One-Way Flow Nash Networks

Frank Thuijsman
Jean Derks, Jeroen Kuipers, Martijn Tennekes
Outline

- The Model of One-Way Flow Networks
- An Existence Result and a Structural Observation
- A Dynamic Procedure of Local Actions
- A Counterexample
The Model of One-Way Flow Networks

Network Formation Game \((N,v,c)\)

- \(N = \{1,2,3,...,n\}\)
- \(v_{ij} \geq 0\) is the profit for agent \(i\) for being connected to agent \(j\)
- \(c_{ij} \geq 0\) is the cost for agent \(i\) for being \textit{directly} connected to agent \(j\)
The Model of One-Way Flow Networks

Network Formation Game \((N,v,c)\)

- \(N = \{1,2,3,...,n\}\)
- \(v_{ij} \geq 0\) is the profit for agent \(i\) for being connected to agent \(j\)
- \(c_{ij} \geq 0\) is the cost for agent \(i\) for being directly connected to agent \(j\)

Example of a one-way flow network \(g\)
The Model of One-Way Flow Networks

Network Formation Game \((N, v, c)\)
- \(N = \{1, 2, 3, ..., n\}\)
- \(v_{ij} \geq 0\) is the profit for agent \(i\) for being connected to agent \(j\)
- \(c_{ij} \geq 0\) is the cost for agent \(i\) for being \textit{directly} connected to agent \(j\)

Example of a one-way flow network \(g\)

Agent 1 is connected to agents 3, 4, 5 and 6 and obtains profits \(v_{13}, v_{13}, v_{14}, v_{15}, v_{16}\). Agent 1 is \textit{not} connected to agent 2. Agent 1 has to pay \(c_{13}\) for the link (3,1).
The Model of One-Way Flow Networks

Network Formation Game \((N,v,c)\)

- \(N = \{1,2,3,...,n\}\)
- \(v_{ij} \geq 0\) is the profit for agent \(i\) for being connected to agent \(j\)
- \(c_{ij} \geq 0\) is the cost for agent \(i\) for being directly connected to agent \(j\)

Example of a one-way flow network \(g\)

Agent 1 is connected to agents 3, 4, 5 and 6 and obtains profits \(v_{13}, v_{14}, v_{15}, v_{16}\). Agent 1 is not connected to agent 2. Agent 1 has to pay \(c_{13}\) for the link \((3,1)\).

The payoff \(\pi_1(g)\) for agent 1 is

\[\pi_1(g) = v_{13} + v_{14} + v_{15} + v_{16} - c_{13}. \]
The Model of One-Way Flow Networks

Network Formation Game (N, ν, c)

- $N = \{1, 2, 3, \ldots, n\}$
- $\nu_{ij} \geq 0$ is the profit for agent i for being connected to agent j
- $c_{ij} \geq 0$ is the cost for agent i for being *directly* connected to agent j

More generally:

$$\pi_i(g) = \sum_{j \in N_i(g)} \nu_{ij} - \sum_{j \in Nd_i(g)} c_{ij}$$

where $N_i(g)$ is the set of agents that i is connected to in g, and where $Nd_i(g)$ is the set of agents that i is *directly* connected to in g.
The Model of One-Way Flow Networks

Network Formation Game \((N,v,c)\)
- \(N = \{1,2,3,...,n\}\)
- \(v_{ij} \geq 0\) is the profit for agent \(i\) for being connected to agent \(j\)
- \(c_{ij} \geq 0\) is the cost for agent \(i\) for being directly connected to agent \(j\)

More generally:
\[
\pi_i(g) = \sum_{j \in N_i(g)} v_{ij} - \sum_{j \in Nd_i(g)} c_{ij}
\]
where \(N_i(g)\) is the set of agents that \(i\) is connected to in \(g\), and where \(Nd_i(g)\) is the set of agents that \(i\) is directly connected to in \(g\).

Our model is mainly based on:
The Model of One-Way Flow Networks

An action for agent i is any subset S of $N\backslash\{i\}$ indicating the set of agents that i connects to directly.
The Model of One-Way Flow Networks

An **action** for agent i is any subset S of $\mathbb{N}\setminus\{i\}$ indicating the set of agents that i connects to directly.

A network g is a **Nash network** if each agent i is playing a best response in terms of his individual payoff $\pi_i(g)$.
“A Beautiful Mind”

John F. Nash

A Closer Look at Nash Networks

A network g is a Nash network if for each agent i

$$\pi_i(g) \geq \pi_i(g_{-i} + \{(j,i) : j \in S\})$$

for all subsets S of $N\{i\}$.

Here g_{-i} denotes the network derived from g by removing all direct links of agent i.
A Closer Look at Nash Networks

A network g is a Nash network if for each agent i

$$\pi_i(g) \geq \pi_i(g_{-i} + \{(j,i) : j \in S\})$$

for all subsets S of $N\setminus\{i\}$.

Here g_{-i} denotes the network derived from g by removing all direct links of agent i.

![Diagram of Nash Networks]
A Closer Look at Nash Networks

A network g is a Nash network if for each agent i

$$\pi_i(g) \geq \pi_i(g_{-i} + \{(j,i) : j \in S\})$$

for all subsets S of $N\setminus\{i\}$.

Here g_{-i} denotes the network derived from g by removing all direct links of agent i.

![Diagram of Nash Networks]
A Closer Look at Nash Networks

A network g is a Nash network if for each agent i

$$\pi_i(g) \geq \pi_i(g_{-i} + \{(j,i) : j \in S\})$$

for all subsets S of $N\backslash\{i\}$.

A set S that maximizes the right-hand side of above expression is called a best response for agent i to the network g.

In a Nash network each agent is linked to a best response.
A Closer Look at Nash Networks

A network g is a Nash network if for each agent i

$$\pi_i(g) \geq \pi_i(g_{-i} + \{(j,i): j \in S\})$$

for all subsets S of $N \setminus \{i\}$.

A set S that maximizes the right-hand side of above expression is called a best response for agent i to the network g.

In a Nash network each agent is linked to a best response.

Remark: If $c_{ik} > \Sigma_{j \neq i} v_{ij}$ for all agents $k \neq i$, then the only best response for agent i is the empty set \emptyset.
Owner-Homogeneous Costs

For each agent i all links are equally expensive: $c_{ij} = c_i$ for all j.
Owner-Homogeneous Costs

For each agent \(i \) all links are equally expensive: \(c_{ij} = c_i \) for all \(j \).

Observation for owner-homogeneous costs
If link \((j,k)\) exists in \(g \),
then for agent \(i \neq j,k \), linking with \(k \)
is at least as good as linking with \(j \).

“Downstream Efficiency”
Lemma

For any network formation game \((N, \nu, c)\) with owner-homogeneous costs and with \(c_i \leq \sum_{j \neq i} v_{ij}\) for all agents \(i\), all cycle networks are Nash networks.
Lemma

For any network formation game \((N, \nu, c)\) with owner-homogeneous costs and with \(c_i \leq \sum_{j \neq i} \nu_{ij}\) for all agents \(i\), all cycle networks are Nash networks.

Proof by examining agent 1:
Lemma

For any network formation game \((N,\nu,c)\) with owner-homogeneous costs and with \(c_i \leq \Sigma_{j \neq i} \nu_{ij}\) for all agents \(i\), all cycle networks are Nash networks.

Proof by examining agent 1:

When removing \((2,1)\) agent 1 looses profits from agents 2, 3, 4, 5, 6.
Lemma

For any network formation game \((N, v, c)\) with owner-homogeneous costs and with \(c_i \leq \sum_{j \neq i} v_{ij}\) for all agents \(i\), all cycle networks are Nash networks.

Proof by examining agent 1:

When replacing \((2,1)\) by \((4,1)\) agent 1 looses profits from agents 2 and 3.
Lemma

For any network formation game \((N,v,c)\) with owner-homogeneous costs and with \(c_i \leq \Sigma_{j \neq i} v_{ij}\) for all agents \(i\), all cycle networks are Nash networks.

Proof by examining agent 1:

When adding \((4,1)\) agent 1 pays an additional cost of \(c_{14}\).
Lemma

For any network formation game \((N,v,c)\) with owner-homogeneous costs and with \(c_i \leq \sum_{j \neq i} v_{ij}\) for all agents \(i\), all cycle networks are Nash networks.

Proof by examining agent 1:

Hence \(\{2\}\) is a best response for agent 1.
Theorem

For any network formation game \((N,v,c)\) with owner-homogeneous costs, a Nash network exists.
Theorem

For any network formation game \((N,v,c)\) with owner-homogeneous costs, a Nash network exists.

Proof by induction to the number of agents \(n\):
Theorem

For any network formation game \((N,v,c)\) with owner-homogeneous costs, a Nash network exists.

Proof by induction to the number of agents \(n\):

If \(n = 1\), then the trivial network is a Nash network.
Theorem

For any network formation game \((N,v,c)\) with owner-homogeneous costs, a Nash network exists.

Proof by induction to the number of agents \(n\):

If \(n = 1\), then the trivial network is a Nash network.

Induction hypothesis: Nash networks exist for all network games with less than \(n\) agents.
Theorem

For any network formation game \((N, v, c)\) with owner-homogeneous costs, a Nash network exists.

Proof by induction to the number of agents \(n\):

If \(n = 1\), then the trivial network is a Nash network.

Induction hypothesis: Nash networks exist for all network games with less than \(n\) agents.

Suppose that \((N, v, c)\) is a network game with \(n\) agents for which no Nash network exists.
Recall the Lemma:

For any network formation game \((N,v,c)\) with owner-homogeneous costs and with \(c_i \leq \sum_{j \neq i} v_{ij}\) for all agents \(i\), all cycle networks are Nash networks.
Proof Continued:

Hence there is at least one agent i with $c_i > \Sigma_{j\neq i} v_{ij}$.
Proof Continued:

Hence there is at least one agent i with $c_i > \sum_{j \neq i} v_{ij}$. W.l.o.g. this agent is agent n.
Proof Continued:

Hence there is at least one agent i with $c_i > \sum_{j \neq i} v_{ij}$. W.l.o.g. this agent is agent n.

Consider (N', v', c') with $N' = N \setminus \{n\}$ and with v and c restricted to agents in N'.
Proof Continued:

Hence there is at least one agent i with $c_i > \sum_{j \neq i} v_{ij}$.
W.l.o.g. this agent is agent n.
Consider (N', v', c') with $N' = N \setminus \{n\}$
and with v and c restricted to agents in N'.
Let g' be a Nash network in (N', v', c') (induction hypothesis).
Proof Continued:

Hence there is at least one agent i with $c_i > \Sigma_{j \neq i} v_{ij}$.
W.l.o.g. this agent is agent n.
Consider (N', v', c') with $N' = N \setminus \{n\}$
and with v and c restricted to agents in N'.
Let g' be a Nash network in (N', v', c') (induction hypothesis).
Then by assumption g' is no Nash network in (N, v, c).
Proof Continued:

Hence there is at least one agent i with $c_i > \sum_{j \neq i} v_{ij}$.
W.l.o.g. this agent is agent n.
Consider (N', v', c') with $N' = N \setminus \{n\}$ and with v and c restricted to agents in N'.
Let g' be a Nash network in (N', v', c') (induction hypothesis).
Then by assumption g' is no Nash network in (N, v, c).
Therefore there is an agent i for whom the links in g' are no best response in (N, v, c).
Proof Continued:

Hence there is at least one agent i with $c_i > \sum_{j \neq i} v_{ij}$.

W.l.o.g. this agent is agent n.

Consider (N', v', c') with $N' = N \setminus \{n\}$
and with v and c restricted to agents in N'.

Let g' be a Nash network in (N', v', c') (induction hypothesis).
Then by assumption g' is no Nash network in (N, v, c).

Therefore there is an agent i
for whom the links in g' are no best response in (N, v, c).
This agent i can not be agent n;
so w.l.o.g. this agent is agent 1
and he has a best response T with $n \in T$
and therefore $c_1 \leq v_{1n}$,
because agent n is not linked to anyone else.
Proof Continued:

Now recall that, by downstream efficiency, for any other agent i linking to agent 1 would be at least as good as linking to agent n.

Define $v_{ij}^* = \begin{cases}
 v_{ij} & \text{for } j \neq 1 \\
 v_{i1} + v_{in} & \text{for } i \neq 1, j = 1 \\
 v_{11} + v_{1n} - c_1 & \text{for } i = 1, j = 1
\end{cases}$
Proof Continued:

Now recall that, by downstream efficiency, for any other agent i linking to agent 1 would be at least as good as linking to agent n.

Define $v_{ij}^* = \begin{cases}
 v_{ij} & \text{for } j \neq 1 \\
 v_{i1} + v_{in} & \text{for } i \neq 1, j = 1 \\
 v_{11} + v_{1n} - c_1 & \text{for } i = 1, j = 1
\end{cases}$

Now $\pi^*_i(g) = \pi_i(g + (n,1))$ for any network g on N' and for any agent i in N'.

Proof Continued:

Now recall that, by downstream efficiency, for any other agent i linking to agent 1 would be at least as good as linking to agent n.

Define $v_{ij}^* = \begin{cases} v_{ij} & \text{for } j \neq 1 \\ v_{i1} + v_{in} & \text{for } i \neq 1, j = 1 \\ v_{11} + v_{1n} - c_1 & \text{for } i = 1, j = 1 \end{cases}$

Now $\pi_i^*(g) = \pi_i(g + (n,1))$ for any network g on N' and for any agent i in N'.

By the induction hypothesis the game (N',v^*,c') has a Nash network g^*.
Proof Continued:

In \(g^* \) all agents in \(N' \) play best responses w.r.t. \((N',v^*,c')\) because \(g^* \) is a Nash network.

By the way that \(v^* \) was defined, this implies that w.r.t. \((N,v,c)\) in \(g^* \) all agents in \(N' \) play best responses. And we still have that w.r.t. \((N,v,c)\) the only best response for agent \(n \) is to play \(\Phi \) in any network, particularly in \(g^* \).

Hence \(g^* \) is a Nash network in \((N,v,c)\), This contradicts the initial assumption that there is no Nash network in \((N,v,c)\). ■
Observation

For each network formation game with owner-homogeneous costs there exists at least one Nash network with at most one cycle and with every vertex having an out-degree of at most 1...

... but there may well be other Nash networks as well.
Example

This network g_1 is a Nash network where

$$\pi_i(g_1) = 4, \quad \pi_j(g_1) = 5, \quad \pi_k(g_1) = 5.$$

Notice that agent i and agent k have only one best response, but agent j is indifferent between linking to i or linking to k.
Example

If agent j replaces the link to i by one to k, then we get the network g_2 where the payoffs are still the same $\pi_i(g_2) = 4$, $\pi_j(g_2) = 5$, $\pi_k(g_2) = 5$.

However, g_2 is no Nash network since agent i can improve his payoff by removing the link to k.
Example

If agent \(i \) removes the link to \(k \), then we get the cycle network \(g_3 \) which is a Nash network with

\[
\pi_i(g_3) = 5, \quad \pi_j(g_3) = 5, \quad \pi_k(g_3) = 5.
\]
A Dynamic Procedure of Local Actions

Recall that an action for agent i is any subset S of $N \setminus \{i\}$ indicating the set of agents that i connects to directly.

A local action for agent i in a dynamic context is one of these:
- not changing anything in the network
- deleting one link (j,i)
- adding one link (k,i)
- replacing one link (j,i) by another link (k,i)

A network g is a local Nash network if each agent i is playing a best local response in terms of his individual payoff $\pi_i(g)$.
A Dynamic Procedure of Local Actions

Let g_t be the network at stage t and suppose that agent i plays a local action a that leads to the network g_{t+1} then we define action a to be a good local response if

$$\pi_i(g_{t+1}) \geq \pi_i(g_t)$$
A Dynamic Procedure of Local Actions

Start with an arbitrary network g_1 at stage 1. Let g_t be the network at stage t. If g_t is a local Nash network with maximum outdegree 1, then stop. Otherwise, choose an agent i at random and let i play a random good local response, which leads to the network g_{t+1} to be examined at stage $t+1$.

Theorem
This procedure ends in a global Nash network with probability 1.

(Proof skipped here)
Example without Nash Network

For network formation games \((N,v,c)\) with *heterogeneous* costs, Nash networks do not need to exist.
Example without Nash Network

For network formation games \((N, v, c)\) with heterogeneous costs, Nash networks do not need to exist.

A heterogeneous costs structure

other links to agent 1 cost \(1+\epsilon\)
other links to agent 2 cost \(2+\epsilon\)
other links to agents 3 and 4 cost \(3+\epsilon\)

profits \(v_{ij} = 1\) for all \(i\) and \(j\)
Example without Nash Network

For network formation games \((N,v,c)\) with heterogeneous costs, Nash networks do not need to exist.

A heterogeneous costs structure

other links to agent 1 cost \(1+\varepsilon\)
other links to agent 2 cost \(2+\varepsilon\)
other links to agents 3 and 4 cost \(3+\varepsilon\)

profits \(v_{ij} = 1\) for all \(i\) and \(j\)

Remark: profits are homogeneous and costs are \(\varepsilon\) close to homogeneous
Example without Nash Network

The cost/payoff structure

The arguments (part A)

In any Nash network, agent 3 and agent 4 would either play \{2\} or \emptyset.

other links to 1 cost 1+\epsilon
other links to 2 cost 2+\epsilon
other links to 3, 4 cost 3+\epsilon
profits \(v_{ij} = 1 \) for all \(i \) and \(j \)
Example without Nash Network

The cost/payoff structure

The arguments (part A)

In any Nash network
agent 3 and agent 4
would either play \{2\} or \Phi.
If agent 4 plays \{2\},
then agent 1 plays \{4\}.

other links to 1 cost 1+\epsilon
other links to 2 cost 2+\epsilon
other links to 3, 4 cost 3+\epsilon
profits \(v_{ij} = 1 \) for all \(i \) and \(j \)
Example without Nash Network

The cost/payoff structure

- Other links to 1 cost 1+ε
- Other links to 2 cost 2+ε
- Other links to 3, 4 cost 3+ε
- Profits $v_{ij} = 1$ for all i and j

The arguments (part A)

In any Nash network, agent 3 and agent 4 would either play $\{2\}$ or \emptyset.
If agent 4 plays $\{2\}$, then agent 1 plays $\{4\}$.
Then agent 2 plays $\{1\}$, because agent 3 never plays $\{1\}$.
Example without Nash Network

The cost/payoff structure

In any Nash network agent 3 and agent 4 would either play \{2\} or \emptyset.
If agent 4 plays \{2\}, then agent 1 plays \{4\}.
Then agent 2 plays \{1\}, because agent 3 never plays \{1\}.
Then agent 3 plays \{2\}.

profits $v_{ij} = 1$ for all i and j
Example without Nash Network

The cost/payoff structure

The arguments (part A)

In any Nash network agent 3 and agent 4 would either play \{2\} or \Phi.

If agent 4 plays \{2\}, then agent 1 plays \{4\}.

Then agent 2 plays \{1\}, because agent 3 never plays \{1\}.

Then agent 3 plays \{2\}.

Then agent 4 should play \Phi.

other links to 1 cost 1+\varepsilon
other links to 2 cost 2+\varepsilon
other links to 3, 4 cost 3+\varepsilon
profits \(v_{ij} = 1\) for all \(i\) and \(j\)
Example without Nash Network

The cost/payoff structure

The arguments (part A)

In any Nash network
agent 3 and agent 4
would either play \{2\} or \emptyset.
If agent 4 plays \{2\},
then agent 1 plays \{4\}.
Then agent 2 plays \{1\},
because agent 3 never plays \{1\}.
Then agent 3 plays \{2\}.
Then agent 4 should play \emptyset.

A contradiction
Example without Nash Network

The cost/payoff structure

In any Nash network agent 3 and agent 4 would either play \{2\} or Φ. If agent 4 plays Φ, then agent 1 plays S containing 4.
Example without Nash Network

The cost/payoff structure

The cost/payoff structure is visualized in the diagram. The nodes represent agents, and the arrows indicate the costs associated with each link.

- Node 1 and Node 3 have a Cost of 1-\(\varepsilon\)
- Node 4 has a Cost of 2-\(\varepsilon\)
- Node 2 and Node 4 have a Cost of 3-\(\varepsilon\)

The arguments (part B)

In any Nash network, agent 3 and agent 4 would either play \{2\} or \Phi. If agent 4 plays \Phi, then agent 1 plays \(S\) containing 4. Then agent 2 plays \{1\}.

Other links:
- Other links to Node 1 cost \(1+\varepsilon\)
- Other links to Node 2 cost \(2+\varepsilon\)
- Other links to Nodes 3 and 4 cost \(3+\varepsilon\)

Profits:
- \(v_{ij} = 1\) for all \(i\) and \(j\)
Example without Nash Network

The cost/payoff structure

1

1-ε

4

2-ε

3

3-ε

2

The arguments (part B)

In any Nash network
agent 3 and agent 4
would either play \{2\} or Φ.
If agent 4 plays Φ,
then agent 1 plays S containing 4.
Then agent 2 plays \{1\}.
Then agent 3 plays \{2\}.

other links to 1 cost 1+ε
other links to 2 cost 2+ε
other links to 3, 4 cost 3+ε
profits v_{ij} = 1 for all i and j
Example without Nash Network

The cost/payoff structure

- Other links to 1 cost $1 + \varepsilon$
- Other links to 2 cost $2 + \varepsilon$
- Other links to 3, 4 cost $3 + \varepsilon$
- Profits $v_{ij} = 1$ for all i and j

The arguments (part B)

In any Nash network, agent 3 and agent 4 would either play $\{2\}$ or Φ.
- If agent 4 plays Φ, then agent 1 plays S containing 4.
- Then agent 2 plays $\{1\}$.
- Then agent 3 plays $\{2\}$.
- Then agent 1 plays $\{3, 4\}$.
Example without Nash Network

The cost/payoff structure

The arguments (part B)

In any Nash network
agent 3 and agent 4
would either play \{2\} or \emptyset.
If agent 4 plays \emptyset,
then agent 1 plays \mathcal{S} containing 4.
Then agent 2 plays \{1\}.
Then agent 3 plays \{2\}.
Then agent 1 plays \{3, 4\}.
Then agent 4 should play \{2\}.
Example without Nash Network

The cost/payoff structure

The arguments (part B)

In any Nash network
agent 3 and agent 4 would either play \{2\} or \emptyset.
If agent 4 plays \emptyset, then agent 1 plays S containing 4.
Then agent 2 plays \{1\}.
Then agent 3 plays \{2\}.
Then agent 1 plays \{3,4\}.
Then agent 4 should play \{2\}.

Again a contradiction
Concluding Remarks

Independently, an alternative proof for our theorem is given by:

Yet another proof, based directly on Billand et al., is given in:

The results presented can be found in:

Thank you for your attention!

The paper and presentation will be available at my homepage.

Comments are welcome any time.