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Abstract

The interaction of Game Theory and Biology
led to Evolutionary Game Theory. One of the
key issues in Evolutionary Game Theory is to
examine how a species develops from genera-
tion to generation. The species consists of dif-
ferent types of individuals. Interactions of these
individuals generate offspring of the very same
type as the ”mother”. The numbers of offspring
that result from each interaction depend on the
types that meet. As such the population distri-
bution over the different types will change from
one generation to the next. In the ”classical”
model every mother will mate with a random
individual from the current population, assum-
ing that all types are well mixed. In this thesis
we examine what happens if such mixing does
not occur and mothers only interact with indi-
viduals from their direct neighbourhood.

1 Introduction
Evolutionary Game Theory originates from the early
1970’s. Maynard Smith and Price have started with
analysing the behaviour of animals [2]. This research led
to the ”classical” model where every individual animal
will interact with a random individual from the same
types.

In the classical model each individual in the pop-
ulation mates with a random individual of the same
population. How many offspring one individual bears
depends on the fitness matrix. That individual is
called the ”mother”. All individuals of a population
are hermaphrodite in behaviour. A hermaphrodite in
behaviour means that one individual, the ”mother”,
mates with a random individual in the population, the
”father”. This means that each individual can act like
a mother and a father, like a hermaphrodite.

The fitness matrix tells how many offspring any
combination of mother-father gets, where the mother as
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well as the father can be any type of individual in the
species. The entry (type of mother, type of father) in
the fitness matrix gives the number of offspring of the
mother. All these children will be of the same type as
the mother.

The next generation of a species consists of all the
children of the current generation. The numbers of
children for each of the different types will determine the
composition of the new generation. This composition
can be represented by the fractions of the different types
of individuals among the species. The vector of these
fractions is called the population distribution. This
population distribution will change from generation to
generation and the question arises whether or not it will
stabilize in the long run.

When the composition of a species does not change
anymore and can resist small fluctuations, the species
is said to be evolutionary stable. This means that the
population distributes according to an Evolutionary
Stable Strategy (ESS).

In this biological setting the ESS replaces the
Nash equilibrium [3] known from Game Theory. The
Nash equilibrium states that if the composition of a
population is stable, then all existing types in the
population are equally fit (in terms of the payoff from
the fitness matrix) and they are at least as fit as the
types that have fraction 0. The ESS adds to this a
stability assumption that implies that any fluctuation in
the population distribution will automatically disappear
again. Therefore an ESS is always a Nash equilibrium,
but not all Nash equilibria are evolutionary stable.
Unfortunately an ESS does not always exist.

For generating the next generation the classical
model uses replicator dynamics at a global level, from
now on referred to as Global Replicator Dynamics
(GRD). GRD calculates the offspring of a population,
assuming that all individuals interact with each other.
But do individuals interact with all other individuals in
a large population? Take, for example, the behaviour
of human beings: people with all kinds of different
backgrounds are not spread evenly over the whole
country. At the same time people mainly interact
with those living in their immediate neighbourhoods.
This does not mean that the composition of the total
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population is different, but the individuals are just not
well-mixed.
In this thesis the interaction of individuals in a pop-
ulation on local level is the point of focus and so the
research question is: How does a population evolve when
applying Local Replicator Dynamics (LRD) compared to
GRD?

This idea developed thinking about the interaction
off cells in a carcinogenic tissue. A model for LRD is
worked out in this thesis. But it may be applied to
other areas as well. The model on LRD is developed
in section 3. The experiments show the differences
when applying LRD instead of GRD, section 4, and are
further discussed in section 5. Section 6 concludes the
work of this thesis and suggests some extensions for
further study.

2 Cell structures

The interaction of individuals can be interpreted in
various ways. One could be the interaction between cells
in a human body. Cell biologists, or briefly biologists,
are interested in the way cells interact with each other,
if there is any interaction. Biologists know that some
types of cells do interact with each other and other
types, while some types do not.

Relevant study about interactions between cells
dates back from 1997. Tomlinson and Bodmer focused
on the interactions between different genotypes of
cancer cells (Tomlinson) [6], and developed a game-
theory model where cells can have one of two possible
genotypes [5]. Instead of generalizing the idea of cell
interaction, several researchers extended this model, by
including more detailed aspects like metabolism, e.g.
see Mansury et al [1].

In this thesis the goal is to visualize the evolution of
a population based on the local interaction of cells only,
thus to create a general model. Therefore studying the
evolution of cooperation appeared to be fundamental.
The thesis about the evolution of cooperation in a
spatial prisoner’s dilemma [4] gave insight in how cells
could interact at a local level. The prisoners in this
dilemma can be cooperators or defectors, depending on
the values from the payoff matrix. The payoff matrix
has to fulfill several rules to create such a dilemma.
Since this dilemma appears for one generation at a
time, the beginnings from this evolution of cooperation
are useful for this study. Cooperators and defectors
could be seen as two different types of individuals in
a population. The simulation of new generations of a
certain population with these two types of individuals
shows remarkable interactions between the cooperators
and the defectors. This behaviour depends on the values

of the fitness matrix. In this thesis the fitness matrix
will be a fundamental component in the model. This
will be explained in the next section.

3 Model of Local Replicator
Dynamics

A model of the interaction between individuals at a
local level can be split into a few components. Sub-
section 3.1 is about the represention of the complete
population. Crucial for the model are the fitness matrix
and the neighbourhood at local level, subsection 3.2.
These components together enables to generate new
populations from a given population as described in
subsection 3.3.

3.1 Population
The advantage of applying GRD lies in its assumption
that all types are, and stay, equally divided in a popu-
lation. Equally divided means that all individuals that
belong to the same type are placed randomly with equal
chance, for all types in that population. Because of this
assumption, the local environment is not significant.

LRD on the other hand depends on the local environ-
ment, so this aspect is important. The work on evolution
of cooperation shows the interaction between prisoners
in the form of a lattice with squares, where each square
represents a prisoner. Each prisoner interacts with its di-
rect neighbour, de four prisoners that abut to the sides
of the square. This is no problem for this case but if a
prisoner would interact with more neighbours, a problem
appears. The problem is about the prisoners that abut
on to the corner of a prisoners’ square.
The distance to the center of a corner prisoner is larger

Figure 1: Difference in distances: (a) squared lattice (b)
hexagonal lattice

than the distance to the center of a prisoner that abuts
to the side, as shown in figure 1(a).

To avoid this problem the squared lattice is replaced
by a hexagonal lattice, a lattice composed of hexagons.

(v. June 22, 2009, p.2)
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Figure 1(b) shows that transitions to all direct neigh-
bours are equal. There are no neighbours at the corners
of a hexagon, only at the sides.

Since the lattice is a squared two-dimensional flat
surface, some Periodic Boundary Conditions (PBC’s)
are defined. The hexagons that lie at a boundary of
the lattice would have less neighbours. This would
give a new problem or new exceptions but that is not
desirable. The PBC’s solve this problem by connecting
the East and West sides of the lattice and the North
and South side. This way the lattice turns into a torus.
A torus is a surface of revolution and has the form of a
doughnut.

The total number of individuals in the population
remains constant during the whole process.

3.2 Requirements

The number of offspring any individual gets is funda-
mental to generate the next generation of a certain pop-
ulation. The two important requirements to calculate
the number of offspring are the fitness-matrix and the
local neighbourhood.

Each couple of individuals, a father and a mother,
bears a certain number of offspring. These numbers of
offspring can referred to as the fitnessvalue for the type
of the mother, that meets the type of the father.

Table 1 represents the structur of the fitness matrix
in tabular form, where the numbers 1, 2,. . ., N are the
different types within the population. It clarifies how
the matrix should be read. The rows represent the types

1 2 · · · N
1 (1, 1) (1, 2) · · · (1, N )
2 (2, 1) (2, 2) · · · (2, N )
...

...
...

. . .
...

N (N, 1) (N, 2) · · · (N, N )

Table 1: Fitness matrix for N types.

of the mother, the columns are the father types. So if
there is a population with seven types and the mother is
an individual of type 3 and the father of type 5. Then
the mother will get the number of offspring that corre-
sponds to the value of entry (3, 5) in the fitness matrix.
For convenient use the values in the matrix are zero or
natural numbers.

How the neighbourhood of an individual using LRD
is structured, is of big influence to calculate the number
of offspring for the mother. For generality and because of
the choice of the hexagonal lattice, each mother has six
direct neighbours. But the mother can be influenced by
more individuals than only the direct neighbours. Figure

Figure 2: Neighbours at distance D

2 clarifies that individuals can be influenced by other in-
dividuals within a certain distance D.

As the figure shows, the direct neighbours have dis-
tance 1. Every further ’ring’ of neighbours has six neigh-
bours more, as shown in table 2.

Distance Number of neighbours
1 6
2 12
3 18
...

...
D 6 × D

Table 2: Number of neighbours depend on the distance

3.3 Generations

The composition of the next generation can be divided
in two parts. Beginning with the bearing of children
by the mother individual after mating with a random
neighbours called the father, followed by translating
the number of offspring back to the original amount of
individuals.

Calculating Offspring
Each individual in the population acts as a mother once
and each mother has a set of neighbours Fm. Those
neighbours act like fathers. The mother mates with a
random father, f ∈ Fm, and she gets x children, which
inherit the type of the mother (m). The number x
depends on the fitness matrix as discussed in previous
section. The corresponding value of entry (type of
mother, type of father) in the fitness matrix is the value
for x.

The expected offspring for the mother is given by:

(v. June 22, 2009, p.3)
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O(m, Fm) =

∑
f∈Fm

A(m, f)
‖Fm‖

(1)

This equation uses the matrix from table 1, named
matrix A. The type of the mother and the set of neigh-
bours are the input for the offspring equation. Thus
the number of offspring per individual is an expected
number. Instead of working with the expected numbers,
one could als work with the realized number from the
random draw. This is to be explored in the future, see
section 6.

Translating
All children have a certain number of offspring from
the same type as the mother. Since all entries in the
fitness matrix may be different, the individuals are
not equally divided over the hexagons. By comparing
the offspring values for different types in neighbouring
hexagon positions, the types for the hexagons (mothers)
have to be calculated for the new generation.

For each type that occurs in the neighbourhood
within distance D of an individual, the number of
offspring of that type in that neighbourhood is added up
together with the number of the mother. The type with
the highest number of offspring in this neighbourhood
becomes the new type of the mother in the central
hexagons of this neighbourhood for the next generation.

In this translation the number of offspring from
the mother could be increased by a certain factor.
The original type obtains a higher weight, and it is
more difficult to take over for the other types. The
translation, like the calculation of the offspring, occurs
for all individuals simultaneously and the hexagons are
set to the type the individual obtains at the end of the
translation. All hexagons represent one individual again
as the new generation is formed.

Now the next generation can be created. But first a
small example for the generation process.

Example
A population exists of three types: 1, 2 and 3. Figure

Figure 3: Fitness matrix A and population

3 shows the corresponding fitness matrix A for these
types in this population. The same figure shows the
actual population where the hexagons that represent
the individuals that are relevant in this example are the
numbered ones. The numbers indicate to what type the
individual belongs. The center hexagon is the mother
individual that is central in this example.

The offspring value for the mother depends on the
direct neighbours: a, b, c, d, e and f. These neighbours
form the set F.

The equations below show the calculation for the
offspring value for the mother individual in detail.

O(1, F ) =
∑

f∈F A(1,f)

6

= A(1,3)+A(1,2)+A(1,1)+A(1,3)+A(1,2)+A(1,2)
6

= 1
6 ∗A(1, 1) + 1

2 ∗A(1, 2) + 1
3 ∗A(1, 3)

= 1 2
3

Table 3 shows the results of the same calcula-
tion for the individuals that belong to the set F. The
new type of the mother is the goal here, so there are no
more offspring calculations needed.

The required offspring calculations are done now,

F Type Calculation Offspring
a 3 1

2 (3, 1) + 1
2 ∗ (3, 2) 2

b 2 1
3 (2, 1) + 1

6 ∗ (2, 2) + 1
2 ∗ (2, 3) 2

c 1 1
3 (1, 1) + 1

3 ∗ (1, 2) + 1
3 ∗ (1, 3) 2 1

3
d 3 2

3 (3, 1) + 1
6 ∗ (3, 2) + 1

6 ∗ (3, 3) 1 1
6

e 2 1
2 (2, 1) + 1

6 ∗ (2, 2) + 1
3 ∗ (2, 3) 2 1

3
f 2 1

2 (2, 1) + 1
6 ∗ (2, 2) + 1

3 ∗ (2, 3) 2 1
3

Table 3: Offspring values

so the new type of the central mother is about to be
generated. For each type in the neighbourhood, and
for the mother and the mother herself, all offspring
are summed up. Table 4 show the offspring values per
type in this neighbourhood. The type with the highest
offspring value is going to be the type of the mother in
the new generation.

The variable w in the table represents the weight

Total Total Total
Type Summation w = 1 w = 2 w = 3

Type 1 2 1
3 + w ∗ 1 2

3 4 5 2
3 7 1

3
Type 2 2 + 2 1

3 + 2 1
3 6 2

3 6 2
3 6 2

3
Type 3 2 + 1 1

6 3 1
6 3 1

6 3 1
6

Table 4: Offspring values per type in neighbourhood

of the central mother. This shows that the type the
new generation mother is going to belong to depends
on this weight. For w < 3, the new mother will be an

(v. June 22, 2009, p.4)
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individual of type 2, but for w ≥ 3 the new mother will
be an individual of type 1.

4 Experiments

The LRD model has three important variables: the
fitness matrix, the size of the neighbourhood and the
weight of the mother individual during the calculation
of the offspring. In this section the focus is on experi-
menting with variables. Later a case study inspired on
biological cells is performed.

To be able to play with these variables there is a
standard example.

The original population for this standard example,

Figure 4: Standard population with 800 individuals
(hexagons).

figure 4, consists of 800 individuals that each belong to
one of the three types that occur in this population,
called Black, Gray and White. The individuals are ran-
domly placed using a pseudo-random generator. Fitness
matrix A from figure 3 is used to create the offspring
values, the neighbourhood only includes the direct
neighbours and the weight for the mother individual
is set to one, so all individuals have equal influence on
each other. Figure 5 shows how this population evolves
by generating generation after generation.

Figure 5: Standard example where the numbers indicate
the generations.

4.1 Variables
The influence of the variables are clarified by testing
the model. The focus lies on the fitness matrix but
the weight of the mother and size of de neighbourhood
also have influence on how individuals interact with
eachother.

Weight
The influence of the weight of the mother individual is
already shown in the example from section 3.3. The
composition of the population looks differently for
different weight, for the mother, for example setting the
weight to zero. The results for the standard population
with the standard matrix, standard neighbourhood but
weights equal to zero are shown by figure 6.

Comparing these results to the results of the

Figure 6: Generations for weight = 0.

standard example the composition is differently but
what about the scale of the types in the population?
The higher the weight of the mother cell, the faster
the population scale stabilizes. But the scale of types
differs per weight value anyway. The graphics in figure
7 visualize this observation. The black line indicates the
fraction of the Black types in the population, the dark
gray line indicates the fraction Gray types and the light
gray line represents the fraction of White types.

The explanation for this observation is straight for-
ward. If the values of the mother’s weight is sufficiently
high, no the mother type will be affected by another
type.

Distance
The smallest neighbourhood consists only of the direct
neighbours. But of course this can be extended. By
taking more neighbours into account the composition
of the population changes differently. The minorities in
the group have less chance to survive once they form a
small group. Once a type dominates over fifty percent of
the total area, that type takes over if the neighbourhood
distance used is high enough. If the distance is as large
that the neighbourhood contains all individuals in the
population, then the local model gives the same results
as the classical global model.

(v. June 22, 2009, p.5)
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Figure 7: Scale of types for different weights.

Fitness matrix
Generating the new population is highly affected by

Figure 8: Three different matrices with fitness values.

the values from the fitness matrix. The choice of the
weight and the neighbourhood distance can increase or
decrease the influence of the matrix values. On basis
of the three matrices shown in figure 8 the influence of
the fitness matrix is explained, with mother weight and
neighbourhood distance each set to one.

Matrix T is a matrix where the gray type is always
doing better than the white type. The prediction from
the classical model would be that the white types would
disappear from this population. But figure 9(a) shows
that the white types stay alive though only with a small
number of individuals. The explanation is that the
white types can survive as long as they have enough
individuals of the black types around them. This can
be shown by changing the entry T(black, black) to 2,
and call the new matrix T*. Figure 9(b) displays the
scale graph that belongs to T*. Now the white types
are died away from the total population since also the
black type is always better than the white type.

The second fitness matrix, matrix Q, has one
dominant type, the gray type. The other two types
maintain together which means that as long as there
are enough individuals of their own type and the other
recessive type, they will both survive. The evolution
of this population in figure 10 visualizes the recessive

Figure 9: Scales of types for two slightly different matri-
ces.

behaviour of two types according to the dominant types.
Matrix R is a fitness matrix for four different types

Figure 10: Evolution of dominant vs recessive behaviour
(numbers indicate generations).

in the population. For this example a population with
16200 individuals is used, again the mother weights and
the neighbourhood distance are set to one. According
to the matrix, the white types dominates the light gray
types. This would mean that the light gray types would
disappear after a long time in the classical model. The
evolution of the scale of types in the population is
shown by figure 11, but this graph does not imply the
extinction of the light gray types.

The graph shows that the white type dominates all

Figure 11: Scales of types for matrix R.

and that the other three types are recessive. The three

(v. June 22, 2009, p.6)



The evolution of populations using local replicator dynamics C.H.M. Bendermacher

recessive types behave like the two recessive types for
matrix Q, where the black type has even less individuals
left than the light gray types which were likely to
go extinct. Figure 12 visualizes how the types stick
together after 1000 generations, the dominant type is
all around those clustered white types.

Figure 12: Population composition after 1000 genera-
tions for matrix R

Observations
As the images in this section show, applying LRD leads
to clustering of individuals that belong to the same
types. Using the three variables in the right way it is
possible to influence the clustering. Another observation
made is the clustering of different types. Recessive
types can stay alive by joining eachother, while they
disappear if they are surrounded by dominant types of
individuals. Knowing all the possibilities of all these
variables, the reality could be simulated. Next section
shows a case study on cell biology, a first attempt in
trying to simulate the behaviour of tumor cells among
normal cells.

4.2 Case Study

The existence and growth of tumors are well-known
problems related to Biology. Biologists have conducted
many years of research to this subject. Their findings
up to now show that tumor cells do not have the ability
to stabilize, while normal cells do. Besides that, not all
tumorcells can be destroyed. This depends on the inter-
action between cells. Apparently most cells in human
tissue do not interact with other cells. The ones that
do interact, have the connection factor and are able to
destroy tumor cells. Since tumor cells used to be normal
cells, they have the same interaction skills: some can in-
teract due to the connection factor and some can not.
None of the normal cells can destroy a tumor cell that
can not interact. Tumor cell that can interact, can be
destroyed by a normal cell that is able to interact. The

interaction works actually more complicated, this is only
a simplification of the reality for our model.

With this simple background knowledge matrix Z,
figure 13, is formed. Type Normal− indicates normal
cells that not can interact with other cells, they form
a stable tissue. The normal cell that can interact with
other cells belongs to type Normal+. For the tumor
cells are the ones that can interact with other cells of
type Tumor+, the tumor cells that never get destroyed
are of type Tumor−.

The stable normal cells get one offspring with all

Figure 13: Fitness matrix Z.

individuals, no matter of what type they are. The tu-
mor cell that does not interact, doubles that amount of
offspring because a tumor maintains growing no matter
what. The normal cell that can interact grows twice as
fast when it meets a tumor cell. It does not matter what
kind of tumor cell. The tumor cell that can be destroyed
only dies when it comes across a cell of type Normal+,
otherwise it behaves like the standard tumorcell.

Since the normal cells are stabilized and the tumor
cells keep on growing it is likely that the normal cells
will die and the tumor cells will survive. Figure 14 visu-
alizes the scales of the types over fifty generations. The
number of normal cells that can not interact is greatly
reduced. The normal cells with the connection factor are
more present, but this can be explained by the fact that
they grow when they meet a tumor cell. Since the tu-
mor cells take a large percentage of the population, the
connecting normal cells have enough cells around them
to grow.

In the evolution of this population the observations
in previous section get visible. In figure 15 it is easy to
see the clustering. The clustering of normal cells that
cannot interact with normal cells that can is the expla-
nation that those clustered cells do not die away. Also
remarkable are the clusters of type Normal+ next to
clusters of Tumor+. This links to the observation of
clustering types. These types keep each other alive while
the tumor cells should be able to take over all normal
cells. If the distance would be raised, this could hap-
pen but since only the direct neighbours are taken into
account, this is not the case for now. With more visual-
izations we see clusters of Normal+ cells left at places
where the other normal cells used to be and were next
to those cells. The Normal− cells were staying alive

(v. June 22, 2009, p.7)
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Figure 14: Scales of the different types of cells.

surrounded by Normal+ cells. But when there came
more and more tumor cells around the Normal+ cells,
they started making more offspring. Therefore they re-
ject the stable cells.

Figure 15: Evolution of tumor and normal cells.

5 Global versus Local
Now the idea of the local approach is clear, both mod-
els can be compared to each other.The classical model
of GRD is set to similar experiments as the LRD2. For
these experiments several matrices of previous sections
are used to compare results immediately.

The evolution of the population using matrix A, fig-
ure 3, stabilizes almost immediately. This can be seen
in the left picture of figure 16, which also shows that the
beginning is a bit disturbed. The explanation is that also
for this approach the starting population is generated by
a pseudo-random generator. The local result, the right
of the same figure, are not the same, so locally there is
some different action than looking globally.

Figure 17 shows the results for matrix T. The white
type should almost die out, according to the local ap-
proach. But with the global approach has a bit over
20 percent of the population the color white, the other
nearly 80 percent has the other two colours, equally di-
vided. The black line lies behind the gray line, so this is
not completely clear from the picture. This again shows

2Note that not all graphs, representing the results for these
experiments, have the same scales at the axes.

Figure 16: Scaling graphs for matrix A.

that the local approach has different interaction than the
global approach.

For matrix R the results for the global approach, left

Figure 17: Scaling graphs for matrix T.

of figure 18, does not seem to be different from the local
results, right. But by looking at the vertical axes of both
graphs the difference becomes larger. The vertical axis
from the local scale graph is twice as large as the axis
of the other graph, thus there is a major difference be-
tween them. Dominance has more impact at local level
than when looking globally, as it seems. But at the end,
the population with local interaction has more dominant
individuals than the population at a global level.

The final matrix to be discussed is the matrix from

Figure 18: Scaling graphs for matrix R.

the case study. The previous section explained the idea
behind the matrix and the results from local behaviour
seemed quite straightforward. But how does the popu-
lation with matrix Z evolve according to the global ap-
proach? The left picture in figure 19 shows a quite differ-
ent scaling of the types in the population than the right
picture. Those results are from the global approach, the
negative normal cells would not die out, they stabilize
and have a little over 15 percent of the population. The
other normal type has 25 percent of the population, so
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60 percent of all cells are tumor cells. This percentage is
way less than the percentage at local level interactions in
the population. At local level the tumor cells take about
90 percent of the popualtion.

Figure 19: Scaling graphs for matrix Z.

6 Conclusions
The focus of this paper was on local interactions between
individuals in an evolutionary game setting. The main
question in this paper was ”How does a population
evolve when applying LRD compared to GRD?”

Experiments showed that the population does not
stay equally divided as in the GRD approach but all
types cluster together. This can lead to clusters per type
but also clusters of different types together. Clustering
gives minorities the probability to survive instead of
dying out.

In the case study the LRD showed the predicted
behaviour, but the GRD showed a completely different
view. This shows that the LRD is more capable to
simulate future generations than GRD.

Modelling the interaction of individuals is needed
to predict the future. Some parts in this model that
could be generalized upon are the weights, the influence
of distance, the inclusion of possible mutations and a
different approach for deriving the numbers of offspring.

The weights of different types could vary. This
means that not all types have the same influence for
creating own offspring. In case of the case study, the
tumor cells could have weight two and normal cells have
weight one. So tumor cells grow twice as fast as the
normal cells. The fitness matrix could be changed, with
mostly ones in it. Only the zero value and the value
two for the normal cells remain. This could lead to the
same results, but that should be studied more closely.

The influence of neighbours, that are not directly
adjacent to the mother individual, could be less. Since
they are further away it is likely that they have less
influence on the mother. Therefore one could assign
weights to all neighbour individuals in the neighbour-
hood based on their distance to the mother.

Variance in a population is often caused by mu-

tations. The occurence of mutations is a natural
phenomenon. Including this in the model and creating
a way so that the model can incorporate these, would
be a big improvement.

The approach for deriving the number of offspring in
this LRD model is by expectations. Instead, the mother
could choose a partner from the assigned neighbourhood
randomly, and would get the number of offspring as the
value of entry (mother, father) from the fitness matrix
indicates. So, instead of working with expectations,
we could also work with the realizations of all these
probabilistic events.

It is not clear whether or not the two models would
give highly similar results. So further studies are
needed.

References
[1] Mansury Y., Deisboeck T.S., Diggory M. (2006).

Evolutionary game theory in an agent-based
brain tumor model: Exploring the ’genotype-
phenotype’ link. Journal of Theoretical Biology,
Vol. 238, pp. 146–156.

[2] Maynard Smith J., Price G.R. (1973). The logic
of animal conflict. Nature, London, UK.

[3] Nash, J.F. (1950). Equilibrium points in n-person
games. PNAS, Vol. 36, No. 1, pp. 48–49.

[4] Schweitzer F., Mühlenbein U., Behera L (2002).
Evolution of cooperation in a spatial prisoner’s
dilemma. Advances in Complex Systems, Vol. 5,
No. 2-3.

[5] Tomlinson I.P.M., Bodmer W.F. (1997). Mod-
elling the consequences of interactions between
tumour cells. British Journal of Cancer, Vol. 75,
No. 2, pp. 157–160.

[6] Tomlinson, I.P.M. (1997). Game-theory models
of interactions between tumour cells. European
Journal of Cancer, Vol. 33, No. 9, pp. 1495–1500.

(v. June 22, 2009, p.9)


