One-Way Flow Nash Networks

Frank Thuijsman

Joint work with
Jean Derks, Jeroen Kuipers, Martijn Tennekes
Outline

- **The Model of One-Way Flow Networks**
- **An Existence Result**
- **A Counterexample**
Outline

• The Model of One-Way Flow Networks
• An Existence Result
• A Counterexample
Outline

- The Model of One-Way Flow Networks
- An Existence Result
- A Counterexample
The Model of One-Way Flow Networks

Network Formation Game \((N,v,c)\)
- \(N=\{1,2,3,...,n\}\)
- \(v_{ij}\) is the profit for agent \(i\) for being connected to agent \(j\)
- \(c_{ij}\) is the cost for agent \(i\) for making a link to agent \(j\)
The Model of One-Way Flow Networks

Network Formation Game \((N,v,c)\)

- \(N=\{1,2,3,...,n\}\)
- \(v_{ij}\) is the profit for agent \(i\) for being connected to agent \(j\)
- \(c_{ij}\) is the cost for agent \(i\) for making a link to agent \(j\)

Example of a network \(g\)
The Model of One-Way Flow Networks

Network Formation Game \((N,v,c)\)
- \(N=\{1,2,3,...,n\}\)
- \(v_{ij}\) is the profit for agent \(i\) for being connected to agent \(j\)
- \(c_{ij}\) is the cost for agent \(i\) for making a link to agent \(j\)

Example of a network \(g\)

Agent 1 is connected to agents 3, 4, 5 and 6 and obtains profits \(v_{13}, v_{14}, v_{15}, v_{16}\)
The Model of One-Way Flow Networks

Network Formation Game \((N,v,c)\)

- \(N=\{1,2,3,\ldots,n\}\)
- \(v_{ij}\) is the profit for agent \(i\) for being connected to agent \(j\)
- \(c_{ij}\) is the cost for agent \(i\) for making a link to agent \(j\)

Example of a network \(g\)

Agent 1 is connected to agents 3, 4, 5 and 6 and obtains profits \(v_{13}, v_{14}, v_{15}, v_{16}\)

Agent 1 is not connected to agent 2
The Model of One-Way Flow Networks

Network Formation Game \((N,v,c)\)
- \(N=\{1,2,3,\ldots,n\}\)
- \(v_{ij}\) is the profit for agent \(i\) for being connected to agent \(j\)
- \(c_{ij}\) is the cost for agent \(i\) for making a link to agent \(j\)

Example of a network \(g\)

Agent 1 is connected to agents 3, 4, 5 and 6 and obtains profits \(v_{13}, v_{14}, v_{15}, v_{16}\)
Agent 1 is not connected to agent 2
Agent 1 has to pay \(c_{13}\) for the link \((3,1)\)
The Model of One-Way Flow Networks

Network Formation Game \((N, v, c)\)

- \(N = \{1, 2, 3, \ldots, n\}\)
- \(v_{ij}\) is the profit for agent \(i\) for being connected to agent \(j\)
- \(c_{ij}\) is the cost for agent \(i\) for making a link to agent \(j\)

Example of a network \(g\)

The payoff \(n_1(g)\) for agent 1 is

\[
 n_1(g) = v_{13} + v_{14} + v_{15} + v_{16} - c_{13}
\]
The Model of One-Way Flow Networks

More generally

\[n_i(g) = \sum_{j \in N_i(g)} v_{ij} - \sum_{j \in N_{di}(g)} c_{ij} \]

where \(N_i(g) \) is the set of agents that \(i \) is connected to, and where \(N_{di}(g) \) is the set of agents that \(i \) is directly connected to.
The Model of One-Way Flow Networks

More generally

\[n_i(g) = \sum_{j \in N_i(g)} v_{ij} - \sum_{j \in N_{di}(g)} c_{ij} \]

where \(N_i(g) \) is the set of agents that \(i \) is connected to, and where \(N_{di}(g) \) is the set of agents that \(i \) is directly connected to.

An action for agent \(i \) is any subset \(S \) of \(N \setminus \{i\} \) indicating the set of agents that \(i \) connects to directly.
The Model of One-Way Flow Networks

More generally

\[n_i(g) = \sum_{j \in N_i(g)} v_{ij} - \sum_{j \in Nd_i(g)} c_{ij} \]

where \(N_i(g) \) is the set of agents that \(i \) is connected to, and where \(Nd_i(g) \) is the set of agents that \(i \) is directly connected to.

An action for agent \(i \) is any subset \(S \) of \(N \setminus \{i\} \) indicating the set of agents that \(i \) connects to directly.

A network \(g \) is a Nash network if each agent \(i \) is playing a best response in terms of his individual payoff \(n_i(g) \).
A Closer Look at Nash Networks

A network g is a Nash network if for each agent i

$$\pi_i(g) \geq \pi_i(g_{-i} + \{(j,i) : j \in S\})$$

for all subsets S of $N \setminus \{i\}$

Here g_{-i} denotes the network derived from g by removing all direct links of agent i
A Closer Look at Nash Networks

A network \(g \) is a Nash network if for each agent \(i \)
\[
\pi_i(g) \geq \pi_i(g_{-i} + \{(j,i): j \in S\})
\]
for all subsets \(S \) of \(N \setminus \{i\} \)

Here \(g_{-i} \) denotes the network derived from \(g \)
by removing all direct links of agent \(i \)
A Closer Look at Nash Networks

A network g is a Nash network if for each agent i

$$n_i(g) \geq n_i(g_{-i} + \{(j,i) : j \in S\})$$

for all subsets S of $N \setminus \{i\}$

Here g_{-i} denotes the network derived from g by removing all direct links of agent i
A Closer Look at Nash Networks

A network g is a Nash network if for each agent i

$$n_i(g) \geq n_i(g_{-i} + \{(j,i): j \in S\})$$

for all subsets S of $N\backslash\{i\}$

A set S that maximizes the right-hand side of above expression is called a **best response** for agent i to the network g

In a Nash network all agents are linked to their best responses
A Closer Look at Nash Networks

A network g is a Nash network if for each agent i

$$n_i(g) \geq n_i(g_{-i} + \{(j,i): j \in S\})$$

for all subsets S of $N\setminus\{i\}$

A set S that maximizes the right-hand side of above expression is called a **best response** for agent i to the network g

In a Nash network all agents are linked to their best responses

If $c_{ik} > \Sigma_{j\neq i} v_{ij}$ for all agents $k \neq i$,

then the only best response for agent i is the empty set \emptyset
Owner-homogeneous Costs

For each agent i all links are equally expensive: $c_{ij} = c_i$ for all j
Owner-homogeneous Costs

For each agent i all links are equally expensive: $c_{ij} = c_i$ for all j

Obs. for owner-homogeneous costs
If link (j,k) exists in g,
then for agent $i \neq j,k$, linking with k
is at least as good as linking with j

“Downstream Efficiency”
Lemma

For any network formation game \((N, v, c)\) with owner-homogeneous costs and with \(c_i \leq \Sigma_{j \neq i} v_{ij}\) for all agents \(i\), all cycle networks are Nash networks.
Lemma

For any network formation game \((N,v,c)\) with owner-homogeneous costs and with \(c_i \leq \sum_{j \neq i} v_{ij}\) for all agents \(i\), all cycle networks are Nash networks.
Lemma

For any network formation game \((N,v,c)\) with owner-homogeneous costs and with \(c_i \leq \sum_{j \neq i} v_{ij}\) for all agents \(i\), all cycle networks are Nash networks.

When removing \((2,1)\) agent 1 looses profits from agents 2, 3, 4, 5, 6.
Lemma

For any network formation game \((N, v, c)\) with owner-homogeneous costs and with \(c_i \leq \sum_{j \neq i} v_{ij}\) for all agents \(i\), all cycle networks are Nash networks.

When adding \((4,1)\) agent 1 pays an additional cost of \(c_{14}\).
Lemma

For any network formation game \((N,v,c)\) with owner-homogeneous costs and with \(c_i \leq \Sigma_{j \neq i} v_{ij}\) for all agents \(i\), all cycle networks are Nash networks.

When replacing \((2,1)\) by \((4,1)\) agent 1 looses profits from agents 2 and 3.
Theorem

For any network formation game \((N,v,c)\) with owner-homogeneous costs, a Nash network exists
Theorem

For any network formation game \((N,v,c)\) with owner-homogeneous costs, a Nash network exists

Proof by induction to the number of agents:
Theorem

For any network formation game \((N,v,c)\) with owner-homogeneous costs, a Nash network exists

Proof by induction to the number of agents:

If \(n=1\), then the trivial network is a Nash network
Theorem

For any network formation game \((N,v,c)\) with owner-homogeneous costs, a Nash network exists

Proof by induction to the number of agents:

If \(n=1\), then the trivial network is a Nash network

Induction hypothesis: Nash networks exist for all network games with less than \(n\) agents.
Theorem

For any network formation game \((N,\nu,c)\) with owner-homogeneous costs, a Nash network exists

Proof by induction to the number of agents:

If \(n=1\), then the trivial network is a Nash network

Induction hypothesis: Nash networks exist for all network games with less than \(n\) agents.

Suppose that \((N,\nu,c)\) is a network game with \(n\) agents for which NO Nash network exists.
Recall the Lemma:

For any network formation game \((N, v, c)\) with owner-homogeneous costs and with \(c_i \leq \sum_{j \neq i} v_{ij}\) for all agents \(i\), all cycle networks are Nash networks.
Proof continued:

Hence there is at least one agent i with $c_i > \sum_{j \neq i} v_{ij}$
Proof continued:

Hence there is at least one agent i with $c_i > \Sigma_{j\neq i} v_{ij}$
W.l.o.g. this agent is agent n
Proof continued:

Hence there is at least one agent i with $c_i > \sum_{j \neq i} v_{ij}$
W.l.o.g. this agent is agent n
Consider (N', v', c') with $N' = N \setminus \{n\}$ and with v and c restricted to agents in N'
Proof continued:

Hence there is at least one agent i with $c_i > \Sigma_{j\neq i} v_{ij}$

W.l.o.g. this agent is agent n

Consider (N',v',c') with $N'=N\setminus\{n\}$

and with v and c restricted to agents in N'

Let g' be a Nash network in (N',v',c') (induction hypothesis)
Proof continued:

Hence there is at least one agent i with $c_i > \sum_{j \neq i} v_{ij}$
W.l.o.g. this agent is agent n
Consider (N', v', c') with $N' = N \setminus \{n\}$
and with v and c restricted to agents in N'
Let g' be a Nash network in (N', v', c') (induction hypothesis)
Then by assumption g' is no Nash network in (N, v, c)
Proof continued:

Hence there is at least one agent i with $c_i > \Sigma_{j \neq i} v_{ij}$
W.l.o.g. this agent is agent n
Consider (N',v',c') with $N' = N \setminus \{n\}$
and with v and c restricted to agents in N'
Let g' be a Nash network in (N',v',c') (induction hypothesis)
Then by assumption g' is no Nash network in (N,v,c)
Therefore there is an agent i
for whom the links in g are no best response
Proof continued:

Hence there is at least one agent i with $c_i > \Sigma_{j\neq i} v_{ij}$
W.l.o.g. this agent is agent n
Consider (N',v',c') with $N'=N\{n\}$
and with v and c restricted to agents in N'
Let g' be a Nash network in (N',v',c') (induction hypothesis)
Then by assumption g' is no Nash network in (N,v,c)
Therefore there is an agent i for whom the links in g are no best response
This agent i can not be agent n
W.l.o.g. this agent is agent 1
and he has a best response T with $n \in T$
and therefore $c_1 \leq v_{1n}$
Proof continued:

Now recall that for any other agent i
linking to agent 1 would be at least as good as linking to agent n

Define $v_{ij}^* = \begin{cases}
v_{ij} & \text{for } j \neq 1 \\
v_{i1} + v_{in} & \text{for } i \neq 1, j = 1 \\
v_{11} + v_{1n} - c_1 & \text{for } i = 1, j = 1 \end{cases}$
Proof continued:

Now recall that for any other agent i
linking to agent 1 would be at least as good as linking to agent n

Define $v_{ij}^* = \begin{cases} v_{ij} & \text{for } j \neq 1 \\ v_{i1} + v_{in} & \text{for } i \neq 1, j = 1 \\ v_{11} + v_{1n} - c_1 & \text{for } i = 1, j = 1 \end{cases}$

Now $n^*_i(g) = n_i(g + (n,1))$
for any network g on N'
and for any agent i in N'
Proof continued:

Now recall that for any other agent i linking to agent 1 would be at least as good as linking to agent n.

Define $v_{ij}^* = \begin{cases} v_{ij} & \text{for } j \neq 1 \\ v_{i1} + v_{in} & \text{for } i \neq 1, j = 1 \\ v_{11} + v_{1n} - c_1 & \text{for } i = 1, j = 1 \end{cases}$

Now $n_i^*(g) = n_i(g + (n,1))$ for any network g on N' and for any agent i in N'.

The game (N', v^*, c') has a Nash network g^*.
Proof continued:

This network g^* can not be a Nash network in (N,v,c)
Hence at least one agent is not playing a best response

However, it can not be agent n
and any other agent improving in (N,v,c)
contradicts that g^* is a Nash network in (N',v^*,c')
by the way that v^* and v are related to each other
Example

For network formation games \((N,v,c)\) with heterogeneous costs, Nash networks do not need to exist.
Example

For network formation games \((N, v, c)\) with heterogeneous costs, Nash networks do not need to exist

A heterogeneous costs structure

other links to agent 1 cost \(1 + \epsilon\)
other links to agent 2 cost \(2 + \epsilon\)
other links to agents 3 and 4 cost \(3 + \epsilon\)

profits \(v_{ij} = 1\) for all \(i\) and \(j\)
Example Explained

The cost/payoff structure

The arguments (part A)

In any Nash network agent 3 and agent 4 would either play \{2\} or \emptyset.

other links to 1 cost 1+ε
other links to 2 cost 2+ε
other links to 3, 4 cost 3+ε
profits \(v_{ij} = 1\) for all \(i\) and \(j\)
Example Explained

The cost/payoff structure

- Other links to 1 cost 1+ε
- Other links to 2 cost 2+ε
- Other links to 3, 4 cost 3+ε
- Profits $v_{ij} = 1$ for all i and j

The arguments (part A)

In any Nash network agent 3 and agent 4 would either play \{2\} or \emptyset. If agent 4 plays \{2\}, then agent 1 plays \{4\}.
Example Explained

The cost/payoff structure

- Other links to 1 cost $1+\varepsilon$
- Other links to 2 cost $2+\varepsilon$
- Other links to 3, 4 cost $3+\varepsilon$
- Profits $v_{ij} = 1$ for all i and j

The arguments (part A)

In any Nash network, agent 3 and agent 4 would either play $\{2\}$ or \emptyset. If agent 4 plays $\{2\}$, then agent 1 plays $\{4\}$. Then agent 2 plays $\{1\}$, because agent 3 never plays $\{1\}$.
Example Explained

The cost/payoff structure

other links to 1 cost $1+\epsilon$
other links to 2 cost $2+\epsilon$
other links to 3, 4 cost $3+\epsilon$
profits $v_{ij} = 1$ for all i and j

The arguments (part A)

In any Nash network agent 3 and agent 4 would either play $\{2\}$ or \emptyset. If agent 4 plays $\{2\}$, then agent 1 plays $\{4\}$. Then agent 2 plays $\{1\}$, because agent 3 never plays $\{1\}$. Then agent 3 plays $\{2\}$.
Example Explained

The cost/payoff structure

- Other links to 1 cost 1 + ε
- Other links to 2 cost 2 + ε
- Other links to 3, 4 cost 3 + ε
- Profits $v_{ij} = 1$ for all i and j

The arguments (part A)

In any Nash network, agent 3 and agent 4 would either play \{2\} or Φ. If agent 4 plays \{2\}, then agent 1 plays \{4\}. Then agent 2 plays \{1\}, because agent 3 never plays \{1\}. Then agent 3 plays \{2\}. Then agent 4 should play Φ.
Example Explained

The cost/payoff structure

1

1-\(\varepsilon\)

4

3-\(\varepsilon\)

2

2-\(\varepsilon\)

other links to 1 cost 1+\(\varepsilon\)
other links to 2 cost 2+\(\varepsilon\)
other links to 3, 4 cost 3+\(\varepsilon\)
profits \(v_{ij} = 1\) for all \(i\) and \(j\)

The arguments (part A)

In any Nash network agent 3 and agent 4 would either play \{2\} or \(\Phi\).

If agent 4 plays \{2\}, then agent 1 plays \{4\}.

Then agent 2 plays \{1\}, because agent 3 never plays \{1\}.

Then agent 3 plays \{2\}.

Then agent 4 should play \(\Phi\).

A contradiction
Example Explained

The cost/payoff structure

other links to 1 cost $1+\varepsilon$
other links to 2 cost $2+\varepsilon$
other links to 3, 4 cost $3+\varepsilon$
profits $v_{ij} = 1$ for all i and j

The arguments (part B)

In any Nash network
agent 3 and agent 4
would either play $\{2\}$ or Φ.
If agent 4 plays Φ,
then agent 1 plays S containing 4.
Example Explained

The cost/payoff structure

- Other links to 1 cost $1+\varepsilon$
- Other links to 2 cost $2+\varepsilon$
- Other links to 3, 4 cost $3+\varepsilon$
- Profits $v_{ij} = 1$ for all i and j

The arguments (part B)

In any Nash network, agent 3 and agent 4 would either play $\{2\}$ or Φ. If agent 4 plays Φ, then agent 1 plays S containing 4. Then agent 2 plays $\{1\}$.
Example Explained

The cost/payoff structure

- Other links to 1 cost $1+\varepsilon$
- Other links to 2 cost $2+\varepsilon$
- Other links to 3, 4 cost $3+\varepsilon$
- Profits $v_{ij} = 1$ for all i and j

The arguments (part B)

In any Nash network agent 3 and agent 4 would either play $\{2\}$ or \emptyset.
If agent 4 plays \emptyset, then agent 1 plays S containing 4.
Then agent 2 plays $\{1\}$.
Then agent 3 plays $\{2\}$.
Example Explained

The cost/payoff structure

- Other links to 1 cost $1+\varepsilon$
- Other links to 2 cost $2+\varepsilon$
- Other links to 3, 4 cost $3+\varepsilon$
- Profits $v_{ij} = 1$ for all i and j

The arguments (part B)

In any Nash network, agent 3 and agent 4 would either play $\{2\}$ or Φ. If agent 4 plays Φ, then agent 1 plays S containing 4. Then agent 2 plays $\{1\}$. Then agent 3 plays $\{2\}$. Then agent 1 plays $\{3,4\}$.
Example Explained

The cost/payoff structure

other links to 1 cost $1+\varepsilon$
other links to 2 cost $2+\varepsilon$
other links to 3, 4 cost $3+\varepsilon$
profits $v_{ij} = 1$ for all i and j

The arguments (part B)

In any Nash network agent 3 and agent 4 would either play \{2\} or Φ. If agent 4 plays Φ, then agent 1 plays S containing 4. Then agent 2 plays \{1\}. Then agent 3 plays \{2\}. Then agent 1 plays \{3,4\}. Then agent 4 should play \{2\}.
Example Explained

The cost/payoff structure

other links to 1 cost \(1 + \varepsilon \)
other links to 2 cost \(2 + \varepsilon \)
other links to 3, 4 cost \(3 + \varepsilon \)
profits \(v_{ij} = 1 \) for all \(i \) and \(j \)

The arguments (part B)

In any Nash network
agent 3 and agent 4
would either play \(\{2\} \) or \(\Phi \).
If agent 4 plays \(\Phi \),
then agent 1 plays \(S \) containing 4.
Then agent 2 plays \(\{1\} \).
Then agent 3 plays \(\{2\} \).
Then agent 1 plays \(\{3,4\} \).
Then agent 4 should play \(\{2\} \).

Again a contradiction
Concluding remarks

Our proof implies that for owner-homogeneous costs Nash networks exist that contain at most one cycle and where every vertex has outdegree at most 1.
Concluding remarks

Our proof implies that for the owner-homogeneous costs case Nash networks exist that contain at most one cycle and where every vertex has outdegree at most 1.

Our model is based mainly on:

Independently, an alternative proof for our theorem is given by:
Time for questions

a preprint is available at my homepage

comments are welcome at frank@micc.unimaas.nl
Thank you for your attention!

a preprint is available at my homepage

comments are welcome at frank@micc.unimaas.nl