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Abstract

In this article is presented a classical Hide and
Seek game. According to his initial beliefs, the
purpose for the searcher is to find the hider
as fast as possible, while the hider wants to
be hidden as long as possible. Multiple search
methods are presented and evaluated on a sim-
ulation based model. The model presented is
based on Matrix Games.

1 Introduction

In this article we are interested in finding an optimal
starting point for the searcher in a classical Hide and
Seek Game. One person, denoted by H, has a number of
hiding places, here referred to as rooms, at his disposal.
At the start of the game he chooses a room to hide in,
knowing that he will not be able to change room dur-
ing the game. A second person denoted by S starts the
search for H. S may search in the order that he wants
but he may only search one room at each stepi=1,2, ...
In each room the visibility is limited. This is represented
by the fact that S finds H with hit probability ¢, in room
r. These hit probabilities don’t change during the pro-
cess and both players are assumed to know these proba-
bilities [3]. The goal is to find a stable situation where S
minimizes the expected number of search to find H while
‘H wants to maximize that number. This is not trivial.
Indeed, as both players know each other’s best strategy,
it makes the process difficult. Assume that S knows H’s
strategy. S adapts himself to find H as fast as possible.
Knowing that S knows his strategy, H can change it so
that the strategy of S is no longer suitable. But again,
knowing that H knows that S knows H’s best strategy,
S can adapt his strategy. Here again if H knows, that
S knows, that H knows, that S knows H’s best strat-
egy, H can adapt. This leads to an endless chicken and
egg paradox, where no solution can be found! This mean
that we are interested in a strategy for both player where
the knowledge of the other’s strategy will not change the
player’s optimal strategy.

2 Model

The model described here is the classical Hide and Seek
game as described in the Introduction. The model is
based on a Matrix Game with a few more assumptions.
It is assumed that each search made by S in a room
takes one time unit. These one time unit searches will
be called Stages and the process of the search for H until
he is found will be called a Challenge. In this article we
are interested in the starting strategy that will minimize
the number of stages needed by S to find H.

2.1 Implementation of the model

The problem can be handled in two main different man-
ners, a simulation based approach and a mathematical
approach. Both methods have advantages and inconve-
niences. The mathematical approach can be made such
that it is deterministic. It is a strength because it means
that nothing variate and no errors due to randomness are
present. However, it also means that a random choice is
never made and decisions are made according to strict
rules. A good example is that if S has the choice be-
tween two rooms that have the same probability to con-
tain H, always the same room will be chosen first. In
contrast, the simulation based approach is a simulation
of each challenge of a hide and seek game. This is a
non-deterministic approach, because whether the object
is found or not can be handled by a random number
generator; therefore two consecutive runs will not espe-
cially give the same outcome. Also the choice for a room,
when two rooms have the same probability to contain H,
can be made randomly. All kinds of randomized actions
will be taken which can vary the choices of a room or
vary the strategies. These aspects have also a backside,
as it is a non-deterministic process, an average over a
large number of challenges needs to be made in order to
have a reliable outcome. Another important matter is
the time consumption of both methods. As the math-
ematical model can create a challenge almost instantly,
and only one is needed, the simulation based model is a
lot more time consuming. As, in the simulation based
model, each stage is simulated and a number of chal-
lenges is needed to have a reliable average number of
stages, the time needed is linear with the number of
challenges needed. The choice for the implementation
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of the model was a simulation based model. The choice
for that particular implementation was made because
it offers more flexibility in the choice of the decisions;
they can be made deterministic as well as probabilistic.
Another motivation for that choice was that it offers a
better understanding of the process at each step. In this
model, a number of challenges is made and the average
over these challenges is taken in order to have a good
approximation of the number of steps needed to find H.
However, a comparison with the deterministic approach
has been made in order to see if the theory matches the
simulation. The result of this comparison is that the two
models match and give the same outcome. Not exactly,
because one is deterministic and the order in which the
rooms are presented matters, where it is not the case
with the other model. Also, the outcomes are similar
but not exactly the same due to the random factors.

2.2 DMatrix Games

The process of finding a best strategy for S and H is
based on matrix games. A matrix game is a matrix
A = (ai;) that defines a game for two players. The
row player selects one of the rows i = 1,2, ...,m and the
column player selects one of the columns j = 1,2,...,n
independently. The resulting payoff to the row player by
the column player is a;;. The row player may decide to
mix his strategy so that each row 7 will be selected with
a probability z; where ), z; = 1. The column player
may use such mixed action as well [1].

In our case, the row i corresponds to the room where
‘H is hidden and the column j to the room where the
S starts his search. The entry a;; corresponds to the
average number of steps needed by S to find H, when S
start the search in room j and H is hidden in <.

2.3 Beliefs

For the search method of S, we need to make use of so
called beliefs or subjective probabilities. We assume that
S considers a weight h, > 0 for each room r, expressing
his belief that H is hidden in room r. The higher h,,
the higher S beliefs that H is hidden in room r. Given
the beliefs hq,...,h,, S should choose the room that gives
him the best chance to find H. However, best chance can
be represented in several way. This is why we introduce
the use of procedures to determine these rooms. The
procedures for the selection of the rooms will be called
the Search Methods. The different Search Methods will
be discussed in section 2.5.

2.4 Bayesian updating

After looking in a room, S has to update his beliefs ac-
cording to the well known Bayesian rules: his new belief
h! is computed as follows :

h!.=Pr[H in room r| not found in 7]
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~ Pr[H in room r and not found in r]
N Pr [H not found in r]

With Pr[H not found in r] = 1-Pr[H found in 7]
=1 — h,t,, we have

he(1—t,)
o= )
T 1Rty

Also the beliefs for the other rooms i # r are updated
as follows:
, . . . hi
h; = Pr[H in room i|H not found in r] = ———
1 — h.t,

Now & searches in a room where his belief is the highest
according to the search method chosen. From this proce-
dure one should note that the selection of the room is to-
tally determined by the search method and this Bayesian
updating. Two challenges that have the same initial be-
liefs have in average the same outcome.

2.5 Search Methods

Several search methods for the selection of the next room
to search have been explored. This was done to see if as-
sumptions about the behavior of the process would fit
the outcome of the simulations. The search methods ex-
plored for S are the following;:

- The first one is when only the room with the highest
belief is searched. This will be called No Forecasting or
F-0.

- The second one is a myopic one where the belief and the
chance of finding the object are taken into account with
the formula h; x ¢;. This is a one step ahead forecasting
procedure where S maximizes his one step probability of
finding H. It will be referenced as F-1.

- The third one is a two step forecasting method. The
room selected is the one where the value h;t; + h;tj is
maximal (i and j can be the same). Where /', is the new
belief for room j after unseccessfully searching in room
1 with belief h;. It will be referenced as F-2.

For each of these procedures, if the searcher is indiffer-
ent between two rooms, a random choice between these
rooms is made for the selection of the next one to search.
The room to search next is calculated, but after every
step, the calculation is re-evaluated, this means that the
two step forecasting procedure is not a planning for two
following steps but only a discrimination for the one time
next step.

It turned out that F-2 was not giving a better per-
formance than F-1. It was actually performing worse.
Investigation about this phenomenon was therefore
needed. A probabilistic decision was tried, where, at
each step, not only the room with the highest belief is
searched but every room is searched with some positive
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probability corresponding to the range of beliefs for the
rooms. This means that all the rooms have some positive
probabilities to be searched at every step. The following
example illustrates this probabilistic method. If three
rooms have to be searched and the beliefs for the rooms
are [0.12 0.46 0.42] then the probability to search in each
of the room will be [0.12 0.46 0.42] instead of [0 1 0] when
only the best room gets searched.

3 Matrix creation

In order to see the best strategy for S, the game has been
presented as a matrix game. Each entry a;; corresponds
to room ¢ where H is hidden and room j where S starts
searching. For this matrix an optimal strategy for H is
calculated that maximize the minimum number of steps
needed by S to find him. With this knowledge, S adopt
the initial beliefs that would lead to the least number of
search to find H.

3.1 One entry in the matrix

In order to be able to calculate the entries of the matrix,
multiple challenges of a hide and seek game were made.
One challenge is a search procedure that lasts until H
is found. The average over these challenges is made and
then taken as one entry in the matrix. Such an average
is taken so that the fluctuation due to randomness in the
room selection is reduced.

3.2 Best strategy selection

The beliefs play a big role in the selection of the room
during the process. As only the initial setup of the beliefs
will determine the outcome of the challenge (see section
2.4), it is of great importance to find the best strategy to
adopt by S to find H as fast as possible. In order to find
the optimal strategy for S, the value of the game is com-
puted after each game and the corresponding optimal
mixed strategy for S is adopted. These mixed strategies
consist in the optimal play for both players. The calcu-
lation of the best strategy is based on the Generalized
Simplex Method [2]. The strategy adopted by S will
be the best so that no matter what action H takes, he
can do at most the value of the game. A memory factor
has been introduced to avoid a pure strategy jumping
between rooms and to obtain convergence. As observed
in the selection and the update of the beliefs, the best
strategy is in accordance to the current beliefs. If only
the new strategy is taken into account for the update,
then the beliefs are taken in a way that only one room
is searched very often compared to the others. Here is
an illustration of this phenomenon:

3.3592  3.8156
4.5849 4.1837
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In this matrix, the value of the game corresponds to the
entry ag 2, therefore the best strategy for H is to hide in
room 2. As S adapts his beliefs to H’s best strategy, he
will have beliefs [0.01 0.99]. Then the new matrix will
be computed:

8.3677 13.1484
3.5137  2.5105

At this second stage, the value of the game corresponds
to the entry a1, and the best strategy for H to hide in
room 1. As S adapts his beliefs to H’s best strategy, he
will have beliefs [0.99 0.01]. Then the new matrix will
be computed:

2.0073  2.9843
10.7413 7.9072

As one can understand, here the best strategy for H is
again to play room 2. No matter how many games we
will play, we will see that the strategy for & is jumping
from one room to the other after each iteration.

A jumping pure strategy result can be seen in Figure
1 and Figure 2. Figure 1 shows the values of the game
of such a strategy, and Figure 2 shows the value of the
beliefs for the selection of the rooms. It can be observed
in Figure 1 that the value of the game is jumping up and
down. This can be linked to Figure 2 directly where the
beliefs are alternating from two rooms to one room giving
a value of the game that is also alternating. In Figure
1, the first 5 values are increasing. This is a natural
phenomenon, because each matrix has an impact on the
next and on the corresponding optimal strategy. As the
starting beliefs are taken arbitrarily, the first few steps
have a different strategy than the remaining ones but
converge to that jumping strategy phenomenon. This is
observed after the startup period in Figure 1.

The memory factor is a factor that increases the
weight of the previous beliefs. This allows the strat-
egy for S to stabilize and converge to a situation where
the number of stages is minimal because the previously
taken beliefs still have an impact on the new ones. The
old strategy is not forgotten and old strategies are kept
in the new beliefs. The formula for the application of
this factor is:

V=axb+(1—-a)xc

Where ' is the new belief value, b the old belief value, ¢
the optimal strategy for S, and « the memory factor.

In the implementation of the model, the memory fac-
tor used is a =1 — % with n = 2,3, ... Where n is an in-
creasing counter that increases with challenges that lead
to an increase in the value of the game. This memory
factor has been chosen because it is a factor that does
not increase too rapidly.
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Figure 1: Plot of the value of the game when no memory
factor in introduced
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Figure 2: Selection of the room when no memory factor
is introduced

4 Statistical Test

A statistical test has been made because the graph of
the value of the game was not a stable descending line,
but was oscillating instead. A check whether the value
of the game could be wrongly calculated or exposed to
a layer variation needed to be made. This could be due
to not enough challenges played before averaging to get
an entry (see Section 3.1 for more information). If the
standard deviation is too big, one action can become
better than another, where it is just an artifact from the
simulation. This will lead to a reinforcement of a belief,
where it is just a noise factor. The mean and the stan-
dard deviation of the entry according to the number of
challenges were calculated to see how many were needed
to have a good approximation of an entry.

Hide and seek games

4.1 One entry

The first statistical tests were based on a single entry
to see what would be the impact of many rooms. The
population size for the test is 5000. An F-1 procedure
is taken for the beliefs. The base point was to see the
behavior of the system with multiple rooms when the
theoretical chance of finding H in these rooms would be
equal to 0.1, regardless of the number of rooms.

The rooms have therefore been chosen with the according
hit probabilities (¢;):

e 2 rooms with respectively probability 0.3162 and
0.3162 to find the object.

e 3 rooms with respectively probability 0.5623, 0.5623
and 0.3162 to find the object.

e 4 rooms with respectively probability 0.7499,
0.7499, 0.5623 and 0.3162 to find the object.

Table 1 represents the reliability of an entry a;; of the
matrix according to the number of challenges performed
in order to get the entry. As explained before the be-
liefs are based on the mixed strategy that will lead to
the lowest value of the game. According to Cantelli’s
inequality No more than H% of the wvalues are more
than k standard deviations away from the mean on one
side [4]. This means that if, between two entries, the
standard deviation is bigger than half of the difference
of the mean, there is a 20% chance that these two en-
tries will vary in such a way that one is bigger than the
other whereas the average shows that it should be the
opposite. This is a bad effect because the corresponding
mixed strategy will lead to a selection of beliefs that is
based on a challenge that is not reflecting the problem.
A reinforcement of beliefs from ”wrong information” will
be observed and, therefore, a worse performance in the
next run. With Cantelli’s inequality, we can assume that
the chance that two entries will be inverted should not
exceed 5%. It is only if the difference of the means does
not exceed 5 times the standard deviation, that percent-
age can be achieved. The reduction of the standard de-
viation follows the general rule that in order to reduce
the standard deviation by a factor 2, you need 4 times as
many runs [5]. It can be observed that in Table 1, it is
indeed the case: there is a reduction of about /10 = 3.16
times when we multiply the number of challenges by 10.

4.2 All entries

A comparison inside the final matrix has been made to
see if there was a big fluctuation between the different
entries in the matrix itself. The comparison is based
on 3 rooms with hit probabilities respectively of 0.5623,
0.5623, and 0.3162. The number of challenges is 100 to
generate one entry in the matrix. The beliefs are the
same for each of the rooms and finally the population
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# of Rooms Ch:léleifges Mean | Std. dev.
10 5.7018 1.7496
9 Rooms 100 5.6625 | 0.52912
1000 5.6647 | 0.16891
10000 5.6705 | 0.05445
10 6.9393 1.7933
3 Rooms 100 6.9153 | 0.56109
1000 6.9212 | 0.17828
10000 6.9205 | 0.05695
10 7.6337 | 1.9793
4 Rooms 100 7.5967 | 0.61539
1000 7.6051 | 0.19893
10000 7.6006 | 0.06210

Table 1: Calculation of the mean and standard devia-
tion of the value of one entry on a different number of
challenges

3.9738 4.5406 4.8259

Mean 4.5405 3.9770 4.8172
7.5671 7.5652 6.9139

0.4865 0.4376 0.4293

Standard deviation || 0.4428 0.4762 0.4280
0.5063 0.4975 0.5696

Table 2: Comparison of the mean and the standard de-
viation of all the entries in the matrix

of the statistical test is 5000 for each entry. These chal-
lenges are based on the F-1 strategy. Table 2 shows the
results of this procedure. As one can see the different en-
tries in the matrix of the standard deviation show that
the standard deviations do not vary so much between
entries; they are in the same range of values. Also, when
S searches first in the room where H is hidden, it is ob-
served that the standard deviation is bigger. This can
be explained because it is possible that H is found di-
rectly in many of the challenges and this leads to an
increase of the standard deviation. The importance of
having a small standard deviation between the entries
was discussed before. Here it can be seen that 100 runs
is too few to be suitable. Indeed the smallest difference
between two entries is 0.0001 (entries a; 2 and entry az 1
in the matrix with the means), this means that we need
a standard deviation that is at most 0.00002 if we want
the outliers to be at most 5% (as discussed in Section
4.1). As Table 1 shows, it is with more than 10 000 runs
that such a standard deviation can be achieved. With
the mentioned standard deviation rule, this standard de-
viation will be reached after 10! challenges which is im-
possible to perform in acceptable time. We decided to
make the average after 100 000 challenges, which gives a
0.3% error.

Philippe Uyttendaele

5 Results

In this section the results achieved with the different
search methods will be discussed. Each of the graphs in
this section are based on three rooms with respective hit
probabilities [0.9 0.5 0.7].

5.1 Forecasting procedures

The forecasting procedure is important to analyze,
because it show results that were not expected.

In Figure 3 the plot has been made on 20 updates
of the beliefs, and based on 100 000 challenges to get
one entry in the matrix. It compares the performance
of two implementations of the F-1 procedure. One
where only the room that has the highest chance to
contain ‘H according to the formula of F-1 is searched,
and one where each room gets searched with some
positive probability according to the strength of the
corresponding beliefs. As one can observe, the method
where the best room gets searched, performs better
than the other one.

In Figure 4 the plot has been made on 20 updates
of the beliefs, and based on 100 000 challenges to get
one entry in the matrix. It compares the performance
of two implementations of the F-2 procedure. One
where only the room that has the highest chance to
contain ‘H according to the formula of F-2 is searched,
and one where each room gets searched with some
positive probability according to the strength of the
corresponding beliefs. Here one can also observe that
the method where the best room gets searched, performs
better than the other one.

The two figures show that selecting the room that
has the higher chance according to the search method
to contain H, is better than having a probability dis-
tribution over the three rooms for the search. This can
be explained because it is an average number of steps,
and taking a probability to select a room where the ob-
ject has a relatively small chance to be, will increase the
average number of steps. As the value of the game is
directly linked to the average number of steps, a proba-
bilistic procedure of searching will increase the average
and therefore the value of the game.

5.2 Value of the game

The performance of the search methods on the value of
the game will be analyzed here.

In Figure 5 the plot has been made on 20 updates of
the beliefs, and based on 100 000 challenges to get one
entry in the matrix. It compares the performance of the
three basic forecasting procedures: F-0, F-1 and F-2.
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Figure 3: In green (square shape) an F-1 procedure
where the room that gives the best expected chance to
find the hider is searched. In red (star shape), F-1 also
but the rooms get searched with probabilities accord-
ing to the chance of finding the hider with the current
method.

In this graph, only the room that has the highest belief
is searched. It can be seen that F-1 performs better
than the two other procedures. It is an effect that is
not intuitive, because one could expect that F-2 would
perform better than F-1.

This fact can, however, be explained. The two step
horizon has as objective to search in the room that
would, after two searches, give the highest probability
to find H. In such a calculation, it does not matter what
room to search first and second, just searching the two
rooms needs to be done. As shown in Figure 6, if S
chooses room 1 first, he has 3 chances out of 4 to find ‘H
within two steps, otherwise, if S chooses room 2 first, he
has also 3 chances out of 4 to find H within two steps.
So, indeed the order does not matter. As it does not
matter, room ¢ and j will both have 50% chance to be
searched. This is due to the assumption made in Section
2.5 that, if some rooms have equal chances to contain H,
then the choice of the room to search is made randomly.
In the F-1 search method, only one of these rooms will
be searched: the one that gives the best one step chance
to contain H. Moreover, after each selection of a room,
the calculation is re-evaluated. It means that room 1
might have a better one step horizon chance to contain
‘H but will not especially be searched. As room i and j
give the best two step outcome, room j can be chosen
to be searched first with probability % After the choice,
the calculation is re-evaluated, and there is a high prob-
ability that room ¢ will re-appear in the best two step
outcome, but with another room k. Again, it may ap-
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Figure 4: In green (square shape) an F-2 procedure
where the room that gives the best expected chance to
find the hider is searched. In red (star shape), F-2 also
but the rooms get searched with probabilities accord-
ing to the chance of finding the hider with the current
method.

pear that room k gets chosen instead of room 4, also with
probability % This is how it can be explained that F-2
does not perform better than F-1. Therefore, another
version of F-2 was tried. One where the assumption of
Section 2.5 was not taken, but the room that was best
according to F-1 that searched. This new version of F-2
has shown a similar outcome to F-1 with a very small
variation.

6 Conclusions

In conclusion, we can say that there exists a strategy to
minimize the number of steps needed to find a hidden
person in a set of rooms when there is a probability that
the person is not found even if he is hiding in the room
that is searched. The corresponding beliefs for such a
strategy can be successfully computed with the help of
a matrix game but it is totally dependent of the prob-
ability to find the person in each of the rooms. The
best beliefs selection is not the same between two dif-
ferent search method. As the beliefs totally determines
the search procedure, two different discriminations for
the choice of rooms to search will give different results.
Which means that different search methods give different
results when starting with the same initial conditions. In
the case of a strategy that looks ahead in time for the
selection of the room to search, a one step ahead short
sighted view gives better results than a longer forecast-
ing method. This is because in the implementation of
the model described, the process of looking ahead is not
a planning for the following steps but just a one step
discriminant. In the implementation, a lot of parame-
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Figure 5: In blue (round shape), F-1, in green (square
shape), F-2, and in red (star shape), F-2. In each of the
procedure the room that gives the best expected chance
to find the hider gets searched.

ters can be tuned or changed which would give different
results. That leaves the field open for a lot of future
investigations.

7 Further research

Here, some aspects that would be interesting to explore
in further research are presented and discussed.

7.1 Forecasting procedure

In the model, F-2 is an overlapping procedure. The cal-
culation of the room to search next is computed, but
after every search, the search is re-evaluated, this means
that F-2 is not a planning for two following steps but
only a discrimination for the one time next search. The
impact of an n-forecasting procedure could be studied if
it was taken as a plan for the n next steps of the search.
This could give a better performance for F-2 and we
might see that it outperforms F-1.

In our case, the room that is searched is the one that
gives the highest chance to find H after n step (depend-
ing of the search method). It would be interesting to
look at the lowest expected remaining number of steps
to find H, instead of the highest chance to find H after
n steps. This could be tried as a planning but also as a
one time calculation as it is implemented in this model.
This could lead to an improvement of the performance
of F-2.

7.2 Memory factor

In the implementation of the method, the memory factor
has been taken as 1 — % with n = 2,3,... Where n is an
increasing counter that increases with games that leads
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to an increase in the value of the game. The impact of
another increase of this memory factor could be studied.
For example a linear increase, or an increase correspond-
ing to the percentage of the error, or even an exponential
increase. Many possibilities can be seen. This could lead
to a better overall performance of the model.

7.3 Accepted steps

In this research, every change in the beliefs was taken
into account, one could explore whether or not a step
should be taken into account or not and try to see if a
process like simulated annealing could be applied in this
area.

7.4 Time restricted games

The entire model could be made as a time restricted
game where 1 point could be awarded if H is found
within n steps and 0 otherwise. This would change
the problem to a maximization problem. The strategy
adopted by & in this situation could be explored. It is
a method that could show nice results but that has not
been implemented due to time restriction.
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