
Self-Adaptive Rolling Horizon Evolutionary
Algorithms for General Video Game Playing

Raluca D. Gaina, Diego Perez-Liebana, Simon M. Lucas
Game AI Research Group

Queen Mary University of London, UK
{r.d.gaina, diego.perez, simon.lucas}@qmul.ac.uk

Chiara F. Sironi, Mark H.M. Winands
Game AI & Search Group
Maastricht University, NL

{c.sironi,m.winands}@maastrichtuniversity.nl

Abstract—For general video game playing agents, the biggest
challenge is adapting to the wide variety of situations they
encounter and responding appropriately. Some success was
recently achieved by modifying search-control parameters in
agents on-line, during one play-through of a game. We propose
adapting such methods for Rolling Horizon Evolutionary Algo-
rithms, which have shown high performance in many different
environments, and test the effect of on-line adaptation on the
agent’s win rate. On-line tuned agents are able to achieve results
comparable to the state of the art, including first win rates
in hard problems, while employing a more general and highly
adaptive approach. We additionally include further insight into
the algorithm itself, given by statistics gathered during the tuning
process and highlight key parameter choices.

I. INTRODUCTION

The aim of General Video Game Playing (GVGP) is to
create agents that are able to play many potentially unknown
video games without using any pre-coded human knowledge
[1]. The most successful GVGP agents are largely using
techniques based on Monte-Carlo Tree Search (MCTS) and
evolutionary-based approaches, often combined with multiple
enhancements [2]. One of the most popular and investigated
evolutionary-based approaches for GVGP is the Rolling-
Horizon Evolutionary Algorithm (RHEA) [3], which considers
sequences of actions as individuals that are evolved over time.

A problem that is common when designing agents able to
play a wide variety of (video) games is how to configure them
optimally for each game they might play. Usually, certain
strategies, enhancements or parameter settings work well in
some games, but not in other. Examples of this are available
for both MCTS [4] and RHEA agents [5]. A common approach
to select agents’ configurations in GVGP consists of testing
all of them on a set of sample games and selecting the one
that performs overall best. However, the selected configuration
might still be sub-optimal for some games.

For simulation-based agents, like MCTS, previous research
proposed a possible way to address this problem, which
consists in a method that tunes search-control parameters
on-line, i.e. while playing a single run of a game [6], [7].
For evolutionary-based GVGP agents like the ones based on
RHEA, however, no attempt at on-line adaptation has been
made so far. Therefore, the aim of this paper is to devise a
method that adapts the configuration of the RHEA agent on-
line. To do so, the on-line tuning method previously proposed

for MCTS is adapted. Different allocation strategies have
also been proposed in previous work for on-line parameter
tuning of MCTS agents [6], [7]. These strategies decide how
to distribute the available samples to evaluate the various
parameter value combinations. In this paper, we consider the
ones that were most successful for MCTS, which are both
based on evolutionary algorithms. The first one is based on a
standard Evolutionary Algorithm (EA), while the second one
uses the N-Tuple Bandit Evolutionary Algorithm (NTBEA)
[8]. Moreover, we consider the Naı̈ve Monte Carlo (NMC)
[9] allocation strategy, which for MCTS was shown to be the
overall best performing strategy among the ones not based on
evolutionary algorithms. Finally, we consider as baseline the
Multi-Armed Bandit (MAB) allocation strategy, which ignores
the combinatorial structure of the parameter-tuning problem,
and the Random (RND) allocation strategy, which does not
use any statistics to guide the selection of parameter values.

The contributions of this work are two-fold. First, we pro-
pose an adaptation of on-line tuning methods for RHEA and
test the performance of the tuned RHEA agents on a variety
of different problems, highlighting strengths and weaknesses.
Second, we perform an in-depth analysis of the algorithm
parameters from the perspective of the statistics gathered by
the allocation strategies, with the aim of obtaining more insight
into the inner-workings of the algorithm.

II. BACKGROUND

A. Related Work

Recently, attention to on-line adaptation of game-playing
agents has increased, also due to the increased interest in
general game playing (GGP). In GGP, agents require different
settings for every new game, which might not be known in
advance. Thus, the optimal configuration has to be learned
on-line. One of the first attempts at adapting GGP agents on-
line concerned the adaptation of the playing strategy [10]. An
on-line mechanism decides how to allocate available samples
to evaluate a portfolio of strategies for the agent, and find the
one that is best suited for the current game. Results on abstract
games showed that a strategy based on a MAB that tries to
allocate the highest number of samples to the best playing
strategy while still exploring other strategies performs best.

Similarly, an on-line mechanism was used to find the best
parameter configuration for an MCTS agent depending on



the game being played [6], [7]. In this approach, the result
of each MCTS simulation is used to evaluate the quality of
the parameter values that control the simulation. Moreover,
statistics collected so far on the performance of parameter
values are used to choose which values to evaluate next.
This approach has been tested both on classic board games
[6] and on arcade-style video games [7]. On board games,
it had positive results, especially when the number of tuned
parameters is small. On video games, on-line tuning was
shown to be harder, nevertheless promising for a few of them.

There are also approaches that are able to adapt the agent
to each new game using off-line training. For example,
approaches based on Hyper-Heuristics have been used in
the General Video Game AI framework (GVGAI [2]) by
Mendes et al. [11]. These approaches train the agent off-line
to recognise the best strategy for the game at hand from a
portfolio. When the agent has to play a new game, it uses
the trained mechanism to select the best strategy depending
on some of the game’s features. Experiments have shown that
these approaches are promising and are able to outperform
agents based on standard algorithms.

Although on-line adaptation has not been tested yet for
RHEA, previous work has evaluated off-line tuning for RHEA
parameters in GVGAI, using the N-Tuple Bandit Evolutionary
Algorithm (NTBEA) to set values for a wide range of param-
eters and improving upon previous best results obtained in
several games [12]. The paper further analyses the algorithm
itself based on the n-tuple statistics stored in NTBEA, a line
of work, which we continue in the present study.

B. Multi-Armed Bandit

The MAB problem [13] is characterised by m independent
arms, each of which is associated with a reward distribution.
When an arm is played, a reward is obtained as a sample
of the corresponding distribution. The goal of a sampling
strategy for a MAB is to maximise the sum of rewards obtained
by successive plays of the arms. Thus, the strategy has to
balance exploration of less sampled arms in order to learn their
distribution, with exploitation of arms that produced a high
reward. A variety of sampling strategies have been proposed.
One of the most used is UCB1 [13], which, in each iteration,
selects the arm a∗ as shown in Equation 1.

a∗ = argmax
a∈A

{
q̄a + C ×

√
lnn

na

}
(1)

Here, A is the set of available arms, q̄a is the average payoff
over all the plays of arm a, n is the total number of samples
from arms, na is the number of samples from arm a, and C
is the constant that controls the balance between exploitation
of good arms and exploration of less visited ones.

C. Rolling Horizon Evolutionary Algorithms for GVGP

Rolling Horizon Evolutionary Algorithms (RHEA) [3] are
a sub-class of Evolutionary Algorithms which evolve action
sequences (or plans) for games. The baseline algorithm used
in this paper begins the game by initialising a population

Table I
PARAMETER SEARCH SPACE, TOTAL SIZE 270, OR 99 VALID

COMBINATIONS IF PARAMETER DEPENDENCY IS TAKEN INTO ACCOUNT.

Idx Name Values
0 Genetic Operator Crossover + Mutation, Mutation Only,

Crossover Only
1 Selection Type Rank, Tournament, Roulette
2 Crossover Type Uniform, 1-point, 2-point
3 Mutation Type Uniform, 1-Bit, 3-Bits, Softmax,

Diversity
4 Mutation Transducer False, True

of P individuals, where each individual represents an action
sequence of length L. These individuals are evaluated by
simulating through the action sequence using a forward model
(FM; an internal model of the game, which must be provided
in order for this algorithm to be applicable). The final game
state reached is evaluated using a heuristic, and the state value
becomes the fitness of the individual. All agents presented
in this paper use the same heuristic function, which aims
to maximise the dynamically normalised game score, while
valuing wins much higher, and losses much lower.

Then, for each generation, the best E individuals (E = 1)
are promoted directly to the next generation through elitism;
crossover may be applied to create several offspring, and mu-
tation may be applied to modify the offspring. The offspring
are evaluated as described above and P − E best individuals
(highest fitness) are promoted to the next generation, where the
process repeats. After several such iterations, RHEA returns
the first action in the best individual as the selected action to
play in the game. For any subsequent game ticks other than
the first, a shift buffer is applied. Instead of initialising a new
population, the previous final population is carried through
to the next game tick, the first action of each individual is
removed and a new random action is added at the end; the
value of all individuals is discounted by 0.99.

III. APPROACH

In order to implement a self-adaptive RHEA agent, the
parameter space has to be defined and the on-line parameter
tuning method used for MCTS has to be adapted. Moreover,
strategies that decide how to allocate the available samples to
evaluate different parameter combinations are necessary.

A. RHEA Parameter Space

Although several modifications and parameters of RHEA
have been previously studied [5], [14]–[16], we focus here on
those parameters which have most impact in any one iteration
of the algorithm - that is, those that impact the generation of
offspring, as summarised in Table I.

Genetic operator. This parameter controls which genetic
operators are applied: crossover only (offspring are not mu-
tated), mutation only (offspring are obtained by directly mu-
tating each individual in the population), or both (offspring
are generated through crossover, and then mutated). The rest



Algorithm 1 RHEA action selection with on-line parameter
tuning.

1: procedure GETACTION(T , λ, µ)
Input: Tuner T , population size λ, elite size µ.
Output: First action of best individual in the population

2: pop← GETCURRENTPOPULATION()
3: order individuals in pop by decreasing fitness
4: while time not elapsed do
5: ~p← T .SELECTPARAMVALUES()
6: SETPARAMVALUES(~p)
7: offspring ← GENANDEVALOFFSPRING(pop[0,...,µ])
8: order individuals in offspring by decreasing fitness
9: r ← offspring0.fitness − pop0.fitness

10: T .UPDATEVALUESTATS(~p, r)
11: pop[µ+1,...,λ] ← offspring [0,...,λ−µ]
12: order individuals in pop by decreasing fitness
13: end while
14: return pop0.GETFIRSTACTION()
15: end procedure

of the parameters may only have an effect on the phenotype
if this parameter has a particular value.

Selection type. This operator is used to select parents
for crossover. Roulette selection chooses individuals based
on probabilities directly proportional to their fitness. Rank
selection chooses individuals based on probabilities inversely
proportional to their rank in the ordered list of individuals (best
individuals first). Tournament selection randomly chooses 40%
of individuals, then the best out of the random selection.

Crossover type. This operator is used to combine selected
individuals and generate offspring. Uniform crossover ran-
domly selects a value for each gene from either of the parents.
n-point crossover divides the individual into n+ 1 slices and
alternatively selects the corresponding slices from each parent;
we use n = {1, 2}.

Mutation type. This operator is used to modify offspring.
Uniform mutation changes each gene of the individual with a
probability of 1/L. n-bit mutation changes n random genes;
we use n = {1, 3}. Softmax mutation uses Equation 2 to
bias mutation towards the beginning of the individual, where
changes in genes most affect the phenotype. Diversity mutation
logs values explored for all genes and chooses to mutate the
gene explored the least, to its least visited value.

Softmax(xi) =
exp(xi)∑
j exp(xj)

(2)

Mutation transducer. This parameter is used to decide new
values for mutating genes (no effect in diversity mutation). If
this flag is off or the gene is first in the individual, the gene
will take a random new value. Otherwise, it will take the value
of the previous gene in the sequence; this aims to decrease the
jitteriness of the agent, by encouraging action repetition.

B. On-line Parameter Tuning for RHEA

The parameters we are aiming to tune in RHEA control
how the entire population of individuals is evolved. Therefore,
we need to use the entire population to evaluate the quality

of a parameter combination. Algorithm 1 shows how on-line
parameter tuning is implemented by the RHEA agent when
it has to choose an action for a given game state. Note that
the procedure assumes that the RHEA population has already
been initialised and evaluated once. Until the search budget
expires, the procedure repeats the following steps:

1) Select a new combination of parameter values using the
tuner T (line 5).

2) Set the tuned parameters to the selected values (line 6).
3) Using the elite individuals in the current population,

generate new offspring, evaluate (line 7) and order them
by decreasing fitness (line 8).

4) Compute the payoff r for the selected combination of
parameter values as the difference between the fitness
of the best individual in the offspring and the fitness of
the best individual in the previous generation (line 9).

5) Update the statistics of the selected parameter combina-
tion using the computed payoff (line 10).

6) Update the population by replacing the worst λ − µ
individuals with the generated offspring and order it by
decreasing fitness (lines 11 and 12).

When the budget expires, the first action of the best individual
in the population is returned (line 14).

Note that, to compute the payoff of a parameter combi-
nation, we only consider the fitness of the individuals in
the offspring and not of the individuals in the entire new
population. This is because the parameter values set for
an iteration of RHEA only influence how such offspring is
generated. Moreover, to compute the payoff of a combination
of parameter values we consider only the best individual in
the offspring and in the population, because we are interested
in finding the parameters that can generate the best possible
individual, even if the rest of the population has a low fitness.
The action that will be played in the real game is taken from
such individual, therefore it will be the only individual that
will influence the real game.

C. Allocation Strategies

The parameters of a game-playing agent can be seen as a
vector. Therefore, the problem of tuning these parameters for
each new game consists in searching the optimal vector of
parameters values in a combinatorial search space. Previous
work [7] defined this problem as a Combinatorial Multi-Armed
Bandit, characterised by the following three components:

• Vector of d variables, ~P = {P1, ..., Pd}, where each vari-
able Pi can take mi different values Vi = {v1i , ..., v

mi
i }.

• Reward distribution R : V1 × ...× Vd ← R that depends
on the combination of values assigned to the variables.

• Function L : V1×...×Vd → {true, false} that determines
which combinations of values are legal.

There are various allocation strategies that decide which
combinations of parameter values should be evaluated, how
many times and in which order [6], [7]. The ones considered
in this paper are described below.



1) Multi-Armed Bandit (MAB): A straightforward solution
to deal with a combinatorial multi-armed bandit problem is
to translate it to a Multi-Armed Bandit (MAB) [13]. Each
arm of the bandit corresponds to a possible legal combination
of values for the parameters. Therefore, selecting the next
combination of parameter values to evaluate corresponds to
choosing one arm of the bandit. In this paper, UCB1 is used
as sampling strategy for the bandit, with exploration constant
CMAB = 0.7 (this value is taken from previous work [17]).
Note that, differently from other allocation strategies used in
this paper, the MAB allocation strategy ignores the information
on the combinatorial structure of the parameter values. This
strategy does not exploit the fact that often a value that is good
(or bad) for a parameter in a certain combination of values, is
also good (or bad) in general or in many other combinations.

2) Naı̈ve Monte-Carlo (NMC): First proposed to play real-
time strategy games [9], it was later applied as an allocation
strategy to tune MCTS parameters on-line [6], [7]. The NMC
allocation strategy is based on the naı̈ve assumption that the
reward associated to a combination of d parameter values,
~p = 〈p1, ..., pd〉, can be approximated by a linear combination
of the rewards associated to single parameter values pi (i ∈
{1, ..., d}). This means R(~p) ≈

∑d
i=1Ri(pi).

When choosing a combination of parameter values, NMC
alternates between exploration and exploitation. In a given
iteration, NMC performs exploration with probability ε0 and
exploitation with probability (1− ε0). During exploration, for
each parameter being tuned NMC considers a local multi-
armed bandit problem, where each arm corresponds to a pos-
sible value for the parameter. A value for each parameter is se-
lected independently, using the UCB1 sampling strategy with
exploration constant CL. During exploitation, NMC considers
a global multi-armed bandit, where each arm corresponds
to a possible combination of parameter values; UCB1 with
exploration constant CG is used to select a combination. At the
start of the NMC execution, the global bandit has no arms. A
new arm is added every time a new combination of parameter
values is generated during exploration with the local bandits.
After evaluating a selected combination of parameter values,
NMC uses the obtained payoff to update statistics in both
the global and local bandits. In this paper, the settings for
this strategy are the same used in GVGP to tune MCTS [6]:
ε0 = 0.75, CL = 0.7, CG = 0.7.

3) Evolutionary Algorithm (EA): Evolutionary Algorithms
(EAs) [18] are optimisation algorithms that search for an opti-
mal solution by evolving a population of candidate solutions.
As shown in [6], [7], an EA with λEA individuals and µEA
elites can be used as allocation strategy for the parameter-
tuning problem. A combination of parameter values can be
seen as an individual, and each single parameter a gene.
The EA allocation strategy starts with a randomly generated
population of parameter combinations and then evolves it
multiple times until the computational budget expires.

During each iteration, EA first evaluates each combination
in the population as shown in Algorithm 1, i.e. using it to
control the generation of the new population in one iteration

of the RHEA algorithm. This means that the fitness of a
combination of parameters corresponds to the payoff computed
at line 9 in Algorithm 1. Subsequently, EA keeps the µEA
parameter combinations with the highest fitness in the current
population (the elite) and uses them to generate the remaining
λEA − µEA new combinations. Each new combination is
generated with probability pcross by uniform random crossover
between two randomly selected elite individuals, and with
probability (1 − pcross) by uniformly mutating one bit of a
randomly selected elite individual. In this paper, the settings
for this strategy are the same used in GVGP to tune MCTS
[6]: λEA = 50, µEA = 25, pcross = 0.5.

4) N-Tuple Bandit Evolutionary Algorithm (NTBEA): First
proposed for game parameter tuning [19], NTBEA has also
been successfully used for off-line optimisation of a game-
playing RHEA agent [8] and has been applied to on-line
parameter tuning for MCTS [6], [7].

Like the EA allocation strategy, NTBEA also considers each
combination of parameter values as an individual and each
single parameter as a gene. In addition, NTBEA uses an N-
Tuple fitness landscape model to memorise statistics about
the parameters. The implementation of this model, similarly
to the NMC approach, keeps a local multi-armed bandit for
each parameter and a global bandit for the combination of all
the parameters. The landscape model can be used to quickly
evaluate a parameter combination by computing its average
UCB1 value over all the bandits. This quick evaluation is used
by the evolutionary algorithm to speed up the evolutionary
process, while balancing exploration and exploitation of the
various parameter combinations.

More precisely, the NTBEA algorithm starts with a ran-
domly generated combination of parameter values. During
each iteration, the current combination of parameter values is
used to control an iteration of RHEA. The obtained payoff is
used to update the statistics in the fitness landscape model.
At this point, x neighbours of the evaluated combination
are generated, each by mutating the value of a randomly
selected parameter in the combination. The x neighbours are
evaluated using the fitness landscape model and the one with
the highest average UCB1 value becomes the new considered
combination. This process is repeated until the computational
budget expires. The settings used in this paper are: x = 5,
CNTBEA = 0.7 (exploration constant used for UCB1 values).

5) Random: The random allocation strategy has already
been evaluated for on-line parameter adaptation both in ab-
stract games [20] and video games [17]. Despite its simplicity,
parameter randomisation has been shown to be beneficial in
some games, especially when the fixed parameter settings are
not optimal, or when time settings are short. The random
allocation strategy selects parameter combinations randomly
among all the feasible combinations of parameter values. This
means that each iteration of the RHEA algorithm, and thus the
generation of each new population, is controlled by a randomly
selected combination of parameter values. This also means that
no statistics collected about the quality of previously tested
parameter values or parameter combinations are exploited.



IV. EXPERIMENTAL SETUP

We test the performance of each allocation strategy in
20 games from the General Video Game AI framework
(GVGAI [2]): “Dig Dug”, “Lemmings”, “Roguelike”, “Chop-
per”, “Crossfire”, “Chase”, “Camel Race”, “Escape”, “Hun-
gry Birds”, “Bait”, “Wait for Breakfast”, “Survive Zom-
bies”, “Modality”, “Missile Command”, “Plaque Attack”,
“Seaquest”, “Infection”, “Aliens”, “Butterflies”, “Intersection”.
Each of these games has 5 levels, which vary the positions and
presence of sprites, as well as the map size. Details of each
game are given in [12].

This subset of games features a wide variety of scoring
systems with both sparse and dense rewards, win conditions
and interactions with sprites in the games, all of which
are unknown to the agent; further, half of the games are
stochastic, resulting in a very noisy optimisation problem.
Within GVGAI, the agent receives game states in an abstract
form (e.g. “there is a sprite at position (3,14)”), as well
as the current game score and basic information about the
position and movement of the avatar it controls. Agents have
40ms to return an action to be played in the game; the full
set of actions includes doing nothing, moving left, right, up
and down and a special action (resulting in a different effect
depending on the game), which can be reduced in some of
the games (e.g. “Aliens” does not allow moving up or down)
Given the complexity and variety of the environment, high
adaptation to different and unknown situations is essential for
success, thus we deem GVGAI an appropriate testbed.

We use different configurations for RHEA in this setting,
varying budget, population size and individual length. Larger
values for population size and individual length allow for
less iterations during the agent’s thinking time, and therefore
less data points for the tuners, but were generally shown to
perform better [5]. We set the default budget for the agent
to 1000 forward model calls, which is the average non-
tuned RHEA can perform in 40ms; this allows for robust
results across different machines. Further experiments halve
the budget, or increase the budget by 5 times to observe
tuner performance outside of GVGAI bounds and with varying
numbers of iterations. If we format tested algorithm names
as “{individual length}−{population size}−{budget}”, we
obtain 6 configurations: 5-10-500, 5-10-1000; 5-10-5000; 10-
15-500; 10-15-1000 and 10-15-5000. Given that there are a
total of 270 possible parameter combinations (see Table I),
none of the configurations are able to even sample all points
at least once during a game tick, let alone gather accurate
statistics on all the points, making sample efficiency key.

Each agent (combining a RHEA configuration and an allo-
cation strategy) is run 20 times on each of the 5 levels of the
20 games, or 100 times per game. We record the final result
of each game (win/loss, score and game tick). The results
are compared with current state of the art (SotA) in RHEA,
i.e. highest win rates obtained by any previously explored
configuration in each game; as a result, different games may
have different RHEA configurations as SotA. Given the nature

of the experiment, with parameters varied in tuned agents at
every iteration, we consider these SotA results a very high
bar, but a good comparison. It is worth noting that some of
the enhancements that led to SotA results (e.g. Monte Carlo
rollouts [15]) are not used in any of the tuned agents presented
here, in order to increase the number of iterations available.

Further, we log the number of visits and average score for
all combinations of parameters (5-tuples), and for individual
parameters (1-tuples), at every game tick, for all tuners (even
if they do not use statistics, e.g. RND).

We note that tuner statistics are not reset between game
ticks. Initial experiments showed performance to be very
similar regardless of discount factor used (0.0 and 0.8 experi-
mented with). We speculate that this is due to the game states
not varying widely from one game tick to the next and thus the
statistics on parameter choices are more generally applicable.
The only exception we noted was in the game “Crossfire”,
where a discount of 0.8 showed an increase in performance;
this warrants further investigation for highly dynamic games.

V. RESULTS AND DISCUSSION

This section presents and discusses some of the more
interesting results obtained. Full results, log summaries and
plots are available on Github1.

A. Win Rate

We first look at the performance of the tuned agents in
the 20 GVGAI games. For the purpose of this analysis, we
only consider win rate (i.e. the agent’s ability to solve the
problem). This is summarised for all RHEA configurations
and tuner combinations in Table II, with a particular RHEA
configuration (10-15-1000) visualised in Figure 1. No agent is
able to beat SotA results on all games, but win rates are largely
comparable, and there are several which do perform better in
some of the games, with some interesting cases standing out.

In the game “Crossfire”, 9 of the agents with configuration
5-10 are able to beat SotA by up to 8%, whereas none of
the other variants with increased core parameter values are
able to perform very well. This is thought to be largely due
to the nature of the game, where more accurate statistics over
several generations are most beneficial. Opposite to this, the
larger RHEA configuration (10-15) is able to beat SotA results
in “Seaquest” and “Butterflies” in 4 agent variations each.
These two games generally benefit from longer rollouts as
they feature delayed rewards (“Seaquest”) and an increasingly
sparser environment (“Butterflies”). All of these games feature
a variety of rewards and changes to the agent’s environment,
which require the high adaptability offered by on-line tuning.

We can also observe a difference in performance when the
budget is varied. Win rates generally increase with higher bud-
gets, with particular improvement observed in the games “Wait
for Breakfast” and “Missile Command” when the budget is
set to 5000 FM calls. These games require different skills, but
both show long-term effects of actions and require precision in

1https://github.com/rdgain/ExperimentData/tree/RHEA-Online-Tuning-20



Table II
RESULTS OF ALL TUNERS FOR ALL RHEA CONFIGURATIONS TESTED. SHOWING AVERAGE WIN RATE IN ALL 20 GAMES; AVERAGE DIFFERENCE IN WIN
RATE TO RHEA SOTA IN GAMES IN WHICH THE TUNED AGENT IS BETTER (∆BETTER ) AND WORSE (∆WORSE ), WITH NUMBER OF GAMES IN BRACKETS.

HIGHEST WIN RATE, HIGHEST ∆BETTER AND LOWEST ∆WORSE ARE HIGHLIGHTED FOR EACH TUNER.

Tuner RHEA
Configuration Win Rate ∆Better ∆Worse

RHEA
Configuration Win Rate ∆Better ∆Worse

EA
5-10-500 40.80 (±8.51) 0.00 (0) 12.25 (17) 10-15-500 43.75 (±8.84) 0.00 (0) 8.78 (17)

5-10-1000 43.15 (±8.76) 0.00 (0) 11.52 (14) 10-15-1000 45.90 (±8.79) 0.00 (0) 7.09 (15)
5-10-5000 44.30 (±8.83) 3.00 (1) 10.87 (13) 10-15-5000 46.05 (±8.99) 2.00 (1) 7.52 (14)

MAB
5-10-500 43.05 (±8.49) 0.00 (0) 9.60 (17) 10-15-500 43.45 (±8.76) 1.00 (1) 9.77 (16)

5-10-1000 43.20 (±8.61) 2.00 (1) 10.82 (15) 10-15-1000 45.10 (±8.97) 1.00 (1) 7.70 (16)
5-10-5000 44.80 (±8.84) 0.00 (0) 33.90 (34) 10-15-5000 46.05 (±9.14) 2.34 (2) 7.71 (14)

NMC
5-10-500 42.20 (±8.57) 0.00 (0) 11.27 (16) 10-15-500 43.90 (±8.74) 0.00 (0) 9.14 (16)

5-10-1000 42.35 (±8.51) 0.00 (0) 10.43 (17) 10-15-1000 45.75 (±8.99) 2.34 (2) 7.60 (15)
5-10-5000 44.40 (±8.69) 3.00 (1) 8.71 (16) 10-15-5000 45.85 (±8.80) 1.30 (3) 7.94 (14)

NTBEA
5-10-500 43.05 (±8.53) 2.00 (1) 11.81 (14) 10-15-500 42.45 (±8.72) 0.00 (0) 10.31 (17)

5-10-1000 43.30 (±8.54) 0.00 (0) 9.89 (16) 10-15-1000 44.60 (±8.79) 0.00 (0) 7.78 (17)
5-10-5000 45.20 (±8.69) 8.00 (1) 8.55 (15) 10-15-5000 46.30 (±8.86) 2.00 (1) 6.27 (16)

RND
5-10-500 43.10 (±8.48) 1.00 (1) 12.56 (13) 10-15-500 43.35 (±8.81) 0.00 (0) 9.83 (16)

5-10-1000 44.75 (±8.73) 2.00 (1) 9.38 (14) 10-15-1000 45.90 (±8.91) 1.33 (3) 7.88 (14)
5-10-5000 45.15 (±8.89) 2.84 (2) 9.77 (13) 10-15-5000 45.60 (±9.02) 2.96 (3) 9.32 (13)

Figure 1. Win rate of all tuners (using RHEA configuration 10-15-1000), compared against RHEA state of the art.

decision making. Thus, the increased budget not only allows
for RHEA to find better plans, but also allows the tuners to
increase their accuracy in recommending good parameters.

Most interestingly, we remark first wins from some agents in
very difficult games where SotA remains at 0%: RND-10-15-
1000 wins one game of “Dig Dug”, and NMC, NTBEA and
RND (with RHEA configuration 10-15-5000) win 2 games
of “Roguelike” each (similarly observed in [6]). We consider
these clear examples of the benefits of on-line adaptability for
tackling seemingly very difficult problems, requiring further
investigation.

We see no large differences in overall performance for the
tuners, although they do appear to have different strengths. The
RND tuner achieves the most better-than-SotA results across
all RHEA configurations (3 games for both 10-15-1000 and
10-15-5000), and performs worse in least games as well (13
games for both 5-10-5000 and 10-15-5000). However, NTBEA
obtains the highest difference to SotA in winning games (8%),
as well as the lowest difference in losing games (6.27%).

B. Parameter Combinations Analysis (5-tuples)

These experiments can also give further insight into what
works, and what does not, in the algorithm being tuned.

Table III shows the parameter combination chosen most often
as the best option, for RHEA 5-10-1000. We further note the
Shannon entropy H(x) over all game ticks, which gives an
indication of the tuner’s consistency. Using this measure, the
NMC tuner seems most consistent in its recommendations,
while the EA tuner the least; given their win rates (Table II),
this could suggest consistency might not be essential to success
(e.g. if consistently recommending bad parameter combina-
tions), although there is no strong evidence in this direction.

No tuner seems to agree with others on the best parameter
combination for any game; this is likely due to the low number
of data points each tuner is able to sample during a game,
which do not allow for significant statistics. However, some
partial agreements can be observed, which could indicate good
combinations of parameters. In particular, we can observe
a preference in several games and tuners for the (3, 1) 2-
tuple (mutation type, mutation transducer), corresponding to
values (softmax, true). There is not a similar case for the
crossover parameters (selection type, crossover type), where
a wide variety of values are chosen in the best 5-tuples.



Table III
TUPLES CONSIDERED BEST MOST TIMES AND SHANNON ENTROPY H(x) FOR ALL TUNERS, ONE ROW PER GAME, WITH RHEA CONFIGURATION

5-10-1000; SHOWING ONLY THE GENETIC OPERATOR 1-TUPLES. PARAMETER INDEX AND VALUE INDEX CORRESPOND TO ORDER IN TABLE I AND GAME
INDEX CORRESPONDS TO LIST IN SECTION IV. MAJORITY AGREEMENT ACROSS TUNERS HIGHLIGHTED FOR 1-TUPLES.

EA MAB NMC NTBEA RND
G 5-tuple : H(x) 1-tuple 5-tuple : H(x) 1-tuple 5-tuple : H(x) 1-tuple 5-tuple : H(x) 1-tuple 5-tuple : H(x) 1-tuple
0 (0, 0, 0, 0, 1) : 5.87 1 (1, 0, 0, 0, 1) : 5.37 1 (0, 2, 1, 3, 1) : 4.41 2 (2, 2, 2, 4, 1) : 4.81 1 (0, 0, 1, 1, 1) : 4.92 2
1 (0, 2, 1, 1, 0) : 6.35 1 (1, 2, 2, 3, 0) : 5.24 0 (0, 1, 0, 3, 1) : 4.44 2 (1, 1, 1, 3, 1) : 5.42 1 (1, 1, 1, 3, 0) : 4.68 1
2 (1, 0, 1, 0, 0) : 5.27 1 (0, 0, 2, 3, 1) : 5.25 1 (2, 0, 0, 4, 0) : 4.25 2 (0, 2, 0, 5, 0) : 5.32 1 (0, 2, 1, 1, 0) : 5.11 1
3 (1, 2, 2, 1, 0) : 5.99 0 (0, 1, 0, 0, 0) : 5.09 0 (2, 2, 1, 5, 1) : 4.21 2 (2, 1, 2, 0, 1) : 5.46 2 (0, 2, 0, 3, 1) : 4.32 0
4 (0, 2, 2, 3, 1) : 6.06 1 (0, 1, 2, 0, 1) : 4.98 1 (1, 1, 1, 3, 1) : 4.28 1 (1, 2, 2, 0, 1) : 5.28 1 (0, 2, 2, 3, 1) : 4.90 1
5 (1, 1, 2, 3, 1) : 6.05 0 (0, 2, 2, 0, 1) : 4.68 1 (1, 1, 1, 4, 0) : 3.73 1 (0, 1, 1, 0, 0) : 5.69 1 (1, 2, 1, 0, 0) : 5.57 2
6 (1, 0, 0, 3, 1) : 5.97 1 (1, 0, 0, 1, 0) : 5.21 1 (2, 0, 0, 1, 1) : 4.61 0 (1, 0, 1, 1, 0) : 5.27 0 (2, 2, 0, 3, 1) : 5.05 1
7 (0, 0, 1, 3, 1) : 6.28 1 (0, 2, 0, 3, 1) : 4.73 1 (1, 0, 0, 3, 1) : 4.18 2 (0, 0, 2, 3, 1) : 5.72 1 (0, 1, 2, 5, 1) : 4.70 0
8 (1, 0, 0, 0, 1) : 6.07 0 (0, 0, 2, 0, 1) : 4.63 1 (1, 0, 2, 3, 1) : 4.32 1 (1, 0, 0, 4, 1) : 5.70 1 (0, 0, 0, 3, 1) : 5.03 2
9 (0, 0, 1, 3, 1) : 6.11 1 (2, 0, 1, 3, 0) : 4.97 2 (0, 0, 2, 3, 1) : 4.93 1 (0, 2, 0, 4, 1) : 5.76 1 (0, 1, 2, 3, 1) : 5.08 2
10 (0, 0, 1, 0, 0) : 5.77 0 (2, 0, 1, 3, 0) : 4.88 2 (0, 1, 2, 4, 1) : 4.20 1 (1, 2, 0, 1, 0) : 5.19 1 (0, 0, 2, 1, 1) : 4.23 2
11 (0, 1, 1, 5, 0) : 6.20 0 (1, 2, 0, 0, 1) : 5.33 1 (2, 2, 0, 3, 0) : 4.68 1 (2, 0, 2, 0, 1) : 5.51 1 (1, 1, 2, 3, 1) : 5.09 0
12 (1, 1, 2, 3, 1) : 6.24 1 (0, 1, 1, 3, 1) : 5.02 1 (0, 1, 1, 0, 1) : 4.51 2 (1, 0, 2, 3, 1) : 5.50 1 (2, 2, 0, 3, 1) : 5.07 1
13 (0, 2, 2, 3, 1) : 5.82 1 (1, 0, 1, 3, 0) : 4.59 1 (1, 0, 2, 0, 0) : 4.11 1 (0, 2, 0, 4, 0) : 5.65 1 (0, 0, 1, 5, 0) : 5.25 2
14 (0, 0, 0, 3, 0) : 6.10 1 (1, 1, 2, 0, 1) : 4.41 0 (1, 0, 0, 5, 1) : 3.81 1 (0, 1, 0, 3, 1) : 5.19 2 (0, 1, 0, 0, 1) : 5.24 2
15 (1, 1, 1, 1, 1) : 5.95 2 (2, 0, 0, 0, 1) : 5.15 0 (1, 1, 1, 4, 0) : 4.46 2 (1, 2, 0, 4, 1) : 5.27 1 (0, 2, 0, 3, 1) : 4.92 2
16 (1, 2, 1, 0, 1) : 5.42 1 (0, 2, 1, 3, 1) : 5.15 1 (2, 2, 0, 0, 0) : 4.42 1 (1, 1, 0, 4, 1) : 5.49 0 (0, 1, 1, 0, 1) : 5.46 1
17 (1, 2, 0, 0, 1) : 5.86 0 (1, 1, 2, 1, 0) : 4.09 2 (1, 1, 0, 1, 0) : 3.83 1 (0, 1, 1, 3, 1) : 5.14 0 (1, 1, 1, 3, 1) : 5.51 2
18 (0, 2, 0, 3, 1) : 5.81 1 (0, 0, 0, 5, 0) : 4.61 2 (1, 1, 1, 5, 0) : 4.21 2 (2, 1, 1, 1, 0) : 5.49 0 (2, 0, 0, 5, 0) : 4.98 1
19 (1, 2, 0, 3, 1) : 6.20 0 (1, 2, 2, 1, 1) : 4.82 1 (2, 2, 2, 3, 0) : 4.09 1 (2, 0, 2, 3, 0) : 5.33 2 (1, 1, 1, 3, 1) : 5.23 1

C. Individual Parameter Analysis (1-tuples)

Lastly, we can analyse each parameter individually and
the values each tuner considers best. In Table III, we also
highlight the value chosen as the best option for the genetic
operator parameter. We can observe more agreement between
the different tuners on individual values of parameters, with 12
games showing 3 or more tuners choosing the same value for
the genetic operator (mutation only, with two exceptions). In
“Chopper”, they all show a preference for using both crossover
and mutation. This game generally benefits from ample explo-
ration of the action space, which is best obtained with both
genetic operators enabled. Whereas in “Seaquest”, crossover
only is considered best, leading to smaller disturbances, which
could be key in a stochastic game with many possible deaths to
the agent - a point strengthened by the increase in performance
of several tuned agents in this game.

This is similar for most other parameters, with rank selec-
tion, 1-bit mutation and mutation transducer enabled being
chosen most often; there is no agreement on which crossover
type works best in any of the games. All tuners show similar
and fairly high levels of consistency (given by Shannon
entropy) and variance in their recommendations.

Figure 2 shows that, interestingly, both MAB and NTBEA
consider option 3 (softmax) the worst value for mutation in
many games, which we previously saw chosen most often in 5-
tuples. Although this could be a question of credit assignment,
as parameters receive associated values even if they do not
impact the phenotype, we consider this an important highlight
of the combinatorial problem, as opposed to choosing the best
1-tuple values. In contrast, MAB and NMC do not feature a
similar ranking of options for the genetic operator, although
they do both favour option 1 (mutation only) in most games.

In Figure 3 we take a look one level deeper into parameter
choices per game tick, and how the scores given to each
parameter value progresses over the course of a game. The

Figure 2. Normalised count of times considered best, per parameter value,
one game per row. From left to right: MAB, NTBEA, MAB, NMC. Parameter
value index corresponds to list from Table I. All use 5-10-1000 RHEA
configuration.

examples included highlight the different approaches of the
tuners, with shapes similar across all other parameters for the
same tuners as well. MAB seems to always start with over-
estimations before settling on lower scores, whereas NTBEA
and NMC both show upwards trends and are able to make
better use of information from previous game ticks to continue
improving their parameter recommendations.

VI. CONCLUSIONS

This paper presented the use of various optimisation meth-
ods in choosing parameters for the Rolling Horizon Evo-
lutionary Algorithm (RHEA) on-line (i.e. during one play-
through of a game). Five different tuners were used in this
context, a standard Evolutionary Algorithm (EA), a Multi-
Armed Bandit (MAB), Naive Monte Carlo (NMC), the N-
Tuple Bandit Evolutionary Algorithm (NTBEA) and Random
(RND). Several budget options, population sizes and individual
length were used for RHEA. The tuned agents were tested in



Figure 3. Average parameter values over game ticks. Top row: mutation
type, in “Wait for Breakfast” by MAB (left) and NTBEA (right). Bottom
row: genetic operator, in “Crossfire” by MAB (left) and NMC (right). All use
5-10-1000 RHEA configuration, in winning game instances.

20 games from the General Video Game AI framework and
win rate, as well as parameter combinations and individual
parameter choices were analysed in detail.

Win rates of tuned agents were comparable to the high bar
set by the RHEA state of the art, surpassing it in several games.
We highlight that this approach is more general and highly
adaptive, as opposed to hand-picked SotA results. Generally,
longer RHEA rollouts and higher budgets led to better out-
comes, although the opposite led to specific improvements in
the game “Crossfire”. Tuner performance was very similar,
with RND and NTBEA standing out in a few cases; longer
games could lead to more significant results and differences in
tuners. A deeper analysis into the strengths and weaknesses of
the tuners, and better initialisation methods, is one avenue for
future work, as well as exploring different allocation strategies
such as Bayesian Optimisation; further, could the tuner itself
be tuned, or, the choice of tuner included as a parameter, for
a branching hyper-parameter optimisation algorithm?

There did not appear to be a particular combination of
parameters, which worked best in all games, or even the same
recommendation by all tuners in a game. This emphasises the
difficulty of this highly stochastic problem. However, some
combinations of parameters did stand out as better than others,
such as softmax mutation, used with a mutation transducer. 1-
tuple analysis suggested 1-bit mutation to be the best instead
when dependencies are ignored, using mutation only as the
genetic operator and keeping the mutation transducer enabled.

We also observed interesting behaviour and novel results
in very difficult problems such as “Dig Dug” and “Rogue”;
obtaining more data points where agents win these games
could give important information on strategies for tackling
such problems. Similarly, we saw a difference in highly
dynamic games when discounting the tuner statistics between
game ticks, which is worth further investigation and could

boost performance in this class of problems.

ACKNOWLEDGMENTS

This work was partly funded by the EPSRC CDT in Intel-
ligent Games and Game Intelligence (IGGI) EP/L015846/1.
This work used Queen Mary’s Apocrita HPC facility.
http://doi.org/10.5281/zenodo.438045

REFERENCES

[1] J. Levine et al., “General Video Game Playing,” in Artificial and Com-
putational Intelligence in Games, ser. Dagstuhl Follow-Ups, S. Lucas
et al., Eds. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2013, vol. 6, pp. 77–83.

[2] D. Perez-Liebana et al., “General Video Game AI: A Multitrack
Framework for Evaluating Agents, Games, and Content Generation
Algorithms,” IEEE Trans. on Games, vol. 11, no. 3, pp. 195–214, 2019.

[3] D. Perez-Liebana, S. Samothrakis, S. M. Lucas, and P. Rolfshagen,
“Rolling Horizon Evolution versus Tree Search for Navigation in
Single-Player Real-Time Games,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), 2013, pp. 351–358.

[4] D. J. N. J. Soemers, C. F. Sironi, T. Schuster, and M. H. M. Winands,
“Enhancements for Real-Time Monte-Carlo Tree Search in General
Video Game Playing,” in 2016 IEEE Conference on Computational
Intelligence and Games (CIG). IEEE, 2016, pp. 436–443.

[5] R. D. Gaina, J. Liu, S. M. Lucas, and D. Perez-Liebana, “Analysis of
Vanilla Rolling Horizon Evolution Parameters in General Video Game
Playing,” in Applications of Evolutionary Computation, ser. LNCS,
G. Squillero and K. Sim, Eds., vol. 10199. Springer, 2017, pp. 418–434.

[6] C. F. Sironi et al., “Self-Adaptive MCTS for General Video Game Play-
ing,” in International Conference on the Applications of Evolutionary
Computation. Springer, 2018, pp. 358–375.

[7] C. F. Sironi, J. Liu, and M. H. M. Winands, “Self-adaptive Monte-Carlo
Tree Search in General Game Playing,” IEEE Transactions on Games,
2020, in press.

[8] S. M. Lucas, J. Liu, and D. Perez-Liebana, “The N-Tuple Bandit
Evolutionary Algorithm for Game Agent Optimisation,” in Congress on
Evolutionary Computation. IEEE, 2018.

[9] S. Ontañón, “Combinatorial Multi-armed Bandits for Real-Time Strategy
Games,” Journal of AI Research, vol. 58, pp. 665–702, March 2017.

[10] M. Świechowski and J. Mańdziuk, “Self-Adaptation of Playing Strate-
gies in General Game Playing,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 6, no. 4, pp. 367–381, Dec. 2014.

[11] A. Mendes, J. Togelius, and A. Nealen, “Hyper-Heuristic General Video
Game Playing,” in 2016 IEEE Conference on Computational Intelligence
and Games (CIG). IEEE, 2016, pp. 94–101.

[12] R. D. Gaina, S. Devlin, S. M. Lucas, and D. Perez-Liebana, “Rolling
Horizon Evolutionary Algorithms for General Video Game Playing,”
arxiv:2003.12331, 2020.

[13] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-Time Analysis of the
Multiarmed Bandit Problem,” ML, vol. 47, no. 2–3, pp. 235–256, 2002.

[14] R. D. Gaina, S. M. Lucas, and D. P. Liébana, “Population Seeding
Techniques for Rolling Horizon Evolution in General Video Game
Playing,” in Proceedings of the Congress on Evolutionary Computation,
June 2017, pp. 1956–1963.

[15] R. D. Gaina, S. M. Lucas, and D. Perez-Liebana, “Rolling Horizon
Evolution Enhancements in General Video Game Playing,” in Conf. on
Computational Intelligence and Games. IEEE, 2017, pp. 88–95.

[16] ——, “Tackling Sparse Rewards in Real-Time Games with Statistical
Forward Planning Methods,” in AAAI Conference on Artificial Intelli-
gence (AAAI-19), vol. 33, 2019, pp. 1691–1698.

[17] C. F. Sironi and M. H. M. Winands, “Analysis of Self-Adaptive Monte
Carlo Tree Search in General Video Game Playing,” in Conference on
Computational Intelligence and Games (CIG). IEEE, 2018, pp. 397–
400.

[18] D. Ashlock, Evolutionary Computation for Modeling and Optimization.
Springer Science & Business Media, 2006.

[19] K. Kunanusont et al., “The N-tuple Bandit Evolutionary Algorithm for
Automatic Game Improvement,” in Congress on Evolutionary Compu-
tation. IEEE, 2017, pp. 2201–2208.

[20] C. F. Sironi and M. H. M. Winands, “Comparing Randomization
Strategies for Search-Control Parameters in MCTS,” in Conf. on Games
(COG). IEEE, 2019.


