Results 0000000 Concluding Remarks

Network Characteristics and Efficient Coordination

Frank Thuijsman

joint work with

Abhimanyu Khan, Ronald Peeters, Philippe Uyttendaele

Maastricht University

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Concluding Remarks

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Results 0000000	Concluding Remarks
Coordination Ga	me		

Assumptions:

- a > c, d > b: pure equilibria (P, P) and (R, R);
- 2 a > d: payoff on *P* Pareto dominates payoff on *R*;
- **(3)** c > b: in case of miscoordination, *R* is safer.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Population of Players

Assumptions:

- even number of players;
- Players are connected in (social) network;
- at discrete stages 1, 2, 3, ... players are randomly matched to other players;
- at each stage, each player chooses P or R by imitating neighbor with highest realized payoff;
- neighbors of a player include the player himself.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Results ooooooo	Concluding Remarks
The Imitation Rul	е		

Please note:

A player imitates P, if at least one P neighbor was matched to a P node.

$$\begin{array}{c|cccc}
P & R \\
P & 6,6 & 0,3 \\
R & 3,0 & 4,4
\end{array}$$

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction oo●oo	A Simulation Study	Results ooooooo	Concluding Remarks
The Imitation Rul	e		

Please note:

- A player imitates P, if at least one P neighbor was matched to a P node.
- A player imitates R, if all P neighbors were matched to R nodes.

$$\begin{array}{c|cccc}
P & R \\
P & 6,6 & 0,3 \\
R & 3,0 & 4,4
\end{array}$$

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Goal of Study

We want to investigate the influence of network characteristics:

- on convergence to the efficient outcome P;
- In the speed of convergence to the efficient outcome P.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Results	Concluding Remarks
00000			
Related Work			

- **Robson A and Vega-Redondo F** (1996). Efficient equilibrium selection in evolutionary games with random matching. *Journal of Economic Theory* 70 (1): 65-92.
- Chen H-C, Chow Y and Wu L-C (2013). Imitation, local interaction, and coordination. *International Journal of Game Theory* 42 (4): 1041-1057.
- Alós-Ferrer C and Weidenholzer S (2008). Contagion and efficiency. *Journal of Economic Theory* 143 (1): 251-274.
- Khan A (2013). Coordination under global random interaction and local imitation. Forthcoming *International Journal of Game Theory*.

Introduction	A Simulation Study	Results	Concluding Remarks
00000			
Related Work			

- **Robson A and Vega-Redondo F** (1996). Efficient equilibrium selection in evolutionary games with random matching. *Journal of Economic Theory* 70 (1): 65-92.
- Chen H-C, Chow Y and Wu L-C (2013). Imitation, local interaction, and coordination. *International Journal of Game Theory* 42 (4): 1041-1057.
- Alós-Ferrer C and Weidenholzer S (2008). Contagion and efficiency. *Journal of Economic Theory* 143 (1): 251-274.
- Khan A (2013). Coordination under global random interaction and local imitation. Forthcoming *International Journal of Game Theory*. (global interaction, local imitation)

Introduction	A Simulation Study	Results	Concluding Remarks
00000			
Related Work			

- **Robson A and Vega-Redondo F** (1996). Efficient equilibrium selection in evolutionary games with random matching. *Journal of Economic Theory* 70 (1): 65-92.
- Chen H-C, Chow Y and Wu L-C (2013). Imitation, local interaction, and coordination. *International Journal of Game Theory* 42 (4): 1041-1057.
- Alós-Ferrer C and Weidenholzer S (2008). Contagion and efficiency. *Journal of Economic Theory* 143 (1): 251-274. (local interaction, global imitation)
- Khan A (2013). Coordination under global random interaction and local imitation. Forthcoming *International Journal of Game Theory*. (global interaction, local imitation)

Introduction	A Simulation Study	Results	Concluding Remarks
00000			
Related Work			

- **Robson A and Vega-Redondo F** (1996). Efficient equilibrium selection in evolutionary games with random matching. *Journal of Economic Theory* 70 (1): 65-92.
- Chen H-C, Chow Y and Wu L-C (2013). Imitation, local interaction, and coordination. *International Journal of Game Theory* 42 (4): 1041-1057. (local interaction, local imitation)
- Alós-Ferrer C and Weidenholzer S (2008). Contagion and efficiency. *Journal of Economic Theory* 143 (1): 251-274. (local interaction, global imitation)
- Khan A (2013). Coordination under global random interaction and local imitation. Forthcoming International Journal of Game Theory. (global interaction, local imitation)

Introduction	A Simulation Study	Results	Concluding Remarks
00000			
Related Work			

- Robson A and Vega-Redondo F (1996). Efficient equilibrium selection in evolutionary games with random matching. *Journal of Economic Theory* 70 (1): 65-92. (global interaction, global imitation)
- Chen H-C, Chow Y and Wu L-C (2013). Imitation, local interaction, and coordination. *International Journal of Game Theory* 42 (4): 1041-1057. (local interaction, local imitation)
- Alós-Ferrer C and Weidenholzer S (2008). Contagion and efficiency. *Journal of Economic Theory* 143 (1): 251-274. (local interaction, global imitation)
- Khan A (2013). Coordination under global random interaction and local imitation. Forthcoming *International Journal of Game Theory*. (global interaction, local imitation)

Introduction	A Simulation Study	Results ooooooo	Concluding Remarks
Two Types of Net	works		

Small-World Networks

Scale-Free Networks

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Two Types of Networks

Small-World Networks

These match empirical data on, for example, authorship networks.

Scale-Free Networks

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Two Types of Networks

Small-World Networks

These match empirical data on, for example, authorship networks.

Scale-Free Networks

These match empirical data on, for example, web page networks.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Results 000000	Concluding Remarks
Scale-Free Netwo	orks		

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Results	Concluding Remarks
Scale-Free Netwo	orks		

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Results 000000	Concluding Remarks
Scale-Free Netwo	orks		

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Results 0000000	Concluding Remarks
Scale-Free Netwo	orks		

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Results 0000000	Concluding Remarks
Scale-Free Netwo	orks		

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

_

Results

Concluding Remarks

Networks of Different Size and Degree

	Small-World Networks	Scale-Free Networks
Parameter	Values	Values
Population size Number of links per node Relinking probability	100, 200 and 300 4, 6 and 8 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70,	100, 200 and 300 4, 6 and 8 (approx.)
Number of reconfigurations	100	100
Share of nodes seeded with strategy <i>P</i>	0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40 and 0.45	0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40 and 0.45
Number of reconfigurations (per network)	100	100
Number of initial configurations Number of runs per initial configuration Total number of runs	9,900,000 100 990,000,000	900,000 100 90,000,000

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Results 0000000	Concluding Remarks
Network Simulati	ons		

Introduction	A Simulation Study	Results ooooooo	Concluding Remarks
Network Simulati	ons		

This gave a total of 1,080,000,000 simulations.

Introduction 00000	A Simulation Study	Results ০০০০০০০	Concluding Remarks
Network Simulati	ons		

This gave a total of 1,080,000,000 simulations.

Each simulation ran until all nodes were of the same type.

This gave a total of 1,080,000,000 simulations.

Each simulation ran until all nodes were of the same type.

At each stage all nodes were randomly paired to other nodes.

This gave a total of 1,080,000,000 simulations.

Each simulation ran until all nodes were of the same type.

At each stage all nodes were randomly paired to other nodes.

At each stage, each node played the strategy that, among all its neighbors, did best at the previous stage. Please note: each node is a neighbor of itself.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

00000	0000000000	0000000	
An Example on a	Small-World Network		

$$\begin{array}{c|ccc}
P & R \\
P & 6,6 & 0,3 \\
R & 3,0 & 4,4
\end{array}$$

Initially 20% *P*, type 1, white

Re-wiring prob. 0.2

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

00000	00000000	0000000	000
Introduction	A Simulation Study	Results	Concluding Remarks

$$\begin{array}{c|ccc}
P & R \\
P & 6,6 & 0,3 \\
R & 3,0 & 4,4
\end{array}$$

Initially 20% *P*, type 1, white

Re-wiring prob. 0.2

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

A			
	000000000		
Introduction	A Simulation Study	Results	Concluding Remarks

$$\begin{array}{c|ccc}
P & R \\
P & 6,6 & 0,3 \\
R & 3,0 & 4,4
\end{array}$$

Initially 20% *P*, type 1, white

Re-wiring prob. 0.2

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

A			
	000000000		
Introduction	A Simulation Study	Results	Concluding Remarks

$$\begin{array}{c|ccc}
P & R \\
P & 6,6 & 0,3 \\
R & 3,0 & 4,4
\end{array}$$

Initially 20% *P*, type 1, white

Re-wiring prob. 0.2

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

A			
	000000000		
Introduction	A Simulation Study	Results	Concluding Remarks

$$\begin{array}{c|ccc}
P & R \\
P & 6,6 & 0,3 \\
R & 3,0 & 4,4
\end{array}$$

Initially 20% *P*, type 1, white

Re-wiring prob. 0.2

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction 00000	A Simulation Study	Results 0000000	Concluding I
An Example on a	Scale-Free Network		

Initially 20% *P*, type 1, white

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Intr	od	tio	
	oc		

A Simulation Study

Results

Concluding Remarks

An Example on a Scale-Free Network

Initially 20% *P*, type 1, white

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	

A Simulation Study

Results

Concluding Remarks

An Example on a Scale-Free Network

Initially 20% *P*, type 1, white

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

A Simulation Study

Results

Concluding Remarks

An Example on a Scale-Free Network

$$\begin{array}{c|ccc}
P & R \\
\hline
P & 6,6 & 0,3 \\
R & 3,0 & 4,4
\end{array}$$

Initially 20% *P*, type 1, white

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

A Simulation Study

Results

Concluding Remarks

An Example on a Scale-Free Network

Initially 20% *P*, type 1, white

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

- Size: number of nodes
- Density: fraction of links used in network
- Degree: mean and s.d. of degree per node
- Power: mean and s.d. of power per node

- Share of *P* nodes: fraction of *P* nodes
- Degree of P nodes: mean and s.d. of degree per P node
- Power of P nodes: sum, mean and s.d.
- Segregation of *P* nodes: measure using random walks
- Segregation of R nodes: same

Introduction	A Simulation Study	Results	Concluding Remarks
ooooo Variables to F	•••••••••••	000000	000

- Payoff Dominant Wins: proportion of P wins over 100 runs
- Mean Convergence Time to *P* wins: just what it says, but conditioned on the *P* equilibrium being reached at least 75% of 100 runs

A Simulation Study

Results

Concluding Remarks

Regression Analysis on P Wins

Using Size 200 and DegreeMean 6 as baseline:

	Small-world network		Scale-free ne	Scale-free network	
Variable	Coef.	Robust Std. Err.	Coef.	Robust Std. Err.	
Size 100 Size 300 DegreeMean 4 DegreeMean 8 Share of <i>P</i> nodes Degree of <i>P</i> nodes: stdev Degree of <i>P</i> nodes: stdev Power of <i>P</i> nodes: mean Power of <i>P</i> nodes: stdev Segregation (norm.) of <i>P</i> nodes Segregation (norm.) of <i>R</i> nodes	018594 .006113 108388 .056573 2.714903 .012908 1.468833 029758 662857	(.000166) (.000145) (.000160) (.000143) (.000565) (.000148) (.072851) (.000102) (.002816)	052502 .019339 044391 .017596 2.397553 .014391 3.910410 109114 151357	(.000853) (.000503) (.000407) (.000436) (.001748) (.000112) (.143479) (.000632) (.000632)	
Constant	.698200	(.003861)	.305024	(.004809)	
Number of obs. R-squared	9,900,000 0.8508		900 0.8	,000 562	

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Small-World Classification Tree Analysis on *P Wins*

Selection	Convergence to P mean std		Number of Initializations	
Original dataset	59.9%	42.8%	(9,900,000)	
Segregation (norm.) of P nodes < 1.204 Segregation (norm.) of P nodes \ge 1.204	86.7% 12.2%	24.3% 22.3%	(6,348,644) (3,551,356)	

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Scale-Free Classification Tree Analysis on *P Wins*

Selection	Convergence to P mean std		Number of Initializations	
Original dataset	63.7%	40.7%	(900,000)	
Segregation (norm.) of <i>P</i> nodes < 1.302 Segregation (norm.) of <i>P</i> nodes ≥ 1.302	77.6% 15.5%	32.8% 25.9%	(698,078) (201,992)	

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Results	Concluding Remarks
		0000000	
Degracion Analy	iala an Canvarganaa	Time to D Wine	
Regression Analy	sis on <i>Convergence</i>	lime to P wins	

Using Size 200 and DegreeMean 6 as baseline:

	Small-world network		Scale-free network	
Variable	Coef.	Robust Std. Err.	Coef.	Robust Std. Err.
Size 100 Size 300 DegreeMean 4 DegreeMean 8 Share of <i>P</i> nodes Degree of nodes: stdev	.091336 .021843 1.344045 594475 -11.159790 -1.070549	(.001514) (.001079) (.001665) (.000933) (.004769) (.001585)	-1.276585 1.136900 .988007 483977 032329	(.006075) (.002419) (.001444) (.001010) (.000027)
Degree of <i>P</i> nodes: stdev Power of <i>P</i> nodes: mean Power of <i>P</i> nodes: stdev Segregation (norm.) of <i>P</i> nodes Segregation (norm.) of <i>R</i> nodes Constant	-247.282000 5.531019 3.704960 228171	(.900051) (.014139) (.022408) (.034900)	053317 -18.726130 .496119 1.447586 4.141509	(.000462) (1.124271) (.010822) (.019315) (.028758)
Number of obs. R-squared	5,265,575 0.7788		501,081 0.9014	

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Comparing Scale-Free and Small-World Networks

- In both cases Size, DegreeMean, Share of P nodes and SD of P degree have a positive effect on efficient coordination.
- In both cases Segregation of P nodes and Segregation of R nodes have a negative effect on efficient coordination.
- In both cases Segregation of P nodes is the most important variable to decide on convergence to P or to R.
- In both cases DegreeMean, Share of P nodes, Segregation of P nodes and Segregation of R nodes have a positive effect on convergence time for those initializations with at least 0.75 convergence, while for both types of networks Share of P nodes has a negative effect.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Comparing Scale-Free and Small-World Networks

- In both cases Size, DegreeMean, Share of P nodes and SD of P degree have a positive effect on efficient coordination.
- In both cases Segregation of P nodes and Segregation of R nodes have a negative effect on efficient coordination.
- In both cases Segregation of P nodes is the most important variable to decide on convergence to P or to R.
- In both cases DegreeMean, Share of P nodes,
 Segregation of P nodes and Segregation of R nodes have a positive effect on convergence time for those initializations with at least 0.75 convergence, while for both types of networks Share of P nodes has a negative effect.
 Please note: A positive effect on convergence time, means that the process takes longer to converge.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

A Simulation Stud

Results

Concluding Remarks

Experiments with More Types

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

A Simulation Stud

Results

Concluding Remarks

Experiments with More Types

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

A Simulation Stud

Results

Concluding Remarks

Experiments with More Types

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

A Simulation Stud

Results

Concluding Remarks

Experiments with More Types

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

A Simulation Stud

Results

Concluding Remarks

Experiments with More Types

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

A Simulation Stud

Results 0000000 Concluding Remarks

Experiments with More Types

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

A Simulation Stud

Results

Concluding Remarks

Experiments with More Types

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

A Simulation Stud

Results

Concluding Remarks

Experiments with More Types

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

A Simulation Study

Results

Concluding Remarks

New Experiments in Maastricht

Local **evolutionary** dynamics, where we experiment with the effect of interaction radius and offspring radius on segregation in a grid free world.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Thank you for your attention! Comments will be appreciated!

Paper is available and Presentation will be posted on https://dke.maastrichtuniversity.nl/f.thuijsman/

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University