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In this article we examine several options for modeling local interactions within the
framework of evolutionary game theory. Several examples show that there is a major

difference between population dynamics using local dynamics versus global dynamics.

Moreover, different modeling choices may lead to very diverse results.
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1. Introduction

Evolutionary games have been introduced by Maynard Smith and Price [1973] in

the early 70’s with the aim to study the stability of populations in time. In the

general model, a population consists of finitely many different types that interact

randomly with each other, where each interaction leads to fitness payoffs for each

of the types involved. Consequently, the population distribution over the different

types is changing in time. When assuming that the fraction of a type changes

in a Darwinian way proportionally to its current fraction and proportionally to

the difference in fitness with average population members, then the population

development can be represented by the so-called replicator dynamics, introduced

by Taylor and Jonker [1978].

Although many other population dynamics have been studied for evolutionary

games (see Hofbauer and Sigmund [1998] or Sandholm [2011] for a review of all

kinds of dynamics), we would like to take the replicator dynamics as our starting

point in view of its relation to the Darwinian theory. However, we want to switch

from a global to a local perspective, because one of the underlying assumptions in

the model of Maynard Smith and Price [1973] and in that of Taylor and Jonker
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[1978] is that population members interact with random individuals from the entire

population. This implies that it is assumed that every population member is facing

the same population distribution. In this study we want to examine the effect of

spatially distributed population members that interact at random in their spatial

neighborhood. Population developments that are locally driven in a Darwinian way,

seem to be more realistic to us and closer to biological observations. Although

analytically these processes become much more complex, current computing power

allows for running simulations that can help us understand where these processes

may lead to. We think that our approach will also allow modeling of biological

phenomena that can not be captured by the global model.

As expected, and illustrated by our examples, local dynamics and global dy-

namics may lead to different results. A type that would go extinct under global

dynamics may survive because of its local conditions: it may do well in symbiosis

with another type to compensate its low individual fitness. Similar differences (lo-

cal versus global interaction) have been observed in biology (cf. Buttel et al. [2002];

Kerr et al. [2002]; Killingback and Doebeli [1996]; Kirkup and Riley [2004]).

Others have also examined local interactions, especially in theoretical biology.

These studies are mainly based on cellular automata (CA) and often relate to

models of learning for stylized examples like the Prisoner’s Dilemma. A CA model

consists of a grid of cells, which changes based on rules given by a finite number

of states. For each cell, a neighborhood is defined for interactions. The initial state

can be chosen arbitrarily or randomly but based on this starting point, following

generations are computed. These new generations are created according to some

fixed rule that determines the new type of each cell in terms of its current type and

the types of the cells in its neighborhood. The way the generations are computed

can be of several orders of complexity, and it can be probabilistic or deterministic.

Introduced in the fifties by Ulam [1952] and by Von Neumann [1966], CA models

have been deeply analyzed. Wolfram [2002] even suggested that these would lead to

a new concept of sciences and that these could be used in many fields of expertise.

The outline of this paper is as follows: In section 2 we introduce the formal model

and the different types of local interaction that we compare in this paper. In section

3 we report the experimental results. In section 4 we relate the models to a biological

experiment. Section 5 concludes with remarks on further research and briefly reports

on instances of local models that exhibit predator-prey behavior, symbiosis and

periodically stable population structures.

2. The Model

Evolutionary games are determined by a fitness matrix A, based on which a popula-

tion distribution will change over time. The population distribution at a given time

t is represented as a vector p(t) = (p1(t), p2(t), ..., pn(t)), where pi(t) > 0 for all i

(all types are present) and
∑n

i=1 pi(t) = 1. The fitness matrix A is an n× n matrix

in which the number aij in entry (i, j) gives the fitness of an individual of type i
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when interacting with an individual of type j. This means that given a population

p the average fitness of type i will be eiApᵀ and the average fitness of an individual

in the population will be pApᵀ.

An evolutionarily stable strategy (ESS) is a population distribution x such that for

all other population distributions y the following two conditions apply:

a. xAxᵀ ≥ yAxᵀ
b. if y 6= x and yAxᵀ = xAxᵀ, then xAyᵀ > yAyᵀ.

Here, the first condition is the Nash equilibrium condition saying that x should be

a best reply to x, while the second condition prevents the population from drifting

away from x.

The replicator dynamics, introduced by Taylor and Jonker [1978], is based on two

simple observations. It describes, in a Darwinian way, how a population will evolve

by changing the population fraction of any type proportionally to its performance

compared to the average and proportionally to its current size. The replicator dy-

namics is given by the following system:

.
pi= pi(eiApᵀ − pApᵀ) for i = 1, 2, . . . , n.

A limit point x of the dynamics is called asymptotically stable if for any starting

point x0 in a sufficiently small open neighborhood of x the dynamical process con-

verges to x. An ESS is always asymptotically stable, but not the other way around.

Unfortunately these calculations of average fitness are only valid in a global interac-

tion framework. In other words, any individual interacts with the rest of population

with the same probability distribution over the types. The logical next step is to

introduce spatial information and to let competition take place at a local scale.

We represent the spatial population distribution by a field consisting of

hexagons. To avoid border conditions and to make each cell have the same number

of neighbors, the field is represented as a torus. This means that the top and the

bottom of the field are connected, just like the left and the right. Cells that are

equidistant from a specifically chosen cell form rings. For example, all cells that are

exactly 2 cells away from a given cell, will form a ring around the selected cell (see

Figure 1), that we call ring 2. All cells within a distance of k from a given selected

cell, form the k-neighborhood of the selected cell.
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Fig. 1: Rings in a hexagonal field.

With this initial set up, we designed a series of scenarios. These scenarios are ordered

from macroscopic to microscopic to analyze the impact of taking the localization

more and more into account.

In our scenario studies we simulate how local interactions are changing the pop-

ulation distribution over many generations. In order to compare these scenarios

we want to initialize each study by the exact same population distribution over

the types. This means that for a given population distribution we will assign fixed

numbers of cells to each of the different types, such that in each scenario the initial

distribution is represented in the field with exactly the same numbers. For each

scenario 10 simulations have been performed for each of 5 different initial distribu-

tions.

Our benchmark is the classical process driven by the replicator dynamics. There

is no notion of field, and therefore it does not take into account the location of

individuals in the population.

Scenario 1 is a process in which the population is placed on a (hexagonal) field.

As such there is a finite number of individuals, one per cell in the field. Once placed

on the field, the following computations are done simultaneously for all individuals.

Each individual interacts with every other individual and all payoffs are recorded

per individual. Then the total payoff per type is computed. Next, simultaneously

for all cells, the type that has the highest total payoff will take over the cell. As

such, a new generation of the field is made.

Here we remark that, in events where there are two or more types with maxi-

mum payoff involved in the comparing step, no type change will take place. This is

also assumed in the scenarios below.
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Scenario 2 is similar to scenario 1 except that, rather than changing all cells at

the same time, only one cell is selected to change and next calculations start all

over. This makes the process more gradual.

Scenario 3 is in the same line as scenario 1. However instead of interacting with the

entire field, each cell is limited to an interaction with each neighbor in ring 1. Then,

within the 1-neighborhood the total payoff per type is computed and the central

cell will adopt the type with the highest total payoff. This is done simultaneously

for all cells in the field. Thus the entire field is updated simultaneously but with

local interactions.

Scenario 4 is similar to scenario 3 except that only one cell at the time is selected

for changing based on the total payoff per type in its 1-neighborhood. This makes

the population change more gradual in time.

Scenario 5 is a scenario in which two adjacent cells are taken randomly, and

enrolled in a pairwise competition. Each of the two cells interacts with its 1-

neighborhood, and the total payoffs of each of these two cells are compared. The

highest total payoff of these two will decide the type of both cells.

Scenario 6 is similar to scenario 5 except that the interaction is purely pairwise.

This means that the two selected cells play against each other and the one that has

the highest immediate payoff of these will decide the type of both cells.

Each simulation ran until a steady state was reached. Here we wish to remark that

scenarios 1 and 3 are completely deterministic. For scenario 2 and 4 the updating of

the field depends on the selection of one cell only. Whether or not this cell changes

type is completely determined by its neighborhood and can be checked easily. For

the two remaining scenarios we could conlude that the field had stabilized because

either only one type remained or two types remained that could not affect each

other. Of course, some scenarios can imply that the field keeps changing forever,

an example of which is provided in section 5. However, such did not happen in the

comparative study based on these scenarios that is described in the next section.

3. A Case Study for Different Scenarios

For comparing the 6 different scenarios we used the following fitness matrix:

M =

 0 3 −1

−3 0 1

−1 1 0


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For this game there is only one ESS, namely p = (1 , 0 , 0). For matrix M a flow

diagram of the replicator dynamics, our benchmark model, can be seen in Figure

2. In this figure, any point in the triangle corresponds to a population distribution

over the three types. Processes that start with a population distribution in the top

half (any population that has members of all types and more than 50% members

of type 3) will cycle around the rest point p = (1
5 ,

1
5 ,

3
5 ). Any population that

has members of all types and less than 50% members of type 3, will converge

to p = (1 , 0 , 0) and a population that has exactly 50% members of type 3 will

converge to p = ( 1
2 ,

1
2 , 0), which is an unstable rest point. A population that does

not contain any member of type 2, will either converge to p = (1 , 0 , 0) if type 1

has more members in the population, or to p = (0 , 0 , 1) if it is type 3 that has

more members in the population. A population that does not contain any member

of type 1, will converge to p = (0 , 12 ,
1
2 ).

Fig. 2: Flow diagram of the replicator dynamics with the payoff matrix M

The following table summarizes the results of the experiments in which, for each

scenario, 10 simulations have been performed for each of 5 different inital distribu-

tions.
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Table 1: Stabilization for different starting points depending on the scenario.

Initial Distribution

(0.1 , 0.7 , 0.2) ( 1
3 ,

1
3 ,

1
3 ) (0.225 , 0.225 , 0.55) (0.2 , 0.2 , 0.6) (0.15 , 0.15 , 0.7)

Benchmark all type 1 all type 1 stable cycle stable point stable cycle

S
ce

n
ar

io

1 all type 1 all type 1 all type 1 stable initial field all type 2

2 all type 1 all type 1 all type 1 stable initial field (0 , 1− q , q)
3

extinction of type 2 and coexistence of types 1 and 3
4

5 extinction of types 2 and 3; only type 1 survives

6 extinction of type 2 and coexistence of types 1 and 3

When analyzing Table 1 scenario by scenario, we can see that scenario 1 moves to

extremes. The reason is that, because all cells of the field are updated simultane-

ously, based upon the payoff information for the entire field, the same best type is

adopted by all cells at the same time, leading to a field containing only one type.

As (0.2 , 0.2 , 0.6) is a rest point, all types are equally good and the field does not

change at all. Also note that for initial distribution (0.15 , 0.15 , 0.7) type 2 is the

surviving type, because at this starting position type 2 is doing best as can be seen

in Figure 2.

For scenario 2, the sum of all payoffs per type determines the future type of

one cell at the time. For the first three initial distributions in the beginning of the

simulation the proportion of type 1 is growing while those for types 2 and 3 are

shrinking. Once below the 50% line for type 3, this process goes even faster and

leads to extinction of types 2 and 3. For the last initial distribution types 1 and 3

are first loosing from type 2 and then the process leads to extinction of type 1 and

stabilizes when this happens.

We can see in Table 1 that scenarios 3, 4, and 6 each lead to a coexistence of

types 1 and 3. There is a lot of variance in the stable configurations, but Figure 3

gives an impression of how the process may end.

For scenario 5 only type 1 remains. This is explained by the fitness advantage

that it gets by interacting with type 2 leading to a strategic advantage in number

to win in pairwise interactions.
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Fig. 3: Coexistence of types 1 and 3 for scenario 4, with initial distribution ( 1
5 ,

1
5 ,

3
5 ).

4. An Application in Biology

In order to compare our model to other studies, we analyze the observations reported

by Kerr et al. [2002] in an article titled “Local dispersal promotes biodiversity in a

real life game of rock-paper-scissors”.

Based on experiments with populations of bacteria, they examine the evolution

of three different types of bacteria when put in the same environment. These three

types are: a toxic Colicinogenic type (C), a type R that is Resistant to the toxicity

of C, and a type S that is Sensitive to the poison. The idea is that C bacteria release

a poison that kills any S bacteria in its immediate neighborhood while R bacteria

are not affected. However S bacteria have a fitness advantage on R bacteria and

therefore do better in pairwise competition. In a similar way R has a fitness advan-

tage over C. As such, these types are engaged in a rock-paper-scissors relationship.

Note however, that these three types do not face a completely symmetric situation

as in the classical rock-paper-scissors game.

The fitness matrix

F =


S C R

S 0 −1 0

C 1 0 0

R −1 1 0



has the properties that in pairwise competition C beats S, S beats R, and R beats

C, so it matches the bacteria relationships in Kerr et al. [2002]. Moreover, using the

replicator dynamics (global neighborhood), S will go extinct first, followed by C and

ultimately leading to a population consisting of R exclusively. This is illustrated by

Figure 4 based on our model and by Figure 2.b in Kerr et al. [2002].
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 [1,0,0] [0,1,0] 

[0,0,1]

Fig. 4: Flow diagram of the replicator dynamics for fitness matrix F .

Type 1 is S (bottom left), type 2 is C (bottom right), and type 3 is R (top).

The following table shows what the different scenarios from section 2 lead to for

fitness matrix F and initial distribution (1
3 ,

1
3 ,

1
3 ).

Table 2: Analysis of the different scenarios based on matrix F .

Initial Distribution ( 1
3 ,

1
3 ,

1
3 )

Benchmark only type 3, R, survives

S
ce

n
ar

io

1 only type 2, C, survives

2 only type 3, R, survives

3 only type 3, R, survives

4 only type 3, R, survives

5 only type 1, S, or type 3, R, survives

6 all three types survive

Just like in the scenario analysis of the previous section, Scenario 1 leads to a field

consisting of a unique type surviving, which is C for fitness matrix F and initial

distribution ( 1
3 ,

1
3 ,

1
3 ).

When using the dynamics of scenarios 2, 3 or 4, then the R type will take over

the entire field, as described for the mixed plate experiment of Figure 2.c in Kerr

et al. [2002].

For scenario 5 we observed that sometimes only R survives and sometimes only

S. This depends on whether C or S goes extinct first.

When using scenario 6 we observe that all three types remain coexisting in

approximately equal shares over time. This reflects the experiments reported by
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Kerr et al. [2002] on a static plate as illustrated in their Figure 2.a.

5. Concluding Remarks

In the previous section we have seen that scenario 6 fits best for the static plate

experiment reported in Kerr et al. [2002], while other scenarios seem to be more

appropriate for circumstances which depend less on locality. However, whether or

not scenario 6 always provides a best matching with experimental data, remains for

further explorations.

We would also like to mention that taking into account local circumstances,

in calculating and simulating population development, opens the way to analyze

much more complex interaction schemes. This is now possible because of highly

improved computational possibilities. We can now use local fitness matrices, which

allow to include local environmental features. Moreover, these fitness matrices can

even depend on time as well as on local population distributions. As such, we can

for example incorporate issues like resource depletion or symbiotic relations into the

model. One can also depart from the hexagonal structure and examine more general

network structures that represent the interactions among individuals. These issues

will be part of further studies.

We would like to end this paper by mentioning two studies on locality and time

dependencies reported by our former student Tak [2012] based on scenario 3. For

the following symmetric fitness matrix T and the initial field displayed top-left in

Figure 5, she found that this leads to a repetitive pattern:

T =

 1 8 1

1 1 8

8 1 1

 .

This pattern is similar to migratory predator prey behavior: type 1 chases type 2,

which in turn chases type 3, which again chases type 1, as is clear from matrix T .

As an example of a study that uses fitness matrices which depend on locality as

well as on time, Tak [2012] worked with

A(y, t) =

 0 0 2 + sin
(
t+y
20 · 2π

)
0.7 0 0.7

2− sin
(
t+y
20 · 2π

)
0 0


where y is the vertical cell coordinate in a 20 × 20 field and where t is time. This

lead to a periodically stable heart-shaped configuration of all three types. A movie

of this dynamic process can be observed at

http://youtu.be/_pJCcVkdL40

The latter study is an adaptation of earlier work done on replicator dynamics

with periodic fitness functions (cf. Uyttendaele et al. [2012]).
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Fig. 5: Migratory predator prey behavior
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