Evolutionary Games and Local Interactions

Frank Thuijsman

joint work with Philippe Uyttendaele, Mandy Tak, Ronald Westra

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Concluding Remarks

1973, John Maynard Smith and George Price

Evolutionary Games

- Population of different types playing against itself.
- Population distribution $p = (p_1, p_2, \dots, p_n)$.
- Type k has fitness $e_k A p^T$ in population p.
- Concept of evolutionarily stable strategies (ESS).

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

The ESS Concept

Evolutionary Games

ESS: Population distribution $p = (p_1, p_2, \dots, p_n)$ with

•
$$pAp^{T} \ge qAp^{T}$$
 for all q

• If
$$q \neq p$$
 and $qAp^{T} = pAp^{T}$, then $pAq^{T} > qAq^{T}$

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Concluding Remarks

The Replicator Dynamic by Taylor and Jonker, 1978

Evolutionary Games

Population development by the replicator equation:

•
$$\dot{p}_k = p_k \left(e_k A p^{\mathrm{T}} - p A p^{\mathrm{T}} \right)$$

Concluding Remarks

Remarks on ESS and Replicator Dynamic

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Local Interactions

Concluding Remarks

Remarks on ESS and Replicator Dynamic

Model assumes a homogeneously mixed population

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Remarks on ESS and Replicator Dynamic

- Model assumes a homogeneously mixed population
- What if the population is not homogeneously mixed?

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Remarks on ESS and Replicator Dynamic

- Model assumes a homogeneously mixed population
- What if the population is not homogeneously mixed?
- Replicator dynamic based on average payoffs

Remarks on ESS and Replicator Dynamic

- Model assumes a homogeneously mixed population
- What if the population is not homogeneously mixed?
- Replicator dynamic based on average payoffs
- What if the process is driven by actual payoffs?

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Concluding Remarks

Several Models of Local Interactions

• Basic model: playing with the neighbours

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

- Basic model: playing with the neighbours
- Varying fitness in space and time

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

- Basic model: playing with the neighbours
- Varying fitness in space and time
- Actual payoffs versus average payoffs

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

- Basic model: playing with the neighbours
- Varying fitness in space and time
- Actual payoffs versus average payoffs
- Different types of neighbourhoods

Local Interactions

Concluding Remarks

Basic Model: Playing with the Neighbours

- Field consists of hexagonal cells.
- Each cell contains exactly one type.

Concluding Remarks

Basic Model - Neighbourhood

- Each cell c interacts with its neighbourhood.
- Neighbourhood is defined by distance *M*: all cells within distance *M* belong to neighbourhood of *c*.

Concluding Remarks

Updating the Field

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Concluding Remarks

Updating the Field

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Concluding Remarks

$\begin{bmatrix} 2 & 3 & 1 \\ 0 & 5 & 2 \\ 4 & -1 & 1 \end{bmatrix}$

Updating the Field

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Concluding Remarks

Updating the Field

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Concluding Remarks

Updating the Field

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Updating the Field

Local Interactions

Concluding Remarks

$\begin{pmatrix} 2 & 3 & 1 \\ 0 & 5 & 2 \\ 4 & -1 & 1 \end{pmatrix}$

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Updating the Field

Local Interactions

Concluding Remarks

$\begin{pmatrix} 2 & 3 & 1 \\ 0 & 5 & 2 \\ 4 & -1 & 1 \end{pmatrix}$

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Concluding Remarks

Updating the Field

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Concluding Remarks

Updating the Field

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Concluding Remarks

Updating the Field

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Local Stability

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Local Interactions

Concluding Remarks

Dynamic Stability: Predator-Prey Behaviour

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Concluding Remarks

Varying Fitness in Space and Time

$$A(x_2,t) = \begin{pmatrix} 0 & 0 & 2 + \sin\left(\frac{t+x_2}{20} \cdot 2\pi\right) \\ 0.7 & 0 & 0.7 \\ 2 - \sin\left(\frac{t+x_2}{20} \cdot 2\pi\right) & 0 & 0 \end{pmatrix}$$

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Concluding Remarks

Varying Fitness in Space and Time

This example is dedicated to Sylvain

$$A(x_2,t) = \begin{pmatrix} 0 & 0 & 2 + \sin\left(\frac{t+x_2}{20} \cdot 2\pi\right) \\ 0.7 & 0 & 0.7 \\ 2 - \sin\left(\frac{t+x_2}{20} \cdot 2\pi\right) & 0 & 0 \end{pmatrix}$$

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Local Interactions

Concluding Remarks

Varying Fitness in Space and Time

We All Need Love!

$$A(x_2,t) = \begin{pmatrix} 0 & 0 & 2 + \sin\left(\frac{t+x_2}{20} \cdot 2\pi\right) \\ 0.7 & 0 & 0.7 \\ 2 - \sin\left(\frac{t+x_2}{20} \cdot 2\pi\right) & 0 & 0 \end{pmatrix}$$

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Local Interactions

Concluding Remarks

Varying Fitness in Space and Time

We All Need Sylvain!

$$A(x_2, t) = \begin{pmatrix} 0 & 0 & 2 + \sin\left(\frac{t + x_2}{20} \cdot 2\pi\right) \\ 0.7 & 0 & 0.7 \\ 2 - \sin\left(\frac{t + x_2}{20} \cdot 2\pi\right) & 0 & 0 \end{pmatrix}$$

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Local Interactions

Concluding Remarks

Dynamic Stability

Happy Birthday Sylvain!

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Local Interactions

Concluding Remarks

Directional Interactions – Using Only One Neighbour

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Local Interactions

Concluding Remarks

Local Updating without Neighbour Support – Small Time Steps

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Local Interactions

Concluding Remarks

Local Updating without Neighbour Support – Big Time Steps

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Applications in Micro-Biology

- B. Kerr, M.A. Riley, M.W. Feldman, B.J.M. Bohannan (2002): Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors *Nature* 418, 171-174.
- B.C. Kirkup, M.A. Riley (2004): Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. *Nature* 428, 412-414.

Concluding Remarks

Applications in Micro-Biology

Concluding Remarks

Applications in Micro-Biology

Figure 1 Occupation of co-caged mice by dominant strain: colicin E1. The boxes are coloured to show the dominant strain occupying each mouse. Red represents colicinogenic (C_{F1}); green, resistant; blue, sensitive.

NATURE | VOL 428 | 25 MARCH 2004 | www.nature.com/nature

©2004 Nature F

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Local Interactions

Concluding Remarks

Numerical Interactions with Neighbour Support

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Local Interactions

Concluding Remarks

Numerical Interactions with Neighbour Support

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Local Interactions

Concluding Remarks

Numerical Interactions with Neighbour Support

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Local Interactions

Concluding Remarks

Numerical Interactions with Neighbour Support

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	ocal Interactions	Concluding Remarks
00000 0	000000000000000000000000000000000000000	

Numerical Interactions with Neighbour Support – Small Time Steps

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	Local Interactions	Concluding Remarks
	000000000000000000000000000000000000000	

Numerical Interactions with Neighbour Support – Big Time Steps

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Local Interactions

Concluding Remarks

Recall: Local Interactions without Neighbour Support

For the same matrix

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Concluding Remarks

Other Population Development Work

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Studying ovipositioning behavior of parasitoid wasps

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

- Studying ovipositioning behavior of parasitoid wasps
- Studying the interactions of phytoseiid mites

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

- Studying ovipositioning behavior of parasitoid wasps
- Studying the interactions of phytoseiid mites
- Studying the development of obesity among people

- Studying ovipositioning behavior of parasitoid wasps
- Studying the interactions of phytoseiid mites
- Studying the development of obesity among people
- One (or two) PhD projects starting September 2012

Thank you for your attention! Any comment is welcome!

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University