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Abstract

Auctions are pervasive in today’s society and provide a
variety of markets, ranging from consumer-to-consumer
online auctions to government-to-business auctions for
telecommunications spectrum licenses. This article enables
a strategic choice between a set of available trading strate-
gies by introducing a methodology to approximate heuristic
payoff tables by normal form games. An example from the
auction domain is transformed by this means and an evolu-
tionary game theory analysis is applied subsequently. The
information loss in the normal form approximation is shown
to be reasonably small such that the concise normal form
representation can be leveraged in order to make strategic
decisions in auctions. In particular, a mix of trading strate-
gies that guarantees a certain profit against any population
of traders is computed and further applications are indi-
cated.

Keywords: Evolutionary game theory, Auction theory,
Multi-agent games

1. Introduction

Auctions are deployed in a variety of real markets to fos-
ter highly efficient trading. They range from consumer-to-
consumer markets like eBay and business-to-business stock
exchanges to government-to-business auctions for mineral
rights or government licenses for the telecommunications

spectrum [6, 8]. Furthermore, auction mechanisms have
been transferred successfully to solve other resource alloca-
tion problems, e.g. in the domain of efficient internet traffic
routing [11]. This motivates researching how to run auc-
tions and how to extract profit by trading within them as
auctions are pervasive in today’s society.

The traders that participate in an auction agree to sub-
ject to a set of market rules in order to exchange goods for
money. Within the scope of this article only commodity
markets are considered, i.e. a single type of an abstract good
is traded. Each trader is assumed to have a private valua-
tion of the good which is only known to himself. Buyers
and sellers place offers to indicate their intention to trade at
a certain price. The here considered clearing house auction
proceeds in rounds and polls offers from each trader each
round. When all offers are collected, an equilibrium price is
established based on the available offers such that demand
meets supply at this price. It is commonly set to the average
of the two offers that define the range of possible equilib-
rium prices, i.e. the lowest bid and the highest ask that can
be matched in the equilibrium. Each buyer with an offer
above that price is matched with a seller having an offer
below that price. The profit of a transaction can be com-
puted as the difference between the transaction price and
the private value, assuming that buyers will not buy above
their private value and sellers will not sell below their pri-
vate value.

A multitude of trading strategies has been devised to
derive the next offer, possibly exploiting the knowledge
about offers and transactions that were observed in pre-



vious rounds. The most trivial one is Truth Telling (TT)
which just reveals the private value by placing offers ex-
actly at that value. Despite its simplicity, it may be opti-
mal in some situations [13]. The experiment of this article
considers three more sophisticated trading strategies. Roth
and Erev devised a reinforcement learning model of human
trading behavior in [2] which is modified to perform in a
clearing house auction as Modified Roth-Erev (MRE) [7].
MRE is evaluated in competition to Gjerstad and Dickhaut
(GD) and Zero Intelligence Plus (ZIP). GD maximizes the
expected profit by computing the profit and probability of
leading to a transaction for a set of relevant prices [3]. ZIP
places stochastic bids within a certain profit margin, which
is lowered when a more competitive offer was rejected and
increased when a less competitive offer was accepted [1].

Given a set of available trading strategies, it is of high
interest which strategy is best in the sense that it yields the
highest expected payoff. However, this question cannot be
answered in general as the performance of a trading strat-
egy is highly dependent on the competition it faces [12].
Let us assume an auction where traders only choose be-
tween the trading strategies described above. The profit
of each trader is dependent on the overall mix of strate-
gies and traders may choose to change their strategy in the
course of time, e.g. applying a reinforcement learning algo-
rithm to improve their expected payoff. This adaptation can
be modeled by the replicator dynamics from evolutionary
game theory which are formally connected to reinforcement
learning [14].

A heuristic payoff table is proposed in [15] and adopted
by several authors to capture the average profit of each type
of trading strategy for all possible mixtures of strategies in
a finite population [5, 10]. For the domain of auctions, the
required profits can only be computed in simulation where
the private valuation of each trader is known. This table is
a first step towards revealing the dynamics of adopted trad-
ing strategies in auctions and can for example be used to
analyze which trading strategy yields the highest potential
for improvements [10]. Although the heuristic payoff table
provides the basis for analyzing the dynamics in auctions,
it is unintuitive and lacks information about the payoffs for
strategies that are not yet present in a population. How-
ever, exactly these payoffs would provide information about
whether it is profitable or not to be the first one to adopt
this strategy. The normal form game on the other hand en-
ables an individual trader to calculate his expected profit for
each of his possible choices against any mix of strategies he
faces. It is more intuitive and allows inspecting the strate-
gic situation with means from game theory, e.g. allowing to
compute optimal strategies, best replies and Nash equilibria
more easily.

This suggests the question whether a heuristic payoff ta-
ble can be approximated by a normal form game in order

to open up these opportunities. Answering this question af-
firmatively, this article demonstrates how an approximation
can be found using a linear least squares algorithm or linear
programming. The methodology is illustrated by approxi-
mating a heuristic payoff table from the auction domain and
the results presented below show a reasonably small error
such that the approximation can be leveraged for strategic
considerations and an intuitive grasp of the game in auc-
tions.

The remainder of this article is structured as follows:
Section 2 introduces the game theoretical background that is
required by the methodology presented in Section 3. Subse-
quently, Section 4 illustrates the method by applying it to an
example from the auction domain and presents the resulting
performance. These results are discussed in Section 5 and
the paper is concluded with future directions in Section 6.

2. Game theoretical background

Classical game theory is the mathematical study of
strategic conflicts of rational agents. Each individual i
chooses a pure strategy si from the set of available strategies
Si due to some strategy πi and has a preference relation over
all possible outcomes. The players are assumed to choose
their actions simultaneously and independently. This im-
plies that the preference relation can be captured by a nu-
merical payoff function τi which is public knowledge and
assigns a value of desirability to each possible joint strategy
s = (s1, . . . , sn), where n is the total number of agents.

τi : S1 × . . .× Sn → R

In the context of auctions, each pure strategy corresponds
to a trading strategy and the preference relation is propor-
tional to the profit that an agent can make given the set of
opponents’ trading strategies. This section introduces two
different means to capture payoff functions for multi-agent
games and auctions in particular: The normal form game
and the heuristic payoff table. Furthermore, advantages and
disadvantages of both representations are discussed. Subse-
quently, the concepts of replicator dynamics and basins of
attraction are presented.

2.1. Normal form games

A normal form game commonly describes the payoff to
each agent in matrix notation. The matrix given in Figure 1
describes a symmetric two-player normal form game where
both players may choose between the three strategies Rock,
Paper and Scissors. The first player may choose a row r, the
second player chooses a column c and the joint choice (r, c)
determines the payoff which the matrix gives for the first
player. However, the payoff matrix for the second player



Rock Paper Scissors
Rock 0 −1 1
Paper 1 0 −1

Scissors −1 1 0

Figure 1. Payoffs for the row player in
the symmetric two-player normal form game
’Rock-Paper-Scissors’.

equals the transposed of the first player’s payoffs in sym-
metric games. Hence, it can be derived from the same table
by consulting the entry (c, r). Both players seek to max-
imize their expected payoff and optimal mixed strategies
can be derived such that a highest least profit v against any
opponent is guaranteed by randomizing over the pure strate-
gies. This profit v is also called the value of a game.

Within a normal form game, the player optimizes his ex-
pected payoff against an opponent that plays according to
a certain probability distribution. Similarly, he faces a field
of traders that are distributed over the strategies in reality. It
does not actually matter which opponent plays which strat-
egy but rather how many opponents deploy which strategy.
Assuming he encounters a random individual from the pop-
ulation, his opponent’s strategy will be drawn from the dis-
tribution of strategies in the population. The opponent in
normal form games therefore resembles the population in
which the agent is situated in reality.

2.2. Heuristic payoff tables

A heuristic payoff table may also be used to capture the
payoffs of a game. However, it requires a finite popula-
tion of traders such that all possible combinations of strate-
gies can be evaluated. If each agent i ∈ {1, 2, . . . , n} has
to choose a pure strategy si ∈ {1, 2, . . . , k}, this leads to
a joint strategy (s1, . . . , sn). However, for an individual
trader it is only important to know how many of his oppo-
nents are playing each of the different strategies. So, given
(s1, . . . , sn) the individual trader could derive that there are
N1 agents playing strategy 1, N2 agents playing strategy 2,
etc.. This would yield a discrete profile N = (N1, . . . , Nk)
telling exactly how many agents play each strategy. The av-
erage profit for playing a strategy can then be denoted by
a payoff vector U(N) = (U1(N), . . . , Uk(N)) indicating
that strategy s ∈ {1, 2, . . . , k} would yield an average pay-
off of Us(N) for the discrete profile N . The distribution of
n agents on k pure strategies is a combination with repeti-
tion, hence the number of rows of a heuristic payoff table is
given by: (

n+ k − 1
k

)
The payoffs of these discrete profiles can be measured

in many practical domains, including poker and auctions.

However, measurements do not allow to capture the payoff
to strategies that are not present, i.e. whenever Ns = 0 then
Us(N) is unknown for that discrete profile. Table 1 shows a
heuristic payoff table obtained from an auction simulation,
indicating unknown payoffs with a dash.

The heuristic payoff table is an approximation of a sym-
metric game. The full payoff function for this game would
map each joint strategy to a payoff for each agent and re-
quire kn entries. In contrast to this, the heuristic payoff ta-
ble maps discrete strategy profiles to payoffs for each strat-
egy. The normal form game maps probability distributions
over the strategies to payoffs for each strategy and only re-
quires k2 entries. The example presented below features 6
agents and 3 strategies and would require 36 = 729 entries
for the full representation,

(
6+3−1

3

)
= 28 rows or 28·3 = 84

payoff entries in the heuristic payoff table and only 32 = 9
entries for the normal form game approximation which re-
duces the multi-player game to a two-player game.

Table 1. The heuristic payoff table of a clear-
ing house auction with 6 agents and the three
strategies ZIP, MRE and GD. The first three
columns give the discrete profiles N over the
trading strategies and the last three columns
give the corresponding payoff vectors U(N).

NZIP NMRE NGD UZIP UMRE UGD

6 0 0 99 - -
5 1 0 97 100 -
5 0 1 89 - 69
4 2 0 96 94 -
4 1 1 90 88 65
4 0 2 85 - 69
3 3 0 97 92 -
3 2 1 87 90 64
3 1 2 85 80 73
3 0 3 76 - 73
2 4 0 97 96 -
2 3 1 91 91 66
2 2 2 84 83 67
2 1 3 78 70 76
2 0 4 62 - 80
1 5 0 97 97 -
1 4 1 93 89 62
1 3 2 86 84 69
1 2 3 73 71 75
1 1 4 73 57 77
1 0 5 56 - 80
0 6 0 - 94 -
0 5 1 - 91 62
0 4 2 - 84 67
0 3 3 - 75 71
0 2 4 - 65 76
0 1 5 - 43 79
0 0 6 - - 79



The heuristic payoff table is non-intuitive and needs a
thorough interpretation. One opportunity to make it more
accessible is the approximation of the heuristic payoff table
by a normal form game which allows to draw on the classi-
cal means from game theory to derive strategic choices.

While a normal form game yields the more detailed pair-
wise comparison of strategies and is more accessible for
analysis, it also imposes linearity over the different payoffs
to profiles. The heuristic payoff table on the other hand
only captures the average payoffs but these may be very
non-linear over the different discrete profiles.

2.3. Replicator dynamics

Replicator dynamics describe the game dynamics from
an evolutionary perspective. Evolutionary game theory
assumes an infinitely large population of individuals that
choose their pure strategy according to some probability
distribution. It assumes this population to evolve such that
successful strategies with higher payoffs grow while less
successful ones decay which allows to analyze the asymp-
totic behavior of this population.

Evolutionary game theory takes a rather descriptive per-
spective replacing hyper-rationality from classical game
theory by the concept of natural selection from biology.
The evolutionary pressure by natural selection can be mod-
eled by the replicator equations. This article assumes one
population playing the symmetric game and hence uses
the single-population replicator dynamics that define the
growth of a strategy proportional to the fraction of the pop-
ulation that already uses this strategy and the difference be-
tween the payoff to this strategy and the average payoff.

The game dynamics for the normal form game with pay-
off matrix A can be calculated for strategy i given that the
opponent mixes over the pure strategies according to the
probability vector x:

ẋi = xi · [(Ax)i − xAx]

It is also possible to construct the replicator dynamics from
the heuristic payoff table. Assuming each agent i indepen-
dently chooses his pure strategy si ∈ {1, . . . , k} according
to some probability distribution p = (p1, . . . , pk), the prob-
ability of each joint strategy is

∏n
i psi

. The probability of a
discrete profile can be computed as the product of the num-
ber of joint strategies that lead to this discrete profile and
the probability of these joint strategies. It is a multinomial
for which Pr(N |p) is the probability of the discrete profile
N given the mixed strategy p.

Pr(N |p) =
(

n

N1, . . . , Nk

)
· pN1

1 · . . . · p
Nk

k

The payoff for each strategy can then be computed as the
weighted average over the payoffs received in all profiles.

However, a correction term is required if the payoffs for
non-occurring strategies is unknown in the heuristic payoff
table.

Uaverage,i =
∑

N Pr(N |p) · Ui(N)
1− Pr(unknown|i)

Now, the game dynamics can be computed from the heuris-
tic payoff table:

ẋi = xi · [Uaverage,i − x(Uaverage,i)T ]

The resulting dynamics can be visualized in a force field
plot as in Figure 3 where the arrows indicate the direction
and strength of change.

The replicator dynamics give rise to a dynamical system
which may feature repellers and attractors of which the lat-
ter are of particular importance to the analysis of asymptotic
behavior. Each attractor consumes a certain amount of the
strategy space that eventually converges to it — this space
is also called the basin of attraction [4]. Assuming that an
evolutionary process may start uniformly at any point in the
strategy space, the size of the basin of attraction may be
used to estimate the practical importance of an attractor.
This can be achieved by uniform sampling of the strategy
space and analysis of trajectory convergences or by inspec-
tion of the directional field plots given in Figure 3. A good
approximation of the game dynamics should have minimal
impact on the basins of attraction.

3. Methodology

The conversion of a normal form game to a heuristic pay-
off table is a quite trivial step which suggests that the inverse
is also possible. However, the inverse transformation is over
constrained and a heuristic payoff table can only be approx-
imated by a normal form game. This section presents the
newly proposed method for finding a suitable normal form
game approximation.

3.1. From normal form games to heuristic
payoff tables

The heuristic payoff table lists all possible discrete pro-
files with the average payoff of playing against a finite pop-
ulation that mixes accordingly. The payoff vector against
the mixed strategy p can be computed from the game ma-
trix M as Mp. Let D be the matrix where each row corre-
sponds to a discrete profileN of n agents and let P = 1

n ·D
map the discrete profiles to probabilities. The matrix U that
yields the corresponding payoff vectors U(N) as rows can
then be computed as the product of P and M .

U = P ·MT (1)

The heuristic payoff table H = (D,U) is the composition
of the discrete profiles and the corresponding payoffs.



3.2. From heuristic payoff tables to normal
form games

This section reverses the step of the previous section and
shows the transition from a heuristic payoff table to a nor-
mal form game approximation. However, equation (1) can-
not simply be solved for M as the values in the heuris-
tic payoff table may be noise-prone due to stochasticity in
the experiments and may also feature non-linear dynam-
ics which leads to an over-constrained system of equations.
Therefore, it needs to be approximated, e.g. by minimizing
the mean squared error or the maximal absolute deviation.

Minimizing mean squared error
A normal form game M that approximates the heuristic

payoff table H = (D,U) can be determined incrementally
for each row Mi by finding a least mean squared error fit
between the i’th column of U, denoted as Ui, and the recon-
structed payoff vector Ũi = P ·MT

i from the normal form
game, where P = 1

n ·D as above, by solving the minimiza-
tion problem:

min
Mi

||Ui − Ũi||2

A standard linear least square fitting algorithm can be used
to solve this system for each row and compose the normal
form game matrix.

Minimizing maximal absolute deviation
Linear programming optimizes a linear goal function

subject to a system of linear inequalities. Using the same
definitions of the profile matrix D, the probability matrix
P , the game M and the payoff matrix U as above, the fol-
lowing program can be formulated.

minimize ε

variables ε,Mij , for i, j ∈ {1, . . . , k}
subject to P ·MT ≤ U + ε

P ·MT ≥ U − ε

However, this program needs to be transformed to standard
notation in order to apply common algorithms from linear
programming. For sake of convenience, each row Mi is de-
termined separately. Let c = (1, 0, . . . , 0) and x = (ε,Mi)
such that the goal function minimizes epsilon. Furthermore,

letA =

 −1
...
−1

P
−P

 and b =
(

Ui

−Ui

)
where Ui

is the i’th column of the payoff matrix. Then, this linear
program can be solved in standard notation:

min
x

c · xT subject to A · xT ≤ b, x ≥ 0

In order to approximate the heuristic payoff table, we need
to solve k linear programs to compute the complete normal
form matrix.

4. Experiments

This section presents the experimental setup and results
of measuring the information loss in the normal form game
approximation of a heuristic payoff table from the auction
domain. The heuristic payoff table given in Table 1 is ob-
tained by simulating auctions with the Java Auction Simu-
lator API (JASA) [9]. This empirical platform contains the
trading strategies ZIP, MRE and GD which were setup with
the following parameters: ZIP uses a learning rate of 0.3,
a momentum of 0.05 and a JASA specific scaling of 0.2,
MRE chooses between 40 discrete prices using a recency
parameter of 0.1, an exploration of 0.2 and scaling of 9 and
GD evaluates prices up to 360.

The heuristic payoff table is obtained from an average of
2000 iterations of clearing house auctions. On the start of
each auction, all traders are initialized without knowledge
of previous auctions and with a private value drawn from the
same distribution as in [15], i.e. an integer lower bound b is
drawn uniformly from [61, 160] and the upper bound from
[b+ 60, b+ 209] for each buyer. The sellers’ private values
are initialized similarly. These private values then remain
fixed over the course of the auction which runs 300 rounds
on each of 5 trading days where each trader is entitled to
trade one item per day.

The heuristic payoff table is approximated as described
in Section 3.2, which leads to the normal form game rep-
resentations given in Figure 2. The replicator dynamics are
derived from the heuristic payoff table and the normal form
game representations and compared in Figure 3. There is a
clear qualitative correspondence of the dynamics that arise
from the three models. Differences are very small and hard
to identify from the force field plots. Therefore, directional
field plots are given as well, which allows to find the attrac-
tors and basins of attraction by inspection.

A mixed attractor can be found at (0.81, 0.18, 0.0) for
the heuristic payoff table, at (1, 0, 0) in least mean squared
error fitting and at (0.72, 0.27, 0.0) in minimized maximal
absolute deviation. However, there are the same basins of
attraction. The pure attractor at (0, 0, 1) is present in all dy-
namics and is estimated to consume 26.0% of the strategy
space in the heuristic payoff table in comparison to 29.0%
and 26.9% in the approximations, based on the analysis of
convergence of 1000 trajectories with uniformly sampled
starting points. In the context of evolutionary game the-
ory, evolutionary stable strategies provide a concept to find
stable solutions in symmetric normal form games. The at-
tractors are evolutionary stable in the normal form game ap-
proximations and predict the attractors that are observed in
the auction game dynamics with a small error. The maxi-
mal absolute deviation is 9.76% and 6.64% while the square
root of the mean squared error is 3.03% and 3.42% respec-
tively.



Least mean squared error Least maximal absolute deviation
ZIP MRE GD

ZIP 97.4 98.8 52.3
MRE 96.8 98.6 42.6
GD 64.8 59.1 83.4

ZIP MRE GD
ZIP 93.8 102.7 52.9
MRE 94.9 100.0 38.3
GD 66.2 60.5 81.8

Figure 2. The symmetric two-player normal form game approximation of the heuristic payoff table
for a clearing house auction with the three strategies ZIP, MRE and GD as obtained by least mean
squared error fitting (left) and minimizing maximal absolute deviation (right).

5. Discussion

The results show that heuristic payoff tables in the do-
main of auctions may be approximated by normal form
games with a reasonably small error. However, this case
study is rather a proof of concept and still needs to be ver-
ified by further theoretical analysis. Therefore, this section
starts with a discussion of the limitations of this approach.
Eventually, it is illustrated how the newly gained insights
can be leveraged for strategic choice.

5.1. Linearity

The proposed approach is general in the number of ac-
tions and can be transfered to higher dimensions. However,
the approximation of heuristic payoff tables by normal form
games imposes a linear model on the data. This may be an
oversimplification for complex dynamics which may arise
from intricate interactions. Consequently, the precision of
the approximation is likely to deteriorate when the number
of trading strategies to choose from is increased.

5.2. Strategic choice

Consider the normal form representation of the auction
game obtained from minimizing the maximal absolute devi-
ation as given in Figure 2. It is possible to derive an optimal
strategy that gives a lower bound on the profit that can be
guaranteed even if nothing is known about the opponents.
This profit is also known as the matrix game value, equals
73.1 for this example and can be guaranteed by the optimal
trading strategy π∗ = (0.3, 0, 0.7). This means that a trader
who plays ZIP with probability 0.3 and GD with probability
0.7 will get an expected payoff of at least 73.1 against any
combination of GD, ZIP an MRE. For any other probabil-
ity distribution than π∗ he may encounter an opponent that
gives him a lower expected payoff. Calculation of the ma-
trix game value and the optimal strategy can be achieved by
linear programming since the agent simply wants to choose
his probabilities in such a way that the minimal payoff over
all columns is maximized.

If an agent would know the actual current mix of trading
strategies in the population he faces, he could even make

more than with the optimal strategy because the optimal
strategy is generally not a best reply against a specific popu-
lation distribution. It is rather like a best worst case analysis.

6. Conclusions

This article has modeled trading in auctions by consid-
ering a population of traders that repeatedly participate in
an auction. A set of trading strategies is made available to
the agents who make their choice according to the relative
profit of these strategies.

The contributions can be summarized as follows: A
methodology to approximate heuristic payoff tables by nor-
mal form games has been introduced. This smaller game
representation is more intuitive and computationally less
expensive to analyze and fills in a gap of missing payoffs in
the blind spots of the heuristic payoff table. In fact, the nor-
mal form game can even be constructed from partial heuris-
tic payoff tables, e.g. when a number of profiles could not
be observed. Rather than merely participating myopically,
a rational agent can now inspect the game strategically and
means and reasoning from game theory can be applied, e.g.
to analyze asymptotic properties of the auction.

Future work will aim to argue for the described approach
on a more theoretical level and look for structure in the de-
viation from the linear model, in particular where and why
qualitative changes occur. Further interesting opportunities
include extending the game theoretic analysis, e.g. inves-
tigating symmetric equilibria under different replicator dy-
namics that may account for exploration and deliver a more
realistic model of human behavior. Furthermore, this ap-
proach needs to be tested on other auctions and domains,
possibly applying it to higher dimensions as it is general in
the number of strategies.
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Figure 3. Comparison of the original replicator dynamics from the heuristic payoff table (left) to those
from the normal form game approximations by least mean squared error (center) and minimized
maximal absolute deviation (right) in the clearing house auction with 6 agents. The top row shows
a directional field plot which allows to determine the basins of attraction by inspection. The bottom
row shows a force field plot where the length of an arrow is proportional to the length of ẋ.
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