Population Models based on Evolutionary Game Theory

Frank Thuijsman

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Introduction	Local Interactions	Transmission Models	Conclusions	
Area of Expertise				

- Mathematics of Operations Research
- Stochastic Game Theory (Markov Games)
- Evolutionary Game Theory and Population Dynamics
- Models based on Darwinian fitness maximization
 - Replicator models with *fitness* changing in time

•
$$\dot{p}_k = p_k \left(e_k A p^\top - p A p^\top \right)$$

2 Replicator models with fitness based on many interactions
3 Replicator models with local interactions in grid space
4 Replicator models with local interactions, continuous space
5 Transmission models with local interactions in networks
6 Agent based models (used in study on sex choice in wasps)
7 Theoretical biology (foraging behaviour, tree sex systems)

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

$$\begin{array}{c|ccc}
P & R \\
P & 6,6 & 0,3 \\
R & 3,0 & 4,4
\end{array}$$

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

	Ρ	R
Ρ	6,6	0,3
R	3,0	4 , 4

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

$$\begin{array}{c|ccc}
P & R \\
P & 6,6 & 0,3 \\
R & 3,0 & 4,4
\end{array}$$

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

 $\begin{array}{c|ccc}
P & R \\
P & 6,6 & 0,3 \\
R & 3,0 & 4,4
\end{array}$

Initially 20% *P*, type 1, white

Regression Analysis and Classification Tree Analysis on millions of networks

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

- All models programmed in Java/Matlab based on theory.
- Now looking for real life data for tuning.

- All models programmed in *Java/Matlab* based on theory.
- Now looking for real life data for tuning.
- Most freedom in continuous space, flexible population size.
- Continuous space is computationally more costly than grid.

- All models programmed in *Java/Matlab* based on theory.
- Now looking for real life data for tuning.
- Most freedom in continuous space, flexible population size.
- Continuous space is computationally more costly than grid.
- Spatially distributed payoffs/resources can be handled.

- All models programmed in *Java/Matlab* based on theory.
- Now looking for real life data for tuning.
- Most freedom in continuous space, flexible population size.
- Continuous space is computationally more costly than grid.
- Spatially distributed payoffs/resources can be handled.
- Incorporation of mutants can be handled.

- All models programmed in *Java/Matlab* based on theory.
- Now looking for real life data for tuning.
- Most freedom in continuous space, flexible population size.
- Continuous space is computationally more costly than grid.
- Spatially distributed payoffs/resources can be handled.
- Incorporation of mutants can be handled.
- Networks structures can be handled.

- All models programmed in *Java/Matlab* based on theory.
- Now looking for real life data for tuning.
- Most freedom in continuous space, flexible population size.
- Continuous space is computationally more costly than grid.
- Spatially distributed payoffs/resources can be handled.
- Incorporation of mutants can be handled.
- Networks structures can be handled.
- Experiments on introduction, establishment and spread of disease have not been done

- All models programmed in *Java/Matlab* based on theory.
- Now looking for real life data for tuning.
- Most freedom in continuous space, flexible population size.
- Continuous space is computationally more costly than grid.
- Spatially distributed payoffs/resources can be handled.
- Incorporation of mutants can be handled.
- Networks structures can be handled.
- Experiments on introduction, establishment and spread of disease have not been done <u>yet!</u>

Introduction	Local Interactions	Transmission Models	Conclusions		
o	o	o			
Maastricht Local Interactions Team					

- Abhimanyu Khan (SBE)
- Ronald Peeters (DKE)
- Katharina Schüller (DKE)
- Mandy Tak (DKE)
- Philippe Uyttendaele (DKE)
- Li You (DKE)

Thank you for your attention! Any comment is welcome! Papers are available!

Slideshows were highly reduced for email distribution!

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University