Introduction

A Simulation Study

Characteristics

Results

Other Networks

More Types

Network Characteristics and Efficient Coordination

Frank Thuijsman

joint work with

Abhimanyu Khan, Ronald Peeters, Philippe Uyttendaele

Maastricht University

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types
Outline					

- A Simulation Study
- 3 Characteristics

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types
Coordina	ation Game				

	Ρ	R
Ρ	<i>a</i> , a	b, c
R	<i>c</i> , <i>b</i>	d, d

Assumptions:

- a > c, d > b: pure equilibria (P, P) and (R, R);
- 2 a > d: payoff on *P* Pareto dominates payoff on *R*;
- **(3)** c > b: in case of mis-coordination, *R* is safer.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types
Populatio	n of Players				

Assumptions:

- even number of players;
- Players are connected in (social) network;
- at discrete stages 1, 2, 3, ... players are randomly matched to other players;
- at each stage each player chooses P or R by imitating neighbor with highest realized payoff;
- neighbors include self.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types
Goal of S	tudy				

We want to investigate the influence of network characteristics:

- on convergence to the efficient outcome P;
- on the speed of convergence to a homogeneous population.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Motivation:

Scale-free networks match empirical data on networks Few nodes with high degree, many nodes with low degree.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Motivation:

Scale-free networks match empirical data on networks Few nodes with high degree, many nodes with low degree.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Motivation:

Scale-free networks match empirical data on networks Few nodes with high degree, many nodes with low degree.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Motivation:

Scale-free networks match empirical data on networks Few nodes with high degree, many nodes with low degree.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Motivation:

Scale-free networks match empirical data on networks Few nodes with high degree, many nodes with low degree.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types
	0000				
Network	s of Different S	ize and Degr	ee		

We created scale-free networks with 100, 200 and 300 nodes.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

We created scale-free networks with 100, 200 and 300 nodes.

For each of these we examined:

- 100 networks with average degree 4;
- 100 networks with average degree 6;
- 100 networks with average degree 8.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

We created scale-free networks with 100, 200 and 300 nodes.

For each of these we examined:

- 100 networks with average degree 4;
- 100 networks with average degree 6;
- 100 networks with average degree 8.

This gave a total of 900 different networks.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types
Network	Initializations				

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types
Network	Initializations				

These initializations were made by creating 100 random colorings for each of 12 fixed fractions of P nodes.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types
Network	Initializations				

These initializations were made by creating 100 random colorings for each of 12 fixed fractions of P nodes.

We used the following 12 fractions: 0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types
Network	Initializations				

These initializations were made by creating 100 random colorings for each of 12 fixed fractions of P nodes.

We used the following 12 fractions: 0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50.

This gave 1,080,000 different initializations.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types
Network	Simulations				

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types
Network	Simulations				

This gave a total of 108,000,000 simulations.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types
Network Simulations					

This gave a total of 108,000,000 simulations.

Each simulation ran until all nodes were of the same type.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types	
Network Simulations						

This gave a total of 108,000,000 simulations.

Each simulation ran until all nodes were of the same type.

At each stage all nodes were randomly paired to other nodes.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types
Network Simulations					

This gave a total of 108,000,000 simulations.

Each simulation ran until all nodes were of the same type.

At each stage all nodes were randomly paired to other nodes.

Each node played the strategy that did best among its neighbors (each node is one of its own neighbors).

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Initially 20% *P*, type 1, white

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Initially 20% *P*, type 1, white

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Initially 20% *P*, type 1, white

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

An Example on a Scale Free Network

Initially 20% *P*, type 1, white

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

An Example on a Scale Free Network

Initially 20% *P*, type 1, white

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types		
		000					
Network Specific Characteristics (NSC)							

- Size:
- Density:
- Degree:
- Power:

- Size: number of nodes
- Density:
- Degree:
- Power:

- Size: number of nodes
- Density: fraction of links used in network
- Degree:
- Power:

- Size: number of nodes
- Density: fraction of links used in network
- Degree: mean and s.d. of degree per node
- Power.

- Size: number of nodes
- Density: fraction of links used in network
- Degree: mean and s.d. of degree per node
- Power: mean and s.d. of power per node

- Share of P nodes:
- Degree of P nodes:
- Power of P nodes:
- Segregation of P nodes:
- Segregation of R nodes:

- Share of P nodes: fraction of P nodes
- Degree of P nodes:
- Power of P nodes:
- Segregation of P nodes:
- Segregation of R nodes:

- Share of P nodes: fraction of P nodes
- Degree of P nodes: mean and s.d. of degree per P node
- Power of P nodes:
- Segregation of P nodes:
- Segregation of R nodes:

- Share of P nodes: fraction of P nodes
- Degree of P nodes: mean and s.d. of degree per P node
- Power of P nodes: sum, mean and s.d.
- Segregation of P nodes:
- Segregation of R nodes:

- Share of P nodes: fraction of P nodes
- Degree of P nodes: mean and s.d. of degree per P node
- Power of P nodes: sum, mean and s.d.
- Segregation of P nodes: measure using random walks
- Segregation of R nodes: same

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types		
Variables	Variables to Explain						

- Payoff Dominant Wins:
- Mean Convergence Time:

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types
Variables	to Explain				

- Payoff Dominant Wins: proportion of P wins
- Mean Convergence Time:

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types
Variables	to Explain				

- Payoff Dominant Wins: proportion of P wins
- *Mean Convergence Time*: just what it says

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types
Variables	to Explain				

- Payoff Dominant Wins: proportion of P wins
- *Mean Convergence Time*: just what it says

Each of these is measured over 100 runs for any specific choice of initialized network.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Number of Initializations for *P* Wins Proportions

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types			
000	00000	000	00000	00000000000	0000			
Regression Analysis on Payoff Dominant Wins								
They cool	ricgression Analysis on rayon bonniant wins							

For the Scale Free Networks Examined:

Variable	Coef.	Effect
Size	0.000117	positive
Degree: mean	0.011441	positive
Share of <i>P</i> nodes	2.182151	positive
Degree of P nodes: stdev	0.014224	positive
Power of P nodes: stdev	-2.428675	negative
Segregation (norm.) of P nodes	-0.053563	negative
Segregation (norm.) of R nodes	-0.134324	negative
Constant	0.171971	_
Number of obs. R-squared	1,080 0.84	,

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Number of Initializations for Convergence Time

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

000	00000	000	00000			
Regression Analysis on <i>Convergence Time</i>						

For the Scale Free Networks Examined:

Variable	Coef.	Effect	
Size	0.00233	positive	
Degree: mean	-0.37935	negative	
Share of <i>P</i> nodes	0.30642	positive	
Degree of <i>P</i> nodes: stdev	0.10754	positive	
Power of P nodes: stdev	4.10292	positive	
Segregation (norm.) of P nodes	-0.81094	negative	
Segregation (norm.) of R nodes	1.66375	positive	
Constant	3.64648		
Number of obs.	1,080,000		
R-squared	0.4691		

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

000		000	00000	00000000000	0000
Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types

Classification Tree Analysis on *Payoff Dominant Wins*

For the Scale Free Networks Examined:

Selection	Converge mean	ence to P std	Number of Initializations	
Original dataset	63.2%	42.0%	(1,050,000)	
Segregation (norm.) of <i>P</i> nodes < 1.302 Segregation (norm.) of <i>P</i> nodes ≥ 1.302	80.1% 12.0%	31.7% 23.7%	(788,193) (261,807)	

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

$$\begin{array}{c|ccc}
P & R \\
P & 6,6 & 0,3 \\
R & 3,0 & 4,4
\end{array}$$

Initially 20% *P*, type 1, white

Re-wiring prob. 0.2

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

$$\begin{array}{c|ccc}
P & R \\
P & 6,6 & 0,3 \\
R & 3,0 & 4,4
\end{array}$$

Initially 20% *P*, type 1, white

Re-wiring prob. 0.2

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

$$\begin{array}{c|ccc}
P & R \\
P & 6,6 & 0,3 \\
R & 3,0 & 4,4
\end{array}$$

Initially 20% *P*, type 1, white

Re-wiring prob. 0.2

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

$$\begin{array}{c|ccc}
P & R \\
P & 6,6 & 0,3 \\
R & 3,0 & 4,4
\end{array}$$

Initially 20% *P*, type 1, white

Re-wiring prob. 0.2

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

$$\begin{array}{c|ccc}
P & R \\
P & 6,6 & 0,3 \\
R & 3,0 & 4,4
\end{array}$$

Initially 20% *P*, type 1, white

Re-wiring prob. 0.2

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

For each of these we examined, for each of 11 re-wiring probabilities:

- 50 networks with average degree 4;
- 50 networks with average degree 6;
- 50 networks with average degree 8.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

For each of these we examined, for each of 11 re-wiring probabilities:

- 50 networks with average degree 4;
- 50 networks with average degree 6;
- 50 networks with average degree 8.

As re-wiring probabilities we used: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

For each of these we examined, for each of 11 re-wiring probabilities:

- 50 networks with average degree 4;
- 50 networks with average degree 6;
- 50 networks with average degree 8.

As re-wiring probabilities we used: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.

This gave a total of 4,950 different networks.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types
Network	Initializations				

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types
Network	Initializations				

These initializations were made by creating 50 random colorings, for each of 12 fixed fractions of P nodes.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types
Network	Initializations				

These initializations were made by creating 50 random colorings, for each of 12 fixed fractions of P nodes.

We used the following 12 fractions: 0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types
Network	Initializations				

These initializations were made by creating 50 random colorings, for each of 12 fixed fractions of P nodes.

We used the following 12 fractions: 0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50.

This gave 2,970,000 different initializations.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types
Network	Simulations				

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types
Network	Simulations				

This gave a total of 148,500,000 simulations.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

This gave a total of 148,500,000 simulations.

Each simulation ran until all nodes were of the same type.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types
Network	Simulations				

This gave a total of 148,500,000 simulations.

Each simulation ran until all nodes were of the same type.

At each stage all nodes were randomly paired to other nodes.

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types
Network	Simulations				

This gave a total of 148,500,000 simulations.

Each simulation ran until all nodes were of the same type.

At each stage all nodes were randomly paired to other nodes.

Each node played the strategy that did best among its neighbors (each node is one of its own neighbors).

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

For the Small World Networks Examined:

Variable	Coef.	Effect
Size	0.000035	positive
Degree: mean	0.029864	positive
Share of <i>P</i> nodes	2.454443	positive
Degree of <i>P</i> nodes: stdev	0.016762	positive
Power of P nodes: stdev	-6.000691	negative
Segregation (norm.) of P nodes	-0.017797	negative
Segregation (norm.) of <i>R</i> nodes	-1.027209	negative
Constant	0.891018	—
Number of obs.	2,970	,000
R-squared	0.84	19

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Number of Initializations for Convergence Time for SWN

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

For the Small World Networks Examined:

Variable	Coef.	Effect
Size	0.00381	positive
Degree: mean	-0.34104	negative
Share of <i>P</i> nodes	-0.22817	negative
Degree of <i>P</i> nodes: stdev	-0.95482	negative
Power of P nodes: stdev	-51.25889	negative
Segregation (norm.) of P nodes	-0.95487	negative
Segregation (norm.) of <i>R</i> nodes	-2.58388	negative
Constant	10.13382	—
Number of obs. R-squared	2,970,000 0.3658	

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results	Other Networks	More Types
				00000000000	

Small World Classification Tree Analysis

For the Small Data Set of Small World Networks Examined:

Selection	Converge mean	ence to P std	Number of Initializations	
Original dataset	58.3%	44.3%	(2,970,000)	
Segregation (norm.) of <i>P</i> nodes < 1.208 Segregation (norm.) of <i>P</i> nodes ≥ 1.208	88.2% 9.1%	23.4% 19.9%	(1,845,824) (1,124,176)	

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

- In both cases Size, Mean degree, Share of P nodes and SD of P degree have a positive effect on efficient coordination.
- In both cases SD of power of P nodes, Segregation of P nodes and Segregation of R nodes have a negative effect on efficient coordination.
- In both cases Segregation of P nodes is the most important variable to decide on convergence to P or to R.
- Results differ for speed of convergence in general, but they are very similar when looking only at those initializations with at least 0.75 convergence: only size and segregation norms increase time to convergence.

Initial distr. (0.4; 0.2; 0.2)

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Initial distr. (0.4; 0.2; 0.2)

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

A Scale Free Network with 3 Types

Initial distr. (0.4; 0.2; 0.2)

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Initial distr. (0.4; 0.2; 0.2)

Re-wiring prob. 0.2

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Initial distr. (0.4; 0.2; 0.2)

Re-wiring prob. 0.2

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Initial distr. (0.4; 0.2; 0.2)

Re-wiring prob. 0.2

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Initial distr. (0.4; 0.2; 0.2)

Re-wiring prob. 0.2

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Initial distr. (0.4; 0.2; 0.2)

Re-wiring prob. 0.2

Average Degree 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types ○○●○
	in Devellel				

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types ○○●○
	s in Darallol				

Six Runs in Parallel

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types ○○●○
Six Runs	s in Parallel				

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types ○○●○
Six Runs	s in Parallel				

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types ○○●○
Six Runs	s in Parallel				

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types ○○●○
Six Runs	s in Parallel				

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types ○○●○
Six Runs	s in Parallel				

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types ○○●○
Six Runs	s in Parallel				

Introduction	A Simulation Study	Characteristics	Results 00000	Other Networks	More Types ○○○●
Thanks					

Thank you for your attention! Comments will be appreciated!

Presentation and paper will soon be available at https://dke.maastrichtuniversity.nl/f.thuijsman/

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University