Population Models based on Evolutionary Game Theory

Frank Thuijsman

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

MAPRA Workshop 2, July 1 2014, Parma
Area of Expertise

- **Mathematics** of Operations Research
- Stochastic Game Theory (Markov Games)
- Evolutionary Game Theory and Population Dynamics
- Models based on Darwinian fitness maximization
 - Replicator models with *fitness* changing in time
 \[\dot{p}_k = p_k (e_k A p^T - p A p^T) \]
 - Replicator models with fitness based on many interactions
 - Replicator models with local interactions in grid space
 - Replicator models with local interactions, continuous space
 - Transmission models with local interactions in networks
 - Agent based models (used in study on sex choice in wasps)
 - Theoretical biology (foraging behaviour, tree sex systems)
Global vs. Local Interactions in *Continuous* Space

\[
\begin{pmatrix}
2 & 0 & 1 \\
2.5 & 1 & 0 \\
0 & 2.5 & 1.5
\end{pmatrix}
\]

\[
\begin{pmatrix}
2 & 0 & 1 \\
2.5 & 1 & 0 \\
0 & 2.5 & 1.5
\end{pmatrix}
\]

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

MAPRA Workshop 2, July 1 2014, Parma
Simulation Study on Spread in Networks

Initially 20% P, type 1, white

\[
\begin{array}{ccc}
 P & R \\
 6,6 & 0,3 \\
 3,0 & 4,4 \\
\end{array}
\]
Simulation Study on Spread in Networks

Initially 20% P, type 1, white

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

MAPRA Workshop 2, July 1 2014, Parma
Simulation Study on Spread in Networks

Initially 20% P, type 1, white

\[
\begin{array}{c|c|c}
P & R \\
\hline
6,6 & 0,3 \\
3,0 & 4,4 \\
\end{array}
\]
Simulation Study on Spread in Networks

Initially 20% P, type 1, white

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>6,6</td>
<td>0,3</td>
</tr>
<tr>
<td>R</td>
<td>3,0</td>
<td>4,4</td>
</tr>
</tbody>
</table>
Simulation Study on Spread in Networks

Initially 20% P, type 1, white

\[
\begin{array}{c|cc}
 P & R \\
 \hline
 6,6 & 0,3 \\
 3,0 & 4,4 \\
\end{array}
\]
Simulation Study on Spread in Networks

Initially 20% P, type 1, white

Regression Analysis and Classification Tree Analysis on millions of networks

Frank Thuijsman, Department of Knowledge Engineering, Maastricht University

MAPRA Workshop 2, July 1 2014, Parma
Summary

- All models programmed in *Java*/*Matlab* based on theory.
- Now looking for real life data for tuning.
All models programmed in *Java/Matlab* based on theory.

Now looking for real life data for tuning.

Most freedom in continuous space, flexible population size.

Continuous space is computationally more costly than grid.
Summary

- All models programmed in *Java/Matlab* based on theory.
- Now looking for real life data for tuning.
- Most freedom in continuous space, flexible population size.
- Continuous space is computationally more costly than grid.
- Spatially distributed payoffs/resources can be handled.
Summary

- All models programmed in Java/Matlab based on theory.
- Now looking for real life data for tuning.
- Most freedom in continuous space, flexible population size.
- Continuous space is computationally more costly than grid.
- Spatially distributed payoffs/resources can be handled.
- Incorporation of mutants can be handled.
Summary

- All models programmed in *Java/Matlab* based on theory.
- Now looking for real life data for tuning.
- Most freedom in continuous space, flexible population size.
- Continuous space is computationally more costly than grid.
- Spatially distributed payoffs/resources can be handled.
- Incorporation of mutants can be handled.
- Networks structures can be handled.
All models programmed in *Java*/*Matlab* based on theory.

Now looking for real life data for tuning.

Most freedom in continuous space, flexible population size.

Continuous space is computationally more costly than grid.

Spatially distributed payoffs/resources can be handled.

Incorporation of mutants can be handled.

Networks structures can be handled.

Experiments on introduction, establishment and spread of disease have not been done
Summary

- All models programmed in Java/Matlab based on theory.
- Now looking for real life data for tuning.
- Most freedom in continuous space, flexible population size.
- Continuous space is computationally more costly than grid.
- Spatially distributed payoffs/resources can be handled.
- Incorporation of mutants can be handled.
- Networks structures can be handled.
- Experiments on introduction, establishment and spread of disease have not been done yet!
Maastricht Local Interactions Team

- Abhimanyu Khan (SBE)
- Ronald Peeters (DKE)
- Katharina Schüller (DKE)
- Mandy Tak (DKE)
- Philippe Uyttendaele (DKE)
- Li You (DKE)

Thank you for your attention!
Any comment is welcome!
Papers are available!

Slideshows were highly reduced for email distribution!