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Abstract We extend the notion of Evolutionarily Stable Strategies intro-
duced by Maynard Smith & Price [6] in 1973 for models ruled by a single
fitness matrix A, to the framework of stochastic games developed by Lloyd
Shapley [13] in 1953 where, at discrete stages in time, players play one of
finitely many matrix games, while the transitions from one matrix game to
the next follow a jointly controlled Markov chain. We show that this extension
from a single-state model to a multi-state model can be done on the assump-
tion of having an irreducible transition law. In a similar way we extend the
notion of Replicator Dynamics introduced by Taylor & Jonker [16] in 1978 to
the multi-state model. These extensions facilitate the analysis of evolutionary
interactions that are richer than the ones that can be handled by the original,
single-state, evolutionary game model. Several examples are provided.

Keywords: evolutionary games, stochastic games, evolutionarily stable strat-
egy, replicator dynamics.

1 Introduction

In his early 1928 work on Game Theory, John von Neumann [9] showed that
all matrix games have a value and both players have optimal strategies. A
quarter century later Lloyd Shapley [13] wrote his ancestral paper on the
stochastic game model, in which at each of a possibly infinite number of stages
two players play one of finitely many different matrix games, where at each
stage the transition probabilities to go from one matrix game to the next are
determined by the specific matrix game played and the specific actions chosen
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at that stage. In the same paper Lloyd Shapley shows that, assuming there
is a strictly positive probability of stopping for each pair of actions, whenever
they are played, these stochastic games have a value and the players have
stationary optimal strategies, i.e. strategies for which a player’s action choices
at each stage only depend on the specific matrix game being played while
neither the stage number nor the history of play leading to that state, needs
to be taken into account.

Evolutionary game theory, as started by the seminal paper of Maynard
Smith & Price [6] in 1973, studies the dynamic development of populations.
Here a population consists of randomly interacting individuals of finitely many
different types. Interactions between individuals lead to ‘fitness payoffs’ for
these individuals depending on their types (e.g. number of offspring), where
these fitness payoffs are given by a single fitness matrix A. Every entry of A
gives the fitness payoff to the row player. When taking the Darwinian view-
point that the fractions of types that are doing better than average increase,
while those doing worse than average decrease, we see that the population
distribution is changing over time. The most widely studied dynamics is the
so called Replicator Dynamics introduced by Taylor & Jonker [16] in 1978,
that builds on the assumption that the rate of change of a population frac-
tion of a specific type is proportional to the size of that fraction as well as to
the difference between the fitness for individuals of that type and the current
population average fitness.

In this paper, we extend the evolutionary game model to achieve an evo-
lutionary stochastic game model. In this evolutionary stochastic game model
we consider a population of individuals from different types, where at every
stage these individuals are interacting with each other in one of finitely many
environments (or circumstances). The transition probabilities between the en-
vironments determine the impact of each of these environments on the fitness
of the individuals from specific types. Then, like in the single-state model, the
fractions of those types that have a higher fitness than the population average
fitness will increase, while the fractions of types that are doing less good de-
crease. In section 2 we give precise definitions and in the subsequent sections
we analyze this evolutionary stochastic game model.

2 The Model

In this section we first describe the models of stochastic games and evolu-
tionary games according to their original definitions and next we introduce a
model that combines the features of each of these. We remark that some earlier
work was done on introducing stochastic dynamics to evolutionary games and
we refer to chapters 10 to 12 in Sandholm [12] for a recent survey. In addition
we mention Altman et al. [1], who introduce a model where each individual
is facing a Markov decision problem, and Pruett-Jones & Heifetz [10], who
examine a model where each strategic interaction between two individuals is
a stochastic game. However, our model is essentially different because for us
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population members are characterized by their behavior in a finite collection
of different circumstances and as such our population types correspond to pure
stationary strategies in a stochastic game.

2.1 Stochastic Games

A two-person stochastic game Γ, introduced in a slightly different way by
Lloyd Shapley [13] in 1953, can be described by a state space S := {1, . . . , z},
and a corresponding collection {A1, . . . , Az} of matrices, where matrix As has
size m1

s ×m2
s and, for i ∈ Is := {1, . . . ,m1

s} and j ∈ Js := {1, . . . ,m2
s}, entry

(i, j) of As consists of payoffs r1(s, i, j), r2(s, i, j) ∈ R and a probability vector
p(s, i, j) = (p(s′|s, i, j))s′∈S . The elements of S are called states and for each
state s ∈ S the elements of Is and Js are called (pure) actions of player 1
and player 2 respectively in state s. The game is to be played at stages in
N = {1, 2, 3, . . .} in the following way. Play starts at stage 1 in an initial state,
say in state s1 ∈ S, where, simultaneously and independently, both players
are to choose an action: player 1 chooses an i1 ∈ Is1 , while player 2 chooses
a j1 ∈ Js1 . These choices induce immediate payoffs r1(s1, i1, j1), r2(s1, i1, j1)
to players 1 and 2 respectively. Next, the play moves to a new state according
to the probability vector p(s1, i1, j1), say to state s2. At stage 2 new actions
i2 ∈ Is2 and j2 ∈ Js2 are to be chosen by the players in state s2. Then the
players receive payoffs r1(s2, i2, j2), r2(s2, i2, j2) respectively and play moves
to some state s3 according to the probability vector p(s2, i2, j2), and so on.
The players are assumed to have complete information and perfect recall. The
latter means that at every stage n they know the history of play up to that
stage: hn = (s1, i1, j1; . . . ; sn−1, in−1, jn−1, sn).

A mixed action for a player in state s is a probability distribution on the
set of his actions in state s. Mixed actions in state s will be denoted by xs
for player 1 and by ys for player 2, and the sets of mixed actions in state
s by Xs and Ys respectively. A strategy is a decision rule that prescribes a
mixed action for any past history of the play. Such general strategies, so-called
behavior strategies, will be denoted by π for player 1 and by σ for player 2.
We use the notations Π and Σ for the respective behavior strategy spaces of
the players. A strategy is called pure if it specifies one pure action for each
possible history. We denote the respective pure strategy spaces by Πp and Σp.
If for all past histories, the mixed actions prescribed by a strategy only depend
on the current state then the strategy is called stationary. Thus the stationary
strategy spaces are X := ×s∈S Xs for player 1 and Y := ×s∈S Ys for player 2
and we write x and y for stationary strategies for players 1 and 2 respectively.
For the spaces of pure stationary strategies we will use Xp and Y p.

The stochastic game is called irreducible if for all pairs of stationary strate-
gies the associated Markov chain on the state space is irreducible, i.e. all states
will be visited infinitely often with probability 1.

For an infinite history h = (sn, in, jn)n∈N, player k will evaluate the sequence
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of payoffs by the limiting average reward, defined by

γk(h) := lim inf
N→∞

1

N

N∑
n=1

rk(sn, in, jn).

Another commonly used evaluation is the β-discounted reward, where β ∈
(0, 1) is the discount factor, given by

γkβ(h) := (1− β) ·
∞∑
n=1

βn−1rk(sn, in, jn).

However, in this paper we will only focus on the limiting average rewards. A
pair of strategies (π, σ) together with an initial state s ∈ S, by Kolmogorov’s
existence theorem (cf. Kolmogorov [5]), determines a probability measure on
the set of infinite histories with initial state s. By using this probability mea-
sure, for (π, σ) and initial state s, the sequences of payoffs are evaluated by
the expected limiting average reward denoted by γk(s, π, σ).

A stochastic game in which r2(s, i, j) = −r1(s, i, j) for all triples (s, i, j), is
called a zero-sum stochastic game. In such a game it is assumed that player 1
wants to maximize his limiting average reward, while player 2 tries to minimize
player 1’s limiting average reward. A zero-sum stochastic game has a limiting
average value v = (vs)s∈S if

sup
π∈Π

inf
σ∈Σ

γ1(s, π, σ) = inf
σ∈Σ

sup
π∈Π

γ1(s, π, σ) =: vs ∀s ∈ S. (1)

Although the seminal paper by Shapley [13] already implied the existence of
the β-discounted value, and stationary β-discounted optimal strategies, the
general existence of a limiting average value was only established in 1981 by
Mertens & Neyman [7]. However, for the limiting average case the players need
not have optimal strategies and behavior strategies may be indispensable for
achieving ε-optimality. Here a strategy π of player 1 is called ε-optimal, where
ε ≥ 0, if for all initial states s ∈ S we have

γ1(s, π, σ) ≥ vs − ε ∀σ ∈ Σ,

and 0-optimal strategies are simply called optimal for player 1. Similar defini-
tions apply for player 2.

For games that are not zero-sum, we use the notion of ε-equilibria, ε ≥ 0,
which are pairs of strategies that are ε-best replies against each other. For
simplicity, if ε = 0 we speak of an equilibrium rather than of a 0-equilibrium.
Here a stategy πε by player 1 is an ε-best reply against a strategy σ by player
2, when

∀s ∈ S ∀π ∈ Π : γ1(s, πε, σ) ≥ γ1(s, π, σ)− ε. (2)

Against a fixed stationary strategy of player 2, there always exist pure sta-
tionary best replies for player 1, i.e.

∀y ∈ Y ∃x ∈ Xp ∀s ∈ S ∀π ∈ Π : γ1(s, x, y) ≥ γ1(s, π, y). (3)
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Obviously, similar statements hold for the best replies of player 2.

Rogers [11] and Sobel [14] have shown that for irreducible stochastic games
there always exist stationary equilibria. Vieille [18], [19] has shown the ex-
istence of ε-equilibria for two-person stochastic games. The existence of ε-
equilibria for stochastic games with more than 2 players is still an open prob-
lem.

Remark 1
The assumption of an infinite horizon is only used to approximate games with
a sufficiently long, but possibly unknown, horizon. More precisely, in an irre-
ducible game for every δ > 0 there is a time horizon Tδ such that for any pair of
stationary strategies (x, y) and for all T > Tδ we have |γ(x, y)− γT (x, y)|< δ
where γT (x, y) denotes the T -stage expected average payoff. Moreover, sta-
tionary strategies that are optimal for the infinite horizon game are ε-optimal
in all T -stage games for T sufficiently large.

2.2 Evolutionary Games

An evolutionary game is determined by a fitness matrix, based on which a pop-
ulation distribution over different types will change. Here the population distri-
bution at time t can be described by the vector d(t) = (d1(t), d2(t), . . . , dm(t)),
where d`(t) > 0 for all ` (all types are present) and

∑m
`=1 d`(t) = 1. The fit-

ness matrix is an m ×m matrix A, that is to be interpreted as follows: The
entry a`k is the fitness (or payoff or offspring) for an individual of type ` when
interacting with an individual of type k. So, given the population distribution
d, the average fitness of an individual of type ` is equal to e`Ad

> and the
average fitness of an individual in the population is dAd>. Here the vector
e` is a unit-vector with 1 in position ` and 0 elsewhere. The emphasis of the
research in these games is on stability. Loosely speaking, a population distri-
bution d is stable if for the process {d(t) : t ≥ 0} we have that, if it ever
gets close to d, then it will always stay close to d, or even converge to it. The
most commonly used stability concept in evolutionary games is the so-called
Evolutionarily Stable Strategy (or ESS) (cf. Maynard Smith and Price [6]). A
population distribution (or a strategy) d is an ESS if for all strategies d 6= d
we have:

E1. dAd
> ≤ dAd>;

E2. dAd
>

= dAd
> ⇒ dAd> > dAd>.

Evolutionary stability is a refinement of the well-known Nash-equilibrium (cf.
Nash [8]) for symmetric games, i.e. games (A,B) in which the payoffs for the
players are symmetric in the sense that B> = A. Condition E1 says that d
should be a best reply against itself, while condition E2 addresses the stability
of d. Namely, if d is also a best reply against d then, in order for the population
distribution not to drift away in the direction of d, we need that d performs
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better against d than d against itself.
The dynamics that are used most frequently, are the replicator dynamics, in-
troduced by Taylor & Jonker [16]. According to the replicator dynamics, the
proportion of population members of type `, changes in time according to the
following system of differential equations:

.

d`= d`(e`Ad
> − dAd>) for ` = 1, 2, . . . ,m.

So the replicator dynamics dictates, in a Darwinian way, that the population
fraction of those types that perform better than average (or have more than
average amount of offspring) will grow, while the fraction of types that perform
below average, will fall. It can be shown that any ESS d is an asymptotically
stable point for the corresponding replicator dynamics; i.e. if d(0) is close
enough to d, then the population distribution converges to d. However, we
really need to be careful here, as the opposite is not always true, which can
be seen from an example in Hofbauer & Sigmund [3] (page 71).
A different way of characterizing an ESS is by means of the concept of invasion.
Suppose that we are dealing with a population distribution d and a fitness
matrix A. If we replace a fraction ε > 0 of the population by mutants of types
distributed as d̃ 6= d, then the new population would be

dεd̃ = (1− ε)d+ εd̃.

We say that the mutants d̃ cannot invade the population if for all ε > 0
sufficiently small we have

d̃Ad>
εd̃
< dAd>

εd̃
,

which can be interpreted as the mutants, the new members of the population,
have a strict lower fitness than the old members of the population. It turns
out that d is an ESS if and only if d cannot be invaded by any mutant d̃ 6= d.

As a final word for this section we would like to stress that an ESS does not
exist for every game, as can be seen from the game Rock-Paper-Scissors given
by  0 −1 1

1 0 −1
−1 1 0

 ,

which has only one symmetric equilibrium d = ( 1
3 ,

1
3 ,

1
3 ) to fit condition E1,

but condition E2 fails to hold for d = (1, 0, 0).

Remark 2
While we have presented the games in this section by giving just the payoff
matrix A for the row player, we would like to stress that the games examined
can be viewed as symmetric bimatrix games (A,B) where B = A>, because in
the population there is no distinction between row and column players. In the
next sections we will specify both payoffs, to avoid confusion with zero-sum
games.
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2.3 Evolutionary Stochastic Games

We identify an evolutionary stochastic game by an irreducible two-person
stochastic game (as defined in Section 2.1) with the additional property that
all matrices As are symmetric in payoffs as well as in transitions, i.e. it is an
irreducible stochastic game for which:

ES1. m1
s = m2

s for each state s;
ES2. r2(s, i, j) = r1(s, j, i) for each triple (s, i, j);
ES3. p(s, i, j) = p(s, j, i) for each triple (s, i, j).

Notice that the symmetry assumptions are in line with Remark 2 and these are
needed because we explicitly write the payoffs for row player and for column
player and these players should be facing exactly the same strategic situation.

Types
The types in a symmetric irreducible stochastic game are identified by the
pure stationary strategies in

Xp = {e1, e2, . . . , e|Xp|}.

As such the type of an individual specifies a certain action (behavior) for
each of the states (environments) that an individual may encounter during its
lifetime. Individuals of different types will choose different actions in at least
one state, but they may choose the same action in some other states. Now a
population distribution d = (d1, d2, d3, . . . , d|Xp|) is a distribution over the set
of pure stationary strategies, and it uniquely defines a stationary strategy xd.
More precisely,

xd(s, i) =

|Xp|∑
k=1

dk · ek(s, i),

where xd(s, i) and ek(s, i) denote the probability on action i in state s for the
stationary strategies xd and ek respectively. So, given a population distribu-
tion d we will have a fraction xd(s, i) of individuals that choose action i in
state s.
Please note that for population distributions d and d′ with d 6= d′ we may well
find xd = xd′ , as can be seen from the following example. Consider a game
with 2 states and with 2 pure actions in each state. For such a game there
are 4 different pure stationary strategies: e1 = (1, 1), e2 = (1, 2), e3 = (2, 1)
and e4 = (2, 2). Obviously the population distributions d = (0.5, 0, 0, 0.5)
and d′ = (0, 0.5, 0.5, 0) yield the same stationary strategy, i.e. xd = xd′ =
((0.5, 0.5), (0.5, 0.5)). Thus, two population distributions may well consist of
completely different types, but in terms of the actions observed in each of the
states, one would not notice the difference.

Fitness
Consider a population distribution d and an individual of type k playing pure
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stationary strategy ek. We assume that during his lifetime the individual will
visit all states of the stochastic game sufficiently often, while the population
distribution is changing at a different, much larger time scale. This individ-
ual faces the combined behavior of all members of the whole population. This
means that the individual plays against stationary strategy xd and accordingly
there are state payoffs and a transition function that takes the individual from
state to state. The fitness of the individual will be the average of payoffs accu-
mulated during his lifetime. As an example one may think of the individuals
as members of a political party. The succes of the political party (the type)
will depend on how good each of its members is doing in discussions on all
kind of different issues, where media attention may move stochastically from
one issue to the next based on the positions taken on the present issue. The
succes of the political party will depend on how good its members are doing
on each of the issues that have to be dealt with. As argued before, the limiting
average is a good approximation for the finite horizon average for sufficiently
long plays. At the same time the limiting average reward has the advantage
that it does not depend on the initial state.

ESS
Based on the observation that different population distributions may yield the
same stationary strategy, it seems more natural to define an Evolutionarily
Stable Strategy in the space of stationary strategies rather than in the space
of population distributions over the ‘pure’ types. We therefore define a sta-
tionary strategy x to be an ESS if for all stationary strategies y 6= x:

E1*. γ(y, x) ≤ γ(x, x);
E2*. γ(y, x) = γ(x, x) ⇒ γ(x, y) > γ(y, y).

Observe that for the single-state model this definition coincides with the origi-
nal definition of an ESS for the classical evolutionary game model. This means
that the game Rock-Paper-Scissors still applies as an example of a game with-
out any ESS in the evolutionary stochastic game model.

Notice that if a population distribution d induces an ESS xd, then there may
well be other population distributions d′ that also induce xd, which could be
interpreted as population distribution d being vulnerable to invasion by d′.
However, as d′ and d have to induce the same stationary strategy xd, the den-
sity of suitable population distributions d′ in population space is 0. As such,
even for an ESS the population distribution d may change in time, but these
changes have to remain within the class of distributions that induce xd.

Replicator Dynamics
We can extend the approach using replicator dynamics to the evolutionary
stochastic game model by taking the following system of differential equations:

.

d`= d`(γ(e`, xd)− γ(xd, xd)) for ` = 1, 2, . . . , |Xp|,
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where, like mentioned before, d is the distribution over the pure stationary
strategies e` and xd is the stationary strategy induced by d. Again, for the
single-state stochastic game model this definition of replicator dynamics coin-
cides with its original definition.

Please note that for any stable point d of this replicator dynamics, we have that
d` > 0 implies that γ(e`, xd) = γ(xd, xd), which means that each of the prevail-
ing types is playing a best reply to the induced stationary population strategy,
because otherwise that type would not have survived the evolutionary compe-
tition. This observation suggests that for a Markov decison problem (MDP),
which is what a player is facing when playing against a fixed stationary strat-
egy, we have that if x∗ is a stationary optimal strategy and x is a stationary
strategy for which C(xs) ⊆ C(x∗s) for each s ∈ S (where C(xs) = {i : xs(i) > 0}
is the carrier of xs), then x is optimal as well. Such is not true in general, as
can easily be seen by the following simple example.

Example 1

1, 1 4, 3 3, 3 5, 4
(0, 1) (0.5, 0.5) (1, 0) (0.5, 0.5)

3, 4 2, 2 4, 5 2, 2
(0.5, 0.5) (0, 1) (0.5, 0.5) (1, 0)

1, 1 4, 3 3, 3 5, 4 4, 4 6, 7
(.5, 0, .5) (.5, .5, 0) (1, 0, 0) (.5, 0, .5) (0, 1, 0) (0, .5, .5)

3, 4 2, 2 4, 5 2, 2 7, 6 5, 5
(.5, .5, 0) (0, .5, .5) (.5, 0, .5) (0, 0, 1) (0, .5, .5) (1, 0, 0)

1, 1 4, 3 3, 3 5, 4 0
(0, 1, 0) (.5, .5, 0) (1, 0, 0) (.5, .5, 0) (1, 0)

3, 4 2, 2 4, 5 2, 2 2, 2 1 1
(.5, .5, 0) (0, 1, 0) (.5, .5, 0) (0, 0, 1) (0, 0, 1) (0, 1) (0, 1)

state 3 state 1 state 2

3, 3 5, 4
(1, 0) (1, 0)

4, 5 2, 2 2, 2
(1, 0) (0, 1) (0, 1)

state 2

3, 3 5, 4
(1, 0) (1, 0)

4, 5 2, 2 2, 2
(1, 0) (0, 1) (0, 1)

state 2

state 1 state 2

state 1 state 2

state 1

state 1

state 3

state 1 state 2

2

In this example of an MDP the vectors in the bottom right corners of each
entry denote the transition probability vectors, while the upper left corners
show the payoffs to the player. Any mixed stationary strategy is optimal for
initial state 1, because it gives an average reward of 1. However, for the pure
strategy ((1, 0), 1) the average reward is only 0.

For irreducible MDP’s we have the following theorem.

Theorem 1 Consider an irreducible MDP. Suppose that x∗ is a stationary
optimal strategy, and x is a stationary strategy such that C(xs) ⊆ C(x∗s) for
every state s ∈ S. Then, x is optimal as well.

A formal proof for this theorem is provided in the appendix.

We impose the condition of irreducibility on the stochastic game, because
without this condition symmetric equilibria in stationary strategies may fail
to exist as is shown by the following example:

Example 2

1, 1 4, 3 3, 3 5, 4
(0, 1) (0.5, 0.5) (1, 0) (0.5, 0.5)

3, 4 2, 2 4, 5 2, 2
(0.5, 0.5) (0, 1) (0.5, 0.5) (1, 0)

1, 1 4, 3 3, 3 5, 4 4, 4 6, 7
(.5, 0, .5) (.5, .5, 0) (1, 0, 0) (.5, 0, .5) (0, 1, 0) (0, .5, .5)

3, 4 2, 2 4, 5 2, 2 7, 6 5, 5
(.5, .5, 0) (0, .5, .5) (.5, 0, .5) (0, 0, 1) (0, .5, .5) (1, 0, 0)

1, 1 4, 3 3, 3 5, 4
(0, 1, 0) (.5, .5, 0) (1, 0, 0) (.5, .5, 0)

3, 4 2, 2 4, 5 2, 2 2, 2
(.5, .5, 0) (0, 1, 0) (.5, .5, 0) (0, 0, 1) (0, 0, 1)

state 3

3, 3 5, 4
(1, 0) (1, 0)

4, 5 2, 2 2, 2
(1, 0) (0, 1) (0, 1)

state 2

3, 3 5, 4
(1, 0) (1, 0)

4, 5 2, 2 2, 2
(1, 0) (0, 1) (0, 1)

state 2

state 1 state 2

state 1 state 2

state 1

state 1

state 3

state 1 state 2

Again the transitions are given in the bottom right corners, while the upper
left corners show the payoffs to the row and column players respectively. We
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show that there can be no symmetric ε-equilibrium (x, x): If x1(2) > 0, then,
for any ε > 0 sufficiently small, the unique stationary ε-best reply is ((1, 0), 1);
which rules out any ε-equilibrium (x, x) with x1(2) > 0. However, against
((1, 0), 1), for any ε > 0 sufficiently small, the unique ε-best reply is ((0, 1), 1).

On the other hand, if we do impose the condition of irreducibility on a sym-
metric stochastic game, then we are guaranteed to have at least one symmetric
stationary equilibrium, by the following theorem. This is important to know
because the existence of symmetric equilibria is a necessary condition for the
existence of evolutionarily stable strategies, just like in one state evolutionary
games.

Theorem 2 Every symmetric irreducible stochastic game admits a symmetric
stationary equilibrium (x∗, x∗).

Proof Take an arbitrary symmetric irreducible stochastic game. So, X = Y .
For a discount factor β ∈ (0, 1) and a stationary strategy x ∈ X of player 1,
let B2

β(x) denote the set of stationary strategies y ∈ X of player 2 that are
β-discounted best responses to x.

We have the following well-known properties (cf. e.g. Fink [2] or Takahashi
[15]): (1) the set X is nonempty, compact and convex, (2) B2

β(x) is nonempty

and convex for every x ∈ X, (3) the set-valued map B2
β : x 7→ B2

β(x) is upper
semi-continuous, i.e. if sequences xn and yn in X converge to x ∈ X and y ∈ X
respectively, and yn ∈ B2

β(xn) for every n ∈ N, then y ∈ B2
β(x) must hold.

Hence, by Kakutani’s fixed point theorem [4], the map B2
β has a fixed point

x∗β ∈ X, i.e. x∗β ∈ B2
β(x∗β). Due to symmetry, it follows that the stationary

strategy pair (x∗β , x
∗
β) is a symmetric β-discounted equilibrium.

Since X is compact, there exists a sequence of discount factors βn such
that βn → 1 and x∗βn

converges to some x∗ ∈ X. We now prove that (x∗, x∗)
is an equilibrium. Consider an arbitrary stationary strategy x ∈ X for player
1. Then, for every n ∈ N, because (x∗βn

, x∗βn
) is a βn-discounted equilibrium,

we have
γ1
βn

(x, x∗βn
) ≤ γ1

βn
(x∗βn

, x∗βn
).

Since the game is irreducible and x∗βn
converges to x∗, we have (cf. Lemma

2.2.6 in [17])
lim
n→∞

γ1
βn

(x, x∗βn
) = γ1(x, x∗)

lim
n→∞

γ1
βn

(x∗βn
, x∗βn

) = γ1(x∗, x∗).

Therefore, γ1(x, x∗) ≤ γ1(x∗, x∗). Since x ∈ X was arbitrary, it follows that
x∗ is a best response for player 1 to x∗. Due to symmetry, (x∗, x∗) is an
equilibrium, as claimed.

Moreover, as a consequence of Theorem 1 we also have the following result,
which extends a well-known result for one-state evolutionary games.

Corollary 1 If x∗ is an ESS in an evolutionary stochastic game and x 6= x∗

is a stationary strategy with C(xs) ⊆ C(x∗s) for each s, then x is no ESS.
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Proof Let x∗ be an ESS in an evolutionary stochastic game and let x be a
stationary strategy with C(xs) ⊆ C(x∗s) for all s. Because x∗ is an ESS, x∗

is a best reply against itself. Therefore x∗ is an optimal stationary strategy
in the MDP that arises for player 1 if player 2 is playing x∗. This implies by
Theorem 1 that γ(x, x∗) = γ(x∗, x∗). Hence γ(x∗, x) > γ(x, x) by the 2nd ESS
condition. This means that x is no ESS.

For illustration we now look at a two-state evolutionary stochastic game:

Example 3
1, 1 4, 3 3, 3 5, 4

(0, 1) (0.5, 0.5) (1, 0) (0.5, 0.5)
3, 4 2, 2 4, 5 2, 2

(0.5, 0.5) (0, 1) (0.5, 0.5) (1, 0)

1, 1 4, 3 3, 3 5, 4 4, 4 6, 7
(.5, 0, .5) (.5, .5, 0) (1, 0, 0) (.5, 0, .5) (0, 1, 0) (0, .5, .5)

3, 4 2, 2 4, 5 2, 2 7, 6 5, 5
(.5, .5, 0) (0, .5, .5) (.5, 0, .5) (0, 0, 1) (0, .5, .5) (1, 0, 0)

1, 1 4, 3 3, 3 5, 4
(0, 1, 0) (.5, .5, 0) (1, 0, 0) (.5, .5, 0)

3, 4 2, 2 4, 5 2, 2 2, 2
(.5, .5, 0) (0, 1, 0) (.5, .5, 0) (0, 0, 1) (0, 0, 1)

state 3

3, 3 5, 4
(1, 0) (1, 0)

4, 5 2, 2 2, 2
(1, 0) (0, 1) (0, 1)

state 2

3, 3 5, 4
(1, 0) (1, 0)

4, 5 2, 2 2, 2
(1, 0) (0, 1) (0, 1)

state 2

state 1 state 2

state 1 state 2

state 1

state 1

state 3

state 1 state 2

For this example the unique ESS is (( 1
2 ,

1
2 ), ( 5

7 ,
2
7 )). The uniqueness follows

from the fact that the stochastic game has only one symmetric Nash equi-
librium in stationary strategies. Because the population space consists of the
convex combinations of four pure stationary strategies, we cannot visualize
population development in a two dimensional figure. We have therefore cho-
sen to visualize population development by menas of two movies. These exhibit
how the population develops under the replicator equation for two different
intial population distributions. These movies can be viewed at
http:/www.youtube.com/watch?v=CuM3GtoyMM0

3 Concluding remarks

In this paper we have introduced a model that fuses the classical model of
evolutionary games with that of stochastic games. This implies that there are
still many issues open for future study. In terms of applications it is challeng-
ing to find a specific real life phenomenon of population development that
would perfectly fit this model. At the theoretical level, there are also some
fine challenges, like to characterize the class of symmetric two-person stochas-
tic games for which symmetric equilibria exist in stationary strategies, or to
address the more general question whether or not any symmetric two-person
stochastic game always has a symmetric ε-equilibrium, when we also allow for
non-stationary ones. It would also be very interesting to explore for evolu-
tiuonary stochastic games other dynamics than the replicator dynamics. Some
first studies on the fictitious play dynamics for the example in section 2.3 seem
to indicate that it converges to the ESS. Again, an illustrative movie is avail-
able at
http://www.youtube.com/watch?v=P5QBTVCXXC0

4 Appendix

The following results may be known in MDP literature, but we have not been
able to find a precise reference. For sake of completeness we provide the proofs.
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Consider an irreducible MDP. Take an arbitrary stationary strategy x and a
state s ∈ S. For the limiting average reward for x we simply write γ(x) because
the reward does not depend on the initial state s. For a mixed action αs in
state s, let x[s, αs] be the stationary strategy which uses the mixed action αs
in state s and uses the mixed actions xz in all other states z ∈ S \ {s}, i.e.
x[s, αs]s = αs and x[s, αs]z = xz for all z ∈ S \ {s}.

Let W denote the set of all finite histories h = (s1, i1, . . . , s`−1, i`−1, s`),
where ` ∈ N and s1 = s` = s and sk 6= s for every k = 2, . . . , `− 1, such that
the stationary strategy x[s, αs] generates h with a positive probability when
starting in state s. Note thatW is countable. Let q(h) denote the corresponding
probability for every h ∈ W . Due to irreducibility, we have

∑
h∈W q(h) = 1.

Let t(h) = `− 1, which is just the time it takes along h to visit state s again,
and let R(h) denote the sum of the payoffs along h during periods 1, . . . , `−1.

Let tx,sαs
=

∑
h∈W q(h) t(h), which is the expected number of periods it

takes to visit state s again when we use x[s, αs] and start in state s. Clearly,
tx,sαs
≥ 1 and tx,sαs

is finite due to irreducibility. Let Rx,sαs
=

∑
h∈W q(h)R(h)

denote the corresponding expected sum of payoffs before visiting state s again.
We define

rx,sαs
=
Rx,sαs

tx,sαs

.

These definitions are illustrated by the following example.

Example 4

2
(0, 0.8, 0.2)

7 5 -1
(0, 0, 1) (1, 0, 0) (0, 0.2, 0.8)

state 1 state 2 state 3

Let x = (( 1
3 ,

2
3 ), 1, 1), let s = 1 and let α1 = ( 1

2 ,
1
2 ). When also applying the

notations e1 = (1, 0) and e2 = (0, 1), then we have

rx,1e1 =
Rx,1e1
tx,1e1

=
6

3
= 2

rx,1e2 =
Rx,1e2
tx,1e2

=
7

7
= 1

rx,1α1
=
Rx,1α1

tx,1α1

=
6.5

5
= 1.3

Notice that, although α1 uses e1 and e2 with probability 1
2 each, we have

rx,1α1
= 1.3 6= 1.5 = 1

2r
x,1
e1 + 1

2r
x,1
e2 . In view of the following lemma, this example

shows that

γ((
1

2
,

1

2
), 1, 1) 6= 1

2
· γ((1, 0), 1, 1) +

1

2
· γ((0, 1), 1, 1).

Lemma 1 Consider an irreducible MDP. Take an arbitrary stationary strat-
egy x and a mixed action αs in some state s ∈ S. Then, γ(x[s, αs]) = rx,sαs

.
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Proof Suppose that we use x[s, αs] and start in state s. Then, with probability
1, an infinite play h∞ = (sm, im)m∈N, with s1 = s, is generated such that: (1)
state s is visited infinitely many times, (2) between each two consecutive visits,
a history in W is generated, (3) the relative frequency of every history h ∈W is
exactly q(h). Consequently, every history h ∈W is associated to a proportion

q(h) · t(h)∑
h′∈W q(h′) · t(h′)

of the set N of all periods, which yields

γ(x[s, αs]) =
∑
h∈W

q(h) · t(h)∑
h′∈W q(h′) · t(h′)

·R(h)

t(h)
=

∑
h∈W q(h) ·R(h)∑
h∈W q(h) · t(h)

=
Rx,sαs

tx,sαs

= rx,sαs
,

which completes the proof.

The following lemma presents a useful expression for the reward γ(x) induced
by a stationary strategy x based on the quantities tx,si and rx,si , with i ∈ Is.

Lemma 2 Consider an irreducible MDP. Take an arbitrary stationary strat-
egy x and a state s ∈ S. Then,

γ(x) =

∑
i∈Is x(s, i) ·Rx,si∑
i∈Is x(s, i) · tx,si

=

∑
i∈Is x(s, i) · tx,si · r

x,s
i∑

i∈Is x(s, i) · tx,si
, (4)

where x(s, i) is the probability that the stationary strategy x places on action i
in state s.

Proof Note that by definition we have x = x[s, xs]. Hence, Lemma 1 tells us
that

γ(x) = rx,sxs
=
Rx,sxs

tx,sxs

.

The observation that

Rx,sxs
=

∑
i∈Is

x(s, i) ·Rx,si and tx,sxs
=

∑
i∈Is

x(s, i) · tx,si ,

completes the proof.

Notice that, in view of equation (4), the reward γ(x) is a convex combination
of the quantities rx,si , with i ∈ Is.

Lemma 3 Consider an irreducible MDP. Take a stationary optimal strategy

x∗ and a state s ∈ S. Then rx
∗,s
i = γ(x∗) for every i ∈ C(x∗s) and r

x∗,s
i ≤ γ(x∗)

for every i ∈ Is \ C(x∗s).
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Proof Take an arbitrary action i ∈ Is, and consider the stationary strategy

x∗[s, i]. By Lemma 1, we have rx
∗,s
i = γ(x∗[s, i]). Due to the optimality of

x∗, we obtain rx
∗,s
i ≤ γ(x∗). Because this inequality holds for all i ∈ Is, and

because γ(x∗) is a convex combination of rx
∗,s
i , i ∈ Is, due to (4), we obtain

rx
∗,s
i = γ(x∗) for every i ∈ C(x∗s).

Proof of Theorem 1

Proof We may assume that C(xs) ⊆ C(x∗s) for some state s ∈ S and xz = x∗z for
all other states z ∈ S \ {s}, because then the theorem follows if we iteratively

apply it state by state. Note that, by lemma 3, it holds that rx
∗,s
i = γ(x∗) for

all i ∈ C(x∗s). Because due to our assumption rx,si = rx
∗,s
i for all i ∈ Is and

C(xs) ⊆ C(x∗s), we obtain rx,si = γ(x∗) for all i ∈ C(xs). Hence, by Lemma 2
we find γ(x) = γ(x∗).
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