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The Model of One-Way Flow Networks

Network Formation Game (N,v,c)
• N={1,2,3,…,n}
• vij is the profit for agent i for being connected to agent j
• cij is the cost for agent i for making a link to agent j
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The Model of One-Way Flow Networks

Network Formation Game (N,v,c)
• N={1,2,3,…,n}
• vij is the profit for agent i for being connected to agent j
• cij is the cost for agent i for making a link to agent j

Example of a network g

Agent 1 is connected to agents 3,4,5 and 6
and obtains profits v13 , v14 , v15 , v16
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Network Formation Game (N,v,c)
• N={1,2,3,…,n}
• vij is the profit for agent i for being connected to agent j
• cij is the cost for agent i for making a link to agent j

Example of a network g

Agent 1 is connected to agents 3,4,5 and 6
and obtains profits v13 , v14 , v15 , v16

Agent 1 is not connected to agent 2

The Model of One-Way Flow Networks

2

1

3

4

5
6



Games 2008
Evanston, July 13-17, 2008

9

The Model of One-Way Flow Networks

Network Formation Game (N,v,c)
• N={1,2,3,…,n}
• vij is the profit for agent i for being connected to agent j
• cij is the cost for agent i for making a link to agent j

Example of a network g

Agent 1 is connected to agents 3,4,5 and 6
and obtains profits v13 , v14 , v15 , v16

Agent 1 is not connected to agent 2
Agent 1 has to pay c13 for the link (3,1)
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The Model of One-Way Flow Networks

Network Formation Game (N,v,c)
• N={1,2,3,…,n}
• vij is the profit for agent i for being connected to agent j
• cij is the cost for agent i for making a link to agent j

Example of a network g

The payoff 1(g) for agent 1 is

1(g) = v13 + v14 + v15 + v16 - c13
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The Model of One-Way Flow Networks

More generally

i(g)  = j Ni(g) vij j Ndi(g) cij

where Ni(g) is the set of agents that i is connected to, and
where Ndi(g) is the set of agents that i is directly connected to.
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The Model of One-Way Flow Networks

More generally

i(g)  = j Ni(g) vij j Ndi(g) cij

where Ni(g) is the set of agents that i is connected to, and
where Ndi(g) is the set of agents that i is directly connected to.

An action for agent i is any subset S of N\{i}
indicating the set of agents that i connects to directly
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The Model of One-Way Flow Networks

More generally

i(g)  = j Ni(g) vij j Ndi(g) cij

where Ni(g) is the set of agents that i is connected to, and
where Ndi(g) is the set of agents that i is directly connected to.

An action for agent i is any subset S of N\{i}
indicating the set of agents that i connects to directly

A network g is a Nash network
if each agent i is playing a best response
in terms of his individual payoff i(g) 2
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A Closer Look at Nash Networks

A network g is a Nash network if for each agent i

i(g) i(g-i + {(j,i): j S})
for all subsets S of N\{i}

Here g-i denotes the network derived from g
by removing all direct links of agent i
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A network g is a Nash network if for each agent i

i(g) i(g-i + {(j,i): j S})
for all subsets S of N\{i}

Here g-i denotes the network derived from g
by removing all direct links of agent i
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A Closer Look at Nash Networks

A network g is a Nash network if for each agent i

i(g) i(g-i + {(j,i): j S})
for all subsets S of N\{i}

Here g-i denotes the network derived from g
by removing all direct links of agent i
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A Closer Look at Nash Networks

A network g is a Nash network if for each agent i

i(g) i(g-i + {(j,i): j S})
for all subsets S of N\{i}

A set S that maximizes the right-hand side of above expression
is called a best response for agent i to the network g

In a Nash network all agents are linked to their best responses
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A Closer Look at Nash Networks

A network g is a Nash network if for each agent i

i(g) i(g-i + {(j,i): j S})
for all subsets S of N\{i}

A set S that maximizes the right-hand side of above expression
is called a best response for agent i to the network g

In a Nash network all agents are linked to their best responses

If cik > i vij for all agents k i,

then the only best response for agent i is the empty set
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Owner-homogeneous Costs

For each agent i all links are equally expensive: cij = ci for all j
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Owner-homogeneous Costs

For each agent i all links are equally expensive: cij = ci for all j

Obs. for owner-homogeneous costs
If link (j,k) exists in g,
then for agent i j,k, linking with k
is at least as good as linking with j

“Downstream Efficiency”
i

k

j

g
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Lemma

For any network formation game (N,v,c)
with owner-homogeneous costs and
with ci i vij for all agents i,
all cycle networks are Nash networks
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Lemma

For any network formation game (N,v,c)
with owner-homogeneous costs and
with ci i vij for all agents i,
all cycle networks are Nash networks

When removing (2,1) agent 1 looses
profits from agents 2, 3, 4, 5, 6

2

1

3

4

5
6



Games 2008
Evanston, July 13-17, 2008

24

Lemma

For any network formation game (N,v,c)
with owner-homogeneous costs and
with ci i vij for all agents i,
all cycle networks are Nash networks

When adding (4,1) agent 1 pays

an additional cost of c14
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Lemma

For any network formation game (N,v,c)
with owner-homogeneous costs and
with ci i vij for all agents i,
all cycle networks are Nash networks

When replacing (2,1) by (4,1) agent 1
looses profits from agents 2 and 3
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Theorem

For any network formation game (N,v,c)
with owner-homogeneous costs,
a Nash network exists
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Theorem

For any network formation game (N,v,c)
with owner-homogeneous costs,
a Nash network exists

Proof by induction to the number of agents:
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Theorem

For any network formation game (N,v,c)
with owner-homogeneous costs,
a Nash network exists

Proof by induction to the number of agents:

If n=1, then the trivial network is a Nash network
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Theorem

For any network formation game (N,v,c)
with owner-homogeneous costs,
a Nash network exists

Proof by induction to the number of agents:

If n=1, then the trivial network is a Nash network

Induction hypothesis: Nash networks exist for all network games
with less than n agents.
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Theorem

For any network formation game (N,v,c)
with owner-homogeneous costs,
a Nash network exists

Proof by induction to the number of agents:

If n=1, then the trivial network is a Nash network

Induction hypothesis: Nash networks exist for all network games
with less than n agents.

Suppose that (N,v,c) is a network game with n agents
for which NO Nash network exists.
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Recall the Lemma:

For any network formation game (N,v,c)
with owner-homogeneous costs and
with ci i vij for all agents i,
all cycle networks are Nash networks
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Proof continued:

Hence there is at least one agent i with ci > i vij



Games 2008
Evanston, July 13-17, 2008

33

Proof continued:

Hence there is at least one agent i with ci > i vij

W.l.o.g. this agent is agent n
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Proof continued:

Hence there is at least one agent i with ci > i vij

W.l.o.g. this agent is agent n
Consider (N’,v’,c’) with N’=N\{n}
and with v and c restricted to agents in N’
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Proof continued:

Hence there is at least one agent i with ci > i vij

W.l.o.g. this agent is agent n
Consider (N’,v’,c’) with N’=N\{n}
and with v and c restricted to agents in N’
Let g’ be a Nash network in (N’,v’,c’) (induction hypothesis)
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Proof continued:

Hence there is at least one agent i with ci > i vij

W.l.o.g. this agent is agent n
Consider (N’,v’,c’) with N’=N\{n}
and with v and c restricted to agents in N’
Let g’ be a Nash network in (N’,v’,c’) (induction hypothesis)
Then by assumption g’ is no Nash network in (N,v,c)
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Proof continued:

Hence there is at least one agent i with ci > i vij

W.l.o.g. this agent is agent n
Consider (N’,v’,c’) with N’=N\{n}
and with v and c restricted to agents in N’
Let g’ be a Nash network in (N’,v’,c’) (induction hypothesis)
Then by assumption g’ is no Nash network in (N,v,c)
Therefore there is an agent i
for whom the links in g are no best response
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Proof continued:

Hence there is at least one agent i with ci > i vij

W.l.o.g. this agent is agent n
Consider (N’,v’,c’) with N’=N\{n}
and with v and c restricted to agents in N’
Let g’ be a Nash network in (N’,v’,c’) (induction hypothesis)
Then by assumption g’ is no Nash network in (N,v,c)
Therefore there is an agent i
for whom the links in g are no best response
This agent i can not be agent n
W.l.o.g. this agent is agent 1
and he has a best response T with n T
and therefore c1 v1n 1

n
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Proof continued:

Now recall that for any other agent i
linking to agent 1 would be at least as good as linking to agent n

vij for j 1
Define vij* = vi1 + vin for i 1, j=1

v11 + v1n – c1 for i=1, j=1

1

n
i
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Proof continued:

Now recall that for any other agent i
linking to agent 1 would be at least as good as linking to agent n

vij for j 1
Define vij* = vi1 + vin for i 1, j=1

v11 + v1n – c1 for i=1, j=1

Now *i(g) = i(g + (n,1))
for any network g on N’
and for any agent i in N’

1

n
i
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Proof continued:

Now recall that for any other agent i
linking to agent 1 would be at least as good as linking to agent n

vij for j 1
Define vij* = vi1 + vin for i 1, j=1

v11 + v1n – c1 for i=1, j=1

Now *i(g) = i(g + (n,1))
for any network g on N’
and for any agent i in N’

The game (N’,v*,c’) has a Nash network g* 1

n
i
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Proof continued:

This network g* can not be a Nash network in (N,v,c)
Hence at least one agent is not playing a best response

However, it can not be agent n
and any other agent improving in (N,v,c)
contradicts that g* is a Nash network in (N’,v*,c’)
by the way that v* and v are related to eachother
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Example

For network formation games (N,v,c)
with heterogeneous costs,
Nash networks do not need to exist
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Example

For network formation games (N,v,c)
with heterogeneous costs,
Nash networks do not need to exist

A heterogeneous costs structure

other links to agent 1 cost 1+
other links to agent 2 cost 2+
other links to agents 3 and 4 cost 3+

profits vij =1 for all i and j

1

2

4 3

1-

2-

3-3-
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Example Explained

The cost/payoff structure

other links to 1 cost 1+
other links to 2 cost 2+
other links to 3, 4 cost 3+
profits vij =1 for all i and j

1

2

4 3

1-

2-

3-3-

The arguments (part A)

In any Nash network
agent 3 and agent 4
would either play {2} or .
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Example Explained

The cost/payoff structure

other links to 1 cost 1+
other links to 2 cost 2+
other links to 3, 4 cost 3+
profits vij =1 for all i and j

1

2

4 3

1-

2-

3-3-

The arguments (part A)

In any Nash network
agent 3 and agent 4
would either play {2} or .
If agent 4 plays {2},
then agent 1 plays {4}.
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Example Explained

The cost/payoff structure

other links to 1 cost 1+
other links to 2 cost 2+
other links to 3, 4 cost 3+
profits vij =1 for all i and j

1

2

4 3

1-

2-

3-3-

The arguments (part A)

In any Nash network
agent 3 and agent 4
would either play {2} or .
If agent 4 plays {2},
then agent 1 plays {4}.
Then agent 2 plays {1},
because agent 3 never plays {1}.



Games 2008
Evanston, July 13-17, 2008

48

Example Explained

The cost/payoff structure

other links to 1 cost 1+
other links to 2 cost 2+
other links to 3, 4 cost 3+
profits vij =1 for all i and j

1

2

4 3

1-

2-

3-3-

The arguments (part A)

In any Nash network
agent 3 and agent 4
would either play {2} or .
If agent 4 plays {2},
then agent 1 plays {4}.
Then agent 2 plays {1},
because agent 3 never plays {1}.
Then agent 3 plays {2}.
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Example Explained

The cost/payoff structure

other links to 1 cost 1+
other links to 2 cost 2+
other links to 3, 4 cost 3+
profits vij =1 for all i and j

1

2

4 3

1-

2-

3-3-

The arguments (part A)

In any Nash network
agent 3 and agent 4
would either play {2} or .
If agent 4 plays {2},
then agent 1 plays {4}.
Then agent 2 plays {1},
because agent 3 never plays {1}.
Then agent 3 plays {2}.
Then agent 4 should play .
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Example Explained

The cost/payoff structure

other links to 1 cost 1+
other links to 2 cost 2+
other links to 3, 4 cost 3+
profits vij =1 for all i and j

1

2

4 3

1-

2-

3-3-

The arguments (part A)

In any Nash network
agent 3 and agent 4
would either play {2} or .
If agent 4 plays {2},
then agent 1 plays {4}.
Then agent 2 plays {1},
because agent 3 never plays {1}.
Then agent 3 plays {2}.
Then agent 4 should play .

A contradiction
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Example Explained

The cost/payoff structure

other links to 1 cost 1+
other links to 2 cost 2+
other links to 3, 4 cost 3+
profits vij =1 for all i and j

1

2

4 3

1-

2-

3-3-

The arguments (part B)

In any Nash network
agent 3 and agent 4
would either play {2} or .
If agent 4 plays ,
then agent 1 plays S containing 4.
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Example Explained

The cost/payoff structure

other links to 1 cost 1+
other links to 2 cost 2+
other links to 3, 4 cost 3+
profits vij =1 for all i and j

1

2

4 3

1-

2-

3-3-

The arguments (part B)

In any Nash network
agent 3 and agent 4
would either play {2} or .
If agent 4 plays ,
then agent 1 plays S containing 4.
Then agent 2 plays {1}.
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Example Explained

The cost/payoff structure

other links to 1 cost 1+
other links to 2 cost 2+
other links to 3, 4 cost 3+
profits vij =1 for all i and j

1

2
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The arguments (part B)

In any Nash network
agent 3 and agent 4
would either play {2} or .
If agent 4 plays ,
then agent 1 plays S containing 4.
Then agent 2 plays {1}.
Then agent 3 plays {2}.
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Example Explained

The cost/payoff structure

other links to 1 cost 1+
other links to 2 cost 2+
other links to 3, 4 cost 3+
profits vij =1 for all i and j

1

2

4 3

1-

2-

3-3-

The arguments (part B)

In any Nash network
agent 3 and agent 4
would either play {2} or .
If agent 4 plays ,
then agent 1 plays S containing 4.
Then agent 2 plays {1}.
Then agent 3 plays {2}.
Then agent 1 plays {3,4}.
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Example Explained

The cost/payoff structure

other links to 1 cost 1+
other links to 2 cost 2+
other links to 3, 4 cost 3+
profits vij =1 for all i and j

1

2

4 3

1-

2-

3-3-

The arguments (part B)

In any Nash network
agent 3 and agent 4
would either play {2} or .
If agent 4 plays ,
then agent 1 plays S containing 4.
Then agent 2 plays {1}.
Then agent 3 plays {2}.
Then agent 1 plays {3,4}.
Then agent 4 should play {2}.
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Example Explained

The cost/payoff structure

other links to 1 cost 1+
other links to 2 cost 2+
other links to 3, 4 cost 3+
profits vij =1 for all i and j

1

2

4 3

1-

2-

3-3-

The arguments (part B)

In any Nash network
agent 3 and agent 4
would either play {2} or .
If agent 4 plays ,
then agent 1 plays S containing 4.
Then agent 2 plays {1}.
Then agent 3 plays {2}.
Then agent 1 plays {3,4}.
Then agent 4 should play {2}.

Again a contradiction
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Concluding remarks

Our proof implies that for owner-homogeneous costs
Nash networks exist that contain at most one cycle
and where every vertex has outdegree at most 1
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Concluding remarks

Our proof implies that for the owner-homogeneous costs case
Nash networks exist that contain at most one cycle and
where every vertex has outdegree at most 1

Our model is based mainly on:
• V. Bala & S. Goyal (2000): A non-cooperative model of

network formation. Econometrica 68, 1181-1229.
• A. Galeotti (2006): One-way flow networks: the role of

heterogeneity. Economic Theory 29, 163-179.

Independently, an alternative proof for our theorem is given by:
• P. Billand, C. Bravard, S. Sarangi (2008): Existence of

Nash Networks in one-way flow models. Economic Theory.
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a preprint is available at my homepage

comments are welcome at frank@micc.unimaas.nl

Time for questions
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Thank you for your attention!

a preprint is available at my homepage

comments are welcome at frank@micc.unimaas.nl


