameter combinations is also playing a role in the success of on-line
parameter tuning.

7.3.4 Randomization per Simulation vs Parameter Tuning

This series of experiments compares the agent that uses parameter randomization
per simulation, APSIM-RND with the one that tunes parameter values on-line with
the NTBEA allocation strategy, APNTBEA. Table 7.7 shows the results obtained by
matching the two agents against each other for two (K and ref), four (K, ref , C
and εMAST) and six (K, ref , C, εMAST, V O and T) randomized/tuned parameters.
Regarding the overall performance, for two and four parameters on-line tuning seems
to perform better than randomization, while when the tuned parameters increase to
six, randomization performs in general as well as on-line tuning. This is probably
because with six parameters the number of possible value combinations becomes too
high. With short time settings the agent does not have sufficient time to converge to
good combinations, therefore evaluating combinations almost randomly. Among the
tested ones, four seems to be the most interesting number of parameters to compare

186 Comparing Randomization Strategies for Search-Control Parameters in MCTS

randomization and on-line tuning against the default values. With two and six
parameters the performance of the two agents is close for many of the games, while
with four there is a clearer distinction between games for which tuning performs
best and games for which randomization performs best.

Looking at specific games, interesting results are the ones for Knightthrough and
Breakthrough. For these two games, for each number of considered parameters,
on-line tuning seems more effective than randomization. In addition, for Chinook
and TTCC4 with 2 players on-line tuning performs much better than randomization
when the number of tuned parameters is four or six. On the contrary, in Quad ran-
domization achieves a much higher performance than on-line tuning for all number
of parameters. Moreover, in Connect Five and Connect Four, parameter random-
ization shows a better performance than on-line tuning for four and six parameters,
and in Checkers its performance drops when going from two to four parameters, but
becomes better than on-line tuning with six parameters. In general, it seems that
on-line parameter tuning performs better than parameter randomization on games
that present only narrow win paths and many losing paths, like Knightthrough and
Breakthrough. On such games, if the search is too diversifies by randomized pa-
rameter values many losing paths will be encountered, making it more difficulties to
focus on winning paths. Parameter randomization, instead, seems to work better on
games with more winning paths. For example, in Quad, Connect Four and Connect
Five the aim of the player is to place the pieces to form a certain shape (i.e. squares
or lines), and there are usually many ways of doing so.

7.3.5 Comparison of Default Parameter Values, Parameter
Randomization and On-line Parameter Tuning

These series of experiments compare parameter randomization and parameter tun-
ing with the fixed default values. First of all, the agent that randomizes parameter
values, APSIM-RND, and the one that tunes them on-line, APNTBEA, are matched
directly against the agent that uses the fixed default parameter values, AP. Subse-
quently, all these three agents are compared by matching them against two different
types of opponents: an agent that uses fixed sub-optimal values for the parame-
ters and a successful GGP agent, CadiaPlayer. The agents consider K and ref
when randomizing/tuning two parameters, K, ref , C and εMAST when random-
izing/tuning four parameters and K, ref , C, εMAST, V O and T when randomiz-
ing/tuning six parameters.

Results obtained by matching APSIM-RND and APNTBEA against AP are shown
in Table 7.8. Results are reported for two, four and six randomized/tuned param-
eters. These results are in line to the results presented in Subsection 7.3.4. When
matched against an opponent that uses generally good fixed default values, the dif-
ference in the overall performance between APSIM-RND and APNTBEA is similar to
the difference in performance that was observed when the two agents were matched
against each other directly. Moreover, for two parameters both agents seem to have
at least the same performance of AP in many of the tested games. For four pa-
rameters the performance of APNTBEA is still quite close to the one of AP, while
the performance of APSIM-RND drops for most of the games. For six parameters

7.3 — Empirical Evaluation 187

T
ab

le
7.
8:

W
in

pe
rc
en
ta
ge

of
A
P

S
IM

-R
N

D
an

d
A
P

N
T

B
E
A
ag
ai
ns
t
th
e
ag
en
t
w
it
h
de

fa
ul
t
pa

ra
m
et
er

va
lu
es
,A

P.

G
am

e
2
p
ar
am

et
er
s

4
p
ar
am

et
er
s

6
p
ar
am

et
er
s

A
P

S
IM

-R
N

D
A
P

N
T

B
E
A

A
P

S
IM

-R
N

D
A
P

N
T

B
E
A

A
P

S
IM

-R
N

D
A
P

N
T

B
E
A

3D
T
ic

T
ac

T
oe

46
.4
(±

4.
12
)

46
.0
(±

4.
11
)

39
.4
(±

4.
00
)

39
.5
(±

4.
08
)

40
.6
(±

4.
01
)

38
.6
(±

4.
05
)

B
re
ak

th
ro
ug

h
40
.4
(±

4.
31
)

48
.6
(±

4.
39
)

11
.0
(±

2.
75
)

55
.2
(±

4.
36
)

9.
4(
±
2.
56
)

31
.6
(±

4.
08
)

K
ni
gh

tt
hr
ou

gh
44
.2
(±

4.
36
)

46
.8
(±

4.
38
)

20
.6
(±

3.
55
)

68
.2
(±

4.
09
)

19
.8
(±

3.
50
)

50
.2
(±

4.
39
)

C
hi
no

ok
61
.8
(±

3.
99
)

63
.5
(±

3.
95
)

23
.6
(±

3.
61
)

51
.0
(±

4.
05
)

19
.8
(±

3.
34
)

31
.6
(±

3.
94
)

C
hi
n.
C
he
ck
er
s3
P

45
.6
(±

4.
35
)

51
.0
(±

4.
37
)

34
.7
(±

4.
16
)

42
.7
(±

4.
32
)

33
.7
(±

4.
13
)

28
.0
(±

3.
92
)

C
he
ck
er
s

48
.8
(±

4.
08
)

47
.6
(±

4.
13
)

17
.9
(±

3.
17
)

40
.4
(±

4.
06
)

20
.4
(±

3.
29
)

20
.9
(±

3.
42
)

C
on

ne
ct

F
iv
e

43
.9
(±

3.
12
)

45
.7
(±

3.
05
)

36
.5
(±

3.
22
)

28
.6
(±

3.
07
)

45
.7
(±

3.
21
)

33
.2
(±

3.
26
)

Q
ua

d
65

.0
(±

3.
93
)

60
.1
(±

4.
05
)

72
.8
(±

3.
71
)

51
.9
(±

4.
21
)

72
.4
(±

3.
67
)

17
.2
(±

3.
13
)

Sh
ee
p
an

d
W
ol
f

52
.0
(±

4.
38
)

52
.2
(±

4.
38
)

49
.8
(±

4.
39
)

44
.8
(±

4.
36
)

50
.0
(±

4.
39
)

46
.2
(±

4.
37
)

T
T
C
C
4
2P

49
.5
(±

4.
27
)

51
.5
(±

4.
19
)

20
.6
(±

3.
47
)

49
.7
(±

4.
20
)

19
.0
(±

3.
40
)

33
.6
(±

4.
03
)

T
T
C
C
4
3P

48
.7
(±

4.
26
)

48
.4
(±

4.
26
)

46
.1
(±

4.
28
)

43
.1
(±

4.
18
)

40
.8
(±

4.
23
)

39
.4
(±

4.
15
)

C
on

ne
ct

Fo
ur

50
.9
(±

4.
17
)

55
.6
(±

4.
18
)

55
.4
(±

4.
13
)

46
.8
(±

4.
20
)

48
.0
(±

4.
23
)

30
.6
(±

3.
89
)

P
en
ta
go

53
.7
(±

4.
19
)

55
.3
(±

4.
21
)

50
.2
(±

4.
22
)

43
.5
(±

4.
15
)

42
.6
(±

4.
13
)

42
.1
(±

4.
18
)

R
ev
er
si

42
.8
(±

4.
29
)

46
.9
(±

4.
33
)

31
.0
(±

3.
99
)

45
.1
(±

4.
33
)

28
.7
(±

3.
92
)

33
.5
(±

4.
07
)

A
vg

.
W

in
%

49
.6
(±

1.
12
)

51
.4
(±

1.
12
)

36
.4
(±

1.
08
)

46
.5
(±

1.
12
)

35
.1
(±

1.
07
)

34
.0
(±

1.
07
)

188 Comparing Randomization Strategies for Search-Control Parameters in MCTS

Table 7.9: Win percentage of AP, APSIM-RND and APNTBEA against the agent with sub-
optimal fixed parameter values.

Game 2 parameters
AP APSIM-RND APNTBEA

3D Tic Tac Toe 94.9(±1.90) 92.4(±2.22) 93.4(±2.03)
Breakthrough 97.8(±1.29) 95.6(±1.80) 97.0(±1.50)
Knightthrough 96.6(±1.59) 92.4(±2.33) 96.8(±1.54)

Chinook 73.1(±3.55) 83.5(±3.07) 80.9(±3.21)
Chin.Checkers3P 67.9(±4.08) 68.5(±4.06) 72.0(±3.92)

Checkers 94.8(±1.80) 95.3(±1.76) 95.7(±1.68)
Connect Five 94.7(±1.54) 92.8(±1.66) 94.5(±1.40)

Quad 91.0(±2.40) 96.8(±1.33) 95.9(±1.64)
Sheep and Wolf 58.4(±4.32) 56.6(±4.35) 57.0(±4.34)

TTCC4 2P 90.0(±2.60) 92.0(±2.36) 93.5(±2.15)
TTCC4 3P 68.4(±3.97) 65.0(±4.08) 67.7(±3.96)

Connect Four 93.1(±2.09) 95.7(±1.70) 94.2(±1.94)
Pentago 84.1(±3.15) 89.4(±2.64) 87.7(±2.83)
Reversi 85.3(±3.05) 81.2(±3.35) 83.4(±3.23)

Avg. Win% 85.0(±0.81) 85.5(±0.80) 86.4(±0.78)

Game 4 parameters
AP APSIM-RND APNTBEA

3D Tic Tac Toe 87.1(±2.67) 80.5(±3.21) 85.3(±2.86)
Breakthrough 96.4(±1.63) 73.2(±3.89) 97.8(±1.29)
Knightthrough 93.0(±2.24) 63.0(±4.24) 99.0(±0.87)

Chinook 83.3(±3.08) 63.8(±4.06) 86.0(±2.85)
Chin.Checkers3P 79.6(±3.52) 70.8(±3.97) 70.6(±3.98)

Checkers 88.4(±2.55) 67.4(±3.85) 84.1(±2.95)
Connect Five 85.5(±2.55) 83.9(±2.77) 67.0(±3.63)

Quad 79.0(±3.52) 91.3(±2.42) 81.8(±3.29)
Sheep and Wolf 65.4(±4.17) 65.4(±4.17) 62.2(±4.25)

TTCC4 2P 89.4(±2.67) 71.3(±3.95) 89.5(±2.68)
TTCC4 3P 69.7(±3.95) 70.0(±3.95) 67.1(±4.02)

Connect Four 90.8(±2.40) 94.3(±1.99) 87.8(±2.79)
Pentago 87.7(±2.83) 85.6(±3.02) 81.6(±3.32)
Reversi 83.8(±3.20) 67.8(±4.04) 69.5(±4.00)

Avg. Win% 84.2(±0.83) 74.9(±0.99) 80.7(±0.89)

Game 6 parameters
AP APSIM-RND APNTBEA

3D Tic Tac Toe 98.8(±0.91) 97.3(±1.38) 96.4(±1.61)
Breakthrough 96.8(±1.54) 83.2(±3.28) 97.0(±1.50)
Knightthrough 95.2(±1.88) 70.2(±4.01) 95.6(±1.80)

Chinook 93.5(±2.01) 86.6(±2.82) 89.1(±2.51)
Chin.Checkers3P 89.7(±2.66) 85.3(±3.09) 76.4(±3.71)

Checkers 99.3(±0.70) 98.8(±0.83) 96.5(±1.39)
Connect Five 96.1(±1.36) 97.2(±1.37) 90.1(±2.32)

Quad 98.3(±1.08) 99.4(±0.68) 92.6(±2.21)
Sheep and Wolf 77.0(±3.69) 70.8(±3.99) 67.4(±4.11)

TTCC4 2P 98.2(±1.17) 91.8(±2.41) 94.2(±2.05)
TTCC4 3P 85.0(±3.05) 81.7(±3.34) 79.4(±3.47)

Connect Four 97.3(±1.35) 98.1(±1.08) 95.1(±1.84)
Pentago 93.4(±2.11) 93.4(±2.07) 90.3(±2.56)
Reversi 95.4(±1.80) 93.8(±2.10) 92.9(±2.19)

Avg. Win% 93.8(±0.55) 89.1(±0.72) 89.5(±0.70)

7.3 — Empirical Evaluation 189

T
ab

le
7.
10
:
W

in
pe

rc
en
ta
ge

of
A
P,

A
P

S
IM

-R
N

D
an

d
A
P

N
T

B
E
A
(1
s
st
ar
t-

an
d
pl
ay
-c
lo
ck
)
ag
ai
ns
t
C

a
d
ia

P
la

y
er

(1
0
s
st
ar
t-

an
d
pl
ay
-c
lo
ck
).

G
am

e
A
P

2
p
ar
am

et
er
s

4
p
ar
am

et
er
s

6
p
ar
am

et
er
s

A
P

S
IM

-R
N

D
A
P

N
T

B
E
A

A
P

S
IM

-R
N

D
A
P

N
T

B
E
A

A
P

S
IM

-R
N

D
A
P

N
T

B
E
A

3D
T
ic

T
ac

T
oe

92
.1
(±

2.
36
)

92
.3
(±

2.
26
)

91
.9
(±

2.
34
)

91
.4
(±

2.
41
)

90
.4
(±

2.
55
)

91
.9
(±

2.
35
)

86
.7
(±

2.
89
)

B
re
ak

th
ro
ug

h
63
.2
(±

4.
23
)

50
.6
(±

4.
39
)

61
.8
(±

4.
26
)

23
.2
(±

3.
70
)

68
.0
(±

4.
09
)

19
.4
(±

3.
47
)

45
.8
(±

4.
37
)

K
ni
gh

tt
hr
ou

gh
50
.8
(±

4.
39
)

35
.8
(±

4.
21
)

52
.2
(±

4.
38
)

19
.6
(±

3.
48
)

74
.8
(±

3.
81
)

16
.0
(±

3.
22
)

45
.0
(±

4.
37
)

C
hi
no

ok
82
.8
(±

3.
22
)

86
.6
(±

2.
92
)

88
.0
(±

2.
74
)

54
.1
(±

4.
22
)

81
.3
(±

3.
28
)

55
.1
(±

4.
24
)

63
.4
(±

4.
10
)

C
he
ck
er
s

90
.6
(±

2.
32
)

86
.5
(±

2.
72
)

91
.2
(±

2.
28
)

63
.2
(±

3.
97
)

87
.6
(±

2.
71
)

65
.8
(±

3.
92
)

52
.6
(±

4.
12
)

C
on

ne
ct

F
iv
e

70
.4
(±

3.
18
)

66
.8
(±

3.
33
)

68
.2
(±

3.
29
)

61
.2
(±

3.
73
)

45
.5
(±

3.
78
)

70
.4
(±

3.
54
)

51
.9
(±

3.
95
)

Q
ua

d
98
.8
(±

0.
96
)

99
.6
(±

0.
55
)

99
.2
(±

0.
78
)

98
.8
(±

0.
96
)

99
.4
(±

0.
68
)

99
.4
(±

0.
68
)

93
.0
(±

2.
24
)

Sh
ee
p
an

d
W
ol
f

56
.8
(±

4.
35
)

56
.8
(±

4.
35
)

60
.4
(±

4.
29
)

51
.6
(±

4.
38
)

51
.6
(±

4.
38
)

55
.6
(±

4.
36
)

50
.0
(±

4.
39
)

C
on

ne
ct

Fo
ur

68
.2
(±

3.
90
)

65
.1
(±

4.
04
)

69
.7
(±

3.
92
)

68
.5
(±

3.
98
)

63
.2
(±

4.
06
)

65
.4
(±

4.
04
)

48
.0
(±

4.
24
)

P
en
ta
go

73
.0
(±

3.
80
)

75
.0
(±

3.
62
)

78
.1
(±

3.
52
)

69
.7
(±

3.
95
)

71
.3
(±

3.
80
)

64
.7
(±

4.
11
)

62
.6
(±

4.
10
)

A
vg

.
W

in
%

74
.7
(±

1.
16
)

71
.5
(±

1.
21
)

76
.1
(±

1.
14
)

60
.1
(±

1.
32
)

73
.3
(±

1.
19
)

60
.4
(±

1.
32
)

59
.9
(±

1.
32
)

190 Comparing Randomization Strategies for Search-Control Parameters in MCTS

both tuning and randomizing parameter values does not seem to provide any benefit
in most of the games. Once again, Quad is an interesting game, because it seems
to significantly benefit from parameter randomization for any tested number of ran-
domized parameters. What is interesting to observe is that among the on-line tuning
strategies evaluated in Chapter 6 there was one, LSI, which showed a similarly good
performance on Quad. A characteristic of LSI is that during its first phase of gen-
eration, the allocation strategy is evaluating random parameter combinations, in a
similar way to the SIM-RND randomization strategy. This can be seen as a confir-
mation that the search for the game of Quad particularly benefits from randomizing
its control parameters.

The results obtained by matching the AP, APSIM-RND and APNTBEA agents
against the agent that uses sub-optimal fixed values for the parameters are presented
in Table 7.9. These agents are compared for two, four and six randomized/tuned
parameters. Note that for the sub-optimal agent only the parameters that are being
randomized/tuned by the opponent are set to sub-optimal values, other parameters
are set to their default values. Once again, results show that for two and six param-
eters APSIM-RND and APNTBEA are close in performance, while for four parameters
APNTBEA performs better than APSIM-RND. In general, all agents have a much bet-
ter performance than the agent with sub-optimal values. This supports the claim
that parameter values have a strong influence on the search and that it is worth in-
vestigating which are the best values for each game. Moreover, in a situation where
the optimal parameter values for a specific game are not known in advance, tuning
or randomizing them seems to be a valid approach, rather than setting an arbitrary
combination that might be sub-optimal.

Results of the final series of experiments are shown in Table 7.10. This table
reports the results obtained by matching AP, APSIM-RND and APNTBEA against
CadiaPlayer. All the agents tested so far implement the same MCTS strategy with
the same enhancements. The purpose of this series of experiments is to verify how
the agents perform against an opponent with a different implementation of MCTS.
For most of the games, independently of the number of considered parameters, all
agents show a better performance than CadiaPlayer, with APNTBEA that tunes
two parameters being the best. It is confirmed that on-line parameter tuning is
successful in Breakthrough and Knightthrough for two tuned parameters and in
particular for four, while parameter randomization performs the worst on these two
games for four and six parameters.

Next, for two parameters, in all previous series of experiments the performance
of APSIM-RND was close to the one of APNTBEA. However, against CadiaPlayer
the difference in performance is higher. This means that the relative performance of
these two agents does not only depend on the number of parameters that they are
considering, but also by the type of opponent. From previous experiments, tuning
only two parameters might have seemed not very interesting, because it was only
slightly improving the performance over randomization. However, against Cadi-
aPlayer on-line tuning is shown to be better than just randomizing the parameters.
Therefore, for the agent to be more robust against different types of opponents, two
parameters are still worth tuning.

7.3 — Empirical Evaluation 191

�

�

�

�

�

��

��

	

� �
 �� �� �� �� �� ���

�
�
�
�
�

!
"#

$%&' ()*+

���������	
�

,

-

.

/

0

12

3 45 67 89 :; <= >?

@
A
B
C
D
E
F
GH

IJKL MNOP

��

������	
�

Q

R

S

T

U

VW

XY

Z [\] ^_ `a bc de

f
g
h
i
j
k
l
mn

opqr stuv

�	��

w

x

yz

{|

}~

��

� � �� �� �� �� �� �� ��

�
�
�
�
�
�
�
��

���� �� ¡

����������	�

¢£

¤¥¦§¨©ª

«¬­®¯

Figure 7.3: Maximum MCTS tree depth over game turns of AP, APSIM-RND and APNTBEA.

The biggest gap in the performance of APSIM-RND with respect to APNTBEA
is visible for four parameters. Moreover, by going from two to four parameters the
performance of APSIM-RND drops much more than the one of APNTBEA (more than 9
points for APSIM-RND and less than 3 for APNTBEA). This suggest that, for different
opponents, on-line tuning might be more robust than parameter randomization.

7.3.6 Search Tree Analysis

To get more insight about the behavior of MCTS when parameters are tuned or ran-
domized, for some of the games considered in previous experiments, statistics about
the search trees built by the agent instances are collected for each turn. Moreover,
to give an example of the structure of the trees built by the different agent instances,
sample trees are plotted for each game.2 The considered games are Breakthrough,
Knightthrough, Quad and Connect Four, and have been selected among the games
for which either on-line parameter tuning or parameter randomization show to per-
form best in many of the performed experiments. The considered agents are AP,

2Tree plots are inspired by the tree visualizations used by Wimmenauer (2019).

192 Comparing Randomization Strategies for Search-Control Parameters in MCTS

�

�

�

�

�

�

� �� 	
 ��
� �� �� ���

���� ����

���������	
�

�
�

!
"
#$
%
&
'(
)
*

+
,
-
.
/
0
12
3
45
6
78
9

:;

<

=>

?@ABCDE

FGHIJ

K

L

M

N

O

PQ

RS

TU

V W XY Z[\] ^_ `a

bcde fghi

�	��

j
k
l
m
n
op
q
r
st
u
v

w
x
y
z
{
|
}~
�
��
�
��
�

�

���

�

���

�

���

�

� � �� �� �� �� �� � ¡¢

£¤¥¦ §¨©ª

���������	�

«
¬
­
®
¯
°±
²
³
µ́¶
·

¸
¹
º
»
¼
½
¾¿
À
ÁÂ
Ã
ÄÅ
Æ

Ç

È

É

Ê

Ë

Ì

Í

Î ÏÐ ÑÒ ÓÔ ÕÖ ×Ø

ÙÚÛÜ ÝÞßà

���
������	
�

á
â
ã
ä
å
æç
è
é
êë
ì
í

î
ï
ð
ñ
ò
ó
ôõ
ö
÷ø
ù
úû
ü

Figure 7.4: Average effective branching factor over game turns of AP, APSIM-RND and
APNTBEA.

APSIM-RND and APNTBEA, with the last two agents randomizing/tuning four pa-
rameters, C, εMAST, K and ref .

For the considered games, Figure 7.3 reports the maximum depth reached by
the tree built by MCTS (considering the current root as having depth 0) during
each turn of the game. Moreover, Figure 7.4 reports the average effective branching
factor of the tree built by MCTS for each game turn. Note that, while the branching
factor is computed considering all the actions that are legal in a node, the effective
branching factor is computed considering only the actions that have actually been
visited by the search algorithm. Each point in the presented plots has been computed
averaging the considered value (i.e. maximum depth or average effective branching
factor) over 500 runs for each game. Note that not all runs reach the last game
turns, thus data points towards the end of the series are based on fewer samples.

As can be seen, for all games AP is the agent that in each turn builds a tree
with the highest maximum depth and highest average effective branching factor.
APSIM-RND is the one that, in most turns, builds a tree for which these statistics
are the lowest, while for the trees built by APNTBEA these statistics are in-between
the ones of AP and APSIM-RND. Note that maximum depth and average effective

7.3 — Empirical Evaluation 193

Figure 7.5: Trees built for Breakthrough by the AP, APSIM-RND and APNTBEA agents,
respectively.

194 Comparing Randomization Strategies for Search-Control Parameters in MCTS

Figure 7.6: Trees built for Knightthrough by the AP, APSIM-RND and APNTBEA agents,
respectively.

7.3 — Empirical Evaluation 195

Figure 7.7: Trees built for Quad by the AP, APSIM-RND and APNTBEA agents, respectively.

196 Comparing Randomization Strategies for Search-Control Parameters in MCTS

Figure 7.8: Trees built for Connect Four by the AP, APSIM-RND and APNTBEA agents,
respectively.

7.3 — Empirical Evaluation 197

branching factor only give information about how the tree is built by each of the
strategies, but not on how nodes are actually visited during the search (i.e. how
many times and in which order).

The statistics for the depth seem to confirm that the more randomization is
introduced by changing the parameters the less the agent tends to exploit promising
paths. With less or no randomization the agent focuses more on a few paths in the
tree in order to visit them deeper. Results for the effective branching factor show
that the more randomization is introduced the more the agent tends to explore,
on average, fewer actions in each node. This might seem counterintuitive at first,
because the randomization introduced by changing parameter values on-line would
be expected to diversify the search and explore more branches of the tree. These
results can be explained by considering that the effective branching factor of a search
tree depends on its actual branching factor, and the tree visited by AP likely has
a higher average branching factor than the one of APSIM-RND and APNTBEA. The
AP agent is more likely to focus the search on realistic lines of play, which usually
consist of states with higher mobility, and therefore higher number of legal actions.
APSIM-RND and APNTBEA, instead, try also to explore less realistic moves that might
lead to parts of the tree where the branching factor is lower. For example, in games
like Knightthrough and Breakthrough AP tends to explore less the actions that
lead to the opponent capturing the player’s pieces. On the contrary, with a more
diversified search APSIM-RND and APNTBEA explore such actions more often. This
means that the average branching factor of the search tree visited by APSIM-RND
and APNTBEA is overall lower than the one of the tree visited by AP.

More insights about the characteristics of the trees built by the three considered
agents are visible in Figures 7.5, 7.6, 7.7 and 7.8. These figures show an example
of the structure of the tree built by each considered agent for the games of Break-
through, Knightthrough, Quad and Connect Four, respectively. In each plot, the
x-axis reports the branches of the tree, while the y-axis reports the game turns,
each corresponding to a different shade of gray. In the figure, edges added during
a certain game turn are plotted with the shade of gray corresponding to the turn
in which they were added. In each figure, the trees have been built, in order, by
the agents AP, APSIM-RND and APNTBEA. Looking at the trees it is clear that each
agent builds the search tree in a different way. AP seems the one that builds the
more focused and deeper tree in each game turn. On the contrary, APSIM-RND seems
to be the agent that builds more shallow trees, visiting many different paths in each
game turn, confirming the intuition that randomizing parameter values diversifies
the search. The behavior of APNTBEA, instead, seems to be in-between. It seems
that in a few game turns the search is more focused and deep, while in others it
is more shallow. This suggest that APNTBEA, by tuning parameters, might also be
able to detect when a more diversified search is better than a more focused one.

7.3.7 Parameter Randomization in Real-time Settings

The series of experiments presented in this section evaluate parameter randomization
in the real-time domain of the GVG-AI project, applying it to the MCTS-based
MaastCTS2 agent. More precisely, parameter randomization per simulation is

198 Comparing Randomization Strategies for Search-Control Parameters in MCTS

T
able

7.11:
W

in
percentage

of
M

a
a
st

C
T

S
2
w
ith

fixed
param

eter
values

(M
P
),

w
ith

sub-optim
al

param
eter

values
(M

P
S
U

B
-O

P
T
),

w
ith

random
ization

per
sim

ulation
(M

P
S
IM

-R
N

D
)
and

tuned
on-line

w
ith

the
N
T
B
E
A

strategy
(M

P
N

T
B

E
A
),w

ith
gam

e
tick

set
to

4
0
m
s.

G
am

e
M

P
M

P
S
U

B
-O

P
T

2
p
aram

eters
3

p
aram

eters
5

p
aram

eters
M

P
S
IM

-R
N

D
M

P
N

T
B

E
A

M
P

S
IM

-R
N

D
M

P
N

T
B

E
A

M
P

S
IM

-R
N

D
M

P
N

T
B

E
A

A
liens

100.0(±
0.00)

100.0(±
0.00)

100.0(±
0.00)

100.0(±
0.00)

100.0(±
0.00)

100.0(±
0.00)

100.0(±
0.00)

100.0(±
0.00)

B
ait

31.8(±
4.09)

25.8(±
3.84)

32.4(±
4.11)

31.2(±
4.07)

29.6(±
4.01)

32.0(±
4.09)

30.4(±
4.04)

31.6(±
4.08)

B
utterfl

ies
98.6(±

1.03)
99.0(±

0.87)
99.6(±

0.55)
98.8(±

0.96)
98.8(±

0.96)
99.8(±

0.39)
99.2(±

0.78)
100.0(±

0.00)
C
am

el
R
ace

44.4(±
4.36)

33.8(±
4.15)

42.0(±
4.33)

40.6(±
4.31)

41.0(±
4.32)

41.6(±
4.32)

41.0(±
4.32)

42.4(±
4.34)

C
hase

28.0(±
3.94)

28.2(±
3.95)

27.6(±
3.92)

24.4(±
3.77)

25.0(±
3.80)

28.2(±
3.95)

30.4(±
4.04)

26.8(±
3.89)

C
hopp

er
99.8(±

0.39)
99.2(±

0.78)
100.0(±

0.00)
100.0(±

0.00)
100.0(±

0.00)
100.0(±

0.00)
99.8(±

0.39)
99.6(±

0.55)
C
rossfi

re
31.8(±

4.09)
27.6(±

3.92)
28.6(±

3.96)
29.8(±

4.01)
27.0(±

3.90)
29.4(±

4.00)
27.4(±

3.91)
28.4(±

3.96)
D
ig

D
ug

1.6(±
1.10)

0.8(±
0.78)

1.2(±
0.96)

0.8(±
0.78)

1.2(±
0.96)

1.8(±
1.17)

1.2(±
0.96)

1.2(±
0.96)

E
scap

e
93.4(±

2.18)
93.2(±

2.21)
92.2(±

2.35)
91.0(±

2.51)
93.0(±

2.24)
91.0(±

2.51)
94.6(±

1.98)
92.2(±

2.35)
H
ungry

B
irds

100.0(±
0.00)

99.8(±
0.39)

100.0(±
0.00)

100.0(±
0.00)

100.0(±
0.00)

100.0(±
0.00)

100.0(±
0.00)

100.0(±
0.00)

Infection
100.0(±

0.00)
99.8(±

0.39)
100.0(±

0.00)
100.0(±

0.00)
100.0(±

0.00)
100.0(±

0.00)
99.8(±

0.39)
100.0(±

0.00)
Intersection

100.0(±
0.00)

100.0(±
0.00)

100.0(±
0.00)

100.0(±
0.00)

100.0(±
0.00)

100.0(±
0.00)

100.0(±
0.00)

100.0(±
0.00)

L
em

m
ings

0.0(±
0.00)

0.0(±
0.00)

0.0(±
0.00)

0.0(±
0.00)

0.0(±
0.00)

0.0(±
0.00)

0.0(±
0.00)

0.0(±
0.00)

M
issile

C
om

m
and

96.8(±
1.54)

89.6(±
2.68)

98.0(±
1.23)

97.2(±
1.45)

96.0(±
1.72)

96.6(±
1.59)

96.6(±
1.59)

94.6(±
1.98)

M
odality

25.6(±
3.83)

43.4(±
4.35)

26.6(±
3.88)

25.0(±
3.80)

26.6(±
3.88)

41.4(±
4.32)

24.6(±
3.78)

41.0(±
4.32)

P
laque

A
ttack

94.8(±
1.95)

90.0(±
2.63)

95.4(±
1.84)

96.6(±
1.59)

95.4(±
1.84)

94.8(±
1.95)

95.0(±
1.91)

95.8(±
1.76)

R
oguelike

4.6(±
1.84)

1.8(±
1.17)

5.2(±
1.95)

4.0(±
1.72)

4.0(±
1.72)

4.0(±
1.72)

4.8(±
1.88)

3.2(±
1.54)

Sea
Q
uest

58.4(±
4.32)

59.6(±
4.31)

60.6(±
4.29)

53.4(±
4.38)

57.2(±
4.34)

50.2(±
4.39)

53.6(±
4.38)

54.6(±
4.37)

Survive
Z
om

bies
42.4(±

4.34)
40.2(±

4.30)
43.6(±

4.35)
41.4(±

4.32)
42.4(±

4.34)
42.2(±

4.33)
42.8(±

4.34)
40.8(±

4.31)
W
ait

F
or

B
reakfast

99.0(±
0.87)

83.4(±
3.26)

98.4(±
1.10)

98.4(±
1.10)

98.8(±
0.96)

99.0(±
0.87)

98.4(±
1.10)

98.0(±
1.23)

A
vg.

W
in%

62.6(±
0.95)

60.8(±
0.96)

62.6(±
0.95)

61.6(±
0.95)

61.8(±
0.95)

62.6(±
0.95)

62.0(±
0.95)

62.5(±
0.95)

7.3 — Empirical Evaluation 199

T
ab

le
7.
12
:
W

in
pe

rc
en
ta
ge

of
M

a
a
st

C
T

S
2
w
it
h
fix

ed
pa

ra
m
et
er

va
lu
es

(M
P
),

w
it
h
su
b-
op

ti
m
al

pa
ra
m
et
er

va
lu
es

(M
P

S
U

B
-O

P
T
),

w
it
h

ra
nd

om
iz
at
io
n
pe

r
si
m
ul
at
io
n
(M

P
S
IM

-R
N

D
)
an

d
tu
ne

d
on

-li
ne

w
it
h
th
e
N
T
B
E
A

st
ra
te
gy

(M
P

N
T

B
E
A
),

w
it
h
ga
m
e
ti
ck

se
t
to

1
0
0
m
s.

G
am

e
M

P
M

P
S
U

B
-O

P
T

2
p
ar

am
et

er
s

3
p
ar

am
et

er
s

5
p
ar

am
et

er
s

M
P

S
IM

-R
N

D
M

P
N

T
B

E
A

M
P

S
IM

-R
N

D
M

P
N

T
B

E
A

M
P

S
IM

-R
N

D
M

P
N

T
B

E
A

B
ai
t

51
.8
(±

4.
38

)
49

.4
(±

4.
39

)
37

.2
(±

4.
24

)
40

.8
(±

4.
31

)
36

.6
(±

4.
23

)
34

.8
(±

4.
18

)
40

.4
(±

4.
31

)
36

.6
(±

4.
23

)
C
am

el
R
ac
e

95
.8
(±

1.
76

)
93

.8
(±

2.
12

)
95

.0
(±

1.
91

)
92

.4
(±

2.
33

)
92

.4
(±

2.
33

)
89

.4
(±

2.
70

)
92

.2
(±

2.
35

)
90

.8
(±

2.
54

)
C
ha

se
56

.2
(±

4.
35

)
50

.0
(±

4.
39

)
52

.6
(±

4.
38

)
52

.0
(±

4.
38

)
53

.2
(±

4.
38

)
50

.6
(±

4.
39

)
50

.4
(±

4.
39

)
51

.6
(±

4.
38

)
C
ro
ss
fi
re

84
.8
(±

3.
15

)
80

.4
(±

3.
48

)
82

.2
(±

3.
36

)
81

.2
(±

3.
43

)
83

.6
(±

3.
25

)
79

.8
(±

3.
52

)
83

.2
(±

3.
28

)
81

.8
(±

3.
39

)
D
ig

D
ug

0.
0(
±
0.
00

)
0.
2(
±
0.
39

)
0.
2(
±
0.
39

)
0.
2(
±
0.
39

)
0.
0(
±
0.
00

)
0.
2(
±
0.
39

)
0.
2(
±
0.
39

)
0.
0(
±
0.
00

)
L
em

m
in
gs

0.
0(
±
0.
00

)
0.
0(
±
0.
00

)
0.
0(
±
0.
00

)
0.
0(
±
0.
00

)
0.
0(
±
0.
00

)
0.
0(
±
0.
00

)
0.
0(
±
0.
00

)
0.
0(
±
0.
00

)
M
od

al
it
y

26
.2
(±

3.
86

)
25

.2
(±

3.
81

)
22

.8
(±

3.
68

)
23

.8
(±

3.
74

)
25

.2
(±

3.
81

)
40

.6
(±

4.
31

)
25

.6
(±

3.
83

)
40

.4
(±

4.
31

)
R
og

ue
li
ke

32
.6
(±

4.
11

)
34

.0
(±

4.
16

)
31

.6
(±

4.
08

)
31

.8
(±

4.
09

)
30

.6
(±

4.
04

)
36

.8
(±

4.
23

)
30

.6
(±

4.
04

)
32

.0
(±

4.
09

)
Se

a
Q
ue

st
58

.6
(±

4.
32

)
59

.8
(±

4.
30

)
57

.8
(±

4.
33

)
59

.8
(±

4.
30

)
58

.2
(±

4.
33

)
61

.4
(±

4.
27

)
56

.0
(±

4.
36

)
56

.2
(±

4.
35

)
Su

rv
iv
e
Z
om

bi
es

49
.0
(±

4.
39

)
49

.0
(±

4.
39

)
51

.4
(±

4.
39

)
46

.4
(±

4.
38

)
44

.4
(±

4.
36

)
46

.0
(±

4.
37

)
46

.0
(±

4.
37

)
45

.4
(±

4.
37

)
A
vg

.
W

in
%

45
.5
(±

1.
38

)
44

.2
(±

1.
38

)
43

.1
(±

1.
37

)
42

.8
(±

1.
37

)
42

.4
(±

1.
37

)
44

.0
(±

1.
38

)
42

.5
(±

1.
37

)
43

.5
(±

1.
37

)

200 Comparing Randomization Strategies for Search-Control Parameters in MCTS

compared with fixed parameter values, sub-optimal fixed parameter values and on-
line parameter tuning with the NTBEA allocation strategy.

Table 6.12 shows the results obtained by testing MaastCTS2 with fixed pa-
rameter values (MP), with sub-optimal fixed parameter values (MPSUB-OPT), with
randomization per simulation (MPSIM-RND) and tuned on-line with the NTBEA
strategy (MPNTBEA), with the game tick duration set to 40ms (i.e. the default time
settings of the GVG-AI competition). The on-line tuning and randomizing agents
have been tested for two (C and W), three (C, W and εNST) and five (C, W , εNST,
N and L) parameters. Looking at the overall win percentage, all agent instances
seem quite close in performance, although the one of MPSUB-OPT is slightly lower.
As observed for MPNTBEA in Chapter 6, also for MPSIM-RND it seems that increasing
the number of considered parameters does not influence the performance much. For
most of the games, no significant difference in performance is observed among all the
agents, even for MPSUB-OPT, which would be expected to perform badly in many
games because of its sub-optimal parameters. One of the reasons for no particular
difference in the performance could be, as already mentioned in Subsection 6.4.8,
the low number of simulations performed by the agents in each tick. For such games,
the performed simulations might not be sufficient for the parameter values, whether
fixed, randomized or tuned, to influence the quality of the search. Another reason
could be that for these games parameters have only a limited effect on the search
and changing their values does not vary the search meaningfully.

More interesting is to compare the performance of MPSIM-RND and MPNTBEA on
the games for which the performance of MPSUB-OPT is significantly different from
the one of MP. For example, in Camel Race, Missile Command, Plaque Attack,
Roguelike and Wait For Breakfast, MPSUB-OPT performs significantly worse than
MP. However, for these games both MPSIM-RND and MPNTBEA manage to reach
the same performance of MP, suggesting that changing parameter values on-line is
better than using sub-optimal fixed values. For these games, however, there is no
significant difference in performance between MPSIM-RND and MPNTBEA, indicating
that probably the manually constructed sets of parameter values from which ran-
domization per simulation can select contains mostly reasonable values. If this is the
case, there seems to be no advantage in using an informed tuning strategy to find
optimal values and exclude bad ones, randomization is already enough to control
most of the search with optimal values. Another game worth examining is Modality.
Also for this game MPSUB-OPT has a significantly different performance with respect
to MP. It seems that the parameters of MP, expected to be overall optimal, are ac-
tually sub-optimal for Modality, and the values used by MPSUB-OPT perform much
better. This game highlights the difference between parameter randomization and
on-line parameter tuning, showing that there are games where the latter, using a
more informed strategy to select parameter values, is able to outperform the former.
When three or five parameters are considered, MPNTBEA is able to reach the same
performance of MPSUB-OPT, while the performance of MPSIM-RND stays close to the
one of the MP agent with the sub-optimal values for the game.

To verify whether more simulations influence the performance, another series of
experiments has been performed increasing the tick duration to 100ms. For the
same reasons mentioned in Subsection 6.4.8, when using a tick of 100ms only part

7.4 — Chapter Conclusions and Future Research 201

of the original set of games are considered. Table 7.12 presents the results of this
series of experiments. As can be seen, for many of the games a longer search time
substantially increases the win rate of all the agents. Once again, all the agents
seem to be overall quite close to each other in performance, although the overall
win percentage of MPSIM-RND seems to decrease with the increase in the number
of randomized parameters. For most of the games there seems to be no significant
difference in the performance of all the agents, including the one with sub-optimal
parameter values, MPSUB-OPT. An exception is Bait, for which both MPSIM-RND and
MPNTBEA perform significantly worse than MP and MPSUB-OPT, and none of the
two seems to outperform the other. For two parameters MPNTBEA seems slightly
better than MPSIM-RND, while for five the situation is reversed. In Camel Race
MPNTBEA seems to perform worse than MPSIM-RND. While MPSIM-RND manages
to keep its performance close to the one of MP when increasing the number of
considered parameters, the one of MPNTBEA significantly decreases with respect to
MP. For Modality results are similar to the ones obtained with a tick of 40ms. Both
MPSIM-RND and MPNTBEA are at least performing as well as MP, but when the
considered parameters are three or five, the win percentage of MPNTBEA increases
significantly, confirming that for this game on-line parameter tuning is superior to
parameter randomization.

7.4 Chapter Conclusions and Future Research

This chapter evaluated four different strategies that randomize search-control pa-
rameters for MCTS in GGP: per game, per turn, per simulation and per state.
Moreover, randomization per simulation has been compared with on-line parameter
tuning both on the Stanford GGP project and the GVG-AI project, giving more
insights on the performance of both approaches.

Results for the Stanford GGP project showed that, when compared to each other,
the randomization strategy that performs best is the one that randomizes parameter
values before each simulation. Moreover, for single parameters, it has been shown
that for some games it is better to randomize the value per simulation rather than
keeping it fixed for the whole game. This suggests that MCTS might benefit from
diversifying the search not only by using strategies like UCT and MAST that try
to balance exploration and exploitation of moves, but also by changing the strategy
itself while searching. Randomizing parameter values also allows to explore the
search space of the strategies, diversifying the search even more. The fact that
the search is further diversified by constantly changing the parameter values while
searching for the best ones, might also be one of the reasons behind the success of
on-line parameter tuning in some games.

Results on the Stanford GGP project have also shown that the effect of parameter
randomization depends on multiple factors. Whether it is beneficial to randomize
parameter values per simulation rather than keeping them fixed or rather than tuning
them on-line does not only depend on the game. It also depends on which and how
many parameters are being randomized and on the type of opponent the agent is
facing. Future work could look into devising a mechanism to automatically detect

202 Comparing Randomization Strategies for Search-Control Parameters in MCTS

for each new game if it is worth using parameter randomization, and if so, which
parameters are worth randomizing. This mechanism could further be extended to
detect on-line if, for a given game, it is better to randomize or tune the parameters.

Results for the GVG-AI games show that parameter randomization performs
more or less the same as on-line parameter tuning. This suggest that on-line pa-
rameter tuning might be more suitable for domains where a higher number of sim-
ulations can be reached, or for domains that are more sensitive to changes in the
search-control parameter values. It may be concluded that in a real-time context like
GVGP, randomization of parameter values gives a more robust setting for a small
number of parameters, especially when a small set of feasible values is selected in
advance. For future work it would be interesting to see if increasing time constraints
to achieve a few thousands simulations per tick in GVG-AI would make a difference
on the performance of parameter randomization an on-line parameter tuning.

Given the results presented in this chapter, it may be concluded that, although
not always the best solution for all games, randomization within a given set of values
is still beneficial in GGP for games where the fixed parameter settings optimized
off-line on a predefined set of games are actually performing poorly. Moreover,
parameter randomization might be a valid alternative to on-line parameter tuning
when the number of parameters to tune is high and time settings are limited, be-
cause the problem of tuning them on-line becomes too hard due to the increased
combinatorial complexity.

Chapter 8

Conclusions and Future
Research

This thesis investigated how search can be utilized to support Artificial General
Intelligence (AGI) in games. General game playing (GGP) was identified as a suit-
able domain to test search techniques for AGI. In addition, Monte-Carlo Tree Search
(MCTS) was presented as a successful search technique for domains like GGP, where
no specific domain knowledge is available. This has led to the formulation of the
problem statement in Section 1.5, which focuses on how the performance of MCTS
in GGP can be improved. Four research questions have also been formulated and
they should be addressed before answering the problem statement.

This chapter provides the conclusions of this thesis. Section 8.1 answers the
four research questions, while Section 8.2 answers the problem statement. Finally,
recommendations for future research are given in Section 8.3.

8.1 Answers to the Research Questions

The four research questions formulated in Chapter 1 concern different aspects of
MCTS. More precisely, they deal with (1) speeding up the interpretation of game
rules written in a declarative language, (2) evaluating the use of global or local
information to enhance the selection strategy of MCTS, (3) on-line tuning of search-
control parameters for MCTS, and (4) investigating the effect of search-control pa-
rameter randomization in MCTS. The research questions are answered in the fol-
lowing subsections.

8.1.1 Speeding Up Game Rule Interpretation

A possible approach to formally represent game rules in GGP consists in using a
declarative language. When rules are expressed in a declarative language, agents
usually have to implement a mechanism that interprets them and computes all the
elements that are necessary to reason on the game (i.e., game states, legal moves,

204 Conclusions and Future Research

etc.). However, this interpretation process is in general slow and might reduce the
number of simulations that an agent can perform. This might hinder the performance
of MCTS, which instead benefits from the more accurate statistics that can be
collected with a higher number of simulations. This has led to the formulation of
the first research question.

Research question 1: How can the process of interpreting on-line the
game rules written in a declarative language be sped up?

To answer this research question, this thesis dealt with the problem of speeding
up the rule interpretation process of an agent for the Stanford GGP project. A
rule interpreter based on PropNets (Schkufza et al., 2008; Cox et al., 2009; Gene-
sereth and Thielscher, 2014) was investigated, together with four optimizations for
its structure. Moreover, its encoding on an FPGA was evaluated.

Results showed that a software implementation of the PropNet performs better
than the GGP Base Prover, a custom made interpreter for GDL rules. The software
implementation of the PropNet increases the number of game simulations by an av-
erage of two orders of magnitude with respect to the GGP Base Prover. Moreover,
the speed of the PropNet is further increased by applying four optimizations, which,
in order, remove PropNet components with constant truth values, remove PropNet
propositions that do not have any special meaning for the game, detect and then
remove components that will only assume a constant truth value during the game
reasoning process, and remove components that have no output and thus no par-
ticular meaning for the game because of that. The use of a cache that memorizes
results previously computed by the PropNet is shown to increase the overall speed
further. However, its use is recommended only for games with a small search space,
like Chinese Checkers with 1 player and Tic Tac Toe, for which it increases the speed
already in the first search steps. Furthermore, the use of a PropNet based reasoner
enables the MCTS agent to reach a win rate close to 100% against an agent that uses
the Prover. Finally, the speed of a PropNet-based reasoner can be further increased
by at least one order of magnitude by encoding the PropNet on an FPGA board.
It may be concluded that using a PropNet with an optimized structure to represent
game rules written in GDL is beneficial for MCTS-based agents, because they are
able to perform more simulations in the given time frame and they can profit from
hardware acceleration.

8.1.2 Local and Global Information in the Selection Strategy
Previous research has shown that enhancing the MCTS selection strategy by increas-
ing the amount of information used to guide the search can consistently improve the
overall performance (Chaslot et al., 2008b; Finnsson and Björnsson, 2010; Nijssen
and Winands, 2011; Gelly and Silver, 2011; Cazenave, 2015). The RAVE strat-
egy (Gelly and Silver, 2007) and its generalization, GRAVE (Cazenave, 2015) have
been shown to be successful enhancements for the selection phase of MCTS. Both of
them bias the selection towards actions that seem to perform generally well in the
game. However, GRAVE uses more global information than RAVE to bias action
selection in nodes that only have a low number of visits. This strategy has been

8.1 — Answers to the Research Questions 205

shown to perform better than RAVE on some variants of Go and a few other games
(Cazenave, 2015), therefore it might be successful in GGP as well. This has led to
the formulation of the second research question.

Research question 2: What is the effect of using locally or globally
collected information to enhance the selection strategy for Monte-Carlo
Tree Search?

To answer this research question, this thesis proposed another variant of RAVE,
HRAVE, which biases action selection always using global information about the
actions. It then compared the performance of RAVE, GRAVE and HRAVE on a set
of games from the Stanford GGP project, both combined with a random play-out
strategy and with the more informed MAST play-out strategy.

Results show that, when RAVE variants are combined with a random play-out
strategy, the performance of GRAVE is, in the worst case, comparable with the
one of RAVE, both when using 1s or 10s play-clock. The performance of HRAVE,
instead, is more game dependent, sometimes being better than RAVE or GRAVE
and sometimes being worse. Moreover, when RAVE variants are combined with
the MAST play-out strategy, GRAVE still seems to be overall better than RAVE.
However, its advantage is less than when both strategies are combined with random
play-outs, and there are a few games where the combination GRAVE-MAST actually
performs worse than RAVE-MAST. Additionally, the combination HRAVE-MAST
seems to perform slightly less than both RAVE-MAST and GRAVE-MAST.

Over all the experiments, the difference in performance between RAVE, GRAVE
and HRAVE is not large. However, the overall win rate of GRAVE is never inferior
to the one of RAVE and HRAVE, and it seems the most robust among all the RAVE
variants. Therefore, it may be concluded that a strategy that starts biasing action
selection with global information and uses more local information the more nodes
have been visited is the most suitable to enhance MCTS for GGP. In addition, and
advantage of GRAVE is that it can be switched to a pure RAVE or a pure HRAVE
strategy by simply modifying one of its parameters. With respect to the other
two variants, this makes it more promising to be tuned on-line with the approach
presented in Chapter 6.

8.1.3 On-line Search-Control Parameter Tuning

MCTS and its enhancements are usually controlled by multiple parameters that
require extensive and time consuming off-line optimization. Moreover, optimal pa-
rameter values usually vary across games. In GGP, where the games to be played
are not known in advance, off-line optimization cannot tune parameters specifically
for each of them. Agents would have to adjust parameter values while playing the
game, therefore in an on-line fashion. This has led to the formulation of the third
research question.

Research question 3: How can search-control parameters for Monte-
Carlo Tree Search be tuned effectively on-line?

206 Conclusions and Future Research

To answer this research question this thesis proposed an on-line tuning method
for search-control parameters that enables MCTS to be self-adaptive during game
play (SA-MCTS). Seven different strategies were introduced to decide how to allocate
the available samples to test the parameter combinations: MAB, HE, NMC, LSI,
EA, NTBEA and CMA-ES. The performance of on-line parameter tuning has been
tested both on the Stanford GGP and the GVG-AI projects.

Results show that among the tested allocation strategies to tune parameters on-
line, the ones considering a discrete parameter domain and based on evolutionary
algorithms perform best. NTBEA seems to have the best performance overall, but
EA is also quite close.

Results for the Stanford GGP project show that on-line parameter tuning is
beneficial both for simple and more informed agents, when two parameters are tuned.
The performance decreases when tuning more parameters. However, when tuning
four parameters, the performance is still close to the one obtained using fixed default
parameter values.

Results for the GVG-AI project show that it is harder to tune parameters on-
line with much shorter time settings, even when the number of tuned parameters
is small. However, it may still be better to tune parameters on-line when fixed
parameter settings might be sub-optimal, such as was seen in the game Modality.

It may be concluded that the proposed approach is useful when off-line parameter
tuning is infeasible, or in contexts like GGP, both for abstract and real-time games,
where parameters cannot be tuned in advance for each game. Moreover, it is useful
when off-line tuned values might be sub-optimal for some games, or off-line tuning
incurs in the risk of overfitting the values to the set of games selected for the purpose
of tuning. It may also be concluded that on-line parameter tuning is robust against
different types of opponents.

8.1.4 Search-Control Parameter Randomization
Previous research has shown that adding randomization to certain components of
the search might increase its diversification and improve its performance (Beal and
Smith, 1994; Bošanskỳ et al., 2016; Chen, 2012). Moreover, the success of on-
line search-control parameter tuning on some of the tested games might be partially
due to the randomization introduced by exploring different parameter combinations.
This might be introducing diversification in the search process, making it explore
different parts of the tree that would not be explored keeping the parameters fixed.
In a domain like GGP, that deals with many games with different characteristics,
adding more randomization might be a good strategy for some games. This has led
to the formulation of the fourth research question.

Research question 4: What is the effect of randomizing search-control
parameters for Monte-Carlo Tree Search?

To answer this research question, this thesis evaluated four different strategies
that randomize search-control parameters for MCTS in GGP: randomization per
game, per turn, per simulation and per state. Moreover, search-control parameter
randomization has been compared with fixed parameter settings and with on-line

8.2 — Answer to the Problem Statement 207

parameter tuning both in the framework of the Stanford GGP project and in the
framework of the GVG-AI project.

For the Stanford GGP project, results show that the randomization strategy that
performs best is the one that randomizes parameter values before each simulation,
selecting such values within a predefined reasonable interval. Moreover, results show
that for some games randomizing per simulation the value of a single parameter is
better than keeping a good value fixed for the whole game. Furthermore, results
show that the effect of parameter randomization depends on multiple factors, such
as the game being played, which and how many parameters are being randomized
and the type of opponent.

It may be concluded that, although not always the best solution for all games,
randomization within a given set of values is still beneficial in GGP for games where
the fixed parameter settings optimized off-line on a predefined set of games are
actually performing poorly. Moreover, parameter randomization might be a valid
alternative to on-line parameter tuning when the number of parameters to tune
is high and time settings are limited, because the problem of tuning them on-line
becomes too hard due to the combinatorial complexity.

8.2 Answer to the Problem Statement

After addressing the four research questions, an answer to the problem statement
can be provided.

Problem statement: How can the performance of Monte-Carlo Tree
Search for general game playing be improved?

The answer to the problem statement is based on the answers to the research
questions given above. First, the process of interpreting the game rules written in
a declarative language can be sped up by using a PropNet representation of these
rules, optimizing the structure of such a PropNet, and embedding the PropNet
structure on an FPGA. By speeding up the process of interpreting the game rules, the
number of simulations that can be performed by MCTS can be increased. Second,
the selection strategy of MCTS can be enhanced using both locally and globally
collected information about the available actions. In this case, the best approach
is using a mix of global and local information, the first for states that have been
visited less and the second for states that have been visited more, like the GRAVE
selection strategy does. Furthermore, search-control parameters can be tuned on-line
and adapted to each new game being played, using the NTBEA strategy to allocate
samples for evaluating parameter combinations. Finally, randomizing search-control
parameters within a predefined set of values before each simulation can be used as
an alternative to on-line parameter tuning when the number of parameters to tune
is high and the time settings are limited.

All the approaches presented in this thesis have been shown to enhance the
performance of MCTS for a wide variety of games, without relying on game-specific
pre-coded information. Although evaluated only on a subset of all the planning tasks
that Artificial General Intelligence (AGI) is aiming to tackle, the games considered

208 Conclusions and Future Research

in this thesis present a wide variety of characteristics. They include abstract games,
video games, deterministic and non-deterministic games, games with a discrete or
continuous game flow, with sequential or simultaneous moves, with constant-sum or
variable-sum payoffs, and with different numbers of players. Therefore, the presented
MCTS enhancements are promising to also support search and planning for AGI.

8.3 Recommendations for Future Research
This section gives recommendations for future research that result from the research
presented in this thesis. First, Subsection 8.3.1 summarizes the recommendations
that directly follow from the content presented in the chapters. Subsequently, a
higher level discussion of more generic directions for future research is presented in
Subsection 8.3.2.

8.3.1 Specific Recommendations
Below is a summary of the recommendations for future research that follow from
Chapters 4, 5, 6 and 7.

Speeding Up Game Rule Interpretation. Chapter 4 introduced a fast inter-
preter for GDL rules based on optimized PropNets, which can also be embed-
ded on FPGAs. Three main directions for future research are suggested. (i)
The use of a cache that memorizes results of the queries performed on the
software implementation of the PropNet has been shown beneficial only for
some of the tested games and only for some stages of the search. The use
of the cache for the software implementation of the PropNet could be further
improved by devising a strategy to detect for each game if and when the use
of a cache is helpful. (ii) Another interesting aspect that future research could
consider is the impact that the use of different strategies to propagate truth
values among the components of the PropNet would have on the reasoning
speed. For the software implementation of the PropNet truth values are com-
puted for one component at a time. This offers two main propagation options
that could be tested. The first is forward propagation, which, whenever a
component changes truth value, immediately propagates the change to its out-
puts. The second is backward propagation, which, whenever the truth value
of a component needs to be computed, first computes the truth values of its
inputs recursively. (iii) Finally, the use of the FPGA-PropNet reasoner can be
further investigated. First of all, its performance when integrated in an MCTS
agent can be improved by compensating the increased communication over-
head. This could be done, for example, by embedding MCTS on the FPGA,
or by using hardware with shorter communication latency. Moreover, if the
integration of the FPGA-PropNet reasoner within MCTS can be improved to
achieve a higher simulation speed, it would be interesting to test other MCTS
play-out strategies, to see how the speed increase influences their performance.

Local and Global Information in the Selection Strategy. Chapter 5 investi-
gated three selection strategies, RAVE, GRAVE and HRAVE, to verify how

8.3 — Recommendations for Future Research 209

the search is influenced when the selection strategy is enhanced with infor-
mation collected at different levels. Two main directions for future research
are suggested. (i) The formula proposed more recently by Gelly and Silver
(2011) to compute the β parameter could be tested for all the RAVE variants.
According to their findings, with this formula the performance of the three
RAVE variants could improve further. (ii) In this thesis these strategies were
only tested in combination with MAST. Other play-out strategies might influ-
ence them in a different way. Testing the combination with the NST play-out
strategy could be an idea for future research.

On-line Search-Control Parameter Tuning. Chapter 6 proposed to automati-
cally adapt MCTS on-line by tuning its search control parameters, and tested
seven allocation strategies, MAB, HE, NMC, LSI, EA, NTBEA and CMA-ES.
Three directions for future research are suggested. (i) It might be interesting
to investigate other strategies for parameter tuning. For example, evolution-
ary strategies for continuous domains, such as Differential Evolution (Storn
and Price, 1997), to see if they can improve with respect to the performance
of CMA-ES, which is the only tested allocation strategy that considers a con-
tinuous domain for the parameters. Moreover, given the good performance of
NTBEA, other parameter optimization methods that are based on a model
of the parameters landscape could be investigated. An example is Sequential
Model-based Algorithm Configuration (SMAC) (Hutter et al., 2011), which
builds explicit regression models to predict the performance of parameters.
This method was shown to be comparable to NTBEA when tuning the pa-
rameters of an agent for the Planet Wars game (Lucas et al., 2019). (ii) The
self-adaptive MCTS agents proposed in this thesis are not able to choose which
and how many parameters to tune. These choices can be seen as extra param-
eters of the agent and future work could design agents that consider these
choices as part of the on-line automatic adaptation. Moreover, performing
this decision on-line could help automatically reduce the size of the combina-
torial search space by excluding less relevant parameters. (iii) It would also
be interesting to see if the devised on-line parameter tuning method can be
successfully applied to other domains as well.

Search-Control Parameter Randomization. Chapter 7 evaluated the effect of
randomizing search control parameters for MCTS. Two main directions for
future research are suggested. (i) As for on-line parameter tuning, it might be
profitable to devise a mechanism to automatically detect for each new game
if it is worth using parameter randomization, and if so, which parameters are
worth randomizing. This mechanism could further be extended to detect on-
line if, for a given game, it is better to randomize or tune the parameters. (ii) In
GVG-AI, results show that often the performance of parameter randomization
and on-line parameter tuning is comparable. For future work it would be
interesting to see if increasing time constraints to achieve a few thousands
simulations per tick in GVG-AI would make a difference on the performance
of parameter randomization and on-line parameter tuning.

210 Conclusions and Future Research

8.3.2 General Recommendations

In order to evaluate the performance of MCTS and the proposed enhancements
this thesis considered GGP environments that included games with various hetero-
geneous characteristics. To further enhance MCTS to be an AGI technique, even
more challenging domains could be considered. Results in Chapters 6 and 7 have
already shown how real-time games are harder to tackle for a GGP agent and more
research is required in this direction. Imperfect-information games are another cat-
egory that was not considered in this thesis, except for games where the imperfect
information is introduced by simultaneous moves. The agent for the Stanford GGP
project presented in this thesis could be further extended to manage imperfect infor-
mation games written in GDL-II (Thielscher, 2011). This would give the possibility
to further improve MCTS for such games as well, extending on previous work in this
direction (Schofield and Thielscher, 2015; Koriche et al., 2016). Other interesting
challenges are games with a continuous-action space and games where the agent, to-
gether with having no access to the game rules, has no access to a game model. This
thesis only focused on the single-player planning track of the GVG-AI competition
with agents that only play games with grid physics. Since 2017, the GVG-AI frame-
work supports the creation of agents that consider games with real-world physics,
thus with a continuous-action space, and agents that have no access to the game
model. The GVG-AI agent evaluated in this thesis could be extended to manage
such games as well, giving the opportunity to test MCTS on a wider set of games.

When extending the categories of considered games, results presented in this
thesis suggest a promising direction to follow to further improve the performance
of MCTS. Previous chapters have shown how a certain search strategy, param-
eter tuning or randomization technique might work well on a game but not on
another. Moreover, techniques that might work for games with certain properties
(e.g. discrete abstract games) might not have the same effect on games with dif-
ferent properties (e.g. real-time video games). The more heterogeneous the set of
games or tasks that an agent has to perform, the more it seems reasonable to focus
on a dynamic approach that adapts to the game or to the category of games be-
ing played. An effort to follow this direction is already discussed in the literature.
Various approaches have been proposed that consider different game-playing tech-
niques and select among them the ones that seem more suitable for each game or
use them in combination to perform decisions (Mendes et al., 2016; Bontrager et al.,
2016; Ashlock, Perez-Liebana, and Saunders, 2017; Anderson et al., 2019).

The parameter tuning/randomization strategies presented in this thesis are also
a step in the direction of self-adaptive agents. However, the possibility of automatic
adaptation is not only limited to the search-control parameters. For example, from
Chapter 4 emerged the idea of adapting the interpreter for the game rules. The
agent could be provided with a mechanism that, for each game, decides whether to
use a cache for the results computed by the interpreter. Moreover, a mechanism
could decide at what point in the game to start using the cache (e.g. once the num-
ber of states that are re-visited often gets above a certain threshold). Furthermore,
in case of a PropNet-based interpreter, if different value propagation strategies are
implemented the agent could detect on-line which one is faster for the game at hand,

8.3 — Recommendations for Future Research 211

depending on the estimated average speed. Another example comes from the sug-
gestion of testing a different formula for the computation of the β parameter used by
the RAVE variants presented in Chapter 5. As for the RAVE variants, also for other
strategies multiple formulas might be proposed to compute certain parameters, and
such formulas might perform differently depending on the game. This suggest that
formulas might also be changed on-line depending on their performance. For exam-
ple, a formula might be considered as a variable that has to be selected from a set of
feasible formulas. Many ideas for improving automatic adaptation of MCTS come
from Chapters 6 and 7. As already mentioned, agents could select on-line whether
to tune or randomize the parameters and which and how many of them. This could
also be extended by changing on-line which tuning or randomization strategy is
used, instead of simply considering a single tuning and a single randomizing strat-
egy. Moreover, self-adaptation could be pushed further by tuning on-line also the
parameters that control the tuning strategies. Although, caution is necessary in
this case to avoid the risk that designing such strategies would introduce even more
parameters that require to be tuned.

Many of the ideas discussed so far for implementing a self-adaptive agent assume
that the aspect of the agent that is being adapted (e.g. the interpreter, a strategy,
some search parameters, a formula) can only vary within a finite set of predefined
configurations. An alternative that might be worth investigating would be to let
the agent explore new feasible configurations on-line. For parameter tuning, for
example, agents could adapt the set of feasible values over time. They could remove
values that turn out to perform poorly and add more values close to the ones that
seem to perform well, with the possibility of finding even better values. Another
example takes inspiration from the work of Bravi et al. (2017), which proposes to
evolve variants of the UCB family of formulas for each specific game. This evolution
is performed off-line, but it could be adapted to take place on-line and it could be
used to evolve other types of formulas as well.

While adapting the agent automatically on-line would help to better deal with
the heterogeneity of the games, another challenge becomes soon apparent. In many
domains, only a short amount of time is available to the agents for making decisions.
The more aspects of the agents are being adapted on-line and the more configurations
are considered or even generated, the more computational resources, among which
time, are required to evaluate all possibilities. It has already been seen in Chapter
6 that, when time is limited, it is hard to even tune a few parameters with a small
finite set of possible values. One final suggestion for future research that might
help mitigate this issue is to look into designing a strategy that does not adapt
the agent from scratch, but starts from configurations that might work well for the
game at hand. For example, similarly to what has been done by Mendes et al. (2016)
and Bontrager et al. (2016), the agent could extract some features (e.g. number of
players, whether it is played on a board, whether there are NPCs and how many,
whether there are capture moves, etc.) from the games it plays and learn which
configurations work best for certain features. Therefore, whenever a new game is
played, the agent would first extract the features and then use configurations that
worked well with such features in the past. These configurations would then be
further adapted on-line. Note that this approach does not contradict the principles

212 Conclusions and Future Research

of GGP, because, even if the agent uses prior knowledge, it is not hard coded nor
specific for a single domain. Finally, to make the approach even more generic, more
game features could be generated automatically by the agent.

References

Abdo, Ashraf, Edelkamp, Stefan, and Lawo, Michael (2016). Nested Rollout Policy
Adaptation for Optimizing Vehicle Selection in Complex VRPs. 41st IEEE
Conference on Local Computer Networks Workshops, LCN Workshops 2016,
pp. 213–221. [271]

Abramson, Bruce (1990). Expected-Outcome: A General Model of Static Evalua-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12,
No. 2, pp. 182–193. [11, 20]

Al-Kanj, Lina, Powell, Warren B., and Bouzaiene-Ayari, Belgacem (2016). The
Information-Collecting Vehicle Routing Problem: Stochastic Optimization for
Emergency Storm Response. arXiv preprint arXiv:1605.05711. [271]

Anderson, Damien, Guerrero-Romero, Cristina, Perez-Liebana, Diego, Rodgers,
Philip, and Levine, John (2019). Ensemble Decision Systems for General Video
Game Playing. 2019 IEEE Conference on Games (COG), IEEE.[210]

Arneson, Broderick, Hayward, Ryan B., and Henderson, Philip (2010). Monte Carlo
Tree Search in Hex. IEEE Transactions on Computational Intelligence and AI
in Games, Vol. 2, No. 4, pp. 251–258. [11]

Arora, Akash, Fitch, Robert, and Sukkarieh, Salah (2017). An Approach to Au-
tonomous Science by Modeling Geological Knowledge in a Bayesian Framework.
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3803–3810, IEEE.[271]

Ashlock, Daniel (2006). Evolutionary Computation for Modeling and Optimization.
Springer Science & Business Media. [125, 137]

Ashlock, Daniel, Perez-Liebana, Diego, and Saunders, Amanda (2017). General
Video Game Playing Escapes the No Free Lunch Theorem. 2017 IEEE Confer-
ence on Computational Intelligence and Games (CIG), pp. 17–24, IEEE.[210]

Auer, Peter, Cesa-Bianchi, Nicoló, Freund, Yoav, and Schapire, Robert E. (1995).
Gambling in a Rigged Casino: The Adversarial Multi-Armed Bandit Problem.
36th Annual Symposium on Foundations of Computer Science, pp. 322–331.
[24]

214 References

Auer, Peter, Cesa-Bianchi, Nicolò, and Fischer, Paul (2002). Finite-Time Analysis
of the Multiarmed Bandit Problem. Machine Learning, Vol. 47, Nos. 2–3, pp.
235–256. [11, 20, 22, 24, 124, 128, 129]

Baier, Hendrik (2015). Monte-Carlo Tree Search Enhancements for One-Player and
Two-Player Domains. Ph.D. thesis, Department of Knowledge Engineering,
Maastricht University, Maastricht, The Netherlands. [127]

Baier, Hendrik, Sattaur, Adam, Powley, Edward J., Devlin, Sam, Rollason, Jeff,
and Cowling, Peter I. (2018). Emulating Human Play in a Leading Mobile
Card Game. IEEE Transactions on Games. In press. [269]

Beal, Don F. and Smith, Martin C. (1994). Random Evaluations in Chess. ICCA
Journal, Vol. 17, No. 1, pp. 3–9. [14, 171, 172, 206]

Beattie, Charles, Leibo, Joel Z., Teplyashin, Denis, Ward, Tom, Wainwright,
Marcus, Küttler, Heinrich, Lefrancq, Andrew, Green, Simon, Valdés, Víc-
tor, Sadik, Amir, Schrittwieser, Julian, Anderson, Keith, York, Sarah, Cant,
Max, Cain, Adam, Bolton, Adrian, Gaffney, Stephen, King, Helen, Hassabis,
Demis, Legg, Shane, and Petersen, Stig (2016). DeepMind Lab. arXiv preprint
arXiv:1612.03801. [10]

Bellemare, Marc G., Naddaf, Yavar, Veness, Joel, and Bowling, Michael (2013). The
Arcade Learning Environment: An Evaluation Platform for General Agents.
Journal of Artificial Intelligence Research, Vol. 47, pp. 253–279. [9]

Bertsimas, Dimitris, Griffith, J. Daniel, Gupta, Vishal, Kochenderfer, Mykel J., and
Mišić, Velibor V. (2017). A Comparison of Monte Carlo Tree Search and Rolling
Horizon Optimization for Large-Scale Dynamic Resource Allocation Problems.
European Journal of Operational Research, Vol. 263, No. 2, pp. 664–678. [271]

Best, Graeme, Cliff, Oliver M., Patten, Timothy, Mettu, Ramgopal R., and Fitch,
Robert (2019). Dec-MCTS: Decentralized Planning for Multi-Robot Active
Perception. The International Journal of Robotics Research, Vol. 38, Nos. 2–3,
pp. 316–337. [270]

Bhonker, Nadav, Rozenberg, Shai, and Hubara, Itay (2016). Playing SNES in the
Retro Learning Environment. arXiv preprint arXiv:1611.02205. [10]

Billings, Darse, Davidson, Aaron, Schaeffer, Jonathan, and Szafron, Duane (2002).
The Challenge of Poker. Artificial Intelligence, Vol. 134, Nos. 1–2, pp. 201–240.
[6]

Bischl, Bernd, Kerschke, Pascal, Kotthoff, Lars, Lindauer, Marius, Malitsky, Yuri,
Fréchette, Alexandre, Hoos, Holger, Hutter, Frank, Leyton-Brown, Kevin, Tier-
ney, Kevin, and Vanschoren, Joaquin (2016). Aslib: A Benchmark Library for
Algorithm Selection. Artificial Intelligence, Vol. 237, pp. 41–58. [125]

Björnsson, Yngvi and Finnsson, Hilmar (2009). CadiaPlayer: A Simulation-Based
General Game Player. IEEE Transactions on Computational Intelligence and
AI in Games, Vol. 1, No. 1, pp. 4–15. [35, 58, 59, 106, 172]

References 215

Björnsson, Yngvi and Marsland, T. Anthony (2003). Learning Extension Parameters
in Game-Tree Search. Information Sciences, Vol. 154, Nos. 3–4, pp. 95–118.[125]

Bontrager, Philip, Khalifa, Ahmed, Mendes, Andre, and Togelius, Julian (2016).
Matching Games and Algorithms for General Video Game Playing. Twelfth
Artificial Intelligence and Interactive Digital Entertainment Conference (AI-
IDE) (eds. N.R. Sturtevant and B. Magerko), pp. 122–128, AAAI Press. [149,
210, 211]

Bošanskỳ, Branislav, Lisỳ, Viliam, Lanctot, Marc, Čermák, Jiří, and Winands,
Mark H.M. (2016). Algorithms for Computing Strategies in Two-Player Si-
multaneous Move Games. Artificial Intelligence, Vol. 237, pp. 1–40. [14, 33, 35,
171, 172, 206]

Bowling, Michael, Burch, Neil, Johanson, Michael, and Tammelin, Oskari (2015).
Heads-up Limit Hold’em Poker is Solved. Science, Vol. 347, No. 6218, pp. 145–
149. [6]

Bravi, Ivan, Khalifa, Ahmed, Holmgård, Christoffer, and Togelius, Julian (2017).
Evolving Game-Specific UCB Alternatives for General Video Game Playing.
Applications of Evolutionary Computation (eds. G. Squillero and K. Sim), Vol.
10199 of LNCS, pp. 393–406, Springer. [211]

Breuker, Dennis M. (1998). Memory versus Search in Games. Ph.D. thesis, Depart-
ment of Computer Science, Maastricht University, Maastricht, The Netherlands.
[42]

Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig, Schneider, Jonas, Schulman,
John, Tang, Jie, and Zaremba, Wojciech (2016). OpenAI Gym. arXiv preprint
arXiv:1606.01540. [10]

Browne, Cameron B. (2010). On the Dangers of Random Playouts. ICGA Journal,
Vol. 34, No. 1, pp. 25–26. [11]

Browne, Cameron (2012). Elegance in Game Design. IEEE Transactions on Com-
putational Intelligence and AI in Games, Vol. 4, No. 3, pp. 229–240. [270]

Browne, Cameron (2013). UCT for PCG. 2013 IEEE Conference on Computational
Inteligence in Games (CIG), pp. 137–144, IEEE.[270]

Browne, Cameron (2018). Modern Techniques for Ancient Games. 2018 IEEE Con-
ference on Computational Intelligence and Games (CIG), pp. 490–497, IEEE.
[9]

Browne, Cameron B., Powley, Edward, Whitehouse, Daniel, Lucas, Simon M., Cowl-
ing, Peter I., Rohlfshagen, Philipp, Tavener, Stephen, Perez, Diego, Samoth-
rakis, Spyridon, and Colton, Simon (2012). A Survey of Monte Carlo Tree
Search Methods. IEEE Transactions on Computational Intelligence and AI in
Games, Vol. 4, No. 1, pp. 1–43. [1, 20, 36, 123]

216 References

Brown, Stephen D., Francis, Robert J., Rose, Jonathan, and Vranesic, Zvonko G.
(2012). Field-Programmable Gate Arrays, Vol. 180. Springer Science & Business
Media. [95]

Brügmann, Bernd (1993). Monte Carlo Go. Technical report, Max Planck Institute
of Physics, München, Germany. [104]

Burke, Edmund K., Gendreau, Michel, Hyde, Matthew, Kendall, Graham, Ochoa,
Gabriela, Özcan, Ender, and Qu, Rong (2013). Hyper-Heuristics: A Survey
of the State of the Art. Journal of the Operational Research Society, Vol. 64,
No. 12, pp. 1695–1724. [125]

Campbell, Murray (1985). The Graph-History Interaction: On Ignoring Position
History. 1985 ACM Annual Conference on the Range of Computing: Mid-80’s
Perspective, pp. 278–280, ACM.[42]

Cazenave, Tristan (2015). Generalized Rapid Action Value Estimation. Twenty-
Fourth International Joint Conference on Artificial Intelligence (IJCAI) (eds.
Q. Yang and M. Wooldridge), pp. 754–760, AAAI Press.[13, 103, 106, 117, 119,
124, 204, 205]

Cazenave, Tristan and Abdallah, Saffidine (2010). Monte-Carlo Hex. XIIIth Board
Games Studies Colloquium, Paris, France. [37]

Cazenave, Tristan and Hamida, Sana Ben (2015). Forecasting Financial Volatility
Using Nested Monte Carlo Expression Discovery. 2015 IEEE Symposium Series
on Computational Intelligence (SSCI), pp. 726–733, IEEE.[271]

Cazenave, Tristan, Balbo, Flavien, and Pinson, Suzanne (2009). Using a Monte-
Carlo Approach for Bus Regulation. 12th International IEEE Conference on
Intelligent Transportation Systems (ITSC), pp. 340–345, IEEE.[271]

Chaslot, Guillaume M.J.-B., Winands, Mark H.M., and Herik, H. Jaap van den
(2008a). Parallel Monte-Carlo Tree Search. Computers and Games (eds. H.J.
van den Herik, X. Xu, Z. Ma, and M.H.M. Winands), Vol. 5131 of LNCS, pp.
60–71, Springer. [96]

Chaslot, Guillaume M.J.-B., Winands, Mark H.M., Herik, H. Jaap van den, Uiter-
wijk, Jos W.H.M., and Bouzy, Bruno (2008b). Progressive Strategies for Monte-
Carlo Tree Search. New Mathematics and Natural Computation, Vol. 4, No. 3,
pp. 343–357. [23, 103, 126, 204]

Chaslot, Guillaume M.J.-B., Winands, Mark H.M., Szita, István, and Herik, H. Jaap
van den (2008c). Cross-Entropy for Monte-Carlo Tree Search. ICGA Journal,
Vol. 31, No. 3, pp. 145–156. [125, 126]

Chen, Keh-Hsun (2012). Dynamic Randomization and Domain Knowledge in Monte-
Carlo Tree Search for Go Knowledge-Based Systems. Knowledge-Based Sys-
tems, Vol. 34, pp. 21–25. [14, 171, 172, 175, 178, 206]

References 217

Childs, Benjamin E., Brodeur, James H., and Kocsis, Levente (2008). Transpositions
and Move Groups in Monte Carlo Tree Search. 2008 IEEE Symposium On
Computational Intelligence and Games (CIG), pp. 389–395, IEEE. [43, 46, 47,
60]

Churchill, David and Buro, Michael (2015). Hierarchical Portfolio Search: Prismata’s
Robust AI Architecture for Games with Large Search Spaces. Eleventh Artificial
Intelligence and Interactive Digital Entertainment Conference (AIIDE) (eds. A.
Jhala and N.R. Sturtevant), pp. 16–22, AAAI Press. [270]

Clune, James (2007). Heuristic Evaluation Functions for General Game Playing.
Twenty-Second AAAI Conference on Artificial Intelligence (AAAI), pp. 1134–
1139, AAAI Press. [58]

Cole, Nicholas, Louis, Sushil J., and Miles, Chris (2004). Using a Genetic Algo-
rithm to Tune First-Person Shooter Bots. 2004 IEEE Congress on Evolutionary
Computation (CEC), pp. 139–145, IEEE.[125, 126]

Couëtoux, Adrien and Doghmen, Hassen (2011). Adding Double Progressive Widen-
ing to Upper Confidence Trees to Cope with Uncertainty in Planning Problems.
9th European Workshop on Reinforcement Learning (EWRL-9). [271]

Coulom, Rémi (2007a). Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search. Computers and Games (eds. H.J. van den Herik, P. Ciancarini,
and H.H.L.M. Donkers), Vol. 4630 of LNCS, pp. 72–83, Springer. [6, 11, 20, 23,
147]

Coulom, Rémi (2007b). Computing “Elo Ratings” of Move Patterns in the Game of
Go. ICGA Journal, Vol. 30, No. 4, pp. 198–208. [6]

Coulom, Rémi (2012). CLOP: Confident Local Optimization for Noisy Black-Box
Parameter Tuning. Advances in Computer Games (eds. H.J. van den Herik and
A. Plaat), Vol. 7168 of LNCS, pp. 146–157, Springer. [125]

Cox, Evan, Schkufza, Eric, Madsen, Ryan, and Genesereth, Michael R. (2009). Fac-
toring General Games Using Propositional Automata. IJCAI Workshop on
General Intelligence in Game-Playing Agents (GIGA) (eds. Y. Björnsson, P.
Stone, and M. Thielscher), pp. 13–20. [13, 71, 72, 204]

Den Teuling, Niek G.P. and Winands, Mark H.M. (2012). Monte-Carlo Tree Search
for the Simultaneous Move Game Tron. Computer Games Workshop at ECAI
2012, pp. 126–141, Montpellier, France. [34]

Dieb, Thaer M., Ju, Shenghong, Shiomi, Junichiro, and Tsuda, Koji (2019). Monte
Carlo Tree Search for Materials Design and Discovery. MRS Communications,
Vol. 9, No. 2, pp. 532–536. [271]

Draper, Steve and Rose, Andrew (2014). Sancho GGP Player. http://sanchoggp.
blogspot.nl/2014/07/sancho-is-ggp-champion-2014.html. [58, 72]

218 References

Ebner, Marc, Levine, John, Lucas, Simon M., Schaul, Tom, Thompson, Tommy, and
Togelius, Julian (2013). Towards a Video Game Description Language. Artificial
and Computational Intelligence in Games (eds. S.M. Lucas, M. Mateas, M.
Preuss, P. Spronck, and J. Togelius), Vol. 6 of Dagstuhl Follow-Ups, pp. 85–
100. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany.[9,
61]

Edelkamp, Stefan, Gath, Max, Greulich, Christoph, Humann, Malte, Herzog, Ot-
thein, and Lawo, Michael (2016). Monte-Carlo Tree Search for Logistics. Com-
mercial Transport (eds. U. Clausen, H. Friedrich, C. Thaller, and C. Geiger),
LNL, pp. 427–440, Springer. [12, 271]

Finnsson, Hilmar (2012a). Generalized Monte-Carlo Tree Search Extensions for Gen-
eral Game Playing. Twenty-Sixth AAAI Conference on Artificial Intelligence
(AAAI), pp. 1550–1556, AAAI Press. [36]

Finnsson, Hilmar (2012b). Simulation-Based General Game Playing. Ph.D. thesis,
School of Computer Science, Reykjavik University, Reykjavik, Iceland. [49, 56,
109, 147, 176, 255]

Finnsson, Hilmar and Björnsson, Yngvi (2008). Simulation-Based Approach to Gen-
eral Game Playing. Twenty-Third AAAI Conference on Artificial Intelligence
(AAAI), pp. 259–264, AAAI Press. [38, 104]

Finnsson, Hilmar and Björnsson, Yngvi (2010). Learning Simulation Control in
General Game-Playing Agents. Twenty-Fourth AAAI Conference on Artificial
Intelligence (AAAI), pp. 954–959, AAAI Press. [1, 11, 13, 24, 37, 103, 105, 123,
204]

Gaina, Raluca D., Perez-Liebana, Diego, and Lucas, Simon M. (2016). General Video
Game for 2 Players: Framework and Competition. 8th Computer Science and
Electronic Engineering Conference (CEEC), pp. 186–191, IEEE.[61]

Gaina, Raluca D., Liu, Jialin, Lucas, Simon M., and Perez-Liebana, Diego (2017).
Analysis of Vanilla Rolling Horizon Evolution Parameters in General Video
Game Playing. Applications of Evolutionary Computation (eds. G. Squillero
and K. Sim), Vol. 10199 of LNCS, pp. 418–434, Springer. [126, 149]

Gaina, Raluca D., Couëtoux, Adrien, Soemers, Dennis J.N.J., Winands, Mark H.M.,
Vodopivec, Tom, Kirchgeßner, Florian, Liu, Jialin, Lucas, Simon M., and Perez-
Liebana, Diego (2018). The 2016 Two-Player GVGAI Competition. IEEE Trans-
actions on Games, Vol. 10, No. 2, pp. 209–220. [27]

Geffner, Tomás and Geffner, Hector (2015). Width-Based Planning for General
Video-Game Playing. Eleventh Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE) (eds. A. Jhala and N.R. Sturtevant), pp.
23–29, AAAI Press. [68]

Gelly, Sylvain and Silver, David (2007). Combining Online and Offline Knowledge
in UCT. 24th International Conference on Machine Learning (ICML) (ed. Z.
Ghahramani), pp. 273–280, ACM.[13, 37, 103, 105, 106, 204]

References 219

Gelly, Sylvain and Silver, David (2008). Achieving Master Level Play in 9 × 9 Com-
puter Go. Twenty-Third AAAI Conference on Artificial Intelligence (AAAI),
pp. 1537–1540, AAAI Press. [6]

Gelly, Sylvain and Silver, David (2011). Monte-Carlo Tree Search and Rapid Action
Value Estimation in Computer Go. Artificial Intelligence, Vol. 175, No. 11, pp.
1856–1875. [6, 13, 37, 103, 105, 106, 121, 204, 209]

Gelly, Sylvain and Wang, Yizao (2007). MoGo Wins 19x19 Go Tournament. ICGA
Journal, Vol. 30, No. 2, pp. 111–112. [6]

Gelly, Sylvain, Wang, Yizao, Munos, Rémi, and Teytaud, Olivier (2006). Modifica-
tion of UCT with Patterns in Monte-Carlo Go. Technical Report 6062, INRIA,
France. [6, 24]

Gelly, Sylvain, Kocsis, Levente, Schoenauer, Marc, Sebag, Michele, Silver, David,
Szepesvári, Csaba, and Teytaud, Olivier (2012). The Grand Challenge of Com-
puter Go: Monte Carlo Tree Search and Extensions. Communications of the
ACM, Vol. 55, No. 3, pp. 106–113. [5]

Genesereth, Michael and Thielscher, Michael (2014). General Game Playing, Vol. 8
of Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers. [5, 13, 51, 57, 71, 72, 204]

Genesereth, Michael, Love, Nathaniel, and Pell, Barney (2005). General Game
Playing: Overview of the AAAI Competition. AI Magazine, Vol. 26, No. 2, pp.
62–72. [9, 35, 51, 58]

Ginsberg, Matthew L. (2001). GIB: Imperfect Information in a Computationally
Challenging Game. Journal of Artificial Intelligence Research, Vol. 14, pp. 303–
358. [11]

Goertzel, Ben (2014). Artificial General Intelligence: Concept, State of the Art, and
Future Prospects. Journal of Artificial General Intelligence, Vol. 5, No. 1, pp.
1–48. [1]

Goertzel, Ben and Pennachin, Cassio (2007). Artificial General Intelligence.
Springer. [1, 8]

Goldhoorn, Alex, Garrell, Anaís, Alquézar, René, and Sanfeliu, Alberto (2014).
Continuous Real Time POMCP to Find-and-Follow People by a Humanoid
Service Robot. 14th IEEE-RAS International Conference on Humanoid Robots
(Humanoids), pp. 741–747, IEEE.[12, 270]

Golpayegani, Fatemeh, Dusparic, Ivana, and Clarke, Siobhán (2015). Collaborative,
Parallel Monte Carlo Tree Search for Autonomous Electricity Demand Manage-
ment. 2015 Sustainable Internet and ICT for Sustainability (SustainIT), pp.
1–8. [271]

220 References

Greenblatt, Richard D., Eastlake III, Donald E., and Crocker, Stephen D. (1967).
The Greenblatt Chess Program. Proceedings of the Fall Joint Computer Con-
ference, pp. 801–810. [41]

Guo, Qingyu, An, Bo, and Kolobov, Andrey (2015). Approximation Approaches
for Solving Security Games with Surveillance Cost: A Preliminary Study. 2015
International Workshop on Issues with Deployment of Emerging Agent-based
Systems (IDEAS). [271]

Hansen, Nikolaus (2016). The CMA Evolution Strategy: A Tutorial. arXiv preprint
arXiv:1604.00772. [142, 144, 146]

Hansen, Nikolaus, Müller, Sibylle D., and Koumoutsakos, Petros (2003). Reducing
the Time Complexity of the Derandomized Evolution Strategy with Covariance
Matrix Adaptation (CMA-ES). Evolutionary Computation, Vol. 11, No. 1, pp.
1–18. [124, 128, 142]

Harsanyi, John C. (1967). Games with Incomplete Information Played by “Bayesian”
Players, I–III Part I. The Basic Model. Management Science, Vol. 14, No. 3,
pp. 159–182. [4]

Hart, Sergiu and Mas-Colell, Andreu (2000). A Simple Adaptive Procedure Leading
to Correlated Equilibrium. Econometrica, Vol. 68, No. 5, pp. 1127–1150. [24]

Hauer, Bradley, Hayward, Ryan, and Kondrak, Grzegorz (2014). Solving Substitu-
tion Ciphers with Combined Language Models. 25th International Conference
on Computational Linguistics (COLING) (eds. J. Hajic and J. Tsujii), pp. 2314–
2325. [271]

Hausknecht, Matthew, Lehman, Joel, Miikkulainen, Risto, and Stone, Peter (2014).
A Neuroevolution Approach to General Atari Game Playing. IEEE Transactions
on Computational Intelligence and AI in Games, Vol. 6, No. 4, pp. 355–366.[142]

Heinz, Ernst A. (2001). Self-Play, Deep Search and Diminishing Returns. ICGA
Journal, Vol. 24, No. 2, pp. 75–79. [115]

Hennes, Daniel and Izzo, Dario (2015). Interplanetary Trajectory Planning with
Monte Carlo Tree Search. Twenty-Fourth International Joint Conference on
Artificial Intelligence (IJCAI) (eds. Q. Yang and M. Wooldridge), pp. 769–775,
AAAI Press. [12, 271]

Hocine, Nadia, Gouaïch, Abdelkader, and Cerri, Stefano A. (2014). Dynamic Diffi-
culty Adaptation in Serious Games for Motor Rehabilitation. Games for Train-
ing, Education, Health and Sports (eds. S. Göbel and J. Wiemeyer), Vol. 8395
of LNCS, pp. 115–128, Springer. [270]

Hoock, Jean-Baptiste, Lee, Chang-Shing, Rimmel, Arpad, Teytaud, Fabien, Tey-
taud, Olivier, and Wang, Mei-Hui (2010). Intelligent Agents for the Game of
Go. IEEE Computational Intelligence Magazine, Vol. 5, No. 4, pp. 28–42. [37]

References 221

Hsu, Feng-Hsiung (2002). Behind Deep Blue: Building the Computer that Defeated
the World Chess Champion. Princeton University Press, Princeton, NJ, USA.
[5]

Hutter, Frank, Hoos, Holger H., and Leyton-Brown, Kevin (2011). Sequential Model-
Based Optimization for General Algorithm Configuration. International Con-
ference on Learning and Intelligent Optimization, pp. 507–523, Springer. [168,
209]

Jiang, Daniel R., Al-Kanj, Lina, and Powell, Warren B. (2017). Monte Carlo Tree
Search with Sampled Information Relaxation Dual Bounds. arXiv preprint
arXiv:1704.05963. [271]

Joppen, Tobias, Moneke, Miriam Ulrike, Schröder, Nils, Wirth, Christian, and
Fürnkranz, Johannes (2018). Informed Hybrid Game Tree Search for General
Video Game Playing. IEEE Transactions on Games, Vol. 10, No. 1, pp. 78–90.
[66, 68]

Karnin, Zohar, Koren, Tomer, and Somekh, Oren (2013). Almost Optimal Ex-
ploration in Multi-Armed Bandits. 30th International Conference on Machine
Learning (ICML) (eds. S. Dasgupta and D. McAllester), pp. 1238–1246. [136]

Kartal, Bilal (2015). Monte Carlo Tree Search with Useful Cycles for Motion Plan-
ning. 2015 IEEE International Conference on Robotics and Automation (ICRA)
Ph.D. Forum. [270]

Kartal, Bilal, Koenig, John, and Guy, Stephen J. (2014). User-Driven Narrative
Variation in Large Story Domains Using Monte Carlo Tree Search. 2014 Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
pp. 69–76. [270]

Kartal, Bilal, Sohre, Nick, and Guy, Stephen J. (2016). Data Driven Sokoban Puzzle
Generation with Monte Carlo Tree Search. Twelfth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE) (eds. N.R. Sturtevant
and B. Magerko), pp. 58–64, AAAI Press. [270]

Kempka, Michał, Wydmuch, Marek, Runc, Grzegorz, Toczek, Jakub, and Jaśkowski,
Wojciech (2016). Vizdoom: A Doom-Based AI Research Platform for Visual
Reinforcement Learning. 2016 IEEE Conference on Computational Intelligence
and Games (CIG), pp. 341–348, IEEE.[7]

Kishimoto, Akihiro and Müller, Martin (2004). A General Solution to the Graph
History Interaction Problem. Nineteenth National Conference on Artificial In-
telligence (AAAI), pp. 644–649, AAAI Press. [42]

Knuth, Donald E. and Moore, Ronald W. (1975). An Analysis of Alpha-Beta Prun-
ing. Artificial Intelligence, Vol. 6, No. 4, pp. 293–326. [10]

Kocsis, Levente and Szepesvári, Csaba (2006). Bandit Based Monte-Carlo Plan-
ning. Machine Learning: ECML 2006 (eds. J. Fürnkranz, T. Scheffer, and M.

222 References

Spiliopoulou), Vol. 4212 of LNCS, pp. 282–293. Springer. [6, 11, 13, 20, 23, 30,
103]

Kocsis, Levente, Szepesvári, Csaba, and Willemson, Jan (2006a). Improved Monte-
Carlo Search. Technical Report 1, University of Tartu, Estonia. [46]

Kocsis, Levente, Szepesvári, Csaba, and Winands, Mark H.M. (2006b). RSPSA: En-
hanced Parameter Optimization in Games. Advances in Computer Games (eds.
H.J. van den Herik, S.-C. Hsu, T.-S. Hsu, and H.H.L.M. Donkers), Vol. 4250 of
LNCS, pp. 39–56, Springer. [125]

Koriche, Frédéric, Lagrue, Sylvain, Piette, Éric, and Tabary, Sébastien (2016).
Stochastic Constraint Programming for General Game Playing with Imperfect
Information. IJCAI Workshop on General Intelligence in Game-Playing Agents
(GIGA) (eds. S. Schiffel, M. Thielscher, and J. Togelius), pp. 39–46. [210]

Kowalski, Jakub (2016). Towards a Real-Time Game Description Language. 8th
International Conference on Agents and Artificial Intelligence (ICAART) (eds.
H.J. van den Herik and J. Filipe), Vol. 2, pp. 494–499. [52]

Kowalski, Jakub, Mika, Maksymilian, Sutowicz, Jakub, and Szykuła, Marek (2019).
Regular Boardgames. Thirty-Third AAAI Conference on Artificial Intelligence
(AAAI), pp. 1699–1706, AAAI Press. [9]

Kunanusont, Kamolwan, Gaina, Raluca D., Liu, Jialin, Perez-Liebana, Diego, and
Lucas, Simon M. (2017). The N-Tuple Bandit Evolutionary Algorithm for Auto-
matic Game Improvement. 2017 IEEE Congress on Evolutionary Computation
(CEC), pp. 2201–2208, IEEE.[124, 126, 128, 138]

Laird, John and VanLent, Michael (2001). Human-Level AI’s Killer Application:
Interactive Computer Games. AI Magazine, Vol. 22, No. 2, pp. 15–26. [6]

Lai, Tze Leung and Robbins, Herbert (1985). Asymptotically Efficient Adaptive
Allocation Rules. Advances in Applied Mathematics, Vol. 6, No. 1, pp. 4–22.
[22]

Lanctot, Marc, Wittlinger, Christopher, Winands, Mark H.M., and Den Teuling,
Niek G.P. (2013). Monte Carlo Tree Search for Simultaneous Move Games:
A Case Study in the Game of Tron. 25th Benelux Conference on Artificial
Intelligence (BNAIC) (eds. K. Hindriks, M. de Weerdt, B. van Riemsdijk, and
M. Warnier), pp. 104–111. [34]

Laschet, Cliff (2014). Home Care Service Selection Using Predictive Models and
Monte-Carlo Tree Search. M.Sc. thesis, Department of Knowledge Engineering,
Maastricht University, Maastricht, The Netherlands. [270]

Lenz, David, Kessler, Tobias, and Knoll, Alois (2016). Tactical Cooperative Planning
for Autonomous Highway Driving Using Monte-Carlo Tree Search. 2016 IEEE
Intelligent Vehicles Symposium (IV), pp. 447–453, IEEE.[271]

References 223

Levine, John, Congdon, Clare Bates, Ebner, Marc, Kendall, Graham, Lucas, Si-
mon M., Miikkulainen, Risto, Schaul, Tom, and Thompson, Tommy (2013).
General Video Game Playing. Artificial and Computational Intelligence in
Games (eds. S.M. Lucas, M. Mateas, M. Preuss, P. Spronck, and J. Togelius),
Vol. 6 of Dagstuhl Follow-Ups, pp. 77–83. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany. [9, 61]

Liu, Jialin, Togelius, Julian, Perez-Liebana, Diego, and Lucas, Simon M. (2017).
Evolving Game Skill-Depth Using General Video Game AI Agents. 2017 IEEE
Congress on Evolutionary Computation (CEC), pp. 2299–2307, IEEE.[126]

Lorentz, Richard J. (2008). Amazons Discover Monte-Carlo. Computers and
Games (eds. H.J. van den Herik, X. Xu, Z. Ma, and M.H.M. Winands), Vol.
5131 of LNCS, pp. 13–24, Springer. [11]

Lorentz, Richard J. (2011). Improving Monte-Carlo Tree Search in Havannah. Com-
puters and Games (eds. H.J. van den Herik, H. Iida, and A. Plaat), Vol. 6515
of LNCS, pp. 105–115, Springer. [37]

Love, Nathaniel, Hinrichs, Timothy, and Genesereth, Michael (2006). General Game
Playing: Game Description Language Specification. Technical Report LG-2006-
01, Stanford Logic Group, Stanford University, Stanford, CA.[9, 12, 51, 52]

Lucas, Simon M., Liu, Jialin, and Perez-Liebana, Diego (2018). The N-Tuple Bandit
Evolutionary Algorithm for Game Agent Optimisation. 2018 IEEE Congress on
Evolutionary Computation (CEC), pp. 221–229, IEEE.[124, 128, 138]

Lucas, Simon M., Liu, Jialin, Bravi, Ivan, Gaina, Raluca D., Woodward, John,
Volz, Vanessa, and Perez-Liebana, Diego (2019). Efficient Evolutionary Meth-
ods for Game Agent Optimisation: Model-Based is Best. arXiv preprint
arXiv:1901.00723. [168, 209]

Mallett, Jeff and Lefler, Mark (1998). Zillions of Games. Available online at:
www.zillions-of-games.com.[8]

Marecki, Janusz, Tesauro, Gerry, and Segal, Richard (2012). Playing Repeated
Stackelberg Games with Unknown Opponents. 11th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 821–828.[271]

Marks, Christopher, Darken, Christian, Buss, Arnie, Lin, Kyle, and Alt, Jonathan
(2013). Mission Command Analysis Using Monte Carlo Tree Search. Technical
Report TRAC-M-TR-13-050, TRADOC Analysis Center, Monterey, CA.[271]

Méhat, Jean and Cazenave, Tristan (2010). Ary, a General Game Playing Program.
XIIIth Board Games Studies Colloquium, Paris, France. [58]

Mendes, Andre, Togelius, Julian, and Nealen, Andy (2016). Hyper-Heuristic General
Video Game Playing. 2016 IEEE Conference on Computational Intelligence and
Games (CIG), pp. 94–101, IEEE.[125, 210, 211]

224 References

Metropolis, Nicholas and Ulam, Stanislaw (1949). The Monte Carlo Method. Journal
of the American Statistical Association, Vol. 44, No. 247, pp. 335–341. [20]

Mirheli, Amir and Hajibabai, Leila (2019). Utilization Management and Pricing of
Parking Facilities Under Uncertain Demand and User Decisions. IEEE Trans-
actions on Intelligent Transportation Systems. In press. [271]

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A., Veness,
Joel, Bellemare, Marc G., Graves, Alex, Riedmiller, Martin, Fidjeland, An-
dreas K., Ostrovski, Georg, et al. (2015). Human-Level Control Through Deep
Reinforcement Learning. Nature, Vol. 518, No. 7540, pp. 529–533. [9]

Müller, Martin (2002). Computer Go. Artificial Intelligence, Vol. 134, Nos. 1–2, pp.
145–179. [5]

Murray, Harold James Ruthven (1952). A History of Board-Games Other Than
Chess. Oxford University Press, Oxford. [2]

Nelson, Mark J. (2016). Investigating Vanilla MCTS Scaling on the GVG-AI Game
Corpus. 2016 IEEE Conference on Computational Intelligence and Games
(CIG), pp. 403–409, IEEE.[149]

Neumann, John von and Morgenstern, Oskar (1944). Theory of Games and Economic
Behavior. Princeton University Press, Princeton, NJ, USA.[5, 10]

Nijssen, J. (Pim) A.M. (2013). Monte-Carlo Tree Search for Multi-Player Games.
Ph.D. thesis, Department of Knowledge Engineering, Maastricht University,
Maastricht, The Netherlands. [108]

Nijssen, J. (Pim) A.M. and Winands, Mark H.M. (2011). Enhancements for Multi-
Player Monte-Carlo Tree Search. Computers and Games (eds. H.J. van den
Herik, H. Iida, and A. Plaat), Vol. 6515 of LNCS, pp. 238–249, Springer. [13,
37, 103, 108, 124, 204]

Ontañón, Santiago (2013). The Combinatorial Multi-Armed Bandit Problem and
Its Application to Real-Time Strategy Games. Ninth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE) (eds. G. Sukthankar and
I. Horswill), pp. 58–64, AAAI Press. [124, 128, 129, 132]

Ontañón, Santiago (2017). Combinatorial Multi-Armed Bandits for Real-Time Strat-
egy Games. Journal of Artificial Intelligence Research, Vol. 58, pp. 665–702.
[124, 128, 132]

Ontañón, Santiago, Synnaeve, Gabriel, Uriarte, Alberto, Richoux, Florian,
Churchill, David, and Preuss, Mike (2013). A Survey of Real-Time Strategy
Game AI Research and Competition in StarCraft. IEEE Transactions on Com-
putational Intelligence and AI in Games, Vol. 5, No. 4, pp. 293–311. [7, 145]

OpenAI (2018). Gym Retro. Available online at: https://github.com/openai/retro.
[10]

References 225

Palay, Andrew J. (1983). Searching with Probabilities. Ph.D. thesis, Department of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.[42]

Parlett, David (2018). History of Board Games. Echo Point Books and Media. [2]

Patten, Timothy, Martens, Wolfram, and Fitch, Robert (2018). Monte Carlo Plan-
ning for Active Object Classification. Autonomous Robots, Vol. 42, No. 2, pp.
391–421. [270]

Pell, Barney (1993). Strategy Generation and Evaluation for Meta-Game Playing.
Ph.D. thesis, Trinity College, University of Cambridge, Cambridge, England.
[8]

Pepels, Tom, Winands, Mark H.M., and Lanctot, Marc (2014). Real-Time Monte
Carlo Tree Search in Ms Pac-Man. IEEE Transactions on Computational Intel-
ligence and AI in games, Vol. 6, No. 3, pp. 245–257. [11, 47, 48]

Perez-Liebana, Diego (2018). The GVG-AI Competition Framework. https://
github.com/GAIGResearch/GVGAI. [64, 149, 177]

Perez-Liebana, Diego, Samothrakis, Spyridon, and Lucas, Simon M. (2014).
Knowledge-Based Fast Evolutionary MCTS for General Video Game Playing.
2014 IEEE Conference on Computational Intelligence and Games (CIG), pp.
68–75, IEEE.[68]

Perez-Liebana, Diego, Dieskau, Jens, Hunermund, Martin, Mostaghim, Sanaz, and
Lucas, Simon M. (2015). Open Loop Search for General Video Game Playing.
2015 Annual Conference on Genetic and Evolutionary Computation (GECCO),
pp. 337–344, ACM.[27]

Perez-Liebana, Diego, Samothrakis, Spyridon, Togelius, Julian, Schaul, Tom, Lu-
cas, Simon M., Couëtoux, Adrien, Lee, Jerry, Lim, Chong-U, and Thompson,
Tommy (2016). The 2014 General Video Game Playing Competition. IEEE
Transactions on Computational Intelligence and AI in Games, Vol. 8, No. 3,
pp. 229–243. [1, 10, 11, 27, 64, 65, 66, 149, 177]

Perez-Liebana, Diego, Stephenson, Matthew, Gaina, Raluca D., Renz, Jochen, and
Lucas, Simon M. (2017). Introducing Real World Physics and Macro-Actions to
General Video Game AI. 2017 IEEE Conference on Computational Intelligence
and Games (CIG), pp. 248–255, IEEE.[61]

Perez-Liebana, Diego, Liu, Jialin, Khalifa, Ahmed, Gaina, Raluca D., Togelius,
Julian, and Lucas, Simon M. (2018). General Video Game AI: a Multi-Track
Framework for Evaluating Agents, Games and Content Generation Algorithms.
arXiv preprint arXiv:1802.10363. [27, 61, 68]

Perick, Pierre, St-Pierre, David L., Maes, Francis, and Ernst, Damien (2012). Com-
parison of Different Selection Strategies in Monte-Carlo Tree Search for the
Game of Tron. 2012 IEEE Conference on Computational Intelligence and Games
(CIG), pp. 242–249, IEEE.[35]

226 References

Piccione, Peter A. (1980). In Search of the Meaning of Senet. Archaeology, Vol. 33,
No. 4, pp. 55–58. [2]

Piette, Éric (2016). General Game Playing. Ph.D. thesis, Université d’Artois, France.
[58]

Piette, Éric, Soemers, Dennis J.N.J., Stephenson, Matthew, Sironi, Chiara F.,
Winands, Mark H.M., and Browne, Cameron (2019). Ludii-The Ludemic Gen-
eral Game System. arXiv preprint arXiv:1905.05013. [9]

Pinheiro, Miguel A., Kybic, Jan, and Fua, Pascal (2017). Geometric Graph Matching
Using Monte Carlo Tree Search. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 39, No. 11, pp. 2171–2185. [270]

Pitrat, Jacques (1968). Realization of a General Game-Playing Program. IFIP
Congress, Vol. 2, pp. 1570–1574. [8]

Powley, Edward J., Whitehouse, Daniel, and Cowling, Peter I. (2013). Bandits All
the Way Down: UCB1 as a Simulation Policy in Monte Carlo Tree Search.
2013 IEEE Conference on Computational Intelligence in Games (CIG), pp. 81–
88, IEEE.[39, 40]

Powley, Edward J., Cowling, Peter I., and Whitehouse, Daniel (2014). Information
Capture and Reuse Strategies in Monte Carlo Tree Search, with Applications
to Games of Hidden Information. Artificial Intelligence, Vol. 217, pp. 92–116.
[40]

Qian, Yundi, Haskell, William B., Jiang, Albert Xin, and Tambe, Milind (2014).
Online Planning for Optimal Protector Strategies in Resource Conservation
Games. 2014 International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pp. 733–740. [271]

Rimmel, Arpad, Teytaud, Fabien, and Teytaud, Olivier (2011). Biasing Monte-Carlo
Simulations Through RAVE Values. Computers and Games (eds. H.J. van den
Herik, H. Iida, and A. Plaat), Vol. 6515 of LNCS, pp. 59–68, Springer. [37]

Robilliard, Denis, Fonlupt, Cyril, and Teytaud, Fabien (2014). Monte-Carlo Tree
Search for the Game of “7 Wonders”. Computer Games (eds. T. Cazenave,
M.H.M. Winands, and Y. Björnsson), Vol. 504 of CCIS, pp. 64–77, Springer.
[12, 69, 71]

Roelofs, Gijs-Jan (2015). Action Space Representation in Combinatorial Multi-
Armed Bandits. M.Sc. thesis, Department of Knowledge Engineering, Maas-
tricht University, Maastricht, The Netherlands. [124, 128, 130]

Roelofs, Gijs-Jan (2017). Pitfalls and Solutions When Using Monte Carlo Tree
Search for Strategy and Tactical Games. Game AI Pro 3: Collected Wisdom of
Game AI Professionals (ed. S. Rabin), pp. 343–354, CRC Press. [124, 128, 130]

References 227

Rohlfshagen, Philipp and Lucas, Simon M. (2011). Ms Pac-Man versus Ghost Team
CEC 2011 Competition. 2011 IEEE Congress on Evolutionary Computation
(CEC), pp. 70–77, IEEE.[7]

Rohlfshagen, Philipp, Liu, Jialin, Perez-Liebana, Diego, and Lucas, Simon M.
(2018). Pac-Man Conquers Academia: Two Decades of Research Using a Classic
Arcade Game. IEEE Transactions on Games, Vol. 10, No. 3, pp. 233–256. [7]

Samothrakis, Spyridon, Robles, David, and Lucas, Simon M. (2010). A UCT Agent
for Tron: Initial Investigations. 2010 IEEE Conference on Computational In-
telligence and Games (CIG), pp. 365–371, IEEE.[34]

Samothrakis, Spyridon, Roberts, Samuel A., Perez, Diego, and Lucas, Simon M.
(2014). Rolling Horizon Methods for Games with Continuous States and Ac-
tions. 2014 IEEE Conference on Computational Intelligence and Games, pp.
224–231, IEEE.[142]

Samuel, Arthur L. (1959). Some Studies in Machine Learning Using the Game of
Checkers. IBM Journal of Research and Development, Vol. 3, No. 3, pp. 210–
229. [5]

Sanselone, Maxime, Sanchez, Stéphane, Sanza, Cédric, Panzoli, David, and Duthen,
Yves (2014). Constrained Control of Non-Playing Characters Using Monte Carlo
Tree Search. 2014 IEEE Conference on Computational Intelligence and Games
(CIG), pp. 208–215, IEEE.[270]

Schaeffer, Jonathan, Lake, Robert, Lu, Paul, and Bryant, Martin (1996). Chinook
the World Man-Machine Checkers Champion. AI Magazine, Vol. 17, No. 1, pp.
21–29. [5]

Schaeffer, Jonathan, Burch, Neil, Björnsson, Yngvi, Kishimoto, Akihiro, Müller,
Martin, Lake, Robert, Lu, Paul, and Sutphen, Steve (2007). Checkers is Solved.
Science, Vol. 317, No. 5844, pp. 1518–1522. [5]

Schaul, Tom (2013). A Video Game Description Language for Model-Based or In-
teractive Learning. 2013 IEEE Conference on Computational Intelligence in
Games (CIG), pp. 193–200, IEEE.[9, 61]

Schaul, Tom, Togelius, Julian, and Schmidhuber, Jürgen (2011). Measuring Intelli-
gence Through Games. arXiv preprint arXiv:1109.1314. [1]

Schiffel, Stephan (2011). Knowledge-Based General Game Playing. Ph.D. thesis,
Department of Computer Science, Technische Universität Dresden, Dresden,
Germany. [56]

Schiffel, Stephan (2017). Grounding GDL Game Descriptions. Computer
Games (eds. T. Cazenave, M. Winands, S. Edelkamp, S. Schiffel, M. Thielscher,
and J. Togelius), Vol. 705 of CCIS, pp. 152–164. Springer. [73]

228 References

Schiffel, Stephan and Björnsson, Yngvi (2014). Efficiency of GDL Reasoners. IEEE
Transactions on Computational Intelligence and AI in Games, Vol. 6, No. 4, pp.
343–354. [12, 72, 75, 86, 93]

Schiffel, Stephan and Thielscher, Michael (2007). Fluxplayer: A Successful Gen-
eral Game Player. Twenty-Second AAAI Conference on Artificial Intelligence
(AAAI), pp. 1191–1196, AAAI Press. [58]

Schkufza, Eric, Love, Nathaniel, and Genesereth, Michael R. (2008). Propositional
Automata and Cell Automata: Representational Frameworks for Discrete Dy-
namic Systems. AI 2008: Advances in Artificial Intelligence (eds. W. Wobcke
and M. Zhang), Vol. 5360 of LNAI, pp. 56–66, Springer. [13, 71, 72, 204]

Schofield, Michael and Thielscher, Michael (2015). Lifting Model Sampling for Gen-
eral Game Playing to Incomplete-Information Models. Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI), pp. 3585–3591, AAAI Press.[210]

Schreiber, Sam (2016). Games - Base Repository. http://games.ggp.org/base/.
[86, 88, 109, 147, 176]

Schreiber, Sam (2018). Games - Stanford Gamemaster. http://games.ggp.org/
stanford/. [98]

Schreiber, Sam and Landau, Alex (2016). The General Game Playing Base Package.
https://github.com/ggp-org/ggp-base. [59, 72, 75, 76]

Segler, Marwin H.S., Preuss, Mike, and Waller, Mark P. (2018). Learning to Plan
Chemical Syntheses. Nature, Vol. 555, No. 7698, pp. 604–610. [12, 271]

Shafiei, Mohammad, Sturtevant, Nathan R., and Schaeffer, Jonathan (2009). Com-
paring UCT versus CFR in Simultaneous Games. IJCAI Workshop on General
Intelligence in Game-Playing Agents (GIGA) (eds. Y. Björnsson, P. Stone, and
M. Thielscher), pp. 75–82. [35]

Shannon, C.E. (1950). Programming a Computer for Playing Chess. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 41,
No. 314, pp. 256–275. [5]

Sheppard, Brian (2002). World-Championship-Caliber Scrabble. Artificial Intelli-
gence, Vol. 134, Nos. 1–2, pp. 241–275. [11]

Shleyfman, Alexander, Komenda, Antonín, and Domshlak, Carmel (2014). On Com-
binatorial Actions and CMABs with Linear Side Information. 21st European
Conference on Artificial Intelligence (ECAI), pp. 825–830, IOS Press. [124, 128,
134]

Silver, David, Huang, Aja, Maddison, Chris J., Guez, Arthur, Sifre, Laurent,
Driessche, George van den, Schrittwieser, Julian, Antonoglou, Ioannis, Pan-
neershelvam, Veda, Lanctot, Marc, Dieleman, Sander, Grewe, Dominik, Nham,
John, Kalchbrenner, Nal, Sutskever, Ilya, Lillicrap, Timothy, Leach, Madeleine,

References 229

Kavukcuoglu, Koray, Graepel, Thore, and Hassabis, Demis (2016). Mastering
the Game of Go with Deep Neural Networks and Tree Search. Nature, Vol. 529,
No. 7587, pp. 484–503. [6]

Silver, David, Schrittwieser, Julian, Simonyan, Karen, Antonoglou, Ioannis, Huang,
Aja, Guez, Arthur, Hubert, Thomas, Baker, Lucas, Lai, Matthew, Bolton,
Adrian, Chen, Yutian, Lillicrap, Timothy, Hui, Fan, Sifre, Laurent, Driess-
che, George van den, Graepel, Thore, and Hassabis, Demis (2017). Mastering
the Game of Go without Human Knowledge. Nature, Vol. 550, No. 7676, pp.
354–359. [6]

Silver, David, Hubert, Thomas, Schrittwieser, Julian, Antonoglou, Ioannis, Lai,
Matthew, Guez, Arthur, Lanctot, Marc, Sifre, Laurent, Kumaran, Dharshan,
Graepel, Thore, Lillicrap, Timothy, Simonyan, Karen, and Hassabis, Demis
(2018). A General Reinforcement Learning Algorithm that Masters Chess,
Shogi, and Go through Self-Play. Science, Vol. 362, No. 6419, pp. 1140–1144.
[6]

Sironi, Chiara F. and Winands, Mark H.M. (2016). Comparison of Rapid Action
Value Estimation Variants for General Game Playing. 2016 IEEE Conference
on Computational Intelligence and Games (CIG), pp. 309–316, IEEE.[17, 103]

Sironi, Chiara F. and Winands, Mark H.M. (2017). Optimizing Propositional Net-
works. Computer Games (eds. T. Cazenave, M. Winands, S. Edelkamp, S. Schif-
fel, M. Thielscher, and J. Togelius), Vol. 705 of CCIS, pp. 133–151. Springer.
[51, 71]

Sironi, Chiara F. and Winands, Mark H.M. (2018a). On-Line Parameter Tuning for
Monte-Carlo Tree Search in General Game Playing. Computer Games (eds. T.
Cazenave, M.H.M. Winands, and A. Saffidine), Vol. 818, pp. 75–95, Springer.
[123]

Sironi, Chiara F. and Winands, Mark H.M. (2018b). Analysis of Self-Adaptive Monte
Carlo Tree Search in General Video Game Playing. 2018 IEEE Conference on
Computational Intelligence and Games (CIG), pp. 397–400, IEEE.[123, 171]

Sironi, Chiara F. and Winands, Mark H.M. (2018c). On-Line Parameter Tuning for
Monte-Carlo Tree Search in General Game Playing. 30th Benelux Conference
on Artificial Intelligence (BNAIC), pp. 235–236. [123]

Sironi, Chiara F. and Winands, Mark H.M. (2019). Comparing Randomization
Strategies for Search-Control Parameters in MCTS. 2019 IEEE Conference on
Games (COG), IEEE.[171]

Sironi, Chiara F., Liu, Jialin, Perez-Liebana, Diego, Gaina, Raluca D., Bravi, Ivan,
Lucas, Simon M., and Winands, Mark H.M. (2018). Self-Adaptive MCTS for
General Video Game Playing. Applications of Evolutionary Computation (eds.
K. Sim and P. Kaufmann), Vol. 10784 of LNCS, pp. 358–375, Springer. [123]

230 References

Sironi, Chiara F., Liu, Jialin, andWinands, Mark H.M. (2019). Self-Adaptive Monte-
Carlo Tree Search in General Game Playing. IEEE Transactions on Games. In
press. [17, 123]

Siwek, Cezary, Kowalski, Jakub, Sironi, Chiara F., and Winands, Mark H.M. (2018).
Implementing Propositional Networks on FPGA. AI 2018: Advances in Artifi-
cial Intelligence (eds. T. Mitrovic, B. Xue, and X. Li), Vol. 11320 of LNCS, pp.
133–145, Springer. [71]

Soemers, Dennis J.N.J., Sironi, Chiara F., Schuster, Torsten, and Winands,
Mark H.M. (2016). Enhancements for Real-Time Monte-Carlo Tree Search in
General Video Game Playing. 2016 IEEE Conference on Computational Intel-
ligence and Games (CIG), pp. 436–443, IEEE. [13, 17, 37, 40, 47, 51, 66, 67,
123]

Song, Yu and Gong, Shengping (2019). Solar-Sail Trajectory Design for Multiple
Near-Earth Asteroid Exploration Based on Deep Neural Networks. Aerospace
Science and Technology, Vol. 91, pp. 28–40. [271]

Steinhauer, Janik (2010). Monte-Carlo Twixt. M.Sc. thesis, Department of Knowl-
edge Engineering, Maastricht University, Maastricht, The Netherlands. [47]

Storn, Rainer and Price, Kenneth (1997). Differential Evolution–a Simple and Ef-
ficient Heuristic for Global Optimization over Continuous Spaces. Journal of
Global Optimization, Vol. 11, No. 4, pp. 341–359. [168, 209]

Sturtevant, Nathan R. (2008). An Analysis of UCT in Multi-Player Games. ICGA
Journal, Vol. 31, No. 4, pp. 195–208. [87, 110]

Sutton, Richard S. and Barto, Andrew G. (1998). Reinforcement Learning: An
Introduction. MIT Press. [24]

Świechowski, Maciej and Mańdziuk, Jacek (2014). Self-Adaptation of Playing Strate-
gies in General Game Playing. IEEE Transactions on Computational Intelli-
gence and AI in Games, Vol. 6, No. 4, pp. 367–381. [125, 127]

Tak, Mandy J.W., Winands, Mark H.M., and Björnsson, Yngvi (2012). N-Grams and
the Last-Good-Reply Policy Applied in General Game Playing. IEEE Transac-
tions on Computational Intelligence and AI in Games, Vol. 4, No. 2, pp. 73–83.
[13, 24, 39, 40, 110, 123, 255]

Tak, Mandy J.W., Lanctot, Marc, and Winands, Mark H.M. (2014a). Monte Carlo
Tree Search Variants for Simultaneous Move Games. 2014 IEEE Conference on
Computational Intelligence and Games (CIG), pp. 232–239, IEEE. [32, 34, 35,
59, 124]

Tak, Mandy J.W., Winands, Mark H.M., and Björnsson, Yngvi (2014b). Decaying
Simulation Strategies. IEEE Transactions on Computational Intelligence and
AI in Games, Vol. 6, No. 4, pp. 395–406. [39, 40, 41, 109, 110]

References 231

Tesauro, Gerald (1992). Practical Issues in Temporal Difference Learning. Machine
Learning, Vol. 8, Nos. 3–4, pp. 257–277. [5]

Tesauro, Gerald (1995). Temporal Difference Learning and TD-Gammon. Commu-
nications of the ACM, Vol. 38, No. 3, pp. 58–68. [5]

Teter, Michael, Buss, Arnold, Darken, Christian, and Baez, Ricardo (2014). Im-
plementation of Monte Carlo Tree Search (MCTS) Algorithm in COMBATXXI
using JDAFS. Technical Report TRAC-M-TR-14-031, TRADOC Analysis Cen-
ter, Monterey, CA.[271]

Teytaud, Fabien and Teytaud, Olivier (2010). Creating an Upper-Confidence-Tree
Program for Havannah. Advances in Computer Games (eds. H.J. van den Herik
and P. Spronck), Vol. 6048 of LNCS, pp. 65–74. Springer. [11, 37, 106]

Thielscher, Michael (2011). GDL-II. KI-Künstliche Intelligenz, Vol. 25, No. 1, pp.
63–66. [52, 210]

Thielscher, Michael (2017). GDL-III: A Description Language for Epistemic Gen-
eral Game Playing. Twenty-Sixth International Joint Conference on Artificial
Intelligence (IJCAI) (ed. C. Sierra), pp. 1276–1282, AAAI Press. [52]

Thompson, Tommy (2018). Revolutionary Warfare | The AI of Total War (Part
3). https://www.gamasutra.com/blogs/TommyThompson/20180212/314399/
Revolutionary_Warfare__The_AI_of_Total_War_Part_3.php. [270]

Togelius, Julian, Yannakakis, Georgios N., Stanley, Kenneth O., and Browne,
Cameron (2011). Search-Based Procedural Content Generation: A Taxonomy
and Survey. IEEE Transactions on Computational Intelligence and AI in Games,
Vol. 3, No. 3, pp. 172–186. [6]

Tom, David and Müller, Martin (2011). Computational Experiments with the RAVE
Heuristic. Computers and Games (eds. H.J. van den Herik, H. Iida, and A.
Plaat), Vol. 6515 of LNCS, pp. 69–80, Springer. [37]

Trunda, Otakar and Barták, Roman (2013). Using Monte Carlo Tree Search to Solve
Planning Problems in Transportation Domains. Advances in Soft Computing
and Its Applications (eds. F. Castro, A. Gelbukh, and M. González), Vol. 8266
of LNCS, pp. 435–449, Springer. [12, 271]

Turing, Alan M. (1953). Digital Computers Applied to Games. Faster Than
Thought (ed. B.V. Bowden), pp. 286–297, Pitman Publishing, London, Eng-
land. [5]

Van Eyck, Jelle, Ramon, Jan, Guiza, Fabian, Meyfroidt, Geert, Bruynooghe, Mau-
rice, and Berghe, Greet Van den (2013). Guided Monte Carlo Tree Search for
Planning in Learned Environments. Asian Conference on Machine Learning
(ACML) (eds. C.S. Ong and T.B. Ho), Vol. 29 of JMLR Workshop and Confer-
ence Proceedings, pp. 33–47. [270]

232 References

Vinyals, Oriol, Babuschkin, Igor, Chung, Junyoung, Mathieu, Michael, Jader-
berg, Max, Czarnecki, Wojciech M., Dudzik, Andrew, Huang, Aja, Georgiev,
Petko, Powell, Richard, Ewalds, Timo, Horgan, Dan, Kroiss, Manuel, Dani-
helka, Ivo, Agapiou, John, Oh, Junhyuk, Dalibard, Valentin, Choi, David,
Sifre, Laurent, Sulsky, Yury, Vezhnevets, Sasha, Molloy, James, Cai, Trevor,
Budden, David, Paine, Tom, Gulcehre, Caglar, Wang, Ziyu, Pfaff, Tobias,
Pohlen, Toby, Wu, Yuhuai, Yogatama, Dani, Cohen, Julia, McKinney, Katrina,
Smith, Oliver, Schaul, Tom, Lillicrap, Timothy, Apps, Chris, Kavukcuoglu,
Koray, Hassabis, Demis, and Silver, David (2019). AlphaStar: Mastering
the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/. [7]

Wang, Yizao and Gelly, Sylvain (2007). Modifications of UCT and Sequence-like
Simulations for Monte-Carlo Go. 2007 IEEE Symposium on Computational
Intelligence and Games, pp. 175–182, IEEE.[36]

Whitehouse, Daniel, Cowling, Peter I., Powley, Edward J., and Rollason, Jeff (2013).
Integrating Monte Carlo Tree Search with Knowledge-Based Methods to Create
Engaging Play in a Commercial Mobile Game. Ninth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE) (eds. G. Sukthankar and
I. Horswill), pp. 100–106, AAAI Press. [269]

Williams, Piers R., Perez-Liebana, Diego, and Lucas, Simon M. (2016). Ms. Pac-
Man versus Ghost Team CIG 2016 Competition. 2016 IEEE Conference on
Computational Intelligence and Games (CIG), pp. 420–426, IEEE.[7]

Wimmenauer, Florian (2019). Monte-Carlo Search for Leveraging Performance of
Unknown Job Shop Scheduling Heuristics. M.Sc. thesis, Department of Data
Science and Knowledge Engineering, Maastricht University, Maastricht, The
Netherlands. [191, 271]

Winands, Mark H.M., Björnsson, Yngvi, and Saito, Jahn-Takeshi (2010). Monte
Carlo Tree Search in Lines of Action. IEEE Transactions on Computational
Intelligence and AI in Games, Vol. 2, No. 4, pp. 239–250. [11, 47]

Yajima, Takayuki, Hashimoto, Tsuyoshi, Matsui, Toshiki, Hashimoto, Junichi, and
Spoerer, Kristian (2011). Node-Expansion Operators for the UCT Algorithm.
Computers and Games (eds. H.J. van den Herik, H. Iida, and A. Plaat), Vol.
6515 of LNCS, pp. 116–123, Springer. [24]

Yannakakis, Georgios N. and Togelius, Julian (2015). A Panorama of Artificial and
Computational Intelligence in Games. IEEE Transactions on Computational
Intelligence and AI in Games, Vol. 7, No. 4, pp. 317–335. [1]

Yannakakis, Georgios N. and Togelius, Julian (2018). Artificial Intelligence and
Games. Springer. [1, 6, 9]

Zech, Philipp, Xiong, Hanchen, and Piater, Justus (2015). Rotation Optimization
on the Unit Quaternion Manifold and its Application for Robotic Grasping.
IMA Conference on Mathematics of Robotics. IMA. [270]

References 233

Zhu, George, Lizotte, Dan, and Hoey, Jesse (2014). Scalable Approximate Policies
for Markov Decision Process Models of Hospital Elective Admissions. Artificial
Intelligence in Medicine, Vol. 6, No. 1, pp. 21–34. [12, 270]

Zobrist, Albert L. (1970). A New Hashing Method with Applications for Game
Playing. Technical Report 88, Computer Science Department, The University
of Wisconsin. Reprinted (1990) in ICCA Journal, Vol. 13, No. 2, pp. 69–73.[43]

Appendix A

Example of Game Descriptions

This appendix provides examples of game descriptions for the test domains used in
this thesis. First, Section A.1 gives an example of GDL game description for Tic
Tac Toe. Subsequently, Section A.2 gives an example of VGDL game description for
Zelda.

A.1 GDL Description for Tic Tac Toe

Below is the complete GDL description of the game Tic Tac Toe.1 Semicolons in
GDL are used to identify the entire line as a comment.

;;
;;; Tictactoe
;;

;;
;; Roles
;;

(role xplayer)
(role oplayer)

;;
;; Base & Input
;;

(index 1) (index 2) (index 3)
(<= (base (cell ?x ?y b)) (index ?x) (index ?y))
(<= (base (cell ?x ?y x)) (index ?x) (index ?y))
(<= (base (cell ?x ?y o)) (index ?x) (index ?y))

1Description taken from the Stanford GGP game repository: http://games.ggp.org.

236 Appendix A: Example of Game Descriptions

(<= (base (control ?r)) (role ?r))

(<= (input ?r (mark ?x ?y)) (index ?x) (index ?y) (role ?r))
(<= (input ?r noop) (role ?r))

;;
;; Initial State
;;

(init (cell 1 1 b))
(init (cell 1 2 b))
(init (cell 1 3 b))
(init (cell 2 1 b))
(init (cell 2 2 b))
(init (cell 2 3 b))
(init (cell 3 1 b))
(init (cell 3 2 b))
(init (cell 3 3 b))
(init (control xplayer))

;;
;; Dynamic Components
;;

(<= (next (cell ?x ?y x))
(does xplayer (mark ?x ?y))
(true (cell ?x ?y b)))

(<= (next (cell ?x ?y o))
(does oplayer (mark ?x ?y))
(true (cell ?x ?y b)))

(<= (next (cell ?x ?y ?w))
(true (cell ?x ?y ?w))
(distinct ?w b))

(<= (next (cell ?x ?y b))
(does ?r (mark ?j ?k))
(true (cell ?x ?y b))
(or (distinct ?x ?j) (distinct ?y ?k)))

(<= (next (control xplayer))
(true (control oplayer)))

(<= (next (control oplayer))
(true (control xplayer)))

A.1 — GDL Description for Tic Tac Toe 237

;;

(<= (row ?x ?w)
(true (cell ?x 1 ?w))
(true (cell ?x 2 ?w))
(true (cell ?x 3 ?w)))

(<= (column ?y ?w)
(true (cell 1 ?y ?w))
(true (cell 2 ?y ?w))
(true (cell 3 ?y ?w)))

(<= (diagonal ?w)
(true (cell 1 1 ?w))
(true (cell 2 2 ?w))
(true (cell 3 3 ?w)))

(<= (diagonal ?w)
(true (cell 1 3 ?w))
(true (cell 2 2 ?w))
(true (cell 3 1 ?w)))

(<= (line ?w) (row ?x ?w))
(<= (line ?w) (column ?y ?w))
(<= (line ?w) (diagonal ?w))

(<= open (true (cell ?x ?y b)))

;;;

(<= (legal ?r (mark ?x ?y))
(true (cell ?x ?y b))
(true (control ?r)))

(<= (legal xplayer noop) (true (control oplayer)))

(<= (legal oplayer noop) (true (control xplayer)))

;;;

(<= (goal xplayer 100) (line x))

(<= (goal xplayer 50)
(not (line x))
(not (line o))

238 Appendix A: Example of Game Descriptions

(not open))

(<= (goal xplayer 0) (line o))

(<= (goal oplayer 100) (line o))

(<= (goal oplayer 50)
(not (line x))
(not (line o))
(not open))

(<= (goal oplayer 0) (line x))

;;;

(<= terminal (line x))

(<= terminal (line o))

(<= terminal (not open))

A.2 VGDL Game Description for Zelda

Below is the complete VGDL game description of the game of Zelda.2 In this game,
the player must navigate a maze to find a key. This key opens a door through which
the player can exit the maze. Enemies are present in the maze and the player is
equipped with a sword to kill them. If the player exits the maze she wins, while if
she is hit by an enemy she loses.

BasicGame
SpriteSet

floor > Immovable randomtiling=0.9 img=oryx/floor3 hidden=True
goal > Door color=GREEN img=oryx/doorclosed1
key > Immovable color=ORANGE img=oryx/key2
sword > OrientedFlicker limit=5 singleton=True img=oryx/slash1
movable >

avatar > ShootAvatar stype=sword frameRate=8
nokey > img=oryx/swordman1
withkey > color=ORANGE img=oryx/swordmankey1

enemy >
monsterQuick > RandomNPC cooldown=2 cons=6 img=oryx/bat1
monsterNormal > RandomNPC cooldown=4 cons=8 img=oryx/spider2
monsterSlow > RandomNPC cooldown=8 cons=12 img=oryx/scorpion1

wall > Immovable autotiling=true img=oryx/wall3

2Description taken from the GVG-AI framework: https://github.com/GAIGResearch/GVGAI.

A.2 — VGDL Game Description for Zelda 239

LevelMapping
g > floor goal
+ > floor key
A > floor nokey
1 > floor monsterQuick
2 > floor monsterNormal
3 > floor monsterSlow
w > wall
. > floor

InteractionSet
movable wall > stepBack
nokey goal > stepBack
goal withkey > killSprite scoreChange=1
enemy sword > killSprite scoreChange=2
enemy enemy > stepBack
avatar enemy > killSprite scoreChange=-1
nokey key > transformTo stype=withkey scoreChange=1 killSecond=True

TerminationSet
SpriteCounter stype=goal win=True
SpriteCounter stype=avatar win=False

240 Appendix A: Example of Game Descriptions

Appendix B

Game Rules

This appendix provides the characteristics and the rules of all the games used in the
experiments presented in this thesis. Rules of the games tested for the Stanford GGP
project are given in Section B.1, while rules of the games tested for the GVG-AI
project are given in Section B.2.

B.1 Games for the Stanford GGP Project

Below are the rules of the games of the Stanford GGP project that are used in the
experiments presented in this thesis. All these games are turn-based, with perfect
information and deterministic. Table B.1 reports for each game the number of
players, whether they have simultaneous moves and whether they have constant-
sum payoffs. Note that payoffs (goals) is GDL are required to be consistently defined
only for terminal states, therefore in Table B.1 a game is classified as constant-sum if
terminal payoffs have a constant sum. However, for some of the constant-sum games,
GDL defines intermediate payoffs that do not have constant sum. Such games are
identified with the symbol *.

3D Tic Tac Toe. This game is a variant of Tic Tac Toe played on a 4×4×4 cube,
where the goal of each player is to align four of her marks in a row (in any
direction).

Amazons. This game is played on a 10×10 Chess board. Each player controls four
amazons. The players alternate moves, each of which consists of two parts.
First, the player moves one of her own amazons in a straight line on the board
(vertically, horizontally or diagonally), as a queen moves in chess. Second,
the amazon shoots an arrow from its landing square to another square. This
arrow can be shot in any orthogonal or diagonal direction, once again like the
movement of a queen in Chess. The square where the arrow lands can no
longer be used. Both an amazon and an arrow cannot cross or enter a square
occupied by either another amazon or a previously shot arrow. The last player
to be able to make a move wins.

242 Appendix B: Game Rules

Table B.1: Characteristics of the games of the Stanford GGP project used for the experi-
ments.

Game Players Simultaneous Constant-Sum
3D Tic Tac Toe 2 × X

Amazons 2 × X∗

Battle 2 X ×
Breakthrough 2 × X∗

Checkers 2 × X
Chin.Checkers1P 1 × n/a
Chin.Checkers2P 2 × ×
Chin.Checkers3P 3 × ×
Chin.Checkers4P 4 × ×
Chin.Checkers6P 6 × ×

Chinook 2 X ×
Connect Four 2 × X∗

Connect Five 2 × X
Horseshoe 2 × X∗

Joint Connect Four 2 X ×
Knightthrough 2 × X∗

Othello 2 × X∗

Pentago 2 × X∗

Quad 2 × X
Reversi 2 × X

Sheep and Wolf 2 × X
Skirmish 2 × ×

TTCC4 2P 2 × X
TTCC4 3P 3 × ×
Tic Tac Toe 2 × X∗

Zhadu 2 × X

Battle. This game is played on an 8×8 board. Each player has 20 pieces distributed
along two adjacent sides of the board, 12 are regular checkers and 8 are kings.
Checkers can move one square in any of the orthogonal directions, while kings
can move one square in any direction. At each step each player can chose if to
move a piece to an empty square, capture an opponent’s piece or defend one
of her pieces. If a player tries to capture a piece that is being defended, her
piece will be captured instead. The player that first captures 10 opponent’s
pieces wins.

Breakthrough. This game is played on an 8×8 board, where each player has 16
pawns placed in two lines on her side. Each pawn can move one square forward
or one square diagonally forward, and can only capture diagonally forward.
Players move alternately and the first that reaches the opponent’s side with
one of her pawns wins.

B.1 — Games for the Stanford GGP Project 243

Checkers. This game is played on an 8×8 board with alternating colored squares.
Each player starts with 12 pieces on the black squares of one side of the board.
Players alternately move one of their pieces. A piece in a turn can be move
diagonally forward by one square or can be used to capture adjacent opponent’s
pieces by jumping over them diagonally forward. Multiple captures are allowed
in a single turn. When a piece reaches the opposite side of the board it is turned
into a king, which can also move and capture backwards. The player that is
left with no pieces or cannot move loses the game.

Chinese Checkers with 1, 2, 3, 4 or 6 players. This game is played on a hex-
agram board. Each player has her pieces placed in one corner of the board.
The traditional size of the board has space for 10 pieces in each corner, while
the GDL descriptions used in this thesis define a smaller board that enables
each player to only have three pieces in her corner. Players move alternately
and on their turn they can either move one of their pieces to an adjacent empty
space on the board or make it perform a chain of jumps over adjacent pieces
(either own pieces or of the opponent). The first player that moves all of her
pieces in the opposite corner of the board wins.

Chinook. This game is played on an 8×8 board with alternating colored squares
and wrapped around vertically to form a cylinder. Chinook consists of two
independent games, one played on the even and one on the odd squares of
the board. The players start with their pieces on opposite sides of the board.
Both players move simultaneously in each turn, alternating in such a way
that whenever a player is moving on even squares the other is moving on odd
squares. The pieces, like in Checkers, can either move diagonally forward by
one square or capture an adjacent opponent’s piece by jumping over it in a
diagonal direction. Similarly to Breakthrough, the first player that reaches the
opposite side of the board with one of her pieces wins.

Connect Four. This game is played on a vertical grid, which is initially empty.
Alternating, the players drop one of their pieces from the top of the grid in
one of the columns. The first player that aligns four of her pieces horizontally,
vertically or diagonally wins the game.

Connect Five. This game is played on an 8×8 board. Two players alternate turns
placing one of their pieces on an empty square on the board. The first player
that places five of her pieces in a horizontal, vertical or diagonal line wins.

Horseshoe. This game is played on a graph with five nodes. Four nodes are con-
nected to form the shape of a horseshoe, while the remaining node is connected
to all other nodes. Each player has two pieces. Initially, the pieces of one player
are placed on the top nodes of the horseshoe and the pieces of the other player
are placed on the bottom nodes. Players move in turns. During their turn
they can move one of their pieces to an empty adjacent node. The goal of a
player is to move her pieces to block the opponent, leaving her without legal
moves. The game ends when one of the players cannot move anymore.

244 Appendix B: Game Rules

Joint Connect Four. This game consists in playing two games simultaneously,
Connect Four and Connect Four Suicide (the same as Connect Four, but a
player loses when four of her pieces are aligned). In each turn one player
plays on the Connect Four grid and one on the Connect Four Suicide grid,
alternating in subsequent turns. The first player to win any of the two games
wins.

Knightthrough. This game is similar to Breakthrough, but is played with chess
knights that can only play knight-type moves to advance on the board.

Othello/Reversi. This game is played on an 8×8 board. There are 64 identical
pieces called ‘disks’, which have a dark side and a light side. The game starts
with four disks placed in the middle of the board, two of each color connected
diagonally. The players place in turns one of the disks on the board, with the
color assigned to them facing up. A player can place a disk with her color next
to another disk with the opponent’s color only if there is another disk of her
color somewhere in a straight line (vertically, horizontally or diagonally) from
her disk and the opponent’s disk, with no empty spaces in between. After
placing the disk, all opponent’s disks in between the two player’s disks are
turned over changing the color. If a player has no place where to put her
piece, passes the turn. A player wins if all the disks on the board become of
her color or if most pieces on the board at the end of the game have her color.

Pentago. This game is played on a 6×6 board, divided into four 3×3 quadrants.
Taking turns, the players place a mark of their color on an empty square of
the board and then rotate one of the quadrants by 90 degrees, either clockwise
or counterclockwise. The first player that aligns vertically, horizontally or
diagonally five of her marks, either before or after performing a rotation in her
turn, wins the game. If all the squares of the board are marked and no line of
five marks is formed, the game ends in a draw.

Quad. The version of Quad used in this thesis is played on a 7×7 board with square
tiles. Each player has 12 pieces of her color, the quads, and 5 white pieces. In
her turn, a player can place on the empty tiles of the board any number of her
white pieces and one of her quads. After a player has placed a quad, her turn
ends. The first player that forms a square with four of her quads as vertexes
is the winner. A square might be formed also with edges that are not parallel
to the edges of the board. White pieces on the board cannot be used to form
a square, but are useful to block the opponent. There is also the possibility
that all quads are played, but no square is formed. In this situation, if the
player who was on the move is only missing a quad to win, she is declared the
winner. Otherwise, the one who has the most white pieces left wins. If both
players have the same number of white pieces left the game is a draw.

Sheep and Wolf. This game is played on an 8×8 board. One player controls
four sheep, which are placed on the left side of the board and can only move
diagonally forward, and the other player controls the wolf, which is placed
on the right side of the board and can move diagonally both backwards and

B.2 — Games for the GVG-AI Project 245

forward. The game ends when either of the two players is left with no legal
moves or when the wolf is behind all the sheep. The wolf-player wins if at the
end of the game she can still move, otherwise the sheep-player wins.

Skirmish. This game is a variant of Chess played on an 8×8 board in which the
goal of each player is to capture as many pieces of the opponent as possible.
The game ends when one player has no remaining pieces on the board. The
final score of a player is a linear function of the number of opponent pieces
captured, with every piece worth approximately the same amount.

Tic-Tac-Chess-Checkers-Four (TTCC4) with 2 or 3 players. This game
takes elements from the games of Tic Tac Toe, Chess, Checkers and Connect
Four. It is played on a 5×5 board (plus the starting cells for the pieces).
Each player has three pieces that she can move on the board, a Chess pawn, a
Checkers king and a Chess knight. The movement of these pieces follows the
rules of the game they are taken from and according to these rules they can
also capture opponent’s pieces. During her turn, a player can choose whether
to move one of her pieces or drop a disc in one of the three central columns of
the board. The winner is the player that first manages to align three of her
pieces in the central 3×3 squares of the board.

Tic Tac Toe. This game played on a 3×3 board. The players alternate marking
one of the empty cells on the board with their symbol. The first player that
aligns three of its symbols vertically, horizontally or diagonally wins the game.
If all cells are marked but no line is formed, the game ends in a draw.

Zhadu. This game is played on a rhombus-shaped board divided into eight equi-
lateral triangles. Each player has five pieces with values 1, 2, 3, (1,2,3) and 4,
respectively. Each piece can move as many steps as specified by its value(s).
Each triangle on the board has four spaces that the pieces can occupy, one
in each corner and one in the center. For moving purposes, the center of a
triangle is adjacent to that triangle’s corners and a triangle’s corners are ad-
jacent to the corners of neighboring triangles. In the first phase of the game,
players alternately place one of their pieces in one of the allowed locations on
the board. In the second phase of the game, they alternately move one of their
pieces. Pieces cannot jump over other pieces, but can capture a piece when
moving to its location. The first captured piece determines the win condition
for the player. A player wins when the values of her first and last captured
pieces sums up to 4.

B.2 Games for the GVG-AI Project

Below are the rules of the games of the GVG-AI project that are used in the experi-
ments presented in this thesis. All these games are real-time, single-player and with
perfect information. Table B.2 reports for each game whether it is deterministic or
not.

246 Appendix B: Game Rules

Table B.2: Characteristics of the games of the GVG-AI project used for the experiments.

Game Deterministic
Aliens ×
Bait X

Butterflies ×
Camel Race ×

Chase ×
Chopper ×
Crossfire ×
Dig Dug ×
Escape X

Hungry Birds X
Infection ×

Intersection ×
Lemmings ×

Missile Command ×
Modality X

Plaque Attack ×
Roguelike ×
Sea Quest ×

Survive Zombies ×
Wait For Breakfast ×

Aliens. This game is similar to Space Invaders. The player in the bottom of the
screen shoots upwards at aliens that approach Earth. Aliens can shoot bombs
back at the avatar. The player loses if any alien touches her or hits her with
a bomb, and wins if all aliens are eliminated.

Bait. The objective of this game is to reach the door, collecting a key first. The
player can push boxes around to open paths. There are holes in the ground
that kill the player, but they can be filled with boxes (and both hole and box
disappear). The player can also collect mushrooms that give points.

Butterflies. The player must capture butterflies that move randomly around the
level. If a butterfly touches a cocoon, more butterflies are spawned. The player
wins if she collects all butterflies, but loses if all cocoons are opened.

Camel Race. The player must get to the finish line before any other camel does.
Depending on the level, there are some camels that proceed toward the goal
at a fixed speed and some that move around randomly.

Chase. The player must chase and kill scared goats that flee from her. If a goat
finds another goat’s corpse, it becomes angry and chases the player. The player
wins if all scared goats are dead, but loses if is hit by an angry goat.

B.2 — Games for the GVG-AI Project 247

Chopper. The objective is to avoid the tanks on the ground to destroy all satellites
floating in space. The tanks shoot missiles to the satellites, although they are
stopped if they hit a cloud in between. The player flies a helicopter at the
clouds levels, which can shoot at the tanks to destroy them.

Crossfire. The objective is to reach the exit of the level by avoiding the shots (with
random direction) of the multiple turrets in the level.

Dig Dug. The player must collect all gems and gold coins in the cave, digging its
way through it. There are also enemies in the level that kill the player on
collision with him. The player can kill the enemies using boulders, which can
be shot at them by performing the USE action for two consecutive time steps.

Escape. The objective is to leave the level through the exit door, pushing away
boxes that are in the way. This boxes can be destroyed by pushing them into
holes, but those holes also kill the player if the avatar falls into them.

Hungry Birds. The avatar is a bird that becomes hungrier at any game tick. It
needs to exit a maze before dying of hunger, and while looking for the exit it
can find food in the maze to reduce its hunger.

Infection. The objective of the game is to infect all healthy people with a virus.
The player can get infected by colliding with sources of the virus scattered
around the level, or with other people that are infected. Medics cure infected
people and the avatar, and can be killed by the avatar with a sword.

Intersection. The goal of this game is to collect as many delivery items are possible.
These items are spawned, one by one, at different places in the level. In order
to reach them, the avatar must cross a road that is traveled by fast cars. Every
time the avatar is hit by a car, it loses a life. The avatar starts with 5 lives,
and the game is lost when this number gets to 0.

Lemmings. Lemmings are spawned from a door and try to get to the exit of the
level. The player must destroy walls in the level so the lemmings can reach
the exit. There are traps as well that kill the lemmings and the player if they
fall into them. Score is given for every lemming that reaches the exit, but
subtracted from every piece of wall destroyed, hence the game rewards players
that do less digging.

Missile Command. The avatar must shoot at several missiles that fall from the
sky before they reach the cities they are directed towards. The player wins if
she is able to save at least one city, and loses if all cities are hit.

Modality. The goal is to push a crate into a hole. The avatar can walk over two
types of surfaces, and there is a unique point where the player can move from
one to the other surface. The box can cross surfaces freely.

Plaque Attack. Hamburgers and hotdogs are attacking the teeth. The player must
shoot them in order to save at least one tooth. Damaged teeth can be repaired
by the player upon contact. When all food items are destroyed, the player
wins. If all teeth are destroyed, the player loses.

248 Appendix B: Game Rules

Roguelike. In this game, the objective is to find the exit and escape the maze
through it. There are monsters in the maze that can be killed with a sword
that can be picked up. Doors can be opened with collectible keys and gems
and gold are available to be looted. There is also a market where keys can be
exchanged to recover health.

Sea Quest. The player controls a submarine that must avoid being killed by ani-
mals and rescue divers taking them to the surface. Also, the submarine must
return to the surface regularly to collect more oxygen, or the player would
lose. Submarine capacity is for four divers, and it can shoot torpedoes to the
animals.

Survive Zombies. The avatar must stay alive while being attacked by spawned
zombies. It may collect honey, dropped by bees, in order to avoid being killed
by zombies. The player wins if the timer runs out, and loses if hit by a zombie
while having no honey (otherwise, the zombie dies).

Wait For Breakfast. The objective of the game is to eat breakfast. For that, the
player must wait until the waiter comes and leaves the breakfast on a table.
If the avatar gets to the table before the food has arrived, it must wait at the
chair, or lose the game if it leaves the table.

Appendix C

Supplementary Results for
Chapter 4

This appendix reports supplementary results for Chapter 4 with the purpose of pro-
viding a more detailed overview of the performance of the Prover and the optimized
PropNet (Opt1023) when a cache is used to memorize results of previous queries to
the reasoners.

To better understand how the cache influences the speed over time for the tested
games, the speed of the reasoners has been further analyzed over the game turns.
More precisely, for each turn in a game the average speed over all the game runs has
been plotted. Figures C.1 and C.2 show such plots for each of the tested 13 games for
the Prover, both without and with cache. Figures C.3 and C.4 show the same plots
for the PropNet, without and with cache. Note that for some games the difference
between the cached and non-cached version of a reasoner is quite high. Therefore, to
improve readability, some of the plots use a base-10 logarithmic scale for the speed.
Whether the logarithmic scale is used is indicated in the y-axis label of each plot.
Looking at the plots for the Prover, the cache seems to always be beneficial. In
Chinese Checkers with 1 player and Tic Tac Toe the cache substantially increases
the speed already from the first turns. For all other games, in the first turns the
Prover with the cache seems to have a similar speed to the Prover without the cache,
but it increases the speed in later turns. For some games, like most of the Chinese
Checkers variants and Connect Four, the cache starts having an impact already in
the middle game, therefore being more promising than in games such as Battle,
Othello or Skirmish, where its effect is only visible in the endgame.

Looking at the plots for the PropNet, once again the cache seems beneficial
already from the first turns for Chinese Checkers with 1 player and Tic Tac Toe.
However, in many games the cache is actually decreasing the speed of the PropNet
reasoner during the initial turns. This loss is then balanced towards the endgame,
when the chance of finding cached query results increases. For the PropNet it takes
more time for the cache to be filled with a sufficient number of entries to outperform
the speed with which the PropNet computes queries. The same effect was not
observed for the Prover because the time for computing the answer of a query with

250 Appendix C: Supplementary Results for Chapter 4

�

��

���

���	

��
�

������

� �� �� �� ��

�
�

!
"
#
$
%
&

'(
)
*
+

,-./ 0123

�������

456789

:;<=>?@ABCD

EF

GHI

JKLM

NOPQR

STUVWX

Y Z [\]^ _` ab

c
d
e
f
g
h
i
j
k

lm
n
o
p

qrst uvwx

��		
�

y

z{|

}~�

���

���

���

���

� �� �� �� ��

�
�
�
�
�
�
�
�
�

�� ¡ ¢£¤¥

����
	������

¦§¨©

ª«¬­®

¯°±²³´

µ¶·¸¹º»

¼ ½ ¾¿ ÀÁ ÂÃ ÄÅ

Æ
Ç
È
É
Ê
Ë
Ì
Í
Î

ÏÐ
Ñ
Ò
Ó

ÔÕÖ× ØÙÚÛ

���������
�����

ÜÝÞß

àáâãä

åæçèéê

ëìíîïðñ

ò ó ôõ ö÷ øù úû

ü
ý
þ
ÿ
�
�
�
�
	

�
�
�

���� ����

���������
�����

���

����

�����

�� !"#

$%&'()*

+ , -. /0 12 34 56

7
8
9
:
;
<
=
>
?

@A
B
C
D

EFGH IJKL

���������
�����

MNO

PQRS

TUVWX

YZ[\]^

_`abcde

f gh ij kl mn op

q
r
s
t
u
v
w
x
y

z{
|
}
~

���� ����

���������
�����

Figure C.1: Speed of the Prover without and with cache over different game turns for the
games of Amazons, Battle, Breakthrough, and Chinese Checkers with 1, 2, 3 and 4 players.

Appendix C: Supplementary Results for Chapter 4 251

���

����

��	
�

�
����

� �� �� �� �� ��

�
�
�

!
"
#
$
%
&'
(
)
*

+,-. /012

�����������	
��

34

567

89:;

<=>?@

ABCDEF

GHIJKLM

N O PQ RS TU VW

X
Y
Z
[
\
]
^
_
`
ab
c
d
e

fghi jklm

�
�������
�	

nopqrs

tuvwxyz{|}~

�

��

���

����

�����

������

�������

� �� �� ¡ ¢£ ¤¥ ¦§

¨
©
ª
«
¬
­
®
¯
°
±²
³
´
µ

¶·¸¹ º»¼½

������

¾

¿À

ÁÂÃ

ÄÅÆ

ÇÈÉ

ÊËÌ

Í ÎÏ ÐÑ ÒÓ ÔÕ Ö×

Ø
Ù
Ú
Û
Ü
Ý
Þ
ß
à

áâãä åæçè

������

éê

ëìí

îïðñ

òóôõö

÷øùúûü

ýþÿ����

� �� �� 	
 ��

�
�
�
�
�
�
�
�

��
�
�
�

���� � !"

���	��
�

#$%

&'()

*+,-.

/01234

56789:;

< = > ? @ A B C D

E
F
G
H
I
J
K
L
M

NO
P
Q
R

STUV WXYZ

���������
�

Figure C.2: Speed of the Prover without and with cache over different game turns for the
games of Chinese Checkers with 6 players, Connect Four, Othello, Pentago, Skirmish, and
Tic Tac Toe.

252 Appendix C: Supplementary Results for Chapter 4

�������

�	
���
�����

�

��

���

����

��� !

"#$%&'

()*+,-.

/ 01 23 45 67

8
9
:
;
<
=
>
?
@
AB
C
D
E

FGHI JKLM

�������

NOPQR

STUVWX

YZ[\]^_

` a bc de fg hi

j
k
l
m
n
o
p
q
r
st
u
v
w

xyz{ |}~�

��		
�

�����

�����

�����

�����

�����

�����

�� ¡¢

£ ¤¥ ¦§ ¨© ª«

¬
­
®
¯
°
±
²
³
´

µ¶·¸ ¹º»¼

����
	������

½

¾¿ÀÁÂÃ

ÄÅÆÇÈÉ

ÊËÌÍÎÏ

ÐÑÒÓÔÕ

Ö×ØÙÚÛÜ

ÝÞßàáâã

äåæçèéê

ë ì íî ïð ñò

ó
ô
õ
ö
÷
ø
ù
ú
û

üýþÿ ����

���������
�����

�

������

�	
��

������

������

��� !"

#$%&'(

)*+,-.

/ 0 12 34 56 78

9
:
;
<
=
>
?
@
A

BCDE FGHI

���������
�����

J

KLMNOP

QRSTUV

WXYZ[\

]^_`ab

c d ef gh ij kl

m
n
o
p
q
r
s
t
u

vwxy z{|}

���������
�����

~

�����

������

������

������

������

���� ¡

¢ £¤ ¥¦ §¨ ©ª «¬

­
®
¯
°
±
²
³
´
µ

¶·¸¹ º»¼½

���������
�����

Figure C.3: Speed of the optimized PropNet without and with cache over different game
turns for the games of Amazons, Battle, Breakthrough, and Chinese Checkers with 1, 2, 3
and 4 players.

Appendix C: Supplementary Results for Chapter 4 253

�������

�	
���
�����

�

�����

�����

�� !"

#$%&'

()*+,-

./0123

456789

: ;< => ?@ AB CD

E
F
G
H
I
J
K
L
M

NOPQ RSTU

�����������	
��

V

WXYZ[\

]^_`ab

cdefgh

ijklmn

opqrst

uvwxyz

{|}~��

� � �� �� �� ��

�
�
�
�
�
�
�
�
�

���� ����

�
�������
�	

����

 ¡¢£¤

¥¦§¨©ª

«¬­®¯°±

² ³´ µ¶ ·¸ ¹º

»
¼
½
¾
¿
À
Á
Â
Ã
ÄÅ
Æ
Ç
È

ÉÊËÌ ÍÎÏÐ

���	��
�

ÑÒÓÔÕ

Ö×ØÙÚ

ÛÜÝÞß

àáâãäå

æçèéêë

ì í îï ðñ òó ôõ ö÷ øù

ú
û
ü
ý
þ
ÿ
�
�
	

��� ����

������

�

����
�

������

������

�� !"#

$%&'()

*+,-./

012345

6 7 8 9 : ; < = >

?
@
A
B
C
D
E
F
G

HIJK LMNO

���������
�

P

QR

STU

VWXY

Z[\]^

_`abcd

efghijk

l mn op qr st uv wx

y
z
{
|
}
~
�
�
�

��
�
�
�

���� ����

������

Figure C.4: Speed of the optimized PropNet without and with cache over different game
turns for the games of Chinese Checkers with 6 players, Connect Four, Othello, Pentago,
Skirmish, and Tic Tac Toe.

254 Appendix C: Supplementary Results for Chapter 4

the Prover is in general much higher than the one of the PropNet reasoner. Thus, for
the Prover finding in the cache even a small number of query results saves enough
computational time to compensate the extra time spent looking in the cache for
results that are not present yet.

Appendix D

Supplementary Results for
Chapter 5

This appendix reports supplementary results for Chapter 5 with the purpose of
providing a comparison of the performance of the MAST play-out strategy against
the random play-out strategy. It has been shown in the literature that, when used in
MCTS together with the UCT selection strategy and tested on a set of games taken
from the Stanford GGP project, MAST significantly outperforms a random play-
out strategy in most of them (Finnsson, 2012b; Tak et al., 2012). In this appendix,

Table D.1: Win percentage of PUCT-MAST against PUCT with 1s play-clock and start-clock.

Game PUCT-MAST
3D Tic Tac Toe 80.1(±3.48)
Breakthrough 82.6(±3.33)
Knightthrough 89.0(±2.75)

Skirmish 44.6(±3.63)
Battle 22.4(±3.49)

Chinook 64.8(±3.13)
Chin.Checkers3P 68.1(±4.07)

Checkers 73.4(±3.60)
Connect Five 87.2(±2.66)

Othello 61.4(±4.21)
Quad 80.1(±3.44)

Sheep and Wolf 44.4(±4.36)
TTCC4 2P 86.5(±2.98)

Zhadu 52.4(±4.38)
TTCC4 3P 58.0(±4.22)
Avg. Win% 66.3(±1.03)

256 Appendix D: Supplementary Results for Chapter 5

MAST and the random play-out strategy are compared on the same 15 games used in
Chapter 5 and with the same experimental settings. More precisely, the agents that
are used as baselines in the chapter, PUCT and PUCT-MAST, are matched against
each other with 1s start- and play-clock. For this experiment, results are based
on at least 500 runs for each game. These experiments were performed on a Linux
server consisting of 64 AMD Opteron 6274 2.2-GHz cores. Table D.1 reports the win
percentage for the PUCT-MAST agent. These results confirm that MAST generally
outperforms the random play-out strategy. In most of the tested games the win
percentage of PUCT-MAST is significantly higher than the one of PUCT. Only in
Battle, Skirmish and Sheep and Wolf PUCT is significantly better.

Appendix E

Supplementary Results for
Chapter 6

This appendix reports supplementary results for Chapter 5 that were obtained when
tuning different settings for the following allocation strategies: MAB, HE, NMC, LSI,
EA and NTBEA. All the experiments are performed for the Stanford GGP project,
on the same games used in 6. The AP agent as described in Subsection 6.4.1 is used
as baseline, and the strategies are tested for four tuned parameters, C, εMAST, K
and ref . All the settings of the strategies are the same as specified in Subsection
6.4.1, unless stated otherwise. Start- and play-clock are both set to 1s.

MAB. The MAB allocation strategy presents a high overhead caused by having to
compute the UCB1 value of all the parameter combinations before performing
each MCTS evaluation. Using a batch of simulations to evaluate a parameter
combination instead of using only a single simulation might alleviate this prob-
lem. In this way, MAB would have to compute the value of all combinations
only every few simulations. Table E.1 shows the result of testing the MAB
strategy with a batch size of 1 (i.e. each parameter combination is evaluated
by a single MCTS simulation) and a batch size of 10. The positive effect of
using a batch of simulations is visible for most of the games, although the
performance is still worse than the one of AP with fixed parameter settings.
A batch of 10 simulations is used in the experiments in chapter 6.

HE. When using HE, the combinatorial parameter space is represented as a tree,
where each level corresponds to a different tunable parameter. To build this
tree, an order must be imposed on the parameters. Randomizing this order
before each time a new game is played might be a robust choice in domains
like GGP, where the optimal order might vary depending on the game that
is being played. The purpose of the experiments for which Table E.2 reports
the results is to verify whether imposing a predefined order on the parameters
would be a better choice than randomizing it. The predefined order is the
following: εMAST, K, ref , C. Parameters have been ordered from the one
that seems to have in general the highest influence on the search to the one

258 Appendix E: Supplementary Results for Chapter 6

that seems to have the least influence on the search. As can be seen, in none of
the games the agent using the predefined order is significantly better than the
one that randomizes it, therefore, the random order is used in the experiments
performed in Chapter 6.

NMC. To select parameter combinations from the local and global MABs, NMC
uses the UCB1 strategy, with exploration constants Cl and Cg, respectively.
An experiment to test a few combinations of values for these parameters has
been performed. For Cl, only high values are tested, because the exploration
of parameter values during the exploration phase of NMC should be benefi-
cial. For Cg, instead, it could be argued that smaller values could be better.
In NMC, a combination is in the global MAB only if it has been generated
using the local MABs first. Over time, many combinations in the global MAB
should contain at least a few single values that have shown a generally good
performance. Therefore, many of such combinations could likely be good as
well. Increasing exploitation of such combinations using a low value for Cg
might be a good strategy. Results of these experiments are reported in Table
E.3. For Cl, there is not a significant difference between the values 0.7 and 1.0,
independently from the value of Cg. Therefore, for the experiments in Chapter
6 more exploration is preferred, setting Cl = 0.1. More interesting are the re-
sults for Cg, which contradict the intuition that less exploration in the global
MAB should be beneficial. This suggests that for the tuning problem more ex-
ploration should be preferred, because the best parameter combinations might
change over time. Thus, in the experiments performed in Chapter 6 Cg is also
set to 1.0.

LSI. The LSI allocation strategy requires to know in advance the number of sam-
ples (i.e. MCTS simulations) that are available to tune the parameters, Ntot .
However, this value can only be estimated approximately. In this thesis, this
is done during the start-clock by estimating how many simulations per second
can be performed, and then multiplying them by the duration of the play-clock
and by the number of expected turns for the game. The number of simulations
per second performed in the start-clock are generally less than the average over
all the game, therefore they are multiplied by a factor κ. Three different values
for this parameter have been tested to see which one increases the win rate
of LSI the most. Results are presented in Table E.4. There does not seem to
be a significant difference among the three values. However, κ = 3 is never
significantly worse than the other two values in any of the games. Moreover,
in Quad and Pentago it is significantly better than κ = 2, therefore it has been
selected as default value for the experiments in Chapter 6.

EA. An important parameter that influences the performance of the EA allocation
strategy is the size of the elite µ, i.e. the number of combinations in the total
population that are used to generate a new population. Keeping too many
combinations might slow down the evolutionary process, while keeping too few
might prevent some good combinations from surviving over multiple genera-
tions. Table E.5 shows the results obtained by testing three different values

Appendix E: Supplementary Results for Chapter 6 259

for the elite size µ. Note that this experiment has been performed using an
earlier implementation of EA than the one used in Chapter 6. The settings are
the same, but the earlier implementation is resetting all the statistics collected
for the elite individuals each time a new population is generated. Results
show that for many games a high elite size is better. This is particularly vis-
ible for Knightthrough and Breakthrough. Therefore, µ = 25 is used in the
experiments of Chapter 6.

NTBEA. An interesting parameter to test for the NTBEA allocation strategy is the
number of neighbors, X, of the current individual that are generated in each
iteration. With more neighbors there are more chances to find an individual
with a better value than the current one, but at the same time more overhead
is introduced to compute the UCB1 value of each of them. Also interesting
is to test whether considering n-tuples with intermediate lengths improves
the performance over considering only 1-tuples and d-tuples, i.e. with the
maximum length d. Results of experiments that test values for X are reported
in Table E.6, while results for experiments that compare the use of different
lengths for the n-tuples are shown in Table E.7. Note that these experiments
have been performed using an earlier implementation of NTBEA than the one
used in Chapter 6. All settings are the same, except the exploration constant
CNTBEA that is set to 0.7. Results show a decrease in performance with the
increase in number of generated neighbors X, therefore the smallest value is
used in Chapter 6, X = 5. For the lengths of the n-tuples, results show that
there is not much difference in performance between using all lengths or only
1 and 4. In order to reduce the overhead of estimating the UCB1 value, in
Chapter 6 only 1- and d-tuples are considered.

260 Appendix E: Supplementary Results for Chapter 6

Table E.1: Win percentage of the AP agent that tunes four parameters on-line with the
MAB allocation strategy with or without using a batch of simulations to evaluate each
parameter combination.

Game APMAB
Batch size = 1 Batch size = 10

3D Tic Tac Toe 6.2(±2.00) 20.8(±3.38)
Breakthrough 2.2(±1.29) 8.0(±2.38)
Knightthrough 7.4(±2.30) 20.0(±3.51)

Chinook 11.3(±2.58) 21.5(±3.31)
Chin.Checkers3P 32.1(±4.08) 38.7(±4.26)

Checkers 8.3(±2.25) 8.3(±2.23)
Connect Five 12.1(±2.25) 13.8(±2.29)

Quad 25.3(±3.71) 46.8(±4.23)
Sheep and Wolf 34.0(±4.16) 42.6(±4.34)

TTCC4 2P 17.5(±3.28) 22.4(±3.63)
TTCC4 3P 40.8(±4.24) 43.9(±4.25)

Connect Four 29.3(±3.84) 42.0(±4.14)
Pentago 16.1(±3.18) 26.1(±3.75)
Reversi 31.9(±4.04) 31.1(±4.00)

Avg. Win% 19.6(±0.91) 27.6(±1.01)

Table E.2: Win percentage of the AP agent that tunes four parameters on-line with the
MAB allocation strategy with or without using a batch of simulations to evaluate each
parameter combination.

Game APHE
Random order Predefined order

3D Tic Tac Toe 34.5(±3.97) 38.8(±4.08)
Breakthrough 53.6(±4.38) 50.2(±4.39)
Knightthrough 69.8(±4.03) 68.6(±4.07)

Chinook 30.8(±3.70) 27.7(±3.47)
Chin.Checkers3P 34.9(±4.17) 37.3(±4.23)

Checkers 33.6(±3.92) 35.6(±3.96)
Connect Five 25.9(±3.01) 24.1(±2.90)

Quad 29.9(±3.76) 33.2(±3.89)
Sheep and Wolf 43.2(±4.35) 46.4(±4.38)

TTCC4 2P 38.6(±4.15) 37.5(±4.18)
TTCC4 3P 40.6(±4.14) 44.2(±4.21)

Connect Four 37.0(±4.09) 41.9(±4.15)
Pentago 40.6(±4.14) 42.0(±4.07)
Reversi 41.5(±4.26) 42.7(±4.26)

Avg. Win% 39.6(±1.10) 40.7(±1.10)

Appendix E: Supplementary Results for Chapter 6 261

Table E.3: Win percentage of the AP agent that tunes four parameters on-line with the
NMC allocation strategy for different combinations of values for Cg and Cl.

Game APNMC
Cg = 0.0 Cg = 0.4 Cg = 0.7 Cg = 1.0

C
l
=

0
.7

3D Tic Tac Toe 32.8(±3.97) 37.5(±4.02) 45.4(±4.17) 40.5(±4.09)
Breakthrough 49.6(±4.39) 56.2(±4.35) 59.4(±4.31) 56.8(±4.35)
Knightthrough 65.2(±4.18) 68.6(±4.07) 70.0(±4.02) 73.4(±3.88)

Chinook 27.3(±3.54) 30.7(±3.71) 36.0(±3.89) 36.3(±3.76)
Chin.Checkers3P 31.7(±4.07) 36.5(±4.21) 33.9(±4.14) 37.1(±4.22)

Checkers 31.1(±3.83) 36.2(±3.96) 35.4(±3.94) 38.2(±4.05)
Connect Five 30.1(±3.03) 32.3(±3.14) 30.0(±3.03) 29.3(±3.00)

Quad 31.6(±3.79) 35.6(±4.00) 39.1(±4.04) 36.2(±4.04)
Sheep and Wolf 42.6(±4.34) 44.4(±4.36) 42.8(±4.34) 44.0(±4.36)

TTCC4 2P 30.9(±3.97) 38.6(±4.15) 43.2(±4.22) 44.8(±4.24)
TTCC4 3P 38.3(±4.08) 43.9(±4.22) 41.3(±4.14) 42.2(±4.20)

Connect Four 34.0(±3.98) 39.1(±4.12) 41.3(±4.14) 39.6(±4.15)
Pentago 34.1(±3.93) 42.5(±4.06) 42.6(±4.17) 42.8(±4.15)
Reversi 40.3(±4.25) 40.7(±4.22) 36.7(±4.17) 41.5(±4.25)

Avg. Win% 37.1(±1.08) 41.6(±1.11) 42.6(±1.11) 43.0(±1.11)

C
l
=

1
.0

3D Tic Tac Toe 34.6(±3.97) 40.1(±4.04) 41.8(±4.08) 39.8(±4.05)
Breakthrough 51.2(±4.39) 55.8(±4.36) 63.4(±4.23) 60.6(±4.29)
Knightthrough 64.8(±4.19) 67.6(±4.11) 67.4(±4.11) 74.2(±3.84)

Chinook 27.4(±3.46) 33.5(±3.69) 36.5(±3.84) 36.7(±3.75)
Chin.Checkers3P 32.3(±4.09) 33.3(±4.12) 35.3(±4.18) 36.9(±4.22)

Checkers 34.3(±3.94) 34.9(±3.91) 36.2(±3.90) 37.8(±3.91)
Connect Five 29.7(±3.03) 31.1(±3.12) 28.8(±3.00) 30.7(±3.11)

Quad 30.4(±3.84) 36.8(±4.02) 38.2(±4.05) 37.9(±4.04)
Sheep and Wolf 47.4(±4.38) 45.8(±4.37) 44.2(±4.36) 45.2(±4.37)

TTCC4 2P 36.6(±4.10) 42.2(±4.19) 45.2(±4.25) 44.6(±4.25)
TTCC4 3P 40.2(±4.15) 42.2(±4.21) 42.6(±4.17) 40.4(±4.17)

Connect Four 40.5(±4.13) 38.4(±4.09) 38.6(±4.02) 42.9(±4.15)
Pentago 35.4(±4.00) 43.4(±4.20) 44.4(±4.19) 38.8(±4.07)
Reversi 39.1(±4.19) 36.5(±4.14) 38.9(±4.18) 39.8(±4.24)

Avg. Win% 38.8(±1.09) 41.5(±1.10) 43.0(±1.11) 43.3(±1.11)

262 Appendix E: Supplementary Results for Chapter 6

Table E.4: Win percentage of the AP agent that tunes four parameters on-line with the
LSI allocation strategy, for different values of the factor κ.

Game APLSI
κ = 2 κ = 3 κ = 4

3D Tic Tac Toe 42.1(±4.08) 42.3(±4.11) 41.3(±4.09)
Breakthrough 39.0(±4.28) 37.2(±4.24) 32.6(±4.11)
Knightthrough 59.8(±4.30) 53.8(±4.37) 50.6(±4.39)

Chinook 24.1(±3.45) 24.8(±3.55) 22.0(±3.41)
Chin.Checkers3P 34.1(±4.14) 36.1(±4.20) 36.5(±4.21)

Checkers 17.0(±3.12) 19.7(±3.28) 18.7(±3.23)
Connect Five 38.4(±3.30) 40.3(±3.27) 40.3(±3.10)

Quad 65.3(±3.96) 75.6(±3.56) 71.8(±3.72)
Sheep and Wolf 50.6(±4.39) 49.0(±4.39) 48.4(±4.38)

TTCC4 2P 25.3(±3.74) 22.6(±3.60) 23.1(±3.63)
TTCC4 3P 46.6(±4.25) 47.3(±4.24) 48.2(±4.28)

Connect Four 56.8(±4.14) 59.1(±4.18) 53.9(±4.19)
Pentago 40.1(±4.18) 48.8(±4.22) 46.3(±4.20)
Reversi 31.8(±4.00) 27.1(±3.83) 25.3(±3.73)

Avg. Win% 40.8(±1.11) 41.7(±1.11) 39.9(±1.10)

Table E.5: Win percentage of the AP agent that tunes four parameters on-line with the
EA allocation strategy, for different values of the elite size µ.

Game APEA
µ = 5 µ = 10 µ = 25

3D Tic Tac Toe 38.1(±4.06) 38.3(±4.01) 41.2(±4.09)
Breakthrough 39.6(±4.29) 48.2(±4.38) 58.6(±4.32)
Knightthrough 49.0(±4.39) 61.4(±4.27) 69.0(±4.06)

Chinook 48.6(±4.04) 46.5(±4.07) 49.8(±4.08)
Chin.Checkers3P 41.4(±4.30) 43.9(±4.33) 41.5(±4.31)

Checkers 27.6(±3.64) 31.9(±3.78) 37.3(±4.01)
Connect Five 28.9(±3.00) 27.9(±2.80) 25.7(±2.92)

Quad 46.8(±4.16) 43.4(±4.12) 38.7(±4.08)
Sheep and Wolf 48.8(±4.39) 47.0(±4.38) 49.4(±4.39)

TTCC4 2P 46.4(±4.30) 45.4(±4.22) 47.9(±4.24)
TTCC4 3P 48.1(±4.25) 44.3(±4.22) 43.3(±4.21)

Connect Four 50.7(±4.23) 49.3(±4.20) 52.1(±4.23)
Pentago 42.5(±4.17) 39.0(±4.11) 45.5(±4.18)
Reversi 37.5(±4.18) 37.7(±4.20) 35.9(±4.11)

Avg. Win% 42.4(±1.11) 43.2(±1.11) 45.4(±1.12)

Appendix E: Supplementary Results for Chapter 6 263

Table E.6: Win percentage of the AP agent that tunes four parameters on-line with the
NTBEA allocation strategy, for different number of generated neighbors X.

Game APNTBEA
X = 5 X = 10 X = 50 X = 100

3D Tic Tac Toe 38.0(±3.95) 37.1(±4.07) 23.6(±3.48) 22.7(±3.52)
Breakthrough 48.4(±4.38) 50.2(±4.39) 30.4(±4.04) 21.6(±3.61)
Knightthrough 62.6(±4.25) 67.2(±4.12) 48.0(±4.38) 35.2(±4.19)

Chinook 52.5(±4.01) 51.9(±4.06) 30.0(±3.75) 29.0(±3.71)
Chin.Checkers3P 44.0(±4.34) 37.3(±4.23) 34.3(±4.15) 34.3(±4.15)

Checkers 31.7(±3.76) 36.4(±3.97) 30.2(±3.74) 26.5(±3.67)
Connect Five 24.9(±2.89) 26.1(±2.86) 29.1(±3.12) 25.3(±3.02)

Quad 53.0(±4.13) 44.1(±4.07) 37.6(±4.07) 32.4(±3.94)
Sheep and Wolf 47.4(±4.38) 48.0(±4.38) 47.4(±4.38) 47.8(±4.38)

TTCC4 2P 46.2(±4.25) 44.8(±4.23) 30.7(±3.95) 24.6(±3.71)
TTCC4 3P 44.0(±4.23) 44.2(±4.23) 37.6(±4.12) 33.4(±4.04)

Connect Four 49.2(±4.19) 48.0(±4.22) 34.0(±3.98) 32.1(±3.90)
Pentago 40.1(±4.14) 46.3(±4.15) 32.1(±3.93) 27.0(±3.77)
Reversi 38.4(±4.22) 32.6(±4.05) 33.7(±4.07) 34.0(±4.09)

Avg. Win% 44.3(±1.11) 43.9(±1.11) 34.2(±1.07) 30.4(±1.04)

Table E.7: Win percentage of the AP agent that tunes four parameters on-line with the
NTBEA allocation strategy, using different lengths for the n-tuples.

Game APNTBEA
L = {1,4} L = {1,2,3,4}

3D Tic Tac Toe 38.0(±3.95) 36.8(±3.97)
Breakthrough 48.4(±4.38) 46.8(±4.38)
Knightthrough 62.6(±4.25) 62.0(±4.26)

Chinook 52.5(±4.01) 51.7(±4.08)
Chin.Checkers3P 44.0(±4.34) 38.7(±4.26)

Checkers 31.7(±3.76) 29.3(±3.72)
Connect Five 24.9(±2.89) 26.0(±2.82)

Quad 53.0(±4.13) 51.4(±4.16)
Sheep and Wolf 47.4(±4.38) 46.4(±4.38)

TTCC4 2P 46.2(±4.25) 41.1(±4.20)
TTCC4 3P 44.0(±4.23) 45.6(±4.27)

Connect Four 49.2(±4.19) 48.5(±4.20)
Pentago 40.1(±4.14) 41.5(±4.16)
Reversi 38.4(±4.22) 35.1(±4.11)

Avg. Win% 44.3(±1.11) 42.9(±1.11)

264 Appendix E: Supplementary Results for Chapter 6

Appendix F

Supplementary Results for
Chapter 7

This appendix reports the detailed results for the graph presented in Figure 7.2.
The graph shows the win percentage over all the tested games of the agent instances
that randomize different numbers of parameters per game (APGAME-RND), per turn
(APTURN-RND), per simulation (APSIM-RND) and per state (APSTATE-RND), against
the agent that uses fixed parameter values (AP). The win percentage of these agents
for each game is reported in Table F.1.

Results in the table confirm that among the randomization strategies the one
randomizing per simulation is performing best in most of the considered games,
although randomization per state is also quite close in performance for many games.
Randomization per turn seems to be the worst in most of the games, especially when
the number of randomized parameters increases. The performance of randomization
per game is also lower when compared to randomization per simulation or per state.

Interestingly, although the overall performance shows that no randomization
strategy is significantly better than fixed default parameter values, there are still
some specific games for which randomizing seems positive. In Quad, for example,
randomization per simulation performs significantly better than fixed parameter
values for all numbers of randomized parameters. The same holds for simulation
per state, although for four parameters the performance increase is not significant.
Moreover, when randomizing two parameters per state or per simulation also the
performance in Chinook is significantly better than the performance of the fixed
parameter values. Finally, a significant increase in performance is visible also for
Connect Four when randomizing four parameters per simulation. This supports
the claim that search-control parameter randomization might be beneficial for some
games.

266 Appendix F: Supplementary Results for Chapter 7

Table F.1: Win percentage of the AP agent that randomizes two, four and six parameters
with different randomization strategies, against the AP agent with fixed default parameter
values.

Game 2 parameters
APGAME-RND APTURN-RND APSIM-RND APSTATE-RND

3D Tic Tac Toe 36.8(±3.97) 35.9(±4.00) 46.4(±4.12) 35.4(±3.94)
Breakthrough 34.8(±4.18) 36.6(±4.23) 40.4(±4.31) 35.0(±4.19)
Knightthrough 41.8(±4.33) 43.2(±4.35) 44.2(±4.36) 43.4(±4.35)

Chinook 47.3(±4.06) 47.6(±4.02) 61.8(±3.99) 57.9(±4.08)
Chin.Checkers3P 44.4(±4.34) 47.8(±4.37) 45.6(±4.35) 47.4(±4.36)

Checkers 36.9(±4.01) 35.3(±3.97) 48.8(±4.08) 47.0(±4.11)
Connect Five 36.3(±3.14) 35.6(±3.11) 43.9(±3.12) 45.2(±3.20)

Quad 46.8(±4.12) 48.4(±4.24) 65.0(±3.93) 67.4(±3.80)
Sheep and Wolf 46.6(±4.38) 48.4(±4.38) 52.0(±4.38) 49.4(±4.39)

TTCC4 2P 35.4(±4.06) 40.1(±4.16) 49.5(±4.27) 46.4(±4.21)
TTCC4 3P 44.6(±4.25) 46.4(±4.24) 48.7(±4.26) 48.6(±4.24)

Connect Four 40.1(±4.10) 40.5(±4.07) 50.9(±4.17) 45.5(±4.24)
Pentago 42.6(±4.20) 45.5(±4.19) 53.7(±4.19) 50.9(±4.20)
Reversi 38.4(±4.18) 35.5(±4.13) 42.8(±4.29) 45.5(±4.28)

Avg. Win% 40.9(±1.10) 41.9(±1.11) 49.6(±1.12) 47.5(±1.12)

Game 4 parameters
APGAME-RND APTURN-RND APSIM-RND APSTATE-RND

3D Tic Tac Toe 31.7(±3.85) 18.2(±3.22) 39.4(±4.00) 28.6(±3.66)
Breakthrough 15.6(±3.18) 10.0(±2.63) 11.0(±2.75) 9.0(±2.51)
Knightthrough 22.2(±3.65) 20.8(±3.56) 20.6(±3.55) 15.8(±3.20)

Chinook 22.5(±3.40) 16.4(±2.98) 23.6(±3.61) 18.9(±3.28)
Chin.Checkers3P 35.7(±4.19) 29.2(±3.97) 34.7(±4.16) 31.3(±4.05)

Checkers 18.5(±3.19) 9.0(±2.35) 17.9(±3.17) 18.6(±3.20)
Connect Five 30.7(±3.15) 25.8(±2.96) 36.5(±3.22) 41.8(±3.49)

Quad 47.3(±4.20) 46.7(±4.18) 72.8(±3.71) 53.6(±4.23)
Sheep and Wolf 48.6(±4.39) 44.2(±4.36) 49.8(±4.39) 42.0(±4.33)

TTCC4 2P 23.5(±3.62) 14.5(±3.05) 20.6(±3.47) 17.2(±3.28)
TTCC4 3P 41.9(±4.23) 38.4(±4.16) 46.1(±4.28) 45.8(±4.28)

Connect Four 46.3(±4.17) 45.5(±4.22) 55.4(±4.13) 42.6(±4.16)
Pentago 40.2(±4.17) 32.4(±4.01) 50.2(±4.22) 30.0(±3.90)
Reversi 25.7(±3.75) 31.0(±4.01) 31.0(±3.99) 31.3(±3.99)

Avg. Win% 32.2(±1.05) 27.3(±1.01) 36.4(±1.08) 30.5(±1.04)

Game 6 parameters
APGAME-RND APTURN-RND APSIM-RND APSTATE-RND

3D Tic Tac Toe 26.6(±3.67) 15.2(±3.03) 40.6(±4.01) 27.8(±3.55)
Breakthrough 13.2(±2.97) 6.2(±2.12) 9.4(±2.56) 6.8(±2.21)
Knightthrough 19.4(±3.47) 11.4(±2.79) 19.8(±3.50) 23.0(±3.69)

Chinook 27.2(±3.71) 14.4(±2.93) 19.8(±3.34) 25.9(±3.72)
Chin.Checkers3P 30.6(±4.03) 25.6(±3.81) 33.7(±4.13) 29.4(±3.98)

Checkers 14.4(±2.91) 7.8(±2.24) 20.4(±3.29) 20.4(±3.37)
Connect Five 30.6(±3.02) 19.1(±2.77) 45.7(±3.21) 38.5(±3.38)

Quad 40.6(±4.14) 34.8(±4.00) 72.4(±3.67) 54.1(±4.25)
Sheep and Wolf 43.6(±4.35) 41.2(±4.32) 50.0(±4.39) 42.8(±4.34)

TTCC4 2P 20.2(±3.46) 12.0(±2.84) 19.0(±3.40) 15.6(±3.17)
TTCC4 3P 40.4(±4.20) 37.1(±4.13) 40.8(±4.23) 41.6(±4.23)

Connect Four 33.5(±3.99) 33.4(±3.98) 48.0(±4.23) 40.5(±4.14)
Pentago 31.2(±3.94) 25.9(±3.75) 42.6(±4.13) 29.3(±3.85)
Pentago 27.1(±3.85) 21.0(±3.52) 28.7(±3.92) 34.7(±4.10)

Avg. Win% 28.5(±1.02) 21.8(±0.94) 35.1(±1.07) 30.7(±1.04)

Index

αβ-search. .10
“open-loop” MCTS.27
All-Moves-As-First 104
allocation strategy 126, 127

continuous . 142
CMA-ES 142

discrete . 129
EA . 137
HE . 130
LSI . 134
MAB . 129
NMC . 132
NTBEA . 138

Artificial General Intelligence . 1, 8, 208
CMAB . 127
decay . 39, 41, 48
first-play urgency 36
Flat Monte-Carlo Search 11, 20
FPGA . 95
game. .2, 17

abstract games 2
board games . 2
card games . 2
complete-information 4
constant-sum. 4
deterministic . 4
digital games . 3
Eurogames . 2
imperfect-information 4
incomplete-information 4
multi-player . 3
non-deterministic4
one-player . 3
perfect-information 3
real-time . 3
sequential move 3

simultaneous move 3
single-player. .3
stochastic . 4
tile-based game.2
turn-based . 3
turn-taking. .3
two-player .3
variable-sum . 4
video games . 3
zero-sum . 4

game model 18, 56, 65
game tree .18
GDL . 52
general game playing.1, 8–10
GGP Base agent . 59
graph reuse . 48
GVG-AI agents . 66
GVG-AI project 10, 61
MAST. .38
minimax . 10
Monte-Carlo evaluations 11, 20
Monte-Carlo Tree Search 1, 11, 23
Multi-Armed Bandit problem . . . 20, 22
naïve assumption 133
NST. 40
parameter randomization 173

per game run 173
per simulation 173
per state . 175
per turn . 173

progressive history 37
PropNet . 72
PropNet optimizations 76

Opt0 . 76
Opt1 . 78
Opt2 . 80

268 Index

Opt3 . 83
RAVE variants . 105

GRAVE. .106
HRAVE. .108
RAVE. .37, 105

reasoner . 56, 85, 95
SA-MCTS . 126
search tree .20
simultaneous move UCT 31

DUCT . 34
SUCT. .32

Stanford GGP project9, 51
transposition tables 41
tree reuse . 47
UCB1. .11, 22
UCT . 11, 30, 43

UCT0. 44
UCT1. 45
UCT2. 45
UCT3. 46

VGDL. 61

Valorization

Please note: the Regulations for obtaining the doctoral degree of Maas-
tricht University, dated 1 September 2018, require the addition of a val-
orization addendum to each dissertation. “While the valorisation adden-
dum is included in the thesis, it is not regarded as part of the thesis and
must not be taken into account in the assessment of the thesis by the
Assessment Committee and the Defence Committee”.1

Knowledge valorization is “the process of creating value from knowledge, by mak-
ing knowledge suitable and/or available for social (and/or economic) use and by
making it suitable for translation into competing products, services, processes and
new activities”. This addendum discusses various ways in which the research pre-
sented in the thesis might contribute to create social and economic value. We mainly
discuss the value that can be created by advancing research on Monte-Carlo Tree
Search (MCTS), giving also some insights on how value can be created by using
MCTS to advance research towards Artificial General Intelligence (AGI). First, val-
orization opportunities in game-related domains are discussed. Next, the discussion
is extended to other domains. Finally, we argue that valorisation opportunities can
arise from research on MCTS that moves in the direction of AGI.

Games
This thesis uses (video) games as a test bed for MCTS, therefore the gaming indus-
try is the first application domain that comes to mind where the presented research
has the potential to create value. Video games are getting more and more realis-
tic and sophisticated, demanding smarter AI characters that are able to deal with
increasingly complex environments. Moreover, if AI characters show unrealistic be-
haviors, the interest of the players in the game will decrease and the game will lose
its entertainment value. MCTS can be used to model believable AI characters in
commercial applications, and there have been already some examples of its success
on this task. In the Spades mobile phone game by AI Factory MCTS has been used
to create engaging AI opponents and allies (Whitehouse et al., 2013), and has later
been improved to emulate human play (Baier et al., 2018). Moreover, MCTS has
been used in the development of the AI system for the on-line turn-based strategy

1https://www.maastrichtuniversity.nl/support/phds, retrieved 4 September 2019.

270 Valorization

game Prismata, by Lunarch Studios (Churchill and Buro, 2015), and in the devel-
opment of the AI system of Total War: Rome II, a strategy game developed by
Creative Assembly and published by Sega (Thompson, 2018).

Potential applications of MCTS to games are not only limited to the development
of AI characters for the game industry. MCTS can also be useful during the process
of game design and game content generation. A possibility is to use it to evaluate
generated games. For instance, Browne (2012) computes game evaluation metrics
using the performance of UCT-based search on such games. Other approaches apply
MCTS to directly generate games or game content. For example, it has been used
to generate initial tile placements for Pentominoes puzzles (Browne, 2013) and to
generate Sokoban puzzles (Kartal, Sohre, and Guy, 2016). In addition, it has been
applied to automatically generate narratives (Kartal, Koenig, and Guy, 2014), which
could be used in virtual environments or in video games to dynamically generate new
plot lines.

Another application domain for which MCTS can create value are serious games,
i.e. games that combine the playfulness of video games with a serious purpose, such
as training, education or rehabilitation. An example of a serious game that makes
use of MCTS is given by Sanselone et al. (2014), which use this search technique to
control the behavior of virtual characters in a simulated surgery room environment
for medical staff training. Another example is the work of Hocine, Gouaïch, and
Cerri (2014), which use MCTS in the development of a game aimed at rehabilitating
patients that suffered from a stroke.

Other Domains

The potential to create value from research on MCTS and its enhancements is not
limited to games alone. MCTS is a suitable technique for domains that involve plan-
ning, optimization and decision making, and there are many examples of successful
application of MCTS and its variants in a different number of fields.

In robotics, for instance, MCTS-based algorithms have been used for various
purposes, ranging from controlling the movement of robots to managing their per-
ception. Using MCTS variants, Goldhoorn et al. (2014) design robots that are able
to find and follow people in a real-world scenario, Zech, Xiong, and Piater (2015) pro-
pose an optimization method that improves the precision of robotic grasps and Kar-
tal (2015) addresses the multi-robot patrolling problem. Moreover, Patten, Martens,
and Fitch (2018) propose an object classification mechanism for robots that operate
in an outdoor environment and Best et al. (2019) design a decentralized mechanism
that controls multiple robots with active perception of the world.

Other applications of MCTS can be found in the medical field. For example,
MCTS has been used to schedule elective admissions of patients to the hospital
(Van Eyck et al., 2013; Zhu et al., 2014) and to improve the process of selecting
personalized health-care services in order to reduce the risk of re-hospitalization of
patients (Laschet, 2014). In addition, Pinheiro, Kybic, and Fua (2017) design a
mechanism based on MCTS to match graph structures to medical images.

Space exploration is another example of task for which the use of MCTS has been

Valorization 271

considered. Hennes and Izzo (2015) apply MCTS to automatically plan interplane-
tary trajectories, while Song and Gong (2019) use it to find the optimal exploration
sequence of near-earth asteroids. In addition, Arora, Fitch, and Sukkarieh (2017)
show that MCTS is suitable to design a robot that is able to perform exploration
of a Mars-analog environment autonomously, being able to plan its actions on-line
according to the perceptions acquired from the environment.

Various applications of MCTS can be found also in logistic (Edelkamp et al.,
2016). For instance, there are multiple studies that address transportation problems.
Trunda and Barták (2013) show how MCTS can be used for planning in multiple
transportation domains. Moreover, Al-Kanj, Powell, and Bouzaiene-Ayari (2016)
present an MCTS-based solution for routing a utility truck that restores outages in
the power grid, actively collecting information and updating its beliefs about the
state of the network. Abdo, Edelkamp, and Lawo (2016), instead, propose to use
MCTS to design an algorithm that is able to deal with different variations of the
vehicle routing problem with multiple vehicles, instead of designing a specific solution
for each variation. A similar problem is addressed by Jiang, Al-Kanj, and Powell
(2017), which design a variant of the MCTS algorithm that optimizes the behavior
of a single driver navigating a graph while operating on a ride-sharing platform.
Finally, Cazenave, Balbo, and Pinson (2009) show how a variant of MCTS, nested
Monte-Carlo search, can be applied to urban transportation in order to minimize
the waiting time of bus passengers, and Mirheli and Hajibabai (2019) show how to
use MCTS to manage parking utilization in such a way that the travelers’ cost is
minimized and the parking agency’s revenue is maximized.

MCTS has also been successfully applied to energy management. It has been used
to solve stochastic energy stock management problems (Couëtoux and Doghmen,
2011), and to balance electricity supply and demand in power grids (Golpayegani,
Dusparic, and Clarke, 2015).

Many more examples of the application of MCTS variants to concrete prob-
lems can be mentioned. These include designing security models (Marecki, Tesauro,
and Segal, 2012; Guo, An, and Kolobov, 2015), military simulation and planning
(Marks et al., 2013; Teter et al., 2014), protecting natural resources from ille-
gal extraction (Qian et al., 2014), deciphering encrypted text (Hauer, Hayward,
and Kondrak, 2014) and forecasting financial volatility of assets (Cazenave and
Hamida, 2015). Further examples are managing autonomous driving vehicles (Lenz,
Kessler, and Knoll, 2016), managing wildfires (Bertsimas et al., 2017), improving
computer-aided retrosynthesis (Segler et al., 2018) maximizing the performance of
job scheduling heuristics (Wimmenauer, 2019), and finding optimal material designs
(Dieb et al., 2019). All these examples show the wide applicability of MCTS-based
algorithms and many more applications are being explored every day.

Artificial General Intelligence

Research in AGI is based on the idea of having a program that is able to perform
multiple different tasks in multiple different environments without any human inter-
vention and with the ability to autonomously adapt to each new, possibly previously

272 Valorization

unseen task. Although not yet achieving true AGI, programs that are able to cope
with tasks of different nature without needing human intervention are suitable to be
applied in many real-world scenarios. They are potentially useful for environments
in which the type of tasks that the machine has to face might change over time, but
they cannot be predicted or even imagined by the programmers. Moreover, such
programs might be successful in environments for which it is too time consuming
or even physically impossible to re-program the machine for each new type of task.
For example, for a robot on a space mission there might be scenarios that the pro-
grammers have not thought about, therefore the robot should be able to learn by
itself how to cope with them and how to perform the necessary tasks to deal with
the unforeseen situation. Moreover, programmers are not able to physically access
the robot to re-program it once it has reached space.

The discussion in previous sections highlighted how MCTS is a technique that
can be applied successfully to many domains of social and economic interest. Other
valorization opportunities created by the research presented in this thesis arise from
the possibility of using the proposed domain-independent MCTS enhancements to
develop computer programs and systems that are capable of dealing with multiple
tasks in various domains at the same time, following the direction of AGI.

Summary

This thesis investigates how search can be utilized to support Artificial General
Intelligence (AGI) in games. The aim of AGI is creating Artificial Intelligence (AI)
that can perform multiple different tasks in multiple different environments, can
autonomously manage itself and possesses the ability to adapt to perform any new
task that it might have never performed before. Planning is among the competences
that an AGI is expected to possess. Given that games can model a wide variety of
computationally hard problems, they can be considered a reasonable subset of all the
planning tasks that we would like an AGI to be able to perform. Therefore, general
game playing (GGP), which aims at creating programs that are able to play many
(video) games with different properties without requiring any human intervention,
is identified as a suitable domain to test search techniques for AGI. In addition,
Monte-Carlo Tree Search (MCTS) is presented as a successful search technique for
domains like GGP, where no specific domain knowledge is available.

Chapter 1 provides an introduction to games, discusses their relevance for AI
and AGI and gives a brief description of the most popular search techniques used by
game AI programs, among which is MCTS. The following problem statement guides
the research.

Problem statement: How can the performance of Monte-Carlo Tree
Search for general game playing be improved?

To answer the problem statement four research questions have been formulated.
They deal with (1) speeding up the interpretation of game rules written in a declar-
ative language, (2) evaluating the use of global or local information to enhance the
selection strategy of MCTS, (3) on-line tuning search-control parameters for MCTS,
and (4) investigating the effect of search-control parameter randomization in MCTS.

Chapter 2 gives a formal definition of the games considered in the thesis and de-
fines the terms commonly used when referring to tree search. Furthermore, Monte-
Carlo methods are discussed, together with their link to MCTS, which is presented
next. Finally, the UCT selection strategy is described both for sequential and si-
multaneous move games and relevant MCTS enhancements are discussed.

Chapter 3 introduces the test environments used to answer the four research
questions: the Stanford General Game Playing (Stanford GGP) project and the
General Video Game AI (GVG-AI) project. The first one focuses on GGP for ab-
stract games, while the second on GGP for arcade-style video games. For each
of the two environments the chapter introduces the language used to describe the

274 Summary

corresponding games and describes how the execution of a game run is managed.
Moreover, the rules of the competition associated with each environment are pre-
sented, together with the common implementation details of the agents that are
tested in the subsequent chapters of the thesis.

The Stanford GGP project represents the game rules using a declarative language
known as the Game Description Language (GDL). This means that agents have to
implement a mechanism that interprets the game rules written in GDL and computes
all the elements that are necessary to reason on the game (i.e., game states, legal
moves, etc.). This interpretation process is in general slow and might reduce the
number of simulations that an agent can perform. This might hinder the performance
of MCTS, which instead benefits from the more accurate statistics that can be
collected with a higher number of simulations. This has led to the formulation of
the first research question.

Research question 1: How can the process of interpreting on-line the
game rules written in a declarative language be sped up?

Chapter 4 answers the first research question by investigating an interpreter based
on the representation of the GDL game rules as a Propositional Network (PropNet).
Results show that a software implementation of the PropNet performs better than
the GGP Base Prover, a custom made interpreter for GDL rules. The software imple-
mentation of the PropNet increases the number of game simulations by an average of
two orders of magnitude with respect to the GGP Base Prover. Moreover, the speed
of the PropNet is further increased by applying four optimizations, which, in order,
remove PropNet components with constant truth values, remove PropNet proposi-
tions that do not have any special meaning for the game, detect and then remove
components that will only assume a constant truth value during the game reasoning
process, and remove components that have no output and thus no particular mean-
ing for the game. The use of a cache that memorizes results previously computed
by the PropNet is shown to increase the overall speed further. However, its use is
recommended only for games with a small search space, like Chinese Checkers with
1 player and Tic Tac Toe, for which it increases the speed already in the first search
steps. Furthermore, the use of a PropNet based reasoner enables the MCTS agent
to reach a win rate close to 100% against an agent that uses the Prover. Finally, the
speed of a PropNet-based reasoner can be further increased by at least one order of
magnitude by encoding the PropNet on a Field Programmable Gate Array (FPGA)
board. It may be concluded that using a PropNet with an optimized structure to
represent game rules written in GDL is beneficial for MCTS-based agents, because
they are able to perform more simulations in the given time frame and they can
profit from hardware acceleration.

Previous research has shown that MCTS also profits from enhancing its selection
strategy by increasing the amount of information used to guide the search. The
Rapid Action Value Estimation (RAVE) strategy and the Generalized Rapid Action
Value Estimation (GRAVE) strategy have been shown to be successful enhancements
for the selection phase of MCTS. Both of them bias the selection towards actions
that seem to perform generally well in the game. However, GRAVE uses more
global information than RAVE to bias action selection in nodes that only have a low

Summary 275

number of visits. This strategy has been shown to perform better than RAVE on
some variants of Go and a few other games, therefore it might be successful in GGP
as well. This has led to the formulation of the second research question.

Research question 2: What is the effect of using locally or globally
collected information to enhance the selection strategy for Monte-Carlo
Tree Search?

Chapter 5 answers the second research question proposing another variant of
RAVE, the History Rapid Action Value Estimation (HRAVE) strategy, which biases
action selection always using global information about the actions. It then compares
the performance of RAVE, GRAVE and HRAVE on a set of games from the Stanford
GGP project, both combined with a random play-out strategy and with the more
informed MAST play-out strategy. Results show that, when RAVE variants are
combined with a random play-out strategy, the performance of GRAVE is, in the
worst case, comparable with the one of RAVE, both when using 1s or 10s play-clock.
The performance of HRAVE, instead, is more game dependent, sometimes being
better than RAVE or GRAVE and sometimes being worse. Moreover, when RAVE
variants are combined with the Move Average Sampling Technique (MAST) used
as play-out strategy, GRAVE still seems to be overall better than RAVE. However,
its advantage is less than when both strategies are combined with random play-
outs, and there are a few games where the combination GRAVE-MAST actually
performs worse than RAVE-MAST. Additionally, the combination HRAVE-MAST
seems to perform slightly less than both RAVE-MAST and GRAVE-MAST. Over
all the experiments, the difference in performance between RAVE, GRAVE and
HRAVE is not large. However, the overall win rate of GRAVE is never inferior
to the one of RAVE and HRAVE, and it seems the most robust among all the
RAVE variants. Therefore, it may be concluded that a strategy that starts biasing
action selection with global information and uses more local information the more
the nodes have been visited is the most suitable to enhance MCTS for GGP. In
addition, and advantage of GRAVE is that it can be switched to a pure RAVE or a
pure HRAVE strategy by simply modifying one of its parameters. With respect to
the other two variants, this makes it more promising to be tuned on-line with the
approach presented in Chapter 6.

Together with RAVE, many other enhancements for the different phases of MCTS
have been applied successfully in GGP. Often, MCTS and its enhancements are
controlled by multiple parameters that require extensive and time-consuming off-
line optimization. Moreover, as the played games are unknown in advance, off-line
optimization cannot tune parameters specifically for single games. It has to find
values that perform overall well on a predefined set of games, with no guarantee
that they will perform successfully also on unseen games. An alternative would be
to adjust parameter values while playing each new game, therefore in an on-line
fashion. This has led to the formulation of the third research question.

Research question 3: How can search-control parameters for Monte-
Carlo Tree Search be tuned effectively on-line?

276 Summary

Chapter 6 answers the third research question proposing an on-line tuning method
for search-control parameters that enables MCTS to be self-adaptive during game
play (SA-MCTS). Seven different strategies were introduced to decide how to allo-
cate the available samples to test the parameter combinations: Multi-Armed Bandit
(MAB) allocation, Hierarchical Expansion (HE), Naïve Monte-Carlo (NMC), Lin-
ear Side Information (LSI), an Evolutionary Algorithm (EA), the N-Tuple Bandit
Evolutionary Algorithm (NTBEA) and the Covariance Matrix Adaptation Evolu-
tionary Strategy (CMA-ES). The performance of on-line parameter tuning has been
tested both on the Stanford GGP and the GVG-AI projects. Results show that
among the tested allocation strategies to tune parameters on-line, the ones consid-
ering a discrete parameter domain and based on evolutionary algorithms perform
best. NTBEA seems to have the best performance overall, but EA is also quite
close. Results for the Stanford GGP project show that on-line parameter tuning
is beneficial both for simple and more informed agents, when two parameters are
tuned. The performance decreases when tuning more parameters. However, when
tuning four parameters, the performance is still close to the one obtained using fixed
default parameter values. Results for the GVG-AI project show that it is harder
to tune parameters on-line with much shorter time settings, even when the number
of tuned parameters is small. However, it may still be better to tune parameters
on-line when fixed parameter settings might be sub-optimal, such as it is seen in
the game Modality. It may be concluded that the proposed approach is useful when
off-line parameter tuning is infeasible, or in contexts like GGP, both for abstract and
real-time games, where parameters cannot be tuned in advance for each game. More-
over, it is useful when off-line tuned values might be sub-optimal for some games, or
off-line tuning incurs in the risk of overfitting the values to the set of games selected
for the purpose of tuning. It may also be concluded that on-line parameter tuning
is robust against different types of opponents.

The success of on-line search-control parameter tuning on some of the tested
games might be partially due to the randomization introduced by exploring different
parameter combinations. This might be introducing diversification in the search
process, making it explore different parts of the tree that would not be explored
keeping the parameters fixed. Moreover, previous research has shown that adding
randomization to certain components of the search might increase its diversification
and improve its performance. In a domain like GGP, that deals with many games
with different characteristics, adding more randomization might be a good strategy
for some games. This has led to the formulation of the fourth research question.

Research question 4: What is the effect of randomizing search-control
parameters for Monte-Carlo Tree Search?

Chapter 7 answers this research question evaluating four different strategies that
randomize search-control parameters for MCTS in GGP: randomization per game,
per turn, per simulation and per state. Moreover, search-control parameter ran-
domization is compared with fixed parameter settings and with on-line parameter
tuning both in the framework of the Stanford GGP project and in the framework
of the GVG-AI project. For the Stanford GGP project, results show that the ran-
domization strategy that performs best is the one that randomizes parameter values

Summary 277

before each simulation, selecting such values within a predefined reasonable interval.
Moreover, results show that for some games randomizing per simulation the value
of a single parameter is better than keeping a good value fixed for the whole game.
Furthermore, results show that the effect of parameter randomization depends on
multiple factors, such as the game being played, which and how many parameters
are being randomized and the type of opponent. It may be concluded that, although
not always the best solution for all games, randomization within a given set of values
is still beneficial in GGP for games where the fixed parameter settings optimized
off-line on a predefined set of games are actually performing poorly. Moreover,
parameter randomization might be a valid alternative to on-line parameter tuning
when the number of parameters to tune is high and time settings are limited, be-
cause the problem of tuning them on-line becomes too hard due to the combinatorial
complexity.

Chapter 8 concludes the thesis and gives indications for future research direc-
tions. The answer to the problem statement is based on the answers to the research
questions given above. First, the process of interpreting the game rules written in
a declarative language can be sped up by using a PropNet representation of these
rules, optimizing the structure of such PropNet, and embedding the PropNet struc-
ture on an FPGA. By speeding up the process of interpreting the game rules, the
number of simulations that can be performed by MCTS can be increased. Second,
the selection strategy of MCTS can be enhanced using both locally and globally
collected information about the available actions. In this case, the best approach is
using a mix of global and local information, the first for states that have been visited
less and the second for states that have been visited more, like the GRAVE selection
strategy does. Third, search-control parameters can be tuned on-line and adapted
to each new game being played, using the NTBEA strategy to allocate samples for
evaluating parameter combinations. Fourth, randomizing search-control parameters
within a predefined set of values before each simulation can be used as an alternative
to on-line parameter tuning when the number of parameters to tune is high and the
time settings are limited.

All the approaches presented in the thesis have been shown to enhance the per-
formance of MCTS for a wide variety of games, without relying on game-specific
pre-coded information. Although evaluated only on a subset of all the planning
tasks that AGI is aiming to tackle, the games considered in this thesis present a wide
variety of characteristics. They include abstract games, video games, deterministic
and non-deterministic games, games with a discrete or continuous game flow, with
sequential or simultaneous moves, with constant-sum or variable-sum payoffs, and
with different numbers of players. Therefore, the presented MCTS enhancements
are promising to also support search and planning for AGI.

The research presented in the thesis indicates several areas for future research.
These include specific recommendations such as (i) further speeding up the Prop-
Net reasoner and its implementation on an FPGA, (ii) further testing the RAVE
variants, using different formulas to compute their parameters and combining them
with different play-out strategies, (iii) improving on-line parameter tuning by testing
other allocation strategies, increasing their adaptability to each played game and ap-
plying them to other domains, and (iv) testing parameter randomization with longer

278 Summary

time constraints and adding a mechanism that decides when and which parameters
to randomize. More generic recommendations for future research suggest to test
MCTS for AGI on more challenging domains and to focus on designing dynamic
approaches that automatically adapt different aspects of the search and of the agent
to each game or to each category of games being played.

Curriculum Vitae

Chiara Sironi was born on August 24, 1988 in Desio, Italy. She attended secondary
school first at Liceo Ettore Majorana, in Desio from 2002 to 2005, and subsequently
at Liceo Marie Curie, in Meda from 2005 to 2007. In 2008, she started studying
Computer Science at the University of Milano–Bicocca, in Italy, and in 2011 she
received her B.Sc. degree cum laude. Immediately thereafter, she started a master in
Computer Science at the same university, and in 2014 she obtained the M.Sc. degree
cum laude. During her master studies she also spent eight months as an exchange
student at the University of Antwerp, in Belgium. Moreover, she carried out her
master’s thesis project at the University of Leuven, in Belgium, for five months.
From 2015 to 2019 she worked as a Ph.D. researcher at the Department of Data
Science and Knowledge Engineering, Maastricht University. The research performed
there resulted in several publications and finally this thesis. She also received a
best paper nomination at the renowned IEEE Conference on Games (COG) for
her paper “Comparing Randomization Strategies for Search-Control Parameters in
MCTS”. Besides performing scientific tasks, she was involved in supervising students
with their thesis work and in guiding them during the practical sessions of courses
such as Data Structures and Algorithms, and Software Engineering. Furthermore,
she participated in the organization of the 14th IEEE Conference on Computational
Intelligence and Games (CIG) in Maastricht in August 2018.

SIKS Dissertation Series

2011

1 Botond Cseke (RUN1) Variational Algo-
rithms for Bayesian Inference in Latent
Gaussian Models

2 Nick Tinnemeier (UU) Organizing Agent Or-
ganizations. Syntax and Operational Seman-
tics of an Organization-Oriented Program-
ming Language

3 Jan Martijn van der Werf (TUE) Composi-
tional Design and Verification of Component-
Based Information Systems

4 Hado van Hasselt (UU) Insights in Reinforce-
ment Learning; Formal analysis and empiri-
cal evaluation of temporal-difference

5 Bas van der Raadt (VU) Enterprise Architec-
ture Coming of Age - Increasing the Perfor-
mance of an Emerging Discipline.

6 Yiwen Wang (TUE) Semantically-Enhanced
Recommendations in Cultural Heritage

7 Yujia Cao (UT)Multimodal Information Pre-
sentation for High Load Human Computer
Interaction

8 Nieske Vergunst (UU) BDI-based Generation
of Robust Task-Oriented Dialogues

9 Tim de Jong (OU) Contextualised Mobile Me-
dia for Learning

10 Bart Bogaert (UVT) Cloud Content Con-
tention

11 Dhaval Vyas (UT) Designing for Awareness:
An Experience-focused HCI Perspective

12 Carmen Bratosin (TUE) Grid Architecture
for Distributed Process Mining

13 Xiaoyu Mao (UVT) Airport under Control.
Multiagent Scheduling for Airport Ground
Handling

14 Milan Lovric (EUR) Behavioral Finance and
Agent-Based Artificial Markets

15 Marijn Koolen (UVA) The Meaning of Struc-
ture: the Value of Link Evidence for Infor-
mation Retrieval

16 Maarten Schadd (UM) Selective Search in
Games of Different Complexity

17 Jiyin He (UVA) Exploring Topic Structure:
Coherence, Diversity and Relatedness

18 Mark Ponsen (UM) Strategic Decision-
Making in complex games

19 Ellen Rusman (OU) The Mind’s Eye on Per-
sonal Profiles

20 Qing Gu (VU) Guiding service-oriented soft-
ware engineering - A view-based approach

21 Linda Terlouw (TUD) Modularization and
Specification of Service-Oriented Systems

22 Junte Zhang (UVA) System Evaluation of
Archival Description and Access

23 Wouter Weerkamp (UVA) Finding People
and their Utterances in Social Media

24 Herwin van Welbergen (UT) Behavior Gen-
eration for Interpersonal Coordination with
Virtual Humans On Specifying, Scheduling
and Realizing Multimodal Virtual Human Be-
havior

25 Syed Waqar ul Qounain Jaffry (VU) Analysis
and Validation of Models for Trust Dynamics

1Abbreviations: SIKS – Dutch Research School for Information and Knowledge Systems; CWI –
Centrum voor Wiskunde en Informatica, Amsterdam; EUR – Erasmus Universiteit, Rotterdam; OU
– Open Universiteit; RUN – Radboud Universiteit Nijmegen; TUD – Technische Universiteit Delft;
TUE – Technische Universiteit Eindhoven; UL – Universiteit Leiden; UM – Universiteit Maastricht;
UT – Universiteit Twente; UU – Universiteit Utrecht; UVA – Universiteit van Amsterdam; UVT –
Universiteit van Tilburg; VU – Vrije Universiteit, Amsterdam.

282 SIKS Dissertation Series

26 Matthijs Aart Pontier (VU) Virtual Agents
for Human Communication - Emotion Regu-
lation and Involvement-Distance Trade-Offs
in Embodied Conversational Agents and
Robots

27 Aniel Bhulai (VU) Dynamic website opti-
mization through autonomous management
of design patterns

28 Rianne Kaptein (UVA) Effective Focused Re-
trieval by Exploiting Query Context and Doc-
ument Structure

29 Faisal Kamiran (TUE) Discrimination-aware
Classification

30 Egon van den Broek (UT) Affective Signal
Processing (ASP): Unraveling the mystery of
emotions

31 Ludo Waltman (EUR) Computational and
Game-Theoretic Approaches for Modeling
Bounded Rationality

32 Nees-Jan van Eck (EUR) Methodological Ad-
vances in Bibliometric Mapping of Science

33 Tom van der Weide (UU) Arguing to Motivate
Decisions

34 Paolo Turrini (UU) Strategic Reasoning
in Interdependence: Logical and Game-
theoretical Investigations

35 Maaike Harbers (UU) Explaining Agent Be-
havior in Virtual Training

36 Erik van der Spek (UU) Experiments in seri-
ous game design: a cognitive approach

37 Adriana Burlutiu (RUN) Machine Learning
for Pairwise Data, Applications for Prefer-
ence Learning and Supervised Network Infer-
ence

38 Nyree Lemmens (UM) Bee-inspired Dis-
tributed Optimization

39 Joost Westra (UU) Organizing Adaptation
using Agents in Serious Games

40 Viktor Clerc (VU) Architectural Knowledge
Management in Global Software Develop-
ment

41 Luan Ibraimi (UT) Cryptographically En-
forced Distributed Data Access Control

42 Michal Sindlar (UU) Explaining Behavior
through Mental State Attribution

43 Henk van der Schuur (UU) Process Improve-
ment through Software Operation Knowledge

44 Boris Reuderink (UT) Robust Brain-
Computer Interfaces

45 Herman Stehouwer (UVT) Statistical Lan-
guage Models for Alternative Sequence Selec-
tion

46 Beibei Hu (TUD) Towards Contextualized In-
formation Delivery: A Rule-based Architec-
ture for the Domain of Mobile Police Work

47 Azizi Bin Ab Aziz (VU) Exploring Computa-
tional Models for Intelligent Support of Per-
sons with Depression

48 Mark Ter Maat (UT) Response Selection and
Turn-taking for a Sensitive Artificial Listen-
ing Agent

49 Andreea Niculescu (UT) Conversational in-
terfaces for task-oriented spoken dialogues:
design aspects influencing interaction quality

2012

1 Terry Kakeeto (UVT) Relationship Market-
ing for SMEs in Uganda

2 Muhammad Umair (VU) Adaptivity, emo-
tion, and Rationality in Human and Ambient
Agent Models

3 Adam Vanya (VU) Supporting Architecture
Evolution by Mining Software Repositories

4 Jurriaan Souer (UU) Development of Content
Management System-based Web Applications

5 Marijn Plomp (UU) Maturing Interorganisa-
tional Information Systems

6 Wolfgang Reinhardt (OU) Awareness Sup-
port for Knowledge Workers in Research Net-
works

7 Rianne van Lambalgen (VU) When the Go-
ing Gets Tough: Exploring Agent-based Mod-
els of Human Performance under Demanding
Conditions

8 Gerben de Vries (UVA) Kernel Methods for
Vessel Trajectories

9 Ricardo Neisse (UT) Trust and Privacy Man-
agement Support for Context-Aware Service
Platforms

10 David Smits (TUE) Towards a Generic Dis-
tributed Adaptive Hypermedia Environment

11 J.C.B. Rantham Prabhakara (TUE) Process
Mining in the Large: Preprocessing, Discov-
ery, and Diagnostics

12 Kees van der Sluijs (TUE) Model Driven De-
sign and Data Integration in Semantic Web
Information Systems

13 Suleman Shahid (UVT) Fun and Face: Ex-
ploring non-verbal expressions of emotion
during playful interactions

14 Evgeny Knutov (TUE) Generic Adaptation
Framework for Unifying Adaptive Web-based
Systems

SIKS Dissertation Series 283

15 Natalie van der Wal (VU) Social Agents.
Agent-Based Modelling of Integrated Internal
and Social Dynamics of Cognitive and Affec-
tive Processes.

16 Fiemke Both (VU) Helping people by under-
standing them - Ambient Agents supporting
task execution and depression treatment

17 Amal Elgammal (UVT) Towards a Com-
prehensive Framework for Business Process
Compliance

18 Eltjo Poort (VU) Improving Solution Archi-
tecting Practices

19 Helen Schonenberg (TUE) What’s Next? Op-
erational Support for Business Process Exe-
cution

20 Ali Bahramisharif (RUN) Covert Visual Spa-
tial Attention, a Robust Paradigm for Brain-
Computer Interfacing

21 Roberto Cornacchia (TUD) Querying Sparse
Matrices for Information Retrieval

22 Thijs Vis (UVT) Intelligence, politie en vei-
ligheidsdienst: verenigbare grootheden?

23 Christian Muehl (UT) Toward Affective
Brain-Computer Interfaces: Exploring the
Neurophysiology of Affect during Human Me-
dia Interaction

24 Laurens van der Werff (UT) Evaluation of
Noisy Transcripts for Spoken Document Re-
trieval

25 Silja Eckartz (UT) Managing the Business
Case Development in Inter-Organizational
IT Projects: A Methodology and its Appli-
cation

26 Emile de Maat (UVA) Making Sense of Legal
Text

27 Hayrettin Gurkok (UT) Mind the Sheep!
User Experience Evaluation & Brain-
Computer Interface Games

28 Nancy Pascall (UVT) Engendering Technol-
ogy Empowering Women

29 Almer Tigelaar (UT) Peer-to-Peer Informa-
tion Retrieval

30 Alina Pommeranz (TUD) Designing Human-
Centered Systems for Reflective Decision
Making

31 Emily Bagarukayo (RUN) A Learning by
Construction Approach for Higher Order
Cognitive Skills Improvement, Building Ca-
pacity and Infrastructure

32 Wietske Visser (TUD) Qualitative multi-
criteria preference representation and rea-
soning

33 Rory Sie (OU) Coalitions in Cooperation Net-
works (COCOON)

34 Pavol Jancura (RUN) Evolutionary analysis
in PPI networks and applications

35 Evert Haasdijk (VU) Never Too Old To Learn
– On-line Evolution of Controllers in Swarm-
and Modular Robotics

36 Denis Ssebugwawo (RUN) Analysis and Eval-
uation of Collaborative Modeling Processes

37 Agnes Nakakawa (RUN) A Collaboration
Process for Enterprise Architecture Creation

38 Selmar Smit (VU) Parameter Tuning and
Scientific Testing in Evolutionary Algorithms

39 Hassan Fatemi (UT) Risk-aware design of
value and coordination networks

40 Agus Gunawan (UVT) Information Access
for SMEs in Indonesia

41 Sebastian Kelle (OU) Game Design Patterns
for Learning

42 Dominique Verpoorten (OU) Reflection Am-
plifiers in self-regulated Learning

43 (Withdrawn)

44 Anna Tordai (VU) On Combining Alignment
Techniques

45 Benedikt Kratz (UVT) A Model and Lan-
guage for Business-aware Transactions

46 Simon Carter (UVA) Exploration and Ex-
ploitation of Multilingual Data for Statistical
Machine Translation

47 Manos Tsagkias (UVA) Mining Social Media:
Tracking Content and Predicting Behavior

48 Jorn Bakker (TUE) Handling Abrupt
Changes in Evolving Time-series Data

49 Michael Kaisers (UM) Learning against
Learning - Evolutionary dynamics of rein-
forcement learning algorithms in strategic in-
teractions

50 Steven van Kervel (TUD) Ontology driven
Enterprise Information Systems Engineering

51 Jeroen de Jong (TUD) Heuristics in Dynamic
Scheduling; a practical framework with a case
study in elevator dispatching

2013

1 Viorel Milea (EUR) News Analytics for Fi-
nancial Decision Support

2 Erietta Liarou (CWI) MonetDB/DataCell:
Leveraging the Column-store Database Tech-
nology for Efficient and Scalable Stream Pro-
cessing

284 SIKS Dissertation Series

3 Szymon Klarman (VU) Reasoning with Con-
texts in Description Logics

4 Chetan Yadati (TUD) Coordinating au-
tonomous planning and scheduling

5 Dulce Pumareja (UT) Groupware Require-
ments Evolutions Patterns

6 Romulo Gonçalves (CWI) The Data Cy-
clotron: Juggling Data and Queries for a
Data Warehouse Audience

7 Giel van Lankveld (UVT) Quantifying Indi-
vidual Player Differences

8 Robbert-Jan Merk (VU) Making enemies:
cognitive modeling for opponent agents in
fighter pilot simulators

9 Fabio Gori (RUN) Metagenomic Data Anal-
ysis: Computational Methods and Applica-
tions

10 Jeewanie Jayasinghe Arachchige (UVT) A
Unified Modeling Framework for Service De-
sign.

11 Evangelos Pournaras (TUD) Multi-level Re-
configurable Self-organization in Overlay Ser-
vices

12 Marian Razavian (VU) Knowledge-driven
Migration to Services

13 Mohammad Safiri (UT) Service Tailoring:
User-centric creation of integrated IT-based
homecare services to support independent liv-
ing of elderly

14 Jafar Tanha (UVA) Ensemble Approaches to
Semi-Supervised Learning Learning

15 Daniel Hennes (UM) Multiagent Learning -
Dynamic Games and Applications

16 Eric Kok (UU) Exploring the practical bene-
fits of argumentation in multi-agent delibera-
tion

17 Koen Kok (VU) The PowerMatcher: Smart
Coordination for the Smart Electricity Grid

18 Jeroen Janssens (UVT) Outlier Selection and
One-Class Classification

19 Renze Steenhuizen (TUD) Coordinated
Multi-Agent Planning and Scheduling

20 Katja Hofmann (UVA) Fast and Reliable On-
line Learning to Rank for Information Re-
trieval

21 Sander Wubben (UVT) Text-to-text genera-
tion by monolingual machine translation

22 Tom Claassen (RUN) Causal Discovery and
Logic

23 Patricio de Alencar Silva (UVT) Value Activ-
ity Monitoring

24 Haitham Bou Ammar (UM) Automated
Transfer in Reinforcement Learning

25 Agnieszka Anna Latoszek-Berendsen (UM)
Intention-based Decision Support. A new
way of representing and implementing clin-
ical guidelines in a Decision Support System

26 Alireza Zarghami (UT) Architectural Support
for Dynamic Homecare Service Provisioning

27 Mohammad Huq (UT) Inference-based
Framework Managing Data Provenance

28 Frans van der Sluis (UT) When Complexity
becomes Interesting: An Inquiry into the In-
formation eXperience

29 Iwan de Kok (UT) Listening Heads

30 Joyce Nakatumba (TUE) Resource-Aware
Business Process Management: Analysis and
Support

31 Dinh Khoa Nguyen (UVT) Blueprint Model
and Language for Engineering Cloud Appli-
cations

32 Kamakshi Rajagopal (OU) Networking For
Learning; The role of Networking in a Life-
long Learner’s Professional Development

33 Qi Gao (TUD) User Modeling and Personal-
ization in the Microblogging Sphere

34 Kien Tjin-Kam-Jet (UT) Distributed Deep
Web Search

35 Abdallah El Ali (UVA) Minimal Mobile Hu-
man Computer Interaction

36 Than Lam Hoang (TUE) Pattern Mining in
Data Streams

37 Dirk Börner (OU) Ambient Learning Dis-
plays

38 Eelco den Heijer (VU) Autonomous Evolu-
tionary Art

39 Joop de Jong (TUD)A Method for Enterprise
Ontology based Design of Enterprise Infor-
mation Systems

40 Pim Nijssen (UM) Monte-Carlo Tree Search
for Multi-Player Games

41 Jochem Liem (UVA) Supporting the Con-
ceptual Modelling of Dynamic Systems: A
Knowledge Engineering Perspective on Qual-
itative Reasoning

42 Léon Planken (TUD) Algorithms for Simple
Temporal Reasoning

43 Marc Bron (UVA) Exploration and Contextu-
alization through Interaction and Concepts

SIKS Dissertation Series 285

2014

1 Nicola Barile (UU) Studies in Learning
Monotone Models from Data

2 Fiona Tuliyano (RUN) Combining System
Dynamics with a Domain Modeling Method

3 Sergio Raul Duarte Torres (UT) Information
Retrieval for Children: Search Behavior and
Solutions

4 Hanna Jochmann-Mannak (UT) Websites for
children: search strategies and interface de-
sign - Three studies on children’s search per-
formance and evaluation

5 Jurriaan van Reijsen (UU) Knowledge Per-
spectives on Advancing Dynamic Capability

6 Damian Tamburri (VU) Supporting Net-
worked Software Development

7 Arya Adriansyah (TUE) Aligning Observed
and Modeled Behavior

8 Samur Araujo (TUD) Data Integration over
Distributed and Heterogeneous Data End-
points

9 Philip Jackson (UVT) Toward Human-Level
Artificial Intelligence: Representation and
Computation of Meaning in Natural Lan-
guage

10 Ivan Salvador Razo Zapata (VU) Service
Value Networks

11 Janneke van der Zwaan (TUD) An Empathic
Virtual Buddy for Social Support

12 Willem van Willigen (VU) Look Ma, No
Hands: Aspects of Autonomous Vehicle Con-
trol

13 Arlette van Wissen (VU) Agent-Based Sup-
port for Behavior Change: Models and Ap-
plications in Health and Safety Domains

14 Yangyang Shi (TUD) Language Models With
Meta-information

15 Natalya Mogles (VU) Agent-Based Analysis
and Support of Human Functioning in Com-
plex Socio-Technical Systems: Applications
in Safety and Healthcare

16 Krystyna Milian (VU) Supporting trial re-
cruitment and design by automatically inter-
preting eligibility criteria

17 Kathrin Dentler (VU) Computing healthcare
quality indicators automatically: Secondary
Use of Patient Data and Semantic Interop-
erability

18 Mattijs Ghijsen (UVA) Methods and Models
for the Design and Study of Dynamic Agent
Organizations

19 Vinicius Ramos (TUE) Adaptive Hypermedia
Courses: Qualitative and Quantitative Eval-
uation and Tool Support

20 Mena Habib (UT) Named Entity Extraction
and Disambiguation for Informal Text: The
Missing Link

21 Kassidy Clark (TUD) Negotiation and Mon-
itoring in Open Environments

22 Marieke Peeters (UU) Personalized Educa-
tional Games - Developing agent-supported
scenario-based training

23 Eleftherios Sidirourgos (UVA/CWI) Space
Efficient Indexes for the Big Data Era

24 Davide Ceolin (VU) Trusting Semi-structured
Web Data

25 Martijn Lappenschaar (RUN) New network
models for the analysis of disease interaction

26 Tim Baarslag (TUD) What to Bid and When
to Stop

27 Rui Jorge Almeida (EUR) Conditional Den-
sity Models Integrating Fuzzy and Probabilis-
tic Representations of Uncertainty

28 Anna Chmielowiec (VU) Decentralized k-
Clique Matching

29 Jaap Kabbedijk (UU) Variability in Multi-
Tenant Enterprise Software

30 Peter de Cock (UVT) Anticipating Criminal
Behaviour

31 Leo van Moergestel (UU) Agent Technol-
ogy in Agile Multiparallel Manufacturing and
Product Support

32 Naser Ayat (UVA) On Entity Resolution in
Probabilistic Data

33 Tesfa Tegegne (RUN) Service Discovery in
eHealth

34 Christina Manteli (VU) The Effect of Gover-
nance in Global Software Development: An-
alyzing Transactive Memory Systems.

35 Joost van Ooijen (UU) Cognitive Agents in
Virtual Worlds: A Middleware Design Ap-
proach

36 Joos Buijs (TUE) Flexible Evolutionary Algo-
rithms for Mining Structured Process Models

37 Maral Dadvar (UT) Experts and Machines
United Against Cyberbullying

38 Danny Plass-Oude Bos (UT) Making brain-
computer interfaces better: improving usabil-
ity through post-processing.

39 Jasmina Maric (UVT) Web Communities,
Immigration, and Social Capital

286 SIKS Dissertation Series

40 Walter Omona (RUN) A Framework for
Knowledge Management Using ICT in
Higher Education

41 Frederic Hogenboom (EUR) Automated De-
tection of Financial Events in News Text

42 Carsten Eijckhof (CWI/TUD) Contextual
Multidimensional Relevance Models

43 Kevin Vlaanderen (UU) Supporting Process
Improvement using Method Increments

44 Paulien Meesters (UVT) Intelligent Blauw.
Intelligence-gestuurde politiezorg in gebieds-
gebonden eenheden.

45 Birgit Schmitz (OU) Mobile Games for
Learning: A Pattern-Based Approach

46 Ke Tao (TUD) Social Web Data Analytics:
Relevance, Redundancy, Diversity

47 Shangsong Liang (UVA) Fusion and Diversi-
fication in Information Retrieval

2015

1 Niels Netten (UVA) Machine Learning for
Relevance of Information in Crisis Response

2 Faiza Bukhsh (UVT) Smart auditing: In-
novative Compliance Checking in Customs
Controls

3 Twan van Laarhoven (RUN) Machine learn-
ing for network data

4 Howard Spoelstra (OU) Collaborations in
Open Learning Environments

5 Christoph Bösch (UT) Cryptographically En-
forced Search Pattern Hiding

6 Farideh Heidari (TUD) Business Process
Quality Computation - Computing Non-
Functional Requirements to Improve Busi-
ness Processes

7 Maria-Hendrike Peetz (UVA) Time-Aware
Online Reputation Analysis

8 Jie Jiang (TUD) Organizational Compliance:
An agent-based model for designing and eval-
uating organizational interactions

9 Randy Klaassen (UT) HCI Perspectives on
Behavior Change Support Systems

10 Henry Hermans (OU) OpenU: design of an
integrated system to support lifelong learning

11 Yongming Luo (TUE) Designing algorithms
for big graph datasets: A study of computing
bisimulation and joins

12 Julie M. Birkholz (VU) Modi Operandi of So-
cial Network Dynamics: The Effect of Con-
text on Scientific Collaboration Networks

13 Giuseppe Procaccianti (VU) Energy-Efficient
Software

14 Bart van Straalen (UT) A cognitive approach
to modeling bad news conversations

15 Klaas Andries de Graaf (VU) Ontology-based
Software Architecture Documentation

16 Changyun Wei (UT) Cognitive Coordination
for Cooperative Multi-Robot Teamwork

17 André van Cleeff (UT) Physical and Digital
Security Mechanisms: Properties, Combina-
tions and Trade-offs

18 Holger Pirk (CWI) Waste Not, Want Not!
- Managing Relational Data in Asymmetric
Memories

19 Bernardo Tabuenca (OU) Ubiquitous Tech-
nology for Lifelong Learners

20 Lois Vanhée (UU) Using Culture and Values
to Support Flexible Coordination

21 Sibren Fetter (OU) Using Peer-Support to
Expand and Stabilize Online Learning

22 Zhemin Zhu (UT) Co-occurrence Rate Net-
works

23 Luit Gazendam (VU) Cataloguer Support in
Cultural Heritage

24 Richard Berendsen (UVA) Finding People,
Papers, and Posts: Vertical Search Algo-
rithms and Evaluation

25 Steven Woudenberg (UU) Bayesian Tools for
Early Disease Detection

26 Alexander Hogenboom (EUR) Sentiment
Analysis of Text Guided by Semantics and
Structure

27 Sándor Héman (CWI) Updating compressed
column-stores

28 Janet Bagorogoza (UVT) Knowledge Man-
agement and High Performance; The Uganda
Financial Institutions Model for HPO

29 Hendrik Baier (UM) Monte-Carlo Tree
Search Enhancements for One-Player and
Two-Player Domains

30 Kiavash Bahreini (OU) Real-time Multimodal
Emotion Recognition in E-Learning

31 Yakup Koç (TUD) On the robustness of
Power Grids

32 Jerome Gard (UL) Corporate Venture Man-
agement in SMEs

33 Frederik Schadd (TUD) Ontology Mapping
with Auxiliary Resources

34 Victor de Graaf (UT) Geosocial Recom-
mender Systems

SIKS Dissertation Series 287

35 Jungxao Xu (TUD) Affective Body Language
of Humanoid Robots: Perception and Effects
in Human Robot Interaction

2016

1 Syed Saiden Abbas (RUN) Recognition of
Shapes by Humans and Machines

2 Michiel Christiaan Meulendijk (UU) Optimiz-
ing medication reviews through decision sup-
port: prescribing a better pill to swallow

3 Maya Sappelli (RUN) Knowledge Work in
Context: User Centered Knowledge Worker
Support

4 Laurens Rietveld (VU) Publishing and Con-
suming Linked Data

5 Evgeny Sherkhonov (UVA) Expanded Acyclic
Queries: Containment and an Application in
Explaining Missing Answers

6 Michel Wilson (TUD) Robust scheduling in
an uncertain environment

7 Jeroen de Man (VU)Measuring and modeling
negative emotions for virtual training

8 Matje van de Camp (UVT) A Link to the
Past: Constructing Historical Social Net-
works from Unstructured Data

9 Archana Nottamkandath (VU) Trusting
Crowdsourced Information on Cultural Arte-
facts

10 George Karafotias (VU) Parameter Control
for Evolutionary Algorithms

11 Anne Schuth (UVA) Search Engines that
Learn from Their Users

12 Max Knobbout (UU) Logics for Modelling
and Verifying Normative Multi-Agent Sys-
tems

13 Nana Baah Gyan (VU) The Web, Speech
Technologies and Rural Development in West
Africa - An ICT4D Approach

14 Ravi Khadka (UU) Revisiting Legacy Soft-
ware System Modernization

15 Steffen Michels (RUN) Hybrid Probabilistic
Logics - Theoretical Aspects, Algorithms and
Experiments

16 Guangliang Li (UVA) Socially Intelligent Au-
tonomous Agents that Learn from Human
Reward

17 Berend Weel (VU) Towards Embodied Evolu-
tion of Robot Organisms

18 Albert Meroño Peñuela (VU) Refining Statis-
tical Data on the Web

19 Julia Efremova (TUE) Mining Social Struc-
tures from Genealogical Data

20 Daan Odijk (UVA) Context & Semantics in
News & Web Search

21 Alejandro Moreno Célleri (UT) From Tradi-
tional to Interactive Playspaces: Automatic
Analysis of Player Behavior in the Interac-
tive Tag Playground

22 Grace Lewis (VU) Software Architecture
Strategies for Cyber-Foraging Systems

23 Fei Cai (UVA) Query Auto Completion in In-
formation Retrieval

24 Brend Wanders (UT) Repurposing and Prob-
abilistic Integration of Data; An Iterative and
data model independent approach

25 Julia Kiseleva (TUE) Using Contextual Infor-
mation to Understand Searching and Brows-
ing Behavior

26 Dilhan Thilakarathne (VU) In or Out of
Control: Exploring Computational Models to
Study the Role of Human Awareness and
Control in Behavioural Choices, with Appli-
cations in Aviation and Energy Management
Domains

27 Wen Li (TUD)Understanding Geo-spatial In-
formation on Social Media

28 Mingxin Zhang (TUD) Large-scale Agent-
based Social Simulation - A study on epi-
demic prediction and control

29 Nicolas Höning (TUD) Peak reduction in de-
centralised electricity systems - Markets and
prices for flexible planning

30 Ruud Mattheij (UVT) The Eyes Have It

31 Mohammad Khelghati (UT) Deep web con-
tent monitoring

32 Eelco Vriezekolk (UT) Assessing Telecommu-
nication Service Availability Risks for Crisis
Organisations

33 Peter Bloem (UVA) Single Sample Statistics,
exercises in learning from just one example

34 Dennis Schunselaar (TUE) Configurable Pro-
cess Trees: Elicitation, Analysis, and Enact-
ment

35 Zhaochun Ren (UVA) Monitoring Social Me-
dia: Summarization, Classification and Rec-
ommendation

36 Daphne Karreman (UT) Beyond R2D2: The
design of nonverbal interaction behavior op-
timized for robot-specific morphologies

37 Giovanni Sileno (UVA) Aligning Law and Ac-
tion - a conceptual and computational in-
quiry

288 SIKS Dissertation Series

38 Andrea Minuto (UT) Materials that Matter -
Smart Materials meet Art & Interaction De-
sign

39 Merijn Bruijnes (UT) Believable Suspect
Agents; Response and Interpersonal Style Se-
lection for an Artificial Suspect

40 Christian Detweiler (TUD) Accounting for
Values in Design

41 Thomas King (TUD) Governing Governance:
A Formal Framework for Analysing Institu-
tional Design and Enactment Governance

42 Spyros Martzoukos (UVA) Combinatorial
and Compositional Aspects of Bilingual
Aligned Corpora

43 Saskia Koldijk (RUN) Context-Aware Sup-
port for Stress Self-Management: From The-
ory to Practice

44 Thibault Sellam (UVA) Automatic Assistants
for Database Exploration

45 Bram van de Laar (UT) Experiencing Brain-
Computer Interface Control

46 Jorge Gallego Perez (UT) Robots to Make you
Happy

47 Christina Weber (UL) Real-time foresight -
Preparedness for dynamic innovation net-
works

48 Tanja Buttler (TUD) Collecting Lessons
Learned

49 Gleb Polevoy (TUD) Participation and Inter-
action in Projects. A Game-Theoretic Anal-
ysis

50 Yan Wang (UVT) The Bridge of Dreams:
Towards a Method for Operational Perfor-
mance Alignment in IT-enabled Service Sup-
ply Chains

2017

1 Jan-Jaap Oerlemans (UL) Investigating Cy-
bercrime

2 Sjoerd Timmer (UU) Designing and Under-
standing Forensic Bayesian Networks using
Argumentation

3 Daniël Harold Telgen (UU) Grid Manufac-
turing; A Cyber-Physical Approach with Au-
tonomous Products and Reconfigurable Man-
ufacturing Machines

4 Mrunal Gawade (CWI) Multi-core Paral-
lelism in a Column-store

5 Mahdieh Shadi (UVA) Collaboration Behav-
ior

6 Damir Vandic (EUR) Intelligent Information
Systems for Web Product Search

7 Roel Bertens (UU) Insight in Information:
from Abstract to Anomaly

8 Rob Konijn (VU) , Detecting Interesting Dif-
ferences:Data Mining in Health Insurance
Data using Outlier Detection and Subgroup
Discovery

9 Dong Nguyen (UT) Text as Social and Cul-
tural Data: A Computational Perspective on
Variation in Text

10 Robby van Delden (UT) (Steering) Interac-
tive Play Behavior

11 Florian Kunneman (RUN)Modelling patterns
of time and emotion in Twitter #anticipoint-
ment

12 Sander Leemans (TUE) Robust Process Min-
ing with Guarantees

13 Gijs Huisman (UT) Social Touch Technology
- Extending the reach of social touch through
haptic technology

14 Shoshannah Tekofsky (UVT) You Are Who
You Play You Are: Modelling Player Traits
from Video Game Behavior

15 Peter Berck (RUN) Memory-Based Text Cor-
rection

16 Aleksandr Chuklin (UVA) Understanding
and Modeling Users of Modern Search En-
gines

17 Daniel Dimov (UL) Crowdsourced Online
Dispute Resolution

18 Ridho Reinanda (UVA) Entity Associations
for Search

19 Jeroen Vuurens (UT) Proximity of Terms,
Texts and Semantic Vectors in Information
Retrieval

20 Mohammadbashir Sedighi (TUD) Fostering
Engagement in Knowledge Sharing: The
Role of Perceived Benefits, Costs and Visi-
bility

21 Jeroen Linssen (UT) Meta Matters in Inter-
active Storytelling and Serious Gaming (A
Play on Worlds)

22 Sara Magliacane (VU) Logics for causal in-
ference under uncertainty

23 David Graus (UVA) Entities of Interest —
Discovery in Digital Traces

24 Chang Wang (TUD) Use of Affordances for
Efficient Robot Learning

SIKS Dissertation Series 289

25 Veruska Zamborlini (VU) Knowledge Repre-
sentation for Clinical Guidelines, with appli-
cations to Multimorbidity Analysis and Lit-
erature Search

26 Merel Jung (UT) Socially intelligent robots
that understand and respond to human touch

27 Michiel Joosse (UT) Investigating Position-
ing and Gaze Behaviors of Social Robots:
People’s Preferences, Perceptions and Behav-
iors

28 John Klein (VU) Architecture Practices for
Complex Contexts

29 Adel Alhuraibi (UVT) From IT-
BusinessStrategic Alignment to Perfor-
mance: A Moderated Mediation Model of
Social Innovation, and Enterprise Gover-
nance of IT

30 Wilma Latuny (UVT) The Power of Facial
Expressions

31 Ben Ruijl (UL) Advances in computational
methods for QFT calculations

32 Thaer Samar (RUN) Access to and Retriev-
ability of Content in Web Archives

33 Brigit van Loggem (OU) Towards a Design
Rationale for Software Documentation: A
Model of Computer-Mediated Activity

34 Maren Scheffel (OU) The Evaluation Frame-
work for Learning Analytics

35 Martine de Vos (VU) Interpreting natural sci-
ence spreadsheets

36 Yuanhao Guo (UL) Shape Analysis for
Phenotype Characterisation from High-
throughput Imaging

37 Alejandro Montes Garcia (TUE) WiBAF: A
Within Browser Adaptation Framework that
Enables Control over Privacy

38 Alex Kayal (TUD) Normative Social Appli-
cations

39 Sara Ahmadi (RUN) Exploiting properties of
the human auditory system and compressive
sensing methods to increase noise robustness
in ASR

40 Altaf Hussain Abro (VU) Steer your Mind:
Computational Exploration of Human Con-
trol in Relation to Emotions, Desires and
Social Support For applications in human-
aware support systems

41 Adnan Manzoor (VU) Minding a Healthy
Lifestyle: An Exploration of Mental Pro-
cesses and a Smart Environment to Provide
Support for a Healthy Lifestyle

42 Elena Sokolova (RUN) Causal discovery from
mixed and missing data with applications on
ADHD datasets

43 Maaike de Boer (RUN) Semantic Mapping in
Video Retrieval

44 Garm Lucassen (UU) Understanding User
Stories - Computational Linguistics in Agile
Requirements Engineering

45 Bas Testerink (UU) Decentralized Runtime
Norm Enforcement

46 Jan Schneider (OU) Sensor-based Learning
Support

47 Jie Yang (TUD) Crowd Knowledge Creation
Acceleration

48 Angel Suarez (OU) Collaborative inquiry-
based learning

2018

1 Han van der Aa (VU) Comparing and Align-
ing Process Representations

2 Felix Mannhardt (TUE) Multi-perspective
Process Mining

3 Steven Bosems (UT) Causal Models For
Well-Being: Knowledge Modeling, Model-
Driven Development of Context-Aware Ap-
plications, and Behavior Prediction

4 Jordan Janeiro (TUD) Flexible Coordination
Support for Diagnosis Teams in Data-Centric
Engineering Tasks

5 Hugo Huurdeman (UVA) Supporting the
Complex Dynamics of the Information Seek-
ing Process

6 Dan Ionita (UT) Model-Driven Information
Security Risk Assessment of Socio-Technical
Systems

7 Jieting Luo (UU) A formal account of oppor-
tunism in multi-agent systems

8 Rick Smetsers (RUN) Advances in Model
Learning for Software Systems

9 Xu Xie (TUD) Data Assimilation in Discrete
Event Simulations

10 Julienka Mollee (VU) Moving forward: sup-
porting physical activity behavior change
through intelligent technology

11 Mahdi Sargolzaei (UVA) Enabling Frame-
work for Service-oriented Collaborative Net-
works

12 Xixi Lu (TUE) Using behavioral context in
process mining

13 Seyed Amin Tabatabaei (VU) Computing a
Sustainable Future

290 SIKS Dissertation Series

14 Bart Joosten (UVT) Detecting Social Signals
with Spatiotemporal Gabor Filters

15 Naser Davarzani (UM) Biomarker discovery
in heart failure

16 Jaebok Kim (UT) Automatic recognition of
engagement and emotion in a group of chil-
dren

17 Jianpeng Zhang (TUE) On Graph Sample
Clustering

18 Henriette Nakad (UL) De Notaris en Private
Rechtspraak

19 Minh Duc Pham (VU) Emergent relational
schemas for RDF

20 Manxia Liu (RUN) Time and Bayesian Net-
works

21 Aad Slootmaker (OU) EMERGO: a generic
platform for authoring and playing scenario-
based serious games

22 Eric Fernandes de Mello Araujo (VU) Con-
tagious: Modeling the Spread of Behaviours,
Perceptions and Emotions in Social Net-
works

23 Kim Schouten (EUR) Semantics-driven
Aspect-Based Sentiment Analysis

24 Jered Vroon (UT) Responsive Social Po-
sitioning Behaviour for Semi-Autonomous
Telepresence Robots

25 Riste Gligorov (VU) Serious Games in
Audio-Visual Collections

26 Roelof Anne Jelle de Vries (UT) Theory-
Based and Tailor-Made: Motivational Mes-
sages for Behavior Change Technology

27 Maikel Leemans (TUE) Hierarchical Process
Mining for Scalable Software Analysis

28 Christian Willemse (UT) Social Touch Tech-
nologies: How they feel and how they make
you feel

29 Yu Gu (UVT) Emotion Recognition from
Mandarin Speech

30 Wouter Beek (VU) The "K" in "semantic
web" stands for "knowledge": scaling seman-
tics to the web

2019

1 Rob van Eijk (UL) Web privacy measurement
in real-time bidding systems. A graph-based
approach to RTB system classification

2 Emmanuelle Beauxis Aussalet (CWI, UU)
Statistics and Visualizations for Assessing
Class Size Uncertainty

3 Eduardo Gonzalez Lopez de Murillas (TUE)
Process Mining on Databases: Extracting
Event Data from Real Life Data Sources

4 Ridho Rahmadi (RUN) Finding stable causal
structures from clinical data

5 Sebastiaan van Zelst (TUE) Process Mining
with Streaming Data

6 Chris Dijkshoorn (VU) Nichesourcing for Im-
proving Access to Linked Cultural Heritage
Datasets

7 Soude Fazeli (TUD) Recommender Systems
in Social Learning Platforms

8 Frits de Nijs (TUD) Resource-constrained
Multi-agent Markov Decision Processes

9 Fahimeh Alizadeh Moghaddam (UVA) Self-
adaptation for energy efficiency in software
systems

10 Qing Chuan Ye (EUR) Multi-objective Opti-
mization Methods for Allocation and Predic-
tion

11 Yue Zhao (TUD) Learning Analytics Tech-
nology to Understand Learner Behavioral En-
gagement in MOOCs

12 Jacqueline Heinerman (VU) Better Together

13 Guanliang Chen (TUD) MOOC Analytics:
Learner Modeling and Content Generation

14 Daniel Davis (TUD) Large-Scale Learning
Analytics: Modeling Learner Behavior & Im-
proving Learning Outcomes in Massive Open
Online Courses

15 Erwin Walraven (TUD) Planning under Un-
certainty in Constrained and Partially Ob-
servable Environments

16 Guangming Li (TUE) Process Mining based
on Object-Centric Behavioral Constraint
(OCBC) Models

17 Ali Hurriyetoglu (RUN) Extracting action-
able information from microtexts

18 Gerard Wagenaar (UU) Artefacts in Agile
Team Communication

19 Vincent Koeman (TUD) Tools for Developing
Cognitive Agents

20 Chide Groenouwe (UU) Fostering technically
augmented human collective intelligence

21 Cong Liu (TUE) Software Data Analytics:
Architectural Model Discovery and Design
Pattern Detection

22 Martin van den Berg (VU) Improving IT De-
cisions with Enterprise Architecture

23 Qin Liu (TUD) Intelligent Control Systems:
Learning, Interpreting, Verification

SIKS Dissertation Series 291

24 Anca Dumitrache (VU) Truth in Disagree-
ment - Crowdsourcing Labeled Data for Nat-
ural Language Processing

25 Emiel van Miltenburg (VU) Pragmatic fac-
tors in (automatic) image description

26 Prince Singh (UT) An Integration Platform
for Synchromodal Transport

27 Alessandra Antonaci (OU) The Gamification
Design Process applied to (Massive) Open
Online Courses

28 Esther Kuinderman (UL) Cleared for take-

off: Game-based learning to prepare airline
pilots for critical situations

29 Daniel Formolo (VU) Using virtual agents
for simulation and training of social skills in
safety-critical circumstances

30 Vahid Yazdanpanah (UT) Multiagent Indus-
trial Symbiosis Systems

31 Milan Jelisavcic (VU) Alive and Kicking:
Baby Steps in Robotics

32 Chiara Sironi (UM) Monte-Carlo Tree Search
for Artificial General Intelligence in Games

