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Abstract

We study food allocation in bird broods from the perspective of cooperative
game theory. We want to explore whether or not food distribution data fit into
the known solution concepts of cooperative game theory. A first issue to be
handled is the fact that in the bird brood data we only see the solutions, while
the starting position, the game, is not immediately clear. As such we need to
reconstruct the game from the solutions given. A second issue is that there
are many different solution concepts (e.g. Shapley value, nucleolus, etc) and
we want to analyze which of these fits best. Most interesting is to specifically
address the properties that lead to these solutions, because these would be most
useful in finding a motivation for the specific solution concept found in nature.
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Chapter 1

Introduction

Presently there seems to be hardly any applications of cooperative game theory
in the field of biology. We want to survey what applications of cooperative
game theory in biology are presently known in the contemporary literature,
and whether one of these has a connection to the problem of food allocation,
because of the availability of a large dataset on blackbirds food distributions
gathered by Professor Scott Forbes and his team from Winnipeg University.
The first subsection will give a brief description about the problem of bird
brood allocations, while the second subsection will provide the state of the art
of applications of cooperative game theory within the field of biology.

1.1 Bird Broods Fair Allocation

Here we decribe the nature behind the bird broods fair allocation problem and
explain why we would like to relate it to the Cooperative Game Theory concept.

1.1.1 Birds vs Human: The Nature of Family

In the real world, where there will never be any certainty nor sufficient informa-
tions about the future, parents hedge their bets in building unpredictable family
life. Parents often do not know in advance what resources will be available, and
thus are investing in offspring in a climate of uncertainty. Setting the initial
family size too large risks future food shortfalls; a family size too small may
result in costs of lost opportunities if food proves plentiful. [16] Scott Forbes in
his book titled A Natural History of Families [1] mentions that there are some
similarities (as well as differences) of birds and human especially in parenting.
Both cases have a problem of what is called unholy parenting, where parents are
programmed to provide less, while children often ask for more. In the end, they
are both left unsatisfied. However, study has shown that this is an equilibrium
in nature, that it is, indeed, just how it should be.

Families are bound together and share common genetic interest, thus are
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supposed to lower the barrier of cooperation and minimize the conflict, making
it an ideal model for the evolution of cooperation. However, conflict will still
exist and usually interest people the most. Forbes in his paper Sibling Symbiosis
in Nestling Birds [2] gave the fact that a November 2006 search of the Web of
Science revealed 334 citations for the keywords ”nestling conflict” or ”nestling
competition”, and only 11 for ”nestling cooperation” or ”nestling mutualism”.
It is either a parent-offspring conflict or a conflict between the offsprings, in
terms of food, shelter, space, warmth, etc.

Asymmetric sibling rivalry (Forbes and Glassey 2000), where stronger, older
sibs outcompete younger broodmates, is common in birds and mammals and
usually stems from parental (usually maternal) manipulations of offspring mor-
phology and behavior (Mock and Parker 1997; Hudson and Trillmich 2008). It
is generated by parents imposing handicaps upon some of their offspring while
conferring advantages to others: effectively, parents play favourites. For exam-
ple, mothers may make some eggs or newborns bigger than others (Slagsvold et
al. 1984; Rdel et al. 2008; Forbes and Wiebe 2010); or they may fortify some
progeny with extra hormones making them more successful in begging compe-
titions (Groothuis et al. 2005; Sockman et al. 2006) or add immune system
components and/or antioxidants, conferring resistance to pathogens or cellular
damage (Royle et al. 2001; Saino et al. 2002). But most importantly, mothers
often create age differences among contemporary progeny via birth or hatching
asynchrony (Lack 1947; Magrath 1990; Trillmich and Wolf 2008). All of these
parental manipulations serve to render some offspring more equal than others.
[16]

In birds, hatching asynchrony (Glassey and Forbes 2002) creates a brood
hierarchy dividing the progeny into castes of advantaged core and disadvantaged
marginal offspring (Mock and Forbes 1995; Forbes et al. 1997; Forbes 2011).
Most often the core brood consists of two or more nestlings that are the same
size and age, the rough equivalent of multiple births in humans, and one or more
marginal offspring hatch one or more days after the core brood. Core progeny
enjoy an advantage over their marginal counterparts in sibling competitions for
limited parental resources such as food, and generally exhibit higher growth and
survival over the period of parental care. When food is short, marginal progeny
are the first to perish, becoming victims of socially enforced starvation and/or
sibling aggression (review in Mock and Parker 1997). This division into core
and marginal elements structures the avian family, and parents now make two
choices at the outset of breeding: what size of family to have, and how is this
family structured.

How about in human? In a movie inspired by the book of Jodi Picoult titled
My Sister Keeper, a girl named Anna plays a role as a saviour sibling; she
was born in order to dispute blood from her umbilical cord, or any other bodily
substance needed (such as kidney), as a part of the treatment to save her sibling
Kate from death by cancer. The story points out parents’ dilemma of whether
it is morally correct to do whatever it takes to save a child’s life, even if it means
infringing upon the rights of another child. The story succesfully shows what it
means to be a good parent, good sister, and a good person in general. But how

3



to determine good? Just like how we determine what is fair; fair for whom and
fair from whose point of view often give different results.

1.1.2 Why study Blackbirds?

The same thing also happens in blackbirds: not all offsprings are created equal,
in other words, there is often a competitive asymmetry between the offsprings.
Chick that is hatched last, often is the one to die first. It could be because
parents, just like the story of Kate and Anna above, created core and marginal
offspring intentionally before giving birth; making the children have different
roles in life. This phenomenon is called parental favoritism: parents choose
which children they hatch first, thus having bigger probability to survive com-
pared to the siblings which will be hatched a day after. In the case of blackbirds
which have in average one to five children during hatching, it is usually the case
that parents cannot nurture all the children and they know that one or some
of them will die young. Then why would the parents still give birth to them if
parents already know the child will not survive after some period of time? That
is another phenomenon called parental optimitism; a strategy where parents
set an initially optimistic family size and trim downward (brood reduction) as
unfolding food conditions warrant.

Birds are long choosen to be the model system to study parental favoritism
and parental optimitism. The dynamics are easiest to be observed in birds in
general, as they do not hide their progeny in unaccessible wombs (as in human)
or out of sight (underwater, as generally seen in fish) [1]. Blackbirds, specifi-
cally, compromise in many respected model system. They are easily accessible
and occur in very large number. They also nest close to the ground, enabling
researchers to directly check what happens. Previous research shows that in
blackbirds, we can really see the difference between core and marginal offspring
clearly as they do not seem to be disturbed by the camera put near their broods.
Thus blackbirds are chosen to be object of this food allocation study.

Quoting Forbes, marginal nestlings of red-wing blackbirds lag behind their
larger core siblings in both size and development through no fault of their own,
and the manipulative parents may even compound their woes by giving an extra
dose of testosterone as a privilege to the core brood, making them more bel-
ligerent at feeding time. Previous study shows an optimal intermediate solution
for blackbirds, where the parents objective is to avoid broods being too small.
Thus parents intentionally do two things to narrow the competitive edge be-
tween core and marginal chicks by giving steroids preferentially to the marginal
one, or making the last hacthlings larger.

As Forbes also illustrates in his book, yellow-headed blackbirds provide a
tidy illustration of parental optimism at work. They breed in prairie wetlands
accross central North America. Male chicks are bigger than females, yielding a
problem when food is short as big bodies are more expensive to maintain. Thus
parents often put one male in the core brood while any additional males are
placed in the marginal brood and can be easily eliminated when food resource
is scarce.
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As a result of living in such an unpredictable world, parents already realized
that they need a guarantee so that their broods will not be too small in risk
of dying when situation gets worse (i.e. food resource is scarce or weather goes
bad). By focusing on the core offspring while still having marginal one as a
back-up plan, they could inrease the probability of success. Imagine if during a
bad season where food is very limited, parents only have one core chick and it
still dies even if they take really good care and give it all the food they have.
By having at least one core and one marginal offspring, if something happens
to the first one (fail to hatch or perish early), parents have an ’insurance’: they
could raise the second one. If something happens to the second during the bad
situation, as long as the first one stays healthy, they give little to no care as
the second is marginal. Doing so, the marginal one already serves its role as a
facilitation to the core, by being a layer where the core could huddle, preventing
them from heat or cold. The probability of both chicks being failed is of course
smaller. These illustrations are known as the brood reduction policy in birds.

Being a smart parent, having at least one core and one marginal in a good
season where food resource are abundant is also best for them as they could get
a ’bonus’ by raising the marginal offspring, taking into account that even the
marginal offspring gets less food than the core one, this food is already enough
for the chick to stay alive. This core-marginal solution indeed gives parents the
most incentives of all. Therefore bird parents routinely start with more progeny
than will ever survive to independence, as eggs and embryos are cheap while
subsequent parental care is much more costly.

1.1.3 Why Cooperative Game?

”Life histories are shaped by trade-offs. One key trade-off is the principle of
allocation. Resources are finite and compromises necessary.” -Scott Forbes, A
Natural History of Families, 2005 [1]

Evolutionary biologists have a rich tradition of borrowing analytical tools
from economists to address a diverse array of problems in nature. Maximizing
the number of surviving offsprings (instead of maximizing offspring numbers) are
usually the object of evolutionary game theory, as these children will continue
the family legacy. Larger broods are disfavored if such strategy leaves with
malnourished infant with poor prospects of survival. The results are fixed pie:
there is only a fixed amount to be shared and in order for one person to win,
the other must lose, while the pie size cannot be expanded. Problem is, how to
divide this pie among the current broods, cooperatively and fairly?

In birds, where often food is the whole story, unequal allocation of resources
is a consequence of parents playing favorites. This does not mean that it is not
fair to the marginal chick getting less than the core one. Having, let’s say, four
chicks in one brood with two cores (one male, one female) and two marginals
(one male, one female) during a bad situation where food is limited, we could
observe what is the fair allocation of dividing a fixed amount of food to four
different chicks (each with different role and characteristic). Moreover, we could
also see whether in fact each chick could get what it is supposed to get based
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on cooperative game solution concept, to be able to survive. If for example one
marginal male chick perishes in the end, we could check whether it is because
of the chick cannot get sufficient amount of food than its fair shaire according
to a specific solution concept.

The available bird broods data that are collected during earlier research
conducted by Scott Forbes in Canada, could be used to compare food sharing
in bird broods using some known solution concept in cooperative games. More
about this brood data will be described in the next chapter.

1.2 Previous Studies

A study that has strong relation with our problem is described in Scott Forbes
book titled A Natural History of Families [1], as mentioned earlier in our problem
description; especially on its second and third chapter. Therefore this thesis will
use similar terms and definitions as mentioned in the Forbes book.

1.2.1 Study on Bird Broods Fair Allocation Problem

Recent works by Forbes (2009) is using a financial tool to the study of parental
investment in birds, as normally the most important investment any organism
makes is in its offspring. A key dimension of any investment decision including
how much to invest in offspring is how to balance risk and reward for which
portfolio theory offers a broad set of analytical tools [6]. A primary difficulty
for the biologist lies in how to translate the economic models to a biological
setting. The tool he used is called financial beta and is well-known to the study
of parental investment, derived from the capital asset pricing model of modern
portfolio theory. Beta provides a measure of the volatility in price of an asset
(e.g., a stock) in relation to the broader market or index of the market. Forbes
suggested that the reproductive returns from individual brood structures (e.g.,
mean fledging success in a given year) could be usefully equated to an individual
asset, and that mean population reproductive success could be equated to the
market as a whole. [16]

There is other study conducted on 1995 by Alex Kacelnik, Peter A. Cotton,
Liam Stirling, and Jonathan Wright [3] which use evolutionary game theory to
study Food Allocation among Nestling Starlings, drawing attention on Sibling
Competition and the Scope of Parental Choice. Chick feeding in birds is often
viewed as a prime example of evolutionary conflict. This is because the nestlings
may benefit by inducing the parent to invest more in the current brood com-
pared to future ones. In addition, each nestling should benefit by obtaining
a greater fraction of the total brood provision than would be optimal for the
parent. Current theory suggests that at evolutionary equilibrium, the intensity
of signalling (i.e. begging) by the chicks should allow the parents to identify
each chick’s needs and to allocate more food to the one that offers the steepest
marginal fitness gain per unit of parental resources (Godfray 1995). However,
this study does not use any cooperative game concept.
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1.2.2 Study on Cooperative Game in Biological Field

H. Peyton Young said in an interview written in a book titled Game Theory: 5
Questions edited by Vincent F. Hendricks and Pelle Guldborg Hansen [4] that
one the most neglected topics and/or contributions in late 20th century game
theory is cooperative game theory. One reason, according to him, is that the
topics in economics where game theory made its earliest inroads now seem par-
ticularly well-suited to the noncooperative approach. Another reason is because
its practical applications have not been widely recognized even though generally,
cooperative game theory is relevant to any situation where scarce resources are
to be allocated fairly among a group of claimants. The last description is what
we know as the concept of fair allocation.

Young mentioned one example of a fair allocation concept in biology or
medicine study is when doctor consider which transplant patient should be first
in line for the next kidney. He said that fairness must be judged in the context
of the problem at hand, where criteria for allotting transplant organs may be
quite different from criteria that pertain to the allocation of legislative seats, and
neither may be relevant to the allocation of offices in the workplace or dormitory
rooms at college. What is fair in one society, said Young, may not be deemed
fair in another, because peoples expectations are conditioned by precedent, and
precedents accumulate through the vagaries of history.

Unlike evolutionary game theory which was originally inspired by biological
applications and thus has broad applications in the field of biology, cooperative
game theory has more practical applications in the field of economics where
topics of fairly sharing costs or dividing profits are already familiar to the read-
ers. Only lately in 21st century, there are some papers which address practical
applications of cooperative game theory in biology, nevertheless none of them
yet use the concept to study food allocation problem in bird broods.

A study conducted in 2007 by Claus-Jochen Haake, Akemi Kashiwada, and
Francis Edward Su [5] on phylogenetic trees was using one of the coopera-
tive game theory solution concept: the Shapley value. Interestingly, the study
also suggests a biological interpretation behind the concept. The idea is, ev-
ery weighted tree corresponds naturally to a cooperative game that is called a
tree game, which assigns to each subset of leaves the sum of the weights of the
minimal subtree spanned by those leaves. Here the leaves represent the species,
and this assignment captures the diversity present in the coalition of species
considered. This study also includes a brief discussion of the core of the tree
game.

Aside from its use in phylogenetic trees, another use of cooperative game
in earlier biological literature are given by coalition game studies (i.e. coopera-
tive plant breeding games, paper by Eran Binenbaum and Phil Pardey, 2005 [6];
and cooperative bio-economic management of high seas fisheries problem, paper
by Pedro Pintassilgo, 2002 [7]) and on building a classification model for dis-
ease classification study (i.e. leukimia, paper by Atefeh Torkamana, Nasrollah
Moghaddam Charkarib, and Mahnaz Aghaeipourc, 2011 [8]). However, these
studies might have minor connection on our topic of interest.
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Chapter 2

Basics

To be able to model the problem of blackbird broods fair allocation, we would
need to explain which methods or techniques we use in order to derive our
results. We also need to describe the brood datasets that we use for the exper-
iments, and how we will use them. Here in this chapter, we will start by giving
an example of fair allocation in cooperative games, and continue by introducing
some of the solution concepts such as the Shapley value and the Nucleolus. We
then will explain some techniques we use in fitting the game from the known
solutions. Finally, we will address the question of how we can convert the large
sets of brood data to be interpreted within coalition concepts in a cooperative
game context.

2.1 Fair Allocation in Game Theory

Below we describe some examples that draw attention to the earlier study of
fair allocation and how these examples are connected in terms of finding one
single solution that covers desirable properties of fair allocation problem using
an approach from game theory. Note that almost all examples and definitions in
this section are taken from the lecture notes on game theory by Frank Thuijsman
[9].

2.1.1 A Bankruptcy Problem from the Talmud

”If a man who was married to three wives died and the kethubah of one was 100
zuz, of the other 200 zuz, and of the third 300 zuz, and the estate was worth
only 100 zuz, then the sum is divided equally. If the estate was worth 200 zuz
then the claimant of the 100 zuz receives 50 zuz and the claimants respectively
of the 200 and the 300 zuz receive each 75 zuz. If the estate was worth 300 zuz
then the claimant of the 100 zuz receives 50 zuz and the claimant of the 200 zuz
receives 100 zuz while the claimant of the 300 zuz receives 150 zuz. Similarly if
three persons contributed to a joint fund and they had made a loss or a profit
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then they share in the same manner.” -Rabbi Nathan in Kethuboth, Fol. 93a,
Babylonian Talmud, I. Epstein, ed., 1935

Before the field of Game Theory was established in the second half of twenti-
eth century, the above Mishna has been stated long time ago in the books that
hold Jewish religious and legal decisions: the Babylonian Talmud. The last
sentence of the Mishna above has been specifically addressed by two mathemat-
ical game theorists Robert J. Aumann and Michael Maschler from the Hebrew
University of Jerusalem. They studied this fair allocation problem (later known
as the Bankruptcy Problem) using a game theory point of view [8]. They found
that all informations from the Mishna (extracted into numbers in a table 2.1)
corresponds exactly to the nucleolus of cooperative games that are related to
the problems of sharing respectively 100, 200, and 300 among the three wid-
ows. In other words, one rule, involving the nucleolus from cooperative game
theory (which we will introduce later in the next section), is able to explain the
solutions given in the Mishna.

The story is popularly known as A Bankruptcy Problem from the Talmud
and has been broadly used to describe a fair allocation problem within game
theoretical context. Such a surprise that the study about nucleolus itself is
introduced in 1969 by David Schmeidler, while the Mishna already ’use’ it as a
solution concept of fair allocation problem without ’studying’ game theory yet.
Note that we will define this nucleolus as well as other terms used in cooperative
game later in the next section to be able to understand the whole concept, while
now we are focusing on getting the story first in mind.

Table 2.1: The Talmud table

Estate min(Claim,Estate)
Claim 100 200 300 100 200 300
A: 100 33.33 50 50 100 100 100
B: 200 33.33 75 100 100 200 200
C: 300 33.33 75 150 100 200 300

2.1.2 Contested Garment Principle

A similar example which has been found to be consistent with the Talmud table
above [9] is the so-called contested garment problem, described as follows: ”two
persons hold a garment, one claims it all while the other claims a half. The
first one is awarded 3/4, the other gets 1/4.” An easy way to find the solution
is by visualizing it into a rectangle, in which person A claims the full rectangle
and person B claims only the right-side half of it. What can we see? That both
persons are fighting over this right-side only. Person B will not argue if person
A receives the whole left-side half. Thus according to the Mishna, this right-side
that both claims to have, should be divided equally. Thus it follows that A gets
1/2 (the whole left-side half) plus 1/4 (half of a half), makes it in total of 3/4
for A, while B receives 1/4.

Given the Talmud problems, we will notice that the amounts given to the
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widows according to the Talmud table are all supported by this contested gar-
ment (CG)-priciple. To put it more precisely, for any two women, the division of
their joint amount among the two of them is the CG-solution of this two-person
problem [9]. In other words, the numbers in the Talmud table are consistent
with the CG-principle.

Moreover, Aumann and Maschler in their paper [10] have shown that for any
bankcruptcy problem with any number of claimants, there is only one solution
(among many solutions) that is consistent with the CG-principle. So if the
Mishna says that other amounts have to be shared in the same manner, then we
have to find a solution which is CG-consistent. Thus, they conclude, to share
an amount of 250 among our three widows A, B, C claiming 100, 200 and 300
respectively, we have to find a solution (a, b, c) with properties:

1. a + b + c = 250;
2. for A and B the CG-solution for sharing a + b is (a, b);
3. for A and C the CG-solution for sharing a + c is (a, c);
4. for B and C the CG-solution for sharing b + c is (b, c).

2.1.3 Seeing the Problem as Coalition Procedures

”Samuel says that the Mishna assumes that the claimants have power over each
other. More specific: The third woman can say to the second: ’You pay the
first.’ The second woman can say to the first: You wanted 100? Take 50 and
leave.’” -a statement taken from the Talmud [9]

Since it is quite puzzling to figure out what are the right numbers accord-
ing to the CG-principle, fortunately Aumann and Maschler have provided us
a sequential (coalitional) procedure to solve any bankruptcy problem for the
CG-consistent solution, which can be retraced to a statement in the Jerusalem
Talmud above.

The statement refers to the cases where there is either 200 or 300 to share.
Widows B and C are acting as a coalition claiming 500 against widow A who
claims 100. Under these circumstances the CG-solution for sharing 200 would
yield 150 for the coalition and 50 for widow A. When, next, widows B and C
share 150 according to the CG-principle, then each of them gets 75. In a similar
way one can derive the solution (50, 100, 150) for the 300 case. However, if we
were to use this procedure for the 100 case, then again widow A receives 50, but
B and C are getting 50 together and would share it half-half. Hence the result
would be (50, 25, 25) and A who is claiming the least, is getting the most. This
is clearly not CG-consistent, because the total of 75 for A and B should also
have been shared equally.

Therefore, one property to be taking care of in finding a CG-solution for
any bankruptcy problem is: for any two claimants, the one claiming more will
never get less than the one claiming less. Therefore we have to be careful in the
coalitional procedure, making sure that the members of the coalition are not
going to get less than the one who is leaving the coalition with lower claim.

Another property that also has to be taken into account in the procedure is:
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A claimant with a lower claim should never lose more than a claimant with a
higher claim. In other words, the general procedure for finding a CG-consistent
solution for a bankruptcy problem is: small claimants get less and lose less
than big claimants. It has been shown by Aumann and Maschler that this
coalitional procedure always yields the CG-consistent solution. They also show
that this rule is self-dual, i.e. losses and gains are treated in precisely the same
way. One thing to be kept in mind is, we have to keep track that the individual
claimant is neither gaining too much, nor losing too much.

2.2 Modeling

In order to be able to understand the whole concept of cooperative game on
which this fair allocation problem is based, we will provide some terminology and
definitions ranging from the basic such as coalition, until the solution concepts
like Shapley Value and nucleolus.

2.2.1 Cooperative Game

An n-person cooperative game is defined by the set of players N ={1,2,...,n}
and a function v which associates a non-negative real number v(S) to every
subset S of the grand coalition N. This v(S) expresses the value/worth of the
coalition, which is the amount that coalition S can achieve on its own effort
without cooperating with those who are not in S.

As an example, below we show a 3-person cooperative game (person 1, 2,
and 3 as players) with its possible coalitions.

Table 2.2: 3-person cooperative game

S ∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
v(S) 0 1 3 4 4 5 8 10

Question is, given the table above, how to share the worth 10 of the grand
coalition among the three of the players, ’fairly’? By examining their value
alone, we can easily notice that player 2 is stronger (has higher value) than
player 1 while player 3 is the strongest of all; yet it would not be that easy to
assign the right allocation for each player.

Taking the Talmud table as an example, we will have three different 3-players
cooperative games of sharing 100, 200, and 300 worth of coalition; where in each
game the players’ individual claims are 100, 200, and 300 respectively. How to
put this value into such a coalition table? For this specific Talmud problem,
Aumann and Maschler [10] identified the game by defining the worth of S as the
amount that remains if the widow(s) not in S receive the claim first, leaving the
rest for the others. Note that no one can receives more than the estate. Doing
so, as stated in [9], we arrive at the following games:
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Table 2.3: (100 | 100,200,300) game

S ∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
v1(S) 0 0 0 0 0 0 0 100

Table 2.4: (200 | 100,200,300) game

S ∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
v2(S) 0 0 0 0 0 0 100 200

Table 2.5: (300 | 100,200,300) game

S ∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
v3(S) 0 0 0 0 0 100 200 300

In the first table, Table 2.4, each widow is claiming at least 100; which is
the same as what is available in the grand coalition. Thus, players outside S
are leaving nothing for players in S. This makes all the amounts become zero
except for the grand coalition. Another thing to be concerned is, if the widow(s)
not in S claim more than the available amount, the worth of S would also then
be zero.

We also know from Table 2.4 that v2({2, 3})=100 since it is the estate that
remains after subtracting the claim of widow 1 which is not in {2,3}. In other
words, player 1, not being in the coalition {2,3} would leave only 100 of the
available 200 to coalition {2,3}. The same explanation works for Table 2.5.

2.2.2 Solutions in Cooperative Game

Before we explain more on how to divide the value for all players in such a fair
manner, we shall describe how each solution concept is built in detail. Using the
definitions from [9], a solution for a cooperative game is a method for sharing
the value of the grand coalition v(N) among the individual players. Since v(N)
is achieved from cooperation of n players in which for each smaller coalition S,
one might want to consider v(S): the individual contributions of each player
in establishing v(N). Solving problem on finding the right share (allocation)
for their joint profit or loss is the same as finding the solution that is fairly
acceptable for such cooperative game.

It is obvious that each coalition S would prefer to get a share of at least v(S).
Unfortunately it might not always be possible. Here we denote an allocation
of v(N) to player 1, ..., n by x = (x1, ..., xn), where player i receives xi and
x1+...+xn = v(N). Allocations in which xi ≥ v({i}) for each player i are defined
as individually rational, while allocations with x(S) =

∑
i∈S xi ≥ v(S) for

each coalition S are called coalitionally rational. [17]
For any cooperative game (N, v), we call the set of coalitionally rational

allocations as the core of a game, and denote it by C(N, v).
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Since there may be a lot of possible solutions for the allocations, we focus on
the solution concepts which will give a one-point solution. Thus, the Shapley
value, the Utopia value, and the Nucleolus came up as they always give a unique
allocation for any cooperative game. As one-point solution concepts, the three
concepts have some special properties which will be explained separately below.

Solution 1: Shapley Value

Coined by Lloyd Shapley (1953), this one-point solution concept introduced in
his paper has some desirable properties called efficiency, anonimity, dummy, and
addivity. A solution is efficient if it assigns to every game an allocation in such
a way that the sum of every marginal contribution of each player will be equal
to the value of the grand coalition.

The anonimity property is when the actual solution does not depend on the
names of the players involved. It would mean that if we switch the role between
who will become player 1 and who will be player 2, we want our solution to give
both players as much as it would give them when they do not switch position.

If there is a player who does not contribute in any profit or loss of all coali-
tions he is involved, i.e. always contribute the same amount v({i}) to any
coalition, then he should receive that same amount v({i}). This kind of player
is called a dummy player. Player i is dummy if, for any coalition S not
containing i, we have v(S ∪ {i}) = v(S) + v({i}).

The last one is the addivity property. A solution concept has this property
if for any two games (N, v) and (N,w), the solution of (N, v +w) is the sum of
the solutions of (N, v) and (N,w). To understand this property, we shall look
at two games [9] below as an example:

Table 2.6: 3-person game (N, v) and (N,w)

S ∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
v(S) 0 3 1 4 4 8 5 10

S ∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
w(S) 0 1 3 4 6 5 7 10

The additivity property applies if the solution of (N, v + w) is the sum of
the separate solutions of (N, v) and (N,w).

Table 2.7: 3-person game (N, v + w)

S ∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
(v + w)(S) 0 4 4 8 10 13 12 20

Shapley (1953) in his paper titled ”A value for n-person games” [23]
provides a simple procedure to illustrate how to divide the coalition value fairly.
According to him, the above 3-person game (N, v) can be illustrates as the
following: Firstly, assume that player 1 enters the room and receives v({1}),
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followed by player 2 (joining player 1 in the same room) which accordingly
receives the marginal contribution v({1, 2})−v({1}), and so on, until finally the
last player n joins them altogether and receives v({1, 2, ..., n})− v({1, 2, ..., n−
1}). Doing these value calculations for every possible order in which players
enter the room, then taking the average values, will give us the unique/one-point
Shapley solution (i.e. The Shapley value).

This Shapley value procedure gives each player i the average of its marginal
contributions as calculated in the Shapley Value Formula (SVF) below. Ex-
pression s!(n − s − 1)! reflects the number of different orders where the first s
players get together one by one, then player i joins in, and finally the remaining
(n− s− 1) players join one by one as well.

φi(N, v) =
∑

S⊂N\{i}

Pn,s(v(S ∪ {i})− v(S)) (2.1)

=
∑

S⊂N\{i}

1

n

1(
n−1
s

) (v(S ∪ {i})− v(S)) (2.2)

=
∑

S⊂N\{i}

s!(n− s− 1)!

n!
(v(S ∪ {i})− v(S)) (2.3)

The SVF above is based on this procedure: for player i a coalition S is chosen
at random by firstly its cardinality, 0, 1, ..., n−1, say s is chosen (in which each

cardinality has equal probability
1

n
), then among coalitions with cardinality s,

one is chosen
(

each with the same probability
1(
n−1
s

)).

This formula can be used as follows: player i receives v(S ∪ i)− v(S) s!(n−
s− 1)! times, i.e. there are s!(n− s− 1)! orders where player i enters the room
where coalition S is already present.

To be clear about the procedure of calculating the Shapley value, we will take
the 3-person game in the previous Table 2.2 as an example. Below is the table
where we list every possible order of every player’s marginal contribution to the
grouping of coalition (there would be six possible orders for a 3-person game
in Table 2.2). If for example players group in the order of 2-3-1, then player
2’s marginal contribution is v({2}) − v(∅)=3-0=3, for player 3 the marginal
contribution is v({2, 3}) − v({2})=8-3=5 and for player 1 it is v({1, 2, 3}) −
v({2, 3})=10-8=2. We also calculate the average marginal contribution for each

player (i.e. the Shapley-value): φ=
(8

6
,

23

6
,

29

6

)
.
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Table 2.8: Shapley value of the 3-person cooperative game

Possible orders 1 2 3
1-2-3 1 3 6
1-3-2 1 5 4
2-1-3 1 3 6
2-3-1 2 3 5
3-1-2 1 5 4
3-2-1 2 4 4

column sums 8 23 29
φ 8

6
23
6

29
6

Solution 2: Utopia Value

We now define the Utopia value of a cooperative n-person game, a one-point
solution concept that is a part of a solution concept introduced by Stef Tijs
(1981) [19] called the τ value. Let N be the set of all players and v(N) be the
value of the grand coalition. Given nonempty coalition S ⊆ N and player i ∈ N ,
let bi := v(N) − v(N \ i) be the utopia vector of player i, which expresses the
marginal contribution of player i to the grand coalition.

This utopia vector b gives an intuitive upper limit to what a player may
expect to obtain from participating in the game. Player i would like to receive
as much as his upper value, and he cannot hope for more than this value.
Generally, every player will end up getting less than his utopia value, because
for all interesting games, v(N) ≤ b1 + ...+ bn. If player i can get more than its
utopia vector bi, the other players might consider to throw i from the coalition
as they would be better off without i [21]. Therefore in a core allocation, no
player can ever get a payoff that exceeds this upper value.

However, the utopia vector b may not be efficient: summing up all the
marginal contributions

∑
i∈S

bi of every player i ∈ N may not be equal to the

value of the grand coalition v(N). To satisfy the efficiency property, the value
that is distributed to the players will be divided by the sum of all utopia vectors
for all players in N . Thus we define the Utopia value in our procedure as follows:

UV (N, v) =
( v(N)∑
i∈N

bi

)
b (2.4)

This utopia value is Shapley value-like, as its solution also has the additivity
property. It also considers the marginal contributions, like the Shapley value.
However, the utopia value takes only the marginal contribution regarding the
grand coalition into account, while the Shapley value also takes the marginal
contribution of all coalitions into account. Therefore this solution is simpler
than the Shapley value solution. [20]
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Solution 3: Nucleolus

David Schmeidler (1969) in his paper ”The nucleolus of a characteristic
function form game” [24] introduces the nucleolus as an alternative solution
for cooperative games. The nucleolus is the set of individually rational alloca-
tions that lexicographically minimizes the excess/dissatisfaction of all coalitions.
Unlike the Shapley value, the nucleolus is a solution of a minimization problem
[11]. It is unique but exists only when these individually rational allocations
exist; which in this case, if v(N) ≥

∑
i∈N v(i). By definition, nucleolus will be

in the core of the game whenever the core is non-empty.
Instead of applying a general axiomatization of fairness to a value function

defined on the set of all characteristic functions, we look at a fixed characteristic
function v, and try to find an allocation x = (x1, ..., xn) that minimizes the worst
inequity. That is, we ask each coalition S how dissatisfied it is with the proposed
allocation x and we try to minimize the maximum dissatisfaction.

X is the nucleolus if and only if for all other allocations Z and all coalitions
T that are better off with Z (i.e.

∑
i∈T

zi ≥
∑
i∈T

xi), there is a coalition T ′ that is

better off with X, and x-dissatisfaction of T ′ is at least as large as the one of T
[25].

There is an intuitive procedure to find this nucleolus [9]. If the core is
non-empty, what we do is increasing the worth of all coalitions simultaneously,
by the same amount, except for the empty set ∅ and the grand coalition N.
This operation would make the new core become much smaller as we continue
increasing until a further increment would result in an empty new core. If in
the end a single point remains, then we got the nucleolus. Otherwise, if there
are two or more coalitions remain but we cannot increase any further without
creating an empty core (thus there are conflicting constraints), we then stop
increasing the worth of these conflicting coalitions and keep on increasing the
worth of every other coalition. We proceed this way until finally, we have a core
consisting of just one point, which is the nucleolus.

On the other hand, starting with an empty core, we simply decrease the
worth of all coalitions simultaneously, again except for the emptyset and the
grand coalition, until we arrive at a game with a non-empty core. From that
moment onwards, if we did not find a single point core, then we continue by
increasing the worth of the non-conflicting coalitions, until again some condi-
tions are on the verge of conflicting each other. The increase of the worth of
conflicting coalitions is put on hold and we continue with the non-conflicting
ones till a single point core remains: the nucleolus.

The nucleolus is one of the allocations that minimizes the maximal excess, i.e.
if for a game (N,v) an allocation x=(x1,...,xn) is being considered as a solution,
then one might wish to measure the level of each coalition’s dissatisfaction within
the possible solution. The difference between v(S ) and x (S ):=

∑
i∈Sxi is taken

as a measure of the dissatisfaction for each coalition S, and is called the excess
e(S,x ).
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e(S, x) = v(S)− x(S) (2.5)

Note that each coalition would prefer a solution with the smallest excess as
possible.

The problem of minimizing the maximum of a collection of linear functions
subject to a linear constraint is easily converted to a linear programming prob-
lem and can thus be solved by the simplex method, for example. After this is
done, one may have to solve a second linear programming problem to minimize
the next largest excess, and so on. However, it is beyond the scope of this thesis.

In our procedure that will be explained later in the next subsection, we apply
the Prenucleolus solution, which is preferred by the math-oriented game theo-
rists, instead of the nucleolus which is preferred by the game theorists. In most
cases, prenucleolus and nucleolus are considered the same. The difference with
nucleolus is that there is no assumption of individually rational allocations when
prenucleolus is considered. In the nucleolus, we only consider the individually
rational allocations by letting contribution for player i, xi ≥ v({i}). While the
prenucleolus only consider efficient allocations by looking at the contribution
x ∈ RN for which

∑
i∈N

xi = v(N).

Nucleolus and prenucleolus are overlapping in a class of nonnegative games
where this inequality v(T ) −

∑
i∈T

v(i) ≤ v(S) −
∑
i∈S

v(i) holds [12] for the two

coalitions T ⊆ S. In our context, this inequality seems to hold. Therefore in
this thesis, we may say the nucleolus and prenucleolus are the same. To avoid
confusion, from now on we will call our solution concept as the Prenucleolus.

2.3 The Fitting Techniques

In the previous section, we already have three solution concepts in cooperative
game, namely the Shapley value, the Utopia value, and the Prenucleolus. To be
able to reconstruct the game using the solution concepts given and the brood
data which will be explained in section 2.4, we need some techniques to be
implemented in our procedure of finding the best fitted game. Here we describe
how can we make the game from the brood data that will be translated into
solutions, assuming this game is solved by the three solution concepts men-
tioned earlier. To determine how good this game fits the solutions, we will also
introduce an error measurement in this section.

2.3.1 Techniques on Shapley Value

As we mentioned before, Jean Derks [18] described three procedures in order
to find a fit for the brood data, making use of some mathematical concepts
such as Balanced Contributions and Unanimity games. Below we will explain
and examine how these approaches look like, then choose one of them to be
implemented in our brood data.
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Firstly, let N be a fixed, finite set of players, and let Ω be a set of subsets
of N . Suppose for each coalition S ∈ Ω there is a payoff vector xS = (xSi )i∈S ,
expressing the profits of the players in S when they decide to cooperate. In
other words, this xS is a set of solutions of a cooperative game. We address the
problem of how to find this corresponding cooperative game. Assuming that
the payoffs follow the Shapley value distribution, the following approaches are
considered.

Balanced Contributions

One approach is to assume some kind of fairness or balancedness that also holds
for the Shapley value [26]. Consider a so-called payoff system Z = (zSi )S⊂N,i∈S .
Z is said to be balanced if equation 3.2 below holds for all coalitions S and
players i, j ∈ S.

zSi − z
S\{j}
i = zSj − z

S\{i}
j (2.6)

The intuition behind this property is as follows: the amount zSi − z
S\{j}
i is

the loss player i experiences when player j decides to leave the coalition S; so,
Z is balanced if each two players in any coalition attain the same loss when the
other decide to leave the coalition.

Naturally, we may not be able to extend the above introduced collection
X = (xS)S∈Ω into a balanced payoff system Z but it is interesting to investigate
conditions on Ω ensuring the existence of balanced extentions. This is, however,
not pursued in this thesis.

Game-Fitting Procedure

For this procedural approach, we define a unanimity game for coalition S

US(T ) =

{
1 if S ⊆ T , T ⊆ N
0 otherwise

(2.7)

These unanimity games U form a basis for the set of games that we will use
in our procedure that will be explained in the next approach. In this unanimity
game, all players in S should be present in order to make the coalition T to be
powerful. The Shapley value for this unanimity game is given by:

φ(US) =


1

|S|
if i ∈ S

0 otherwise
(2.8)

Note that here we divide 1 with the number of players in S. We can see that
the payoff vector φ(US) is now efficient.

Suppose that we fit the data and arrive at a game (N, v). How can we
improve the upcoming procedural approach in some sense ’better’. From the
existing game (N, v), we only consider new games (N, v + αu) with a scalar α,
and u ∈ U , a finite, fixed set of games. As already mentioned before, here we
take U to be the set of unanimity games. For each unanimity game (N, uT ) we
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first compute the weight αT for which the error is minimum, i.e. satisfying this
equation:

E(v + αTuT ) = minαE(v + αuT ). (2.9)

Then, choose coalition T̂ with:

E(v + αT̂uT̂ ) = minTE(v + αTuT ), (2.10)

and let v′ be v + αT̂uT̂ .
In other words, we only change the existing game (N, v) into a new game

(N, v′) in the direction of one unanimity game.
We will explain more on this error E in the following subsection.

Error Measurement

After we compute the new game (N, v′) using the procedure above, we want to
see if this game is close to the game we are looking for. Firstly, we will define two
measures of ’closeness’. The first measurement eD is where we compare each
brood data points with each solution points of the Shapley value procedure
in order to measure how well the game solutions fit the brood data we have.
The second one is E(v), in which we measure how well the brood data fits the
solutions of the new game we found from the fitting procedure. Assume that
the importance weights IS∈Ω, are provided from the brood data; the smaller
the error E(v), the closer we would like the value of the coalitions v(S) to our
payoff vectors xS . The following error measure fulfills this property:

E(v) =

∑
S∈Ω

IS

∣∣∣∑
i∈S

xSi − v(S)
∣∣∣∑

i∈S
xSi∑

S∈Ω

IS
(2.11)

Note that we firstly take the absolute error in order to avoid negative results in
the summation, then we take the mean by dividing this absolute error with the
total of our payoff vectors. We then take the relative error by multiplying the
absolute error with the importance weights of every possible coalitions S in Ω.
Finally we divide it with the sum of the importance weights, to get the total
error measurement.

For the error measure eD, we calculate the difference between the new game
(ySi∈S)

S∈Ω
with our payoff vector. This ySi is defined as the Shapley value

solution of the subgame v with weight w (see next subsection for this weighted
version), in which only players in S are taken into account. The error eD is
mathematically define as follows:

eD =

∑
S∈Ω

IS

√∑
i∈S

(xSi − ySi )
2

∑
S∈Ω

IS
(2.12)
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We firstly take the square of the difference in order to avoid negative values,
sum it over all players in S, then take the square root before multiplying it with
the sum of the importance. In the end, we also divide the result with the sum
of all importance weights.

Here we take ySi =
99

100
xSi to be the new game in order to get the 1% average

of error as a value that we would like to achieve.
The error E(v) is smallest among all games derived from v by adding a

weighted unanimity game. By repeating the game-fitting procedure above, for
example by starting with the zero game, we may arrive at a game with error
below a given level, or when the error change is below a specified level (for
example 0.0001 of the desired error level). This error E(v) is our focus on the
experiments later, as the smallest E(v) would bring us closer to the best fitted
game in which the value of the coalitions v(S) is close to our payoff vectors xS .

Weighted Shapley Value

If the resulting error is still high, and in order to capture the problem that
different players evaluate the payoff differently, instead of using the unanimity
game in the above repeated procedure where the payoffs to the players are
treated equally, we may consider the weighted Shapley value approach [27]. By
assuming that there are (unknown) weights wi, i ∈ N , such that the payoff of
one unit is actually worth wi to player i, then we should consider the set of
allocations:

xw =
( 1

w i
xSi

)
i∈S,S∈Ω

(2.13)

in the above approach.
Let E(v) denotes the error and vw the game we get if we apply the repeated

procedure on xw. It can be proven that E(v) equals the error on vw, but instead
of the Shapley value the weighted Shapley value is chosen with weight system
wi.

In computing weights with a satisfactory error we may follow the same idea
as before. Let W = {w1, ..., wK} be a set of weight systems:
for each weight system wk compute the weight αK , α:=0 to 1, for which

E(w + αkw
k) = minαE(w + αwk). (2.14)

Then, choose index k̂ with

E(w + αk̂w
k̂) = minTE(w + αkw

k). (2.15)

and let w′ be w + αk̂w
k̂.

Again, by repeating this procedure, for example by starting with weights
wi = 1, i ∈ N , we may arrive at a game with desirable error.

Naturally, the weight systems in W may be chosen such that the needed
computations are effectively implemented. However, no such W is known, and
therefore we propose the following procedure, with α a given positive number.
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As long as there is a wk ∈ W such that E(v) > E(w + αwk) then change v
into w + αwk. If no improvements are observed then change α into a smaller
number, then repeat this procedure. The repetition can be maintained as long
as computation time is available or the desirable error is reached.

2.3.2 Other Solution Concepts as Comparison

In order to compare the performance of the Shapley value procedure in our
brood data, a similar fitting procedure is applied on the weighted version of the
other two approaches (i.e. the Utopia value and the Prenucleolus). Note that
we will not explain the techniques for these two other solution concepts as the
same approaches described for the Shapley value above are mimicked for both
Utopia value and Prenucleolus.

2.4 The Data and The Game Translation

In this section we will describe what are the data we have and how can we
translate the raw data using the model and the techniques explained in the
previous sections, into something useful and insightful.

2.4.1 The Brood Data

The brood datasets that are used in this thesis have been collected by Professor
Scott Forbes for about ten years during his research in wetlands near Winnipeg,
Manitoba, Canada. It is defined in Forbes book [1] that the core brood/chicks
are the nestlings that are hatched together on the first day of the nestling
period; while nestlings that are hatched one or more days later are defined as
the marginal brood/chicks. The blackbird parents’ choice of hatching how many
eggs in the first day could be based on their experiences on the previous hatching
periods, or on their instinct of the weather and food condition near the nest.
They will hatch each one of the marginal every one day after the core. Thus,
having 2 core chicks and 3 marginals will make the hatching periods of 4 days
in total (1 day for all the cores, 3 additional days for each marginal).

The raw data in Table 2.9 and Table 2.10 below enable us to find out how
many core and marginal children that the blackbirds could have in one brood,
as well as how many broods are available for the specific number of core and
marginal chicks. We can also see how many chicks that are perished during
one week of measurement (starting from day 1 to day 8). These large datasets
have been compiled into good years and bad years period, which allow us to see
whether there is any difference on how parents allocate the food for the core
and marginal children during the good and the bad times.

Note that notation #eggs shows how many eggs are firstly available in
total before the hatching period. These eggs might be removed, broken, or
perish early during a hatching failure, thus this total number can sometimes
be different with the number of hatchlings. Notation c in day 1, denotes the
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number of core eggs (eggs that are hatched in day 1) inside one brood; while
notation m denotes the number of marginal eggs (eggs that are left/not yet
hatched in day 1) in one brood. Notation #br shows how many broods that
are available in total. In day 8, c and m denote number of core and marginal
chicks which survive within one week, while m1, m2, m3 denote the number of
marginals that are hatched on the first, the second, and on the third day after
the core. The total in day 8 shows how many chicks that are continue living
after one week of feeding.

Table 2.9: The good years raw data

day 1 day 8
#eggs c m #br c m m1 m2 m3 total

18 1 0 15 15 0 0 0 0 15
59 1 1 29 27 27 27 0 0 53
120 1 2 40 38 62 33 29 0 95
218 1 3 55 54 124 52 48 24 176
30 2 0 15 28 0 0 0 0 28
236 2 1 78 134 56 56 0 0 186
430 2 2 108 208 140 85 55 0 345
75 2 3 15 29 26 14 9 3 55
81 3 0 27 74 0 0 0 0 74
292 3 1 73 196 33 33 0 0 224
100 3 2 20 55 16 12 3 0 71
32 4 0 8 27 0 0 0 0 27
25 4 1 5 19 2 2 0 0 21

Table 2.10: The bad years raw data

day 1 day 8
#eggs c m #br c m m1 m2 m3 total

6 1 0 6 6 0 0 0 0 6
40 1 1 20 22 17 16 1 0 35
100 1 2 33 39 48 26 22 0 63
116 1 3 29 46 56 27 22 6 68
50 2 0 24 46 0 0 0 0 46
153 2 1 51 104 35 34 0 0 121
292 2 2 73 136 61 44 17 0 168
55 2 3 11 19 13 9 3 1 29
54 3 0 18 44 0 1 0 0 44
331 3 1 83 201 25 25 0 0 198
40 3 2 8 23 1 1 0 0 22
28 4 0 7 21 0 0 0 0 21
15 4 1 3 9 1 1 0 0 10

As we have seen in the above data, one brood can contain at maximum 4 core
chicks, while on the other hand, it can also contain at maximum 3 marginals.
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However, even though the total number of chicks is seven (i.e. there are seven
players in the game), we do not have data with four core and three marginals
at the same time. The largest brood we have consists of five chicks, either 2
core with 3 marginals, 3 core with 2 marginals, or 4 cores with 1 marginal.
Note that from the story of blackbirds in Forbes’s book [1], the parents will
feed the chicks that beg louder, which usually are the core chicks. Therefore, in
one way to calculate the Shapley value, we consider to assume that the feeding
process will always start with the core chicks, while the marginals ’fight’ over the
remaining food after the cores are being fed. This assumption will be described
later in the next chapter during calculations and experiments of our method.

In theory, we also cannot have only marginals without having the core, or
having the third and/or the second marginal without having the first one. But
this is happening in some of the brood data since there is a possibility that
the egg is missing or being destroyed during the hatching period of the core
chick, not to mention the chick that is directly dead after born, leaving only
the marginals in the brood. Same case is also happening for the marginals.
However, later in the next chapter we will see that our method excludes this kind
of missing data from the calculations, and consider only the feasible coalitions.

As a result of being born on different days where the marginals are hatched
on each day after the cores, we think our brood data have a specific property:
there exist different weights between core and marginal chicks. This is because
the core and the marginal chicks may value their food in different way. We
predict that all the core chicks c will value their food in the same manner, since
they are hatched on the same day (thus may be as strong as each other) and the
parents consider them to be equally important to continue the family legacy. As
a result, the weights’ difference between the core chicks is very small or can be
ignored. In other words, we assume that competition between the core chicks
in one brood are not exist. However, there exist different weights between the
core and the marginals, as well as between all the marginals, as the marginal
mi, i :=1 to 3, are born consecutively on i days after the core. Note that this
weight is not a body-mass index but an additional number that represents how
the chicks may value their food. This weight will be explained further in the
next chapter.

2.4.2 Coalition Model in the Brood Data

To be able to build a coalition model for the brood food allocation data during
the good and the bad years, we firstly we define an XY-brood game where X
and Y denote the number of core and marginal children respectively. As input
for the bird brood food allocation model, we use the average of the survival
rate data A and the importance weights data I which shows how many times
a specific type of brood (i.e. core and marginal coalition) appears in the game.
Note that in Table 2.11 and Table 2.12 below, notations c and m of the A data
represent the number of core chicks that are hatched in day 1, and the number
of marginal chicks that are left (will be hatched consecutively in the next days).
Notation d8 val represents the average number of all chicks (both core and
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marginals) which survive until one week of feeding (i.e. day 8). Notation m av
shows the average of the marginal chicks’ survival rate which we will use to fill
the coalition value for the marginals later in our method, while each notations c
val, m1 val, m2 val, and m3 val show the survival rate of each chick, starting
from the core, the first marginal, until the third marginal chick respectively.

Table 2.11: Average of the Survival Rate for XY-brood type during the Good
years

A
c m c val m av m1 val m2 val m3 val d8 val I
1 0 1.000 1.000 16
1 1 0.931 0.931 0.931 1.862 29
1 2 0.950 0.838 0.892 0.784 2.626 40
1 3 0.982 0.765 0.963 0.889 0.453 3.287 55
2 0 0.933 1.867 15
2 1 0.859 0.747 0.747 2.465 78
2 2 0.963 0.688 0.794 0.514 3.234 108
2 3 0.967 0.578 0.933 0.600 0.200 3.667 15
3 0 0.914 2.741 27
3 1 0.895 0.465 0.465 3.150 73
3 2 0.917 0.400 0.632 0.158 3.539 20
4 0 0.844 3.375 8
4 1 0.950 0.400 0.400 4.200 5

Table 2.12: Average of the Survival Rate for XY-brood type during the Bad
years

A
c m c val m av m1 val m2 val m3 val d8 val I
1 0 1.000 1.000 6
1 1 1.000 0.850 0.850 1.850 20
1 2 0.848 0.774 0.839 0.710 2.397 33
1 3 1.000 0.644 0.931 0.759 0.453 2.897 29
2 0 0.958 1.917 24
2 1 0.931 0.686 0.686 2.549 51
2 2 0.836 0.418 0.603 0.233 2.507 73
2 3 0.818 0.433 0.900 0.300 0.200 2.936 11
3 0 0.815 2.444 18
3 1 0.763 0.309 0.309 2.598 83
3 2 0.917 0.063 0.125 0.000 2.875 8
4 0 0.750 3.000 7
4 1 0.750 0.333 0.333 3.333 3

Having the coalitions S, what value can we choose to be the value of the
coalition v(S)? Since we have the average of the survival rate A for each off-
springs in every XY-brood, taking into account its importance weight I (i.e. how
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many times the XY-brood data occur), we can take these values as the value of
the coalitions. But how to put the ’right’ value into the ’right’ coalition? Here
we propose a coalition procedure which we adapt from the Shapley value proce-
dure in the previous subsection by seeing the problem as a coalitional procedure
as shown in the example given in subsection 2.1.3.

1. Suppose we have an XY-brood game during either the good or the bad
years, with maximum 7 players (i=1 to 7), consists of maximum 4 core
(i=1 to 4) and maximum 3 marginal players (i:=5 to 7). Firstly we define
all possible coalitions of (X+Y) players where there are X core players and
Y marginals.

For example, if we take the good years 21-brood data where there are two
core players and one marginal player, it is possible to have coalitions of
every single player, coalition between the core players, coalitions between
each core with the marginal, and coalition of all the three players. In other
words, for the good years 21-brood, the possible coalitions of the 3 players
are: {1}, {2}, {5}, {1,2}, {1,5}, {2,5}, and {1,2,5}.

2. We then re-translate every possible coalition into the number of core and
marginal players in a brood.

For example, coalition {1} and {2} is when we only have one core player
in a brood, without having any marginals; i.e. the 10-brood. Thus, for the
single core player coalitions, we will consider the 10-brood game. Now we
do the same translations for the other coalitions: consider 20-brood game
for the coalition between the core players {1,2}, 11-brood game for the
coalitions of each core player with the marginal (i.e. {1,5} and {2,5}), and
simply 21-brood game itself for the coalition of all three players {1,2,5}.
As an exception, for the marginal player coalition {5} in 21-brood data,
we cannot take the 01-brood into account, since by definition, no marginal
can be hatched before having the core hatched. Thus we do not need to
consider this kind of brood in the procedure.

3. Now we continue by looking at Table 2.11 for the good years, and Table
2.12 for the bad years, in order to see the average of the survival rate
in the corresponding XY-brood data, which we need to consider for each
coalition.

As an example, to fill in the coalition value v(S) of the single core player
coalitions {1} and {2}, we take the average of the survival rate for this
core chick in 10-brood, which is 1.000 (see c val on the table). For the
marginal player coalition {5} which is an exception, we choose to take the
survival rate of the marginal on its first appearence in the brood datasets,
which is the m1 val value on table: 0.931. Note that this m1 val is equal
to the m val as we only have one marginal in 10-brood game. For the
20-brood, 11-brood, and 21-brood game, we take the corresponding total
average number of the chicks’ survival rate d8 val, which are 1.867, 1.862,
and 2.465, respectively.
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As a result, we then have this coalition table for the 21-brood game during
the good years period:

Table 2.13: 21-brood game, good years

S {1} {2} {5} {1,2} {1,5} {2,5} {1,2,5}
v(S) 1.000 1.000 0.931 1.867 1.862 1.862 2.465

Note that we remove the emptyset coalition (∅) in the brood coalition table
since in any case it would always take a zero value. Same procedure applies for
every XY-brood game.
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Chapter 3

Experiments

Before adapting the brood data into a program, we think it is better to get
the feeling of how the brood data looks like; so that we know what is the best
choice to implement this data into the program. Therefore in this chapter,
firstly we will show how we do some calculations by hand on the Shapley value
solutions for some XY-brood game in the good and the bad years data. After
that, we will provide some results of the experiments using Matlab for the
three solutions described in the previous chapter, namely the Shapley value, the
Utopia value, and the Prenucleolus, using two different cooperation approaches
called the standard approach and the restricted approach. We will also show
how we translate the survival rate into some kind of utility functions and which
translation gives the best fit with the smallest minimum error. We are using
the good and the bad years data that have been compiled by Professor Scott
Forbes, as well as random data for validation. Our focus is onto the Shapley
value, but we will compare its results with the other two solution concepts.

3.1 Calculations by Hand

Here in this section, we will show that for some cases of the brood data in the
good and the bad years period, it is possible to calculate the Shapley value
solution by hand. However, the larger the data, the more we need a program
which can easily find the solutions using the Shapley value solution concept, or
the other cooperative game solution concepts in a quite short period of time.

3.1.1 Calculating Shapley Value of the Good Years Data

As we can see in the brood data for the good years (Table 2.11), there are data
of 10-brood, 11-brood, 12-brood, 13-brood, 20-brood, 21-brood, 22-brood, 23-
brood, 30-brood, 31-brood, 32-brood, 40-brood, and 41-brood. To get a feeling
of these data we are having, we will calculate the Shapley value φ by hand for
some of the smaller broods data, to see if we can get something interesting as a

27



result.
There are two different approaches that we use in our procedure of calcu-

lating the payoff vectors xS for the coalition S. The first one is the standard
approach. Remember that we have at maximum seven players (|N |=7), consist
of at maximum 4 core players (i=1 to 4) and at maximum 3 marginal players
(i:=5 to 7). Thus, we may consider seven different places for each different po-
sitions of the players. In this standard approach, the core chicks can be placed
in anywhere among the four first places while the marginals are placed consecu-
tively in the three last places (in an increasing order). As the core may become
the first, the second, the third, or the fourth player, it can be placed in any
of the four first places. Thus, we need to consider the same survival rates for
all these four possible places of the core chicks in each XY-brood game; while
the importance weights I for the corresponding core chicks are divided equally
among the four possible places. Note that whichever chick chooses the first
place will be considered as the first core, and so on.

To be clear about this representation, we convert Table 2.11 of the good years
data into a new table, Table 3.1, by defining an allocation xS as the average
of every chick’s survival rate in the corresponding XY-brood game, taking into
account the possible coalitions that can be made by all the players involved in
the game. For example, if we consider the good years 21-brood game using the
standard approach, we will have a set of possible coalitions which consists of
coalition {1,2,5}, {1,3,5}, {1,4,5}, {2,3,5}, {2,4,5}, and {3,4,5} since the two
core chicks can choose any of the four first places. Note that what we denote as
possible coalitions here are the places where the chicks exist.

The Table 3.1 below will show how many players involved in each coalition
of a specific XY-brood, what are the possible coalitions exist in a specific XY-
brood, and what are the survival rates of each player involves in those specific
coalitions. Note that the numbers i:=1 to 7 in the table denote the players,
where i=1 to 4 are core players and i:=5 to 7 are marginal players.
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Table 3.1: Survival rates of the players in the existing coalitions (Standard
Approach, Good Years)

xS

XY Possible coalitions S 1 to 4 5 6 7
10 {1}, {2}, {3}, {4} 1.000 0 0 0
11 {1, 5}, {2, 5}, {3, 5}, {4, 5} 0.931 0.931 0 0
12 {1, 5, 6}, {2, 5, 6}, {3, 5, 6}, {4, 5, 6} 0.950 0.892 0.784 0
13 {i, 5, 6, 7},∀i:=1 to 4 0.982 0.963 0.889 0.453
20 {i, j},∀i, j:=1 to 4, i < j 0.933 0 0 0
21 {i, j, 5},∀i, j:=1 to 4, i < j 0.859 0.747 0 0
22 {i, j, 5, 6},∀i, j:=1 to 4, i < j 0.963 0.794 0.514 0
23 {i, j, 5, 6, 7},∀i, j:=1 to 4, i < j 0.967 0.933 0.600 0.200
30 {i, j, k},∀i, j, k:=1 to 4, i < j < k 0.914 0 0 0
31 {i, j, k, 5},∀i, j, k:=1 to 4, i < j < k 0.895 0.465 0 0
32 {i, j, k, 5, 6},∀i, j, k:=1 to 4, i < j < k 0.917 0.632 0.158 0
40 {1,2,3,4} 0.844 0 0 0
41 {1,2,3,4,5} 0.950 0.400 0 0

Note that in total we will have 54 coalitions if we consider the standard approach.

The second approach is the restricted approach. Here we restrict n core
players, n=1 to 4, to always be in the first n-places, while the remaining 4− n
places that are not taken by the core chicks will have a zero value. For example,
if we have a 21-brood where there are two core players and one marginal, then
the two core players will always fill the first and the second places, while the
third and the fourth places remain zero. For this restricted approach, below
we will see how the average of the chicks’ survival rates are also placed into
the table together with the existing coalitions. Note that we will have only 13
coalitions if we consider this approach. This number is the same as the number
of all existing XY-brood games.
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Table 3.2: Survival rates of the players in the existing coalitions (Restricted
Approach, Good Years)

xS

XY-brood S 1 2 3 4 5 6 7
10 {1} 1.000 0 0 0 0 0 0
11 {1,5} 0.931 0 0 0 0.931 0 0
12 {1,5,6} 0.950 0 0 0 0.892 0.784 0
13 {1,5,6,7} 0.982 0 0 0 0.963 0.889 0.453
20 {1,2} 0.933 0.933 0 0 0 0 0
21 {1,2,5} 0.859 0.859 0 0 0.747 0 0
22 {1,2,5,6} 0.963 0.963 0 0 0.794 0.514 0
23 {1,2,5,6,7} 0.967 0.967 0 0 0.933 0.600 0.200
30 {1,2,3} 0.914 0.914 0.914 0 0 0 0
31 {1,2,3,5} 0.895 0.895 0.895 0 0.465 0 0
32 {1,2,3,5,6} 0.917 0.917 0.917 0 0.632 0.158 0
40 {1,2,3,4} 0.844 0.844 0.844 0.844 0 0 0
41 {1,2,3,4,5} 0.950 0.950 0.950 0.950 0.400 0 0

After having the two tables above, we will explain two ways of calculating
the Shapley value φ for 12-brood by hands. The first one is done for every
possible orderings of the grand coalition, while the second one is by removing
the orders that are assumed to be unfeasible before we start calculating the
value. To understand how this calculation method works, we will denote a set
of possible orders P as any possible orders of the chicks when they are being
fed by the parents: starting from the firstly fed chick, until every chick in the
corresponding XY-brood data is being fed. For example, order 1-5-6 in the 12-
brood game means that the core chick is being fed at the first place, followed
by the first and the second marginals consecutively.

As we have mentioned in the previous chapter,when blackbirds parents come
to the nest bringing the foods for their chicks, whichever chick that begs harder
will be fed first with usually the largest amount of food, and vice versa; chick
that is being fed last will get just the remainder. As food given from parents
is probably the only source of the chicks’ nutritions, at least until they are
able to fly and look for another source of food, this food is very important for
them to survive. Therefore, we may logically assume that the chick’s order of
being fed will affect their survival rate. Using this assumption, it is possible to
calculate the Shapley value by taking the average of the chicks’ survival rate in
the corresponding brood data to be interpreted as the amount of food the chicks
are getting from their parents which will help them to survive. An average of
1.000 for a chick’s survival rate could be translated as: the chick is getting 100%
of food that it needs to survive.

In order to calculate the Shapley value by hand using the translation above,
we define the following allocation procedure:

30



1. Consider the XY-brood game during either the good or the bad years
period under the restricted approach. Make a coalition table for the XY-
brood game using the coalition procedure described in subsection 2.4.2.

As an example, now we consider the good years 12-brood game. Using
the procedure that are explained before in section 2.4.2 and looking at
Table 2.11 for the chicks’ average survival rate data during the good years,
notice that we use the total sum of all chicks’ survival rate in 12-brood to
fill in the value of the grand coalition, while the marginals’ average m av
of the 11-brood and 12-brood are used to fill in the value of the coalition
{5} and {6}, respectively. To fill in the value for coalition {1,5} and {1,6},
we use the sum of the survival rate for core chick in 11-brood with the m
av of 11-brood and 12-brood respectively. Finally, the sum of m1 and m2

survival rate of the 12-brood is used to fill in the value for coalition {5,6}.
Thus, we have a coalition table for the 12-brood game as follows:

Table 3.3: 12-brood game, good years

S {1} {5} {6} {1,5} {1,6} {5,6} {1,5,6}
v(S) 1.000 0.931 0.838 1.862 1.769 1.676 2.626

2. List every possible orders of the grand coalition that correspond to this
XY-brood data.

3. In order to be able to fill in the ’right’ value that every player will get
according to their possible ordering, we adapt the same Shapley procedure
as explained in the previous chapter. This way, we will divide the value
of the grand coalition ’fairly’ by considering the orders and the value that
are ’claimed’ by each coalition.

As an example, from Table 3.3, we know that player 1 in coalition {1}
is ’claiming’ an average of 1 for its survival rate, while player 5 and 6
in coalition {5} and {6} are ’claiming’ an average of 0.931 and 0.838,
respectively. If we take into account order 1-5-6 of the players in the
grand coalition, we will firstly allocate 1.000 for player 1; exactly the
same amount as what it claims. To decide how much should player 5 gets,
we look at Table 3.3 and see that 1.862 is the value of coalition {1,5}.
Since we already give player 1 a value of 1.000, the remaining value of
0.862 will be the amount which is given to player 5. Keep in mind that
the sum of every player’s value needs to be equal to the value of the grand
coalition. Since a total of 1.862 has already been given to player 1 and 5,
player 6 will get the remainder of the grand coalition value; which is 0.764.
Doing the same procedures to every possible orders, we will get a Shapley
value calculation table as shown below. Note that notation φ denotes the
Shapley value of each player involved in the grand coalition.
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Table 3.4: Shapley value of 12-brood game, good years

Possible orders Player Total
P 1 5 6

1-5-6 1.000 0.862 0.764
1-6-5 1.000 0.857 0.769
5-1-6 0.931 0.931 0.764
5-6-1 0.950 0.931 0.745
6-1-5 0.931 0.857 0.838
6-5-1 0.950 0.838 0.838
φ 0.960 0.879 0.786 2.626

4. Now we compare the values we got from observing the average survival
rates of each chick in the corresponding XY-brood data, which we denote
as Observ., to the Shapley values we got from calculation. In order to get
these observation values, we need to look at Table 3.2 (restricted approach)
and find the average survival rate of each chick in the corresponding XY-
brood.

For example, the observation values for player 1, player 5, and player
6 in 12-brood game according to Table 3.2 are 0.950, 0.892, and 0.784,
respectively. For easier comparison, we will add these observation values
into the Shapley value calculation table we made in the previous step,
resulting this table below:

Table 3.5: Possible orders for 12-brood game, good years

Possible orders Player Total
P 1 5 6

1-5-6 1.000 0.862 0.764
1-6-5 1.000 0.857 0.769
5-1-6 0.931 0.931 0.764
5-6-1 0.950 0.931 0.745
6-1-5 0.931 0.857 0.838
6-5-1 0.950 0.838 0.838
φ 0.960 0.879 0.786 2.626

Observ. 0.950 0.892 0.784 2.626

5. Since there is almost no case in the blackbird broods where the marginal
chicks are being fed before the core chicks, now we consider to leave out
the unfeasible orders from the Shapley value calculation table and consider
only the cases when the core chicks are being fed before the marginals. We
now have a new Shapley value calculation table with a set of feasible orders
F instead of possible ones. Below is the new Shapley value calculation
table for the 12-brood game:
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Table 3.6: Feasible orders for 12-brood game, good years

Feasible orders Player Total
F 1 5 6

1-5-6 1.000 0.862 0.764
1-6-5 1.000 0.857 0.769
φ 1.000 0.8595 0.7665 2.626

Observ. 0.950 0.892 0.784 2.626

Again, we compare the Shapley value φ with the observation value to see
if parental favoritism exists in the case of a specific XY-brood data.

Notice that in the case of 12-brood, the Shapley values φ for the core chicks
that we got in both cases are larger than the observation values. Thus there is
no tendency of parents favoriting the core chicks according to this Shapley value
solution in 12-brood. On the other hand, the Shapley value for the marginals
are almost always larger in the observations rather than in the calculation;
except for the second marginal in the case of taking all possible orders P into
calculation. Thus we may say that in the good years 12-brood data, there is
no indication of blackbirds parents playing favorites between the core and the
marginal chicks.

Would it still be the case for every XY-brood game during the good years,
or will the parents start favoriting the core chicks at some point? Note that the
same way of calculations can also be applied for every brood game, especially
the smaller ones (with not more than three or four players in one brood).

Here we provide another example in the good years data using the above
Shapley value calculation procedure to see if parental favoritism could exist even
in the good years. Consider the 21-brood game under the restricted approach
where there exists two core chicks as player 1 and 2, and one marginal as player
5. Following the same Shapley value calculation procedure, ordering the chicks
in 21-brood into order 1-5-2 means that we firstly give allocation for coalition
{1,3} (by giving allocation for chick 1 first from v({1, 5}) and the rest for chick
5), then lastly give the rest of the grand coalition value v({1, 5, 2}) for chick 2
after being reduced by v({1, 5}).

Table 3.7 below will list all possible orders as well as the Shapley value for
the 21-brood game mentioned earlier in the previous chapter (see Table 2.13
for all the possible coalition values of this 21-brood game). In the end, we also
compare the value we got with our observation value for the 21-brood data (see
the corresponding average of the survival rate for each chick involves in the
21-brood game from the A data). Note that the sum of the observed average
of all chicks’ survival rate in the corresponding game (see d8 val data in table
2.11) is equal to the value of the grand coalition.
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Table 3.7: Possible orders for 21-brood game, good years

Possible orders Player Total
P 1 2 5

1-2-5 1,000 0,867 0,598
1-5-2 1,000 0,603 0,862
2-1-5 0,867 1,000 0,598
2-5-1 0,603 1,000 0,862
5-1-2 0,931 0,603 0,931
5-2-1 0,603 0,931 0,931
φ 0,834 0,834 0,797 2,465

Observ. 0,859 0,859 0,747 2,465

From Table 3.7, we see that the marginal chick gets a little bit less than its
Shapley value solution, while the cores get a little bit more in the observation. It
means that according to the Shapley value solution concept and by considering
every possible orders of feeding the chicks in the good years 21-brood, we may
say that the parents are quite ’favoriting’ the core ones.

Now we will leave out the unfeasible orders and consider only the feasible
ones. According to our assumption in subsection 2.4.1 that the parents will
feed the core chicks firstly before the marginals, we can interchange only the
order of the core chicks or the order of the marginals. Coalitions in which any
marginal is fed before any core are not feasible. Thus, erasing orders 1-5-2,
2-1-5, 5-1-2, and 5-2-1 from our calculations will give us the table below:

Table 3.8: Feasible orders for 21-brood game, good years

Feasible orders Total
F 1 2 5

1-2-5 1,000 0,867 0,598
2-1-5 0,867 1,000 0,598
φ 0,9335 0,9335 0,598 2,465

Observ. 0,859 0,859 0,747 2,465

We can see in Table 3.8 that if we remove the unfeasible coalition orders
using our assumption in subsection 2.2.1, the result is the other way around.
Here the marginal gets much more in reality rather than what it suppose to get
based on the Shapley value solution that we calculate.

Now we are questioning about the bad years: would the parental favoritism
also appears in the bad years? And if so, would it happen even worse rather
than in the good years? We will provide an answer to these questions in the
next section.

Interestingly, we can also check whether our Shapley value solutions for the
two good years brood games above satisfy the property of a CG-solution as
described in subsection 2.1.3: the one who claims more, will never get less or
lose less than the one who claims less. Therefore, we need to check these two
conditions on our Shapley value solutions:
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1. Whether the one claiming more will always gets more than the one claim-
ing less

2. And whether the one claiming more will always loses more than the one
claiming less,

For the case of good years 12-brood game, from Table 3.3 we can see that solely,
player 1, 5, and 6 are claiming 1.000, 0.931, and 0.838, respectively. This means,
player 1 claims the most, while player 6 claims the least. When considering
all possible orders P, the Shapley value solutions are 0.960, 0.879, and 0.786,
respectively. Since according to these solutions player 1 gets the most while
player 6 gets the least, the first property of the CG-solution is satisfied.

However, when we consider the lose (i.e. the difference between the claim
and the reward) that every players have, player 1 loses 0.040, while player 5 and
6 equally lose 0.052. The lose of player 1 who claims the most, is in fact smaller
than the lose of two other players who claim less. Thus, the second property is
unfortunately not satisfied. Therefore, when considering all the possible orders
into the calculation, this Shapley value solutions of the good years 12-brood
game is not a CG-solution. We can also easily check for the case of removing
the unfeasible orders, and may arrive at the same conclusion.

In the case of the good years 21-brood game, we also get the same conclusions
when considering only the feasible orders into the Shapley value calculation.
However, we get a different result when we consider all the possible orders.
Claiming 1.000, 1.000, and 0.931 respectively according to Table 2.13, player
1 and player 2 equally get 0.834, while player 5 gets 0.797 in their Shapley
value solutions. Claiming the most, player 1 and 2 lose 0.166, while player 5
loses 0.134. We can easily see that this time, the two properties are satisfied.
Thus, we may say that the Shapley value solutions of the good years 21-brood
game is a CG-solution when we consider all the possible feeding orders into the
calculation.

3.1.2 Calculating Shapley Value of the Bad Years Data

Before we give an example of Shapley value calculation that shows whether
the parental favoritism exists even worse in the blackbird family during the bad
years, we will provide two tables showing the chicks’ average survival rates using
the two approaches: the standard and the restricted approach. Note that these
two tables are adapted from Table 2.12 in the same way as we adapt the table
for the good years in the previous section.
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Table 3.9: Survival rates of the players in the existing coalitions (Standard
Approach, Bad Years)

xS

XY S 1 to 4 5 6 7
10 {1}, {2}, {3}, {4} 1.000 0 0 0
11 {1, 5}, {2, 5}, {3, 5}, {4, 5} 1.000 0.850 0 0
12 {1, 5, 6}, {2, 5, 6}, {3, 5, 6}, {4, 5, 6} 0.848 0.839 0.710 0
13 {1, 5, 6, 7}, {2, 5, 6, 7}, {3, 5, 6, 7}, {4, 5, 6, 7} 1.000 0.931 0.759 0.20
20 {i, j},∀i, j:=1 to 4, i < j 0.958 0 0 0
21 {i, j, 5},∀i, j:=1 to 4, i < j 0.931 0.686 0 0
22 {i, j, 5, 6},∀i, j:=1 to 4, i < j 0.836 0.603 0.233 0
23 {i, j, 5, 6, 7},∀i, j:=1 to 4, i < j 0.818 0.900 0.300 0.100
30 {i, j, k},∀i, j, k:=1 to 4, i < j < k 0.815 0 0 0
31 {i, j, k, 5},∀i, j, k:=1 to 4, i < j < k 0.763 0.309 0 0
32 {i, j, k, 5, 6},∀i, j, k:=1 to 4, i < j < k 0.917 0.125 0.000 0
40 {1,2,3,4} 0.750 0 0 0
41 {1,2,3,4,5} 0.750 0.333 0 0

Table 3.10: Survival rates of the players in the existing coalitions (Restricted
Approach, Bad Years)

xS

XY S 1 2 3 4 5 6 7
10 {1} 1.000 0 0 0 0 0 0
11 {1,5} 1.000 0 0 0 0.850 0 0
12 {1,5,6} 0.848 0 0 0 0.839 0.710 0
13 {1,5,6,7} 1.000 0 0 0 0.931 0.759 0.207
20 {1,2} 0.958 0.958 0 0 0 0 0
21 {1,2,5} 0.931 0.931 0 0 0.686 0 0
22 {1,2,5,6} 0.836 0.836 0 0 0.603 0.233 0
23 {1,2,5,6,7} 0.818 0.818 0 0 0.900 0.300 0.100
30 {1,2,3} 0.815 0.815 0.815 0 0 0 0
31 {1,2,3,5} 0.763 0.763 0.763 0 0.309 0 0
32 {1,2,3,5,6} 0.917 0.917 0.917 0 0.125 0.000 0
40 {1,2,3,4} 0.750 0.750 0.750 0.750 0 0 0
41 {1,2,3,4,5} 0.750 0.750 0.750 0.750 0.333 0 0

With the same coalition procedure as described in subsection 2.4.2, we got
this coalition table for the 21-brood game during the bad years period:

Table 3.11: 21-brood game, bad years

S {1} {2} {5} {1,2} {1,5} {2,5} {1,2,5}
v(S) 1.000 1.000 0.850 1.917 1.850 1.850 2.549
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Moreover, using similar allocation procedure mentioned in the two examples
of the good years data earlier, we build a Shapley value calculation table for the
bad years 21-brood data taking into account every possible orders of the players
as follows.

Table 3.12: Peasible orders for 21-brood game, bad years

Possible orders Player Total
P 1 2 5

1-2-5 1.000 0.917 0.632
1-5-2 1.000 0.699 0.850
2-1-5 0.917 1.000 0.632
2-5-1 0.699 1.000 0.850
5-1-2 1.000 0.699 0.850
5-2-1 0.699 1.000 0.850
φ 0.886 0.886 0.777 2.549

Observ. 0.931 0.931 0.686 2.549

Removing the unfeasible ones, we will get this result:

Table 3.13: Feasible orders for 21-brood game, bad years

Feasible orders Total
F 1 2 5

1-2-5 1.000 0.917 0.632
2-1-5 0.917 1.000 0.632
φ 0.9585 0.9585 0.632 2.549

Observ. 0.931 0.931 0.686 2.549

In the case of taking all possible orders of 21-brood data, the observation
results for the average of the core chicks’ survival rate are indeed higher, com-
pare to the results from the Shapley value calculations. The other way around
happens for the marginals: if we consider all possible orders into account, the
marginal’s survival rate is 12% higher in calculation rather than in reality.
Therefore, we could say that marginal chicks in this case of bad years 21-brood
data, seem to be ’stronger’ in calculation rather than in the real world. In other
words, the parental favoritism exists also in the bad year; and clearly is even
worse in the 21-brood game. However, taking the feasible orders show a little
bit different result.

We might want to see whether this is always the case for every bad years
brood data. However, calculating the same procedures by hand on every XY-
brood data during the good and the bad years will be time consuming and not
very effective; especially when we arrive on the larger broods like 23-brood game
or 32-brood game. Therefore, we will later do computer experiments in order
to continue our investigations.

By looking at the three tables above and doing the same checking as in
the good years, we found that when we consider every possible orders into the
Shapley value calculation for the bad years 21-brood data, the two CG-solution
properties are also satisfied.
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3.1.3 Calculating the Weights

In the case of this brood data where there exist different weights between the
core and the marginal chicks (see subsection 2.4.1), we need to add different
weights wi and wj into the fairness equation, in a way that the payoff of one
unit is actually worth wi to player i. Notation wi denotes the weight of player i,
which in this case is the core player in a specific coalition, with i=1 to 4, while
notation wj denotes the weight of the marginal player j, with j:=5 to 7.

Adapting the fairness property mentioned in Formula 2.6 (subsection 2.3.1)
by adding different weights to balance the strength between the two types of
the chicks, such that the payoff of one unit is worth wi to player i, the balanced
contributions formula now becomes:

1

wi

(
zSi − z

S\{j}
i

)
=

1

wj

(
zSj − z

S\{i}
j

)
(3.1)

In our brood data, setting the weight of the core chick to be equal to one
will enable easier calculation for the strength of the marginal chick. We know
from the Shapley value calculation before that in most of the cases, there exists
a parental favoritism phenomenon. As a results, the marginals may value the
food from the parents more than the core. Thus, the corresponding weights for
the marginals are predicted to be bigger than the weight of core. Note that the
same weight is assumed to apply for all the core chicks, as they may value their
food in the same manner. Therefore we may express wi as wc, and wj as wm,
m:=5 to 7, for easier notations.

Substituting our payoff function xS into the equation, and using the new
notations for the core and the marginal chick, we have an adapted balancedness
formula for the brood data as follows:

1

wc

(
xSc − xS\{m}c

)
=

1

wm

(
xSm − xS\{c}m

)
(3.2)

Before we go into the computer experiments, we will try to find the corre-
sponding weight for the chicks in each good years XY-brood game by hand. We
will see later that calculating the weights for the marginal i chicks by hand does
not arrive at a good single solution.

Let us start with the good years 21-brood game. We consider the restricted
approach with coalitions S ∈ Ω, S = {{1}, {2}, {1, 5}, {1, 2}, {1, 2, 5}}. We have
a list of payoff vectors for specific coalitions in Table 3.2.

Following the formula above, we get equations for the core and the marginal
in the good years 21-brood game as follows.

wc(x
S
5 − x

S\c
5 ) = w5(xSc − xS\5c ) (3.3)

wc

(
x
{c,c,5}
5 − x{c,5}5

)
= w5

(
x
{c,c,5}
2 − x{c,c}c

)
(3.4)

Normalizing on the weight of the core wc=1 and filling in the value of the payoff
vectors for the corresponding player in the coalitions {c, c, 5}, {c, 5}, and {c, c}
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by using the average of survival rates data in Table 3.2, we get this equation for
the good years 21-brood data:

(0.747− 0.931) = w5 × (0.859− 0.933) (3.5)

Solving the equation above yields solution w5 =2.865 as the weight of the
marginal (i.e. player 5) in 21-brood, while the weights of the core players (i.e.
player 1 and 2) are assumed to be always equal to one.

Now, we do the same thing for the 31-brood, to see if we could get the same
weight for player 5, w5, as calculated above.

wc(x
S
5 − x

S\c
5 ) = w5(xSc − xS\5c ) (3.6)

wc

(
x
{c,c,c,5}
5 − x{c,c,5}5

)
= w5

(
x{c,c,c,5}c − x{c,c,c}3

)
(3.7)

(0.465− 0.747) = w5 × (0.895− 0.914) (3.8)

Solving the equation above yields solution w5 =14.8421 as the weight of the
marginal (i.e. player 5) in the good years 31-brood, with weights of the core
players (i.e. player 1, 2, and 3) assumed to be equal to one. This value is indeed
not the same as the value that we got before from Equation 3.5.

Below is the resume of the results if we continue calculating all the good
years brood data in the same way, by hand:

Table 3.14: Resume of the Marginal Weights

XY-brood Marginal weight
21-brood w5=2.48
22-brood w6=-2.59615
23-brood w7=-63.25
31-brood w5=14.8421
32-brood w6=-16.1818
41-brood w5=-0.6132

Looking at the results in the table above, we see that we do not arrive at
a single weighting solution for the same marginal chick. Not only that the
resulting weights for every marginal w5 and w6 are different if we compare them
for each good years XY-brood data, but also a lot of negative weights popped
up. As a result, we need to restrict our Matlab implementation in order to avoid
this negative weights.

Perhaps there is a question why we only find the weight of the third marginal
w7 in the good years 23-brood data, but not the weights for the other marginals?
Because, if for example we want to find w5 and w6 from the 23-brood data, we
then need to consider coalition {c, c, 6, 7} and coalition {c, c, 5, 7} which do not
exist/unfeasible since the (m + 1)-th marginal can not be hatched before the
m-th marginal, m:=1 to 2. In other words, for the cases like this, S \ {c} exists,
but S \ {m} does not.
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3.2 Implementation in Matlab

Jean Derks [18] implements the procedure at Matlab using the three solutions as
described in the previous chapter. With respect to the brood data A (survival
rates) and I (importance weights), we are trying to fit the optimal weights
for the core and the marginal chicks, in order to get the fitted game with the
minimum average of error. We denote datapack B, G, and Rd, respectively for
the bad years, the good years, and the random data.

3.2.1 Without preliminary condition

Knowing that we could not have a single solution for the weight of the marginal
chicks in the good years datapack, we begin implementing procedure in Matlab
in order to be able to find the best fitted game with smallest error as possible.

Below we show the result of our first experiment implementing only the
Shapley value solution on the good years data G and the bad years data B with
1% average of error as a stopping criteria. Note that here we directly use the
chicks’ survival rate as our payoff functions, and the search stops when reaching
the 1% average of error or when the error E(v) cannot be reduced anymore.
Notation wi denotes the players, with i:=1 to 4 as the core players, and i:=5 to
7 as the marginal players.

Table 3.15: The resulting weights using Shapley value solution, no restriction

DP E(v) w1 w2 w3 w4 w5 w6 w7

G 0.0899 0.0017 0.0017 0.0017 0.0017 0.3900 0.5654 0.0377
B 0.0722 0.0437 0.0439 0.0437 0.0437 0.4174 0.2191 0.1885

Once we consider to implement a pre-determined direction in which we re-
strict our solution so that any of the core chick in the data will always have
equal weight with the other core chicks. However, we do not do this in our
experiments as from the table above we could obviously see that the weights
of the marginal chicks are much larger than the cores. Our assumption earlier
in the previous chapter holds in this good years data: the core weights appear
to be the same as they value the food from their parents in the same manner.
There is only a very small difference in one of the core weight regarding the bad
years data which can be ignored.

Furthermore, note that the resulting error for both cases are still quite high,
while our aim is to find the best fit with the smallest average error. One way that
is worth to try in order to see if we can improve the results is, by translating
the probability into some kind of utility function. We may see the average
of the chicks’ survival rate data as a probability, and consider to transform
this probability into some kind of utility function that is either concave or
convex. We could later see how the results are affected by these different utility
translations explained in the next subsection.
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3.2.2 With convex and concave translations

As we already mentioned above, now the probability are transformed into utili-
ties pa, with a := { 1

3 ,
1
2 , 1, 2, 3}. If a < 1, the transformation follows a concavity

increase, while if a > 1, it follows the convexity increase. We are not considering
utility of p4 or more, and p1/4 or less as the translations seems to be not effective
anymore (see Figure 3.2 for the illustration).

By definition, a function is concave if every line segment joining two points
on its graph does not lie above the graph at any point [22]. Symmetrically, a
function is convex if every line segment joining two points on its graph does not
lie below the graph at any point (see pictures taken from [22] below).

Figure 3.1: Illustration of Concave and Convex Functions

Economists often assume that a firm’s production function is concave. The
fact that it is concave means that the increase in output generated by a one-unit
increase in the input is smaller when output is large than when it is small.
That is, there are ”diminishing returns” to the input.

We predict that the utility function in our brood data is also concave, since
the small increase on the food allocation for the marginals, for example, could
increase the chick’s probability of survive a lot more, and might even save them
from dying. In other words, the food is valued more by the marginals rather
than the cores. If the parents simply ignore the marginal chicks which have a
very small chance to survive by not giving them food at all, in the end there is a
much higher probability that the chick will be dead. On the other hand, giving
more food to the core chick who already has a high survival rate, does not give
a different output as the core already has a great chance of surviving. Thus we
think that in this bird brood food allocation problem, the fitting is not linear.
To see if our prediction is true, we will test on both translation’s directions,
as well as the linearity translation, and note on which of these translations we
arrive at the best fit.

In Figure 3.2 below, we show the illustration of how this utility transforma-
tion works. We also show the utility p4 and p1/4 to illustrate that at this point,
the concave transformation is being too close to 0 while the convex transfor-
mation is starting to be too close to 1. Thus, we may say that it is not really
effective in our case to apply ’too much’ transformations by setting pa with
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a < 1/3 or a > 3.

Figure 3.2: Convexity and Concavity Translation of Probability p

Using two different modeling approaches Appr, five different utility transfor-
mations UT, three different solution concepts Sol, and three different datapacks
DP, in total we are doing 90 experiments: 45 experiments for the standard
approach S, and another 45 for the restricted approach R. We will show the re-
sults of the experiments for the standard approach using the bad years datapack
B and the good years datapack G with the three solutions described earlier,
namely the Shapley Value Sh, the Utopia Value Uv, and the Prenucleolus Pr.
Notation wi, i:=1 to 4, and wj , j:=5 to 7 denote the weight of the core and the
weight of the i-th marginal, consecutively. Notation E(v) and eD denote the two
error measurements which we calculate by the formula mentioned in equation
2.11 and equation 2.12. Note that we are more interested in the error E(v) to
see how close the brood data we have can fit the solutions of the new game we
found.

Standard Approach, Good and Bad years

Firstly we will apply the standard approach as explained in the previous chapter,
and conduct thirty experiments for each different cases of the brood datapacks.
Considering this standard approach, we assume only the weight of the first core
chick to be equal to one, and divide the other weights of the chicks by the weight
of the first core to enable easier weights comparison in the experiment results.
Note that we may normalize one of the weights to one as the weights refer to
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utility measurement, and any multiplication or division with a constant factor
does not influence the utility differences between the players.

Procedure stops either when we have error lower than 1% average error or
when it cannot be reduced anymore (converges to some values). In the first table
we will see how the weights of the core players wi, i:=1 to 4, are distributed
in every different cases, then followed by the next table which shows how the
weights of the marginal chicks wj , j:=5 to 7, are compared with the weight of
the first core which is normalized to one.

Table 3.16: Experiment results: Standard Approach, core weights

UT DP Sol eD E(v) w1 w2 w3 w4

1/3 B Sh 0.0370 0.0328 1 1 2.1350 1
Uv 0.0277 0.0671 1 1 1 1
Pr 0.0256 0.0274 1 1.0905 1 1.67

G Sh 0.0292 0.0279 1 0.8883 0.8810 0.8810
Uv 0.0309 0.0162 1 0.9945 0.9945 1.0127
Pr 0.0211 0.0181 1 0.9897 0.8323 0.9076

1/2 B Sh 0.0367 0.0336 1 1 1 1
Uv 0.0426 0.0448 1 1 1 1
Pr 0.0317 0.0609 1 1.2839 0.7688 1.2839

G Sh 0.0367 0.0294 1 1 1.0122 1
Uv 0.0405 0.0214 1 0.9610 1.0192 0.9610
Pr 0.0282 0.0295 1 1 0.9945 0.9945

1 B Sh 0.0454 0.0429 1 1 1 1
Uv 0.0585 0.0637 1 1 1 1
Pr 0.0454 0.0584 1 1.1350 1 1

G Sh 0.0469 0.0496 1 1 1 1
Uv 0.0574 0.0540 1 1.0606 1 1
Pr 0.0376 0.0485 1 1 1.0082 1.2015

2 B Sh 0.0565 0.0500 1 0.9945 0.9945 0.9945
Uv 0.1435 0.1720 1 0.9610 0.9610 0.9610
Pr 0.0591 0.0642 1 1.1400 0.6893 0.8275

G Sh 0.0484 0.1189 1 1 1 1.0406
Uv 0.1108 0.1330 1 1 1 1
Pr 0.0516 0.1221 1 0.5106 0.5106 0.5106

3 B Sh 0.0772 0.0553 1 0.9170 0.9543 0.9245
Uv 0.2732 0.2223 1 2 1 2
Pr 0.0693 0.0549 1 1.0606 1 1.0082

G Sh 0.0595 0.1068 1 1 1 1
Uv 0.1966 0.1344 1 1 1 1
Pr 0.0630 0.1482 1 1 1 1

Note that in the two tables below, the corresponding core and marginal
weights with minimum error E(v) for every cases of utility function in the two
different brood datapacks are shown in bold. Solutions which give smallest error
for each datapacks are also shown in bold.
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Table 3.17: Experiment results: Standard Approach, marginal weights

UT DP Sol eD E(v) w1 w5 w6 w7

1/3 B Sh 0.0370 0.0328 1 1.6700 2.1350 1.5894
Uv 0.0277 0.0671 1 2 3 3
Pr 0.0256 0.0274 1 1 2 4.6700

G Sh 0.0292 0.0279 1 1.1288 1.9891 0.9945
Uv 0.0309 0.0162 1 0.9829 1.0894 1.8439
Pr 0.0211 0.0181 1 1.4713 1.7621 3.6039

1/2 B Sh 0.0367 0.0336 1 2.0606 2.1294 1.0606
Uv 0.0426 0.0448 1 2.0182 1 1
Pr 0.0317 0.0609 1 1.5376 4.3203 2.1851

G Sh 0.0367 0.0294 1 1.0479 1.9220 0.9610
Uv 0.0405 0.0214 1 2.0272 3.3362 1
Pr 0.0282 0.0295 1 0.9945 1.9891 1.3018

1 B Sh 0.0454 0.0429 1 3 3.0905 1.0055
Uv 0.0585 0.0637 1 2 3.0354 1.0606
Pr 0.0454 0.0584 1 2.0082 1.0082 2.0182

G Sh 0.0469 0.0496 1 1.2621 3.6882 1
Uv 0.0574 0.0540 1 3.0082 3.0406 3.1350
Pr 0.0376 0.0485 1 2.1472 2.0406 1

2 B Sh 0.0565 0.0500 1 3.0240 2.9891 3.9782
Uv 0.1435 0.1720 1 1.2533 2.0480 2.3587
Pr 0.0591 0.0642 1 2.1936 0.9610 1.0390

G Sh 0.0484 0.1189 1 3 8.0606 4
Uv 0.1108 0.1330 1 0.7708 3.3239 4.6563
Pr 0.0516 0.1221 1 2.6782 2 1.1350

3 B Sh 0.0772 0.0553 1 1.1350 2.1622 1.8050
Uv 0.2732 0.2223 1 1.9579 4.7700 1.8341
Pr 0.0693 0.0549 1 2 1 3

G Sh 0.0595 0.1068 1 3 5.1350 1.2015
Uv 0.1966 0.1344 1 2 1 1
Pr 0.0630 0.1482 1 3.1405 3.7161 1

If we compare the results between each utility translation for both datapacks,
we can clearly see that the concave translations (esp. p1/3) give the smallest
minimum overall error E(v), thus is supporting our argument that concavity fits
best with this brood data.

Taking the smallest minimum overall error E(v) of the bad years data B,
which is 0.0274= 2.74% given by the Prenucleolus solution, we arrive at these
core weights wi=(1, 1.0905, 1, 1.67) for each core chicks i=1 to 4, and marginal
weights wj=(1, 2, 4.6700) for each marginals j=5 to 7 respectively, assuming
that the weight of the first core w1 is set to one. For the good years data
with the smallest minimum overall error E(v) of 0.0162=1.62% (given by the
Prenucleolus solution), we get these weights wi=(1, 0.9945, 0.9945, 1.0127) for
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each core chicks i=1 to 4 and wj=(0.9829, 1.0894, 1.8439) for each marginals
j=5 to 7.

Restricted Approach, Good and Bad years

We now apply the restricted approach R into our procedure and conduct another
thirty experiments using this approach. Below are the result of the experiments,
showing all the corresponding weights of the core and the marginal chicks for
each different cases of brood datapacks. Note that the cases with minimum
error E(v) for each datapack are shown in bold.

Table 3.18: Experiment results: Restricted Approach, core weights

UT DP Sol eD E(v) w1 w2 w3 w4

1/3 B Sh 0.0303 0.0156 1 1.0409 0.9420 1.8341
Uv 0.0328 0.0164 1 1.3089 1.6700 1.0082
Pr 0.0222 0.0184 1 1.0905 1 1.8172

G Sh 0.0256 0.0196 1 1.1134 0.9600 3.5387
Uv 0.0248 0.0235 1 1.3008 1.0122 2.2867
Pr 0.0301 0.0223 1 1 2.1194 1.1212

1/2 B Sh 0.0263 0.0245 1 1 1.2015 4
Uv 0.0424 0.0278 1 1 2.0678 1
Pr 0.0368 0.0271 1 1 1.8897 1.2920

G Sh 0.0353 0.0317 1 1.4489 2.6298 6.3283
Uv 0.0371 0.0355 1 1.4713 1.1460 4.2077
Pr 0.0344 0.0316 1 1 1 4.0488

1 B Sh 0.0600 0.0387 1 3.0100 2.5211 1.0272
Uv 0.0531 0.0430 1 1.5000 1.5675 0.5000
Pr 0.0396 0.0367 1 1 1 3.5811

G Sh 0.0582 0.0445 1 0.3851 0.3851 0.5009
Uv 0.0423 0.0467 1 1.6700 1.0055 3.0612
Pr 0.0535 0.0443 1 1 1 1.0788

2 B Sh 0.0486 0.0539 1 2 1 2.0905
Uv 0.0741 0.0631 1 2 1 2.3512
Pr 0.0792 0.0622 1 2.0000 1.0272 1.2015

G Sh 0.0599 0.0788 1 1.6700 2.6700 2
Uv 0.0954 0.0872 1 1.3083 0.5222 0.5654
Pr 0.0607 0.0639 1 1.2015 2 4.5023

3 B Sh 0.0360 0.0971 1 1.4489 1 1.2676
Uv 0.0886 0.0994 1 1.1015 0.5269 1.5365
Pr 0.1406 0.1056 1 1.5726 0.5237 2.0459

G Sh 0.1380 0.1147 1 1 1 1.0177
Uv 0.1143 0.1449 1 0.3620 0.3190 0.3449
Pr 0.0746 0.1548 1 0.5379 0.4933 0.4960
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Table 3.19: Experiment results: Restricted Approach, marginal weights

UT DP Sol eD E(v) w1 w5 w6 w7

1/3 B Sh 0.0303 0.0156 1 1 2.3400 1.6700
Uv 0.0328 0.0164 1 1.2436 1.4804 1.2264
Pr 0.0222 0.0184 1 1.1350 1.0606 2.1476

G Sh 0.0256 0.0196 1 0.9170 0.9170 1
Uv 0.0248 0.0235 1 1.3008 1,6700 1
Pr 0.0301 0.0223 1 1 1 2.3008

1/2 B Sh 0.0263 0.0245 1 1.0905 2.2255 1.2255
Uv 0.0424 0.0278 1 1 2.1350 1
Pr 0.0368 0.0271 1 1 1.0678 1.5501

G Sh 0.0353 0.0317 1 1 2 1
Uv 0.0371 0.0355 1 1 4.0834 1.2015
Pr 0.0344 0.0316 1 1 2.2015 2.0082

1 B Sh 0.0600 0.0387 1 1.4713 4.1891 1.8553
Uv 0.0531 0.0430 1 0.7853 0.3851 1.9253
Pr 0.0396 0.0367 1 2.4489 3.3467 2.1795

G Sh 0.0582 0.0445 1 1.0272 2 1.0272
Uv 0.0423 0.0467 1 1 1.8456 1
Pr 0.0535 0.0443 1 1.0082 2 1.3089

2 B Sh 0.0486 0.0539 1 2.6868 2.4724 1.1504
Uv 0.0741 0.0631 1 0.7635 0.5298 1.0072
Pr 0.0792 0.0622 1 2.4489 2 3.6015

G Sh 0.0599 0.0788 1 2.0905 3.5448 2
Uv 0.0954 0.0872 1 1.3157 1.0171 0.4645
Pr 0.0607 0.0639 1 1.6015 3.0905 4.5927

3 B Sh 0.0360 0.0971 1 3.6800 3 2.3400
Uv 0.0886 0.0994 1 0.9859 0.7527 0.9859
Pr 0.1406 0.1056 1 0.3190 0.7339 0.5539

G Sh 0.1380 0.1147 1 1.4544 3.7110 2
Uv 0.1143 0.1449 1 1.0905 2.0164 2.3159
Pr 0.0746 0.1548 1 0.4933 2.5311 1.1648

We can clearly see that the concave translation p1/3 here also gives the min-
imum overall error E(v) for both datapacks, just like the result of our previous
standard approach. However, unlike the previous approach, the overall mini-
mum error of the bad years datapack and the good years datapack in this re-
stricted approach are both given by the Shapley value solution. We will provide
more analysis regarding these results in the next chapter.

Standard and Restricted Approach, Random data

To see how the experiment goes on random data, we use the random datapack
where the survival rate of the chicks are generated by the ’rand’ function in
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Matlab and are uniformly distributed in the interval [0,1]. The resulting errors
for both approaches are shown in tables below:

Table 3.20: Experiment results: Standard Approach, random data

UT Sol E(v) eD
1/3 Sh 0.0920 0.0862

Uv 0.1062 0.1309
Pr 0.0762 0.0850

1/2 Sh 0.0242 0.06261
Uv 0.0946 0.0934
Pr 0.0215 0.0686

1 Sh 0.2101 0.1100
Uv 0.2840 0.2337
Pr 0.0725 0.0802

2 Sh 0.2555 0.2659
Uv 0.7029 0.3539
Pr 0.5768 0.3054

3 Sh 1.1263 0.3443
Uv 13.1960 0.1501
Pr 20.0752 0.3173

Table 3.21: Experiment results: Restricted Approach, random data

UT Sol E(v) eD
1/3 Sh 0.0549 0.0690

Uv 0.1178 0.1003
Pr 0.0726 0.0677

1/2 Sh 0.0560 0.0602
Uv 0.1033 0.0849
Pr 0.0718 0.0344

1 Sh 0.3683 0.1152
Uv 0.6478 0.2361
Pr 0.1618 0.1511

2 Sh 4.8517 0.2181
Uv 15.9842 0.3801
Pr 3.8706 0.2544

3 Sh 0.6727 0.2697
Uv 0.4723 0.4718
Pr 0.6913 0.2260

As shown in bold, we can easily see from Table 3.20 and 3.21 above that the
overall minimum errors on the random data hit below 5% in only two cases of
the standard approach, and never on the restricted approach. As a result, the
weights of the chicks on the random data become none of our interest since the
two errors E(v) and eD are quite high in most of the cases.
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Looking closely at the error E(v), notice that a different tendency appears in
these random dataset solutions compare to the brood datasets. The minimum
E(v) error for the standard approach is achieved by p1/2 translation using the
Prenucleolus solution, with error of 0.0215=2.15%, followed by the Shapley
value with error of 0.0242=2.42%. While the Utopia value solution seems to
have larger error with minimum of 0.0946=9.46%.

For the restricted approach, the concave utility function of p1/3 gives the
smallest error E(v) using the Shapley value solution with error of 0.0549=5.49%.
However, this error is probably still quite large for the result to be considered
as a best fit.

In general, unlike the brood datapacks which has smallest minimum E(v)
error under the p1/3 translation, both approaches on the random data give
quite a high error under this p1/3 translation, ranging from 5.5% to 12%.

Interestingly, we can also highlight on the largest minimum E(v) error for
the standard approach which is given by the Prenucleolus solution under the
convex p3 translation, with 20.0752=2007.52% of overall error. While for the
restricted approach, the largest minimum E(v) error is achieved by the Utopia
solution with a convex p2 translation, resulting 15.9842=1598% of error. Both
are naturally unacceptable. Therefore, we cannot say that the random data fits
any solution concepts mentioned in this thesis.

Note that in the first experiment with no restriction, we want to see whether
we can achieve smaller error below 1%. However, this never occurs in any of
the 90 experiments above; none of them stops at the 1% average of error.

3.3 Validation

When finding the best weight system using the standard approach, we validate
the resulting weights of the core chicks by taking a general direction instead of a
predetermined one. Doing this will allow us to see if by any chance, the weights
of the core chicks will be the same or at least close to each other. Indeed, we
found from Table 3.16 and Table 3.18 that in almost all cases where the error is
small, the weights of the other core chicks appear to be the same as the weight
of the first core chick, which we set to be equal to one. While in most cases
where the error is quite small, the weights of the core chicks are close to one;
i.e. almost the same with the weight of the first core.

Once, we had an experience with some strange results. The resulting weights
of the prenucleolus and the utopia solution concepts are not ’going in the same
direction’ as the results from our Shapley value solution: in any cases of the
brood data, almost all weights of the marginal broods are smaller than the
weight of the core. Logically, the weights of the marginals will usually be larger
than the core as a results of parental favoritism where food is valued more
by the marginals rather than the core (see subsection 3.2.2 for the detailed
explanation).

In order to validate, we run our ’old’ codes which is made only for fitting the
game using the Shapley value solution concept (see [18] for different versions of
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these fitting procedures), indeed we got the same tendency with our Shapley
value results: the weights of the marginals are almost always larger than the
core. Therefore, we check and correct our codes for the prenucleolus and utopia
solutions by adapting the same procedure with the Shapley value. Now our
results for all the approaches seem to be more convincing as the marginal weights
have larger weights in most of the cases.
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Chapter 4

Further Analysis

This chapter considers the analysis of the results from computational and bio-
logical point of view, to see which properties seem to play a major role in the
brood data and which known solution concept fits best with the brood data.

4.1 Notations

To be able to read the tables mentioned in the analysis of this chapter, here
we provide again the same notations as we use in the previous chapter. Appr
denotes the modeling approach we are using, S for the Standard approach and
R for the Restricted approach. DP denotes which datapack we are taking into
account, B for the Bad years data, G for the Good years data, and Rd for the
Random data. Notation Sol denotes what kind of solution concept we choose,
Sh for the Shapley value, Uv for the Utopia value, and Pr for the Prenucleolus.
Notation UT denotes which utility translation we are considering, either p1/3,
p1/2, p1, p2, or p3. Notation E(v) denotes the minimum overall error, which
express how well the data fits the new fitted game, while eD denotes the error
with respect to the data, expressing how well the game solutions fit the data.

4.2 Findings and Reasoning

We divide the findings we got from the experiments into seven different types of
analysis, and explain the details of the analysis in seven different sections below.
We will also give some reasonable arguments behind the results we found in the
experiments.

4.2.1 Smallest Error vs Utility Translation

As we have known from the results of our experiments in the previous chapter,
smallest errors are reached by the concave p1/3 translation in all cases of the
brood data solutions with two different modeling approaches. Thus, we may
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already say that the brood survival rate data in our case is better translated
with concavity of p1/3. For a clear comparison on the minimum overall error for
every different cases of utility translations, see the table below. Note that the
minimum overall error for two different approaches and datapacks are shown in
bold.

Table 4.1: Smallest Error vs Utility Translation

E(v)
Appr DP Sol p1/3 p1/2 p1 p2 p3

S B Sh 0.0328 0.0336 0.0429 0.0500 0.0553
Uv 0.0671 0.0448 0.0637 0.1720 0.2223
Pr 0.0274 0.0609 0.0584 0.0642 0.0549

G Sh 0.0279 0.0294 0.0496 0.1189 0.1068
Uv 0.0162 0.0214 0.0540 0.1330 0.1344
Pr 0.0181 0.0295 0.0485 0.1221 0.1482

R B Sh 0.0156 0.0245 0.0387 0.0539 0.0971
Uv 0.0164 0.0278 0.0430 0.0631 0.0994
Pr 0.0184 0.0271 0.0367 0.0622 0.1056

G Sh 0.0196 0.0317 0.0445 0.0788 0.1147
Uv 0.0235 0.0355 0.0467 0.0872 0.1449
Pr 0.0223 0.0316 0.0443 0.0639 0.1548

We can see from the table that the convex translation p2 hit 5% overall error
only once with the Shapley value solution concept, and never with the other
solution concepts. While in the convex p3 translation, the minimum overall
error is always above 5% for any solution concepts.

Taking a close look into the results using the Shapley value solution concept
in the table above, we may notice that the more concave the utility translation
pa (a = {1/3, 1/2, 1, 2, 3}) is, the smaller the error. For the Utopia value and
the Prenucleolus solutions, sometimes the concave p1/2 translation gives smaller
error than the concave p1/3 translation. However, concave translations in general
always give smaller error than the convex ones.

Why concave translation fits best? As we have argued before in the previous
chapter, if the food allocation for the marginal chick is increased a little bit more,
for example from 0.3 to 0.4 gram, the chick’s probability of survive will increase
a lot more, and it might even save them from dying. While if the core chick’s
survival rate is already high, there is almost no difference if it is being fed a
little bit more; in any chance, most probably it will survive. In other words,
the food is considered to be more valuable for the marginals rather than for the
core. This may explains why the concave translation fits best than the convex
one.

4.2.2 Smallest Error vs Solution

The smallest overall error for the good years and the bad years data in the
standard approach are given by the Utopia value and the Prenucleolus solutions,
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respectively. While for the restricted approach, the smallest overall error for
both datapacks are given by the Shapley value solution. See the table below for
the five first smallest errors of the solutions for the two approaches.

Table 4.2: Smallest Error vs Solution

Appr Rank E(v) eD UT DP Sol

S 1 0.0162 0.0309 p1/3 G Uv
2 0.0181 0.0211 p1/3 G Pr
3 0.0214 0.0405 p1/2 G Uv
4 0.0274 0.0256 p1/3 B Pr
5 0.0279 0.0292 p1/3 G Sh

R 1 0.0156 0.0303 p1/3 G Sh
2 0.0164 0.0328 p1/3 B Sh
3 0.0184 0.0222 p1/3 G Pr
4 0.0196 0.0256 p1/3 B Uv
5 0.0223 0.0301 p1/3 B Pr

We can see from the table above that the Utopia value solution concept
gives smallest overall error compare to the other two solution concepts if we are
using the standard approach. It supports our prediction that the Utopia value
solution gives a better fit in the standard approach as it has more freedom and
not as refine as the Shapley value or the Prenucleolus. It also uses less game
data.

On the other hand, Shapley value gives smallest overall error in the restricted
approach. As we have already known from subsection 2.2.1, all the core chicks
are considered to be equal with each other. Not only they are hatched on
the same day thus is ’stronger’ compare to the marginals, but also they are
assumed to always being fed at the first place with almost the same amount
of food by the parents. Perhaps, this ’special’ structure of the brood datasets
that are implicitly translated into the restricted approach by setting an equal
weight for all the core chicks and assuming i number of core to always fill the
first i position in the coalition (i=1 to 4), are recognized by the Shapley value
solution concept; thus is facilitating its fitting procedure to give a better fit for
the restricted model compare to the other two solution concepts.

4.2.3 Smallest Error and The Weight System

According to the solutions which has smallest minimum error E(v) for both
good and bad year data in two respected model systems within the concave
translation p1/3, we get these corresponding weights as follows. Notice that w1

column is left out as the weight of the first core chick is normalized to 1 for
easier comparison.
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Table 4.3: Smallest Error and The Weight System

Appr DP E(v) eD w2 w3 w4 w5 w6 w7

S B 0.0274 0.0256 1.09 1 1.67 1.67 2.14 1.59
G 0.0162 0.0309 0.99 0.99 1.01 1.13 1.99 0.99

R B 0.0164 0.0328 1.31 1.67 1.01 1 2.34 1.67
G 0.0156 0.0303 1.04 0.94 1.83 0.92 0.92 1

What we want to see is whether the weights of all core chicks will be the
same (i.e. close to each other), at least in the standard approach where we
allow anonimity between the core chicks. By dividing all the weights of the
other chicks using the weight of the first core chick, we see that almost all
the other core weights are very close to 1 in the standard approach with the
smallest error. Interestingly, this is also the case for the restricted approach.
Even though the first four players do not take similar position in the game,
we see that similar assumption seems to hold for the restricted case, especially
when the error is small: the weights of the other core chicks are most of the
time close enough to 1.

However, we may see some unexpected values appearing on the weight of the
core and the marginal broods: some weights of the core chicks appear to be quite
larger than one, and some weights of the marginal chicks are a little bit smaller
than one. This is due to the fact that our search procedure is not ’perfect’.
During the fitting of the weight, sometimes we end up in a local optima and
the procedure does not allow us to search further to find the best fit. Given the
search procedure, we cannot do better. However, most of the time when error
is below 5%, this is usually not the case.

4.2.4 The Brood Data and The Weight System

Now we compare the weight system in different brood datapacks for the two
approaches. We want to check whether the marginals have larger weights in the
bad years compare to the good years, at least for the case where the average
error is minimum. Note that the largest weights of the marginals are shown in
bold.

Table 4.4: The Brood Data and The Weight System

Appr DP E(v) eD w5 w6 w7

S B 0.0274 0.0256 1.67 2.14 1.59
G 0.0162 0.0309 1.13 1.99 0.99

R B 0.0164 0.0328 1 2.34 1.67
G 0.0156 0.0303 0.92 0.92 1

We can easily see that in the case where the overall average error E(v) is min-
imum, the marginal chicks have larger weights in the bad years rather than in
the good years. These results support our prediction that parental favoritism
exists even worse during the bad years period.
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4.2.5 Random Data vs The Brood Data

For both approaches on the random data using the concave p1/3 translation, we
arrive at error larger than 5%. Below we will show the minimum overall error
E(v) of the random data for each solution concept and compare them with the
minimum overall error of the brood data during the good and the bad years.
Note that the largest error E(v) and eD for every different solution concepts
considered by the two different approaches in each datapacks are shown in bold.

Table 4.5: Random Data vs The Brood Data

DP Appr Sol E(v) eD
Rd S Sh 0.0920 0.0862

Uv 0.1062 0.1309
Pr 0.0762 0.0850

R Sh 0.0549 0.0690
Uv 0.1178 0.1033
Pr 0.0726 0.0677

G S Sh 0.0279 0.0292
Uv 0.0162 0.0309
Pr 0.0181 0.0211

R Sh 0.0303 0.0156
Uv 0.0263 0.0245
Pr 0.0222 0.0184

B S Sh 0.0328 0.0370
Uv 0.0671 0.0277
Pr 0.0274 0.0256

R Sh 0.0164 0.0328
Uv 0.0196 0.0256
Pr 0.0223 0.0301

As shown in the table above, the error E(v) and eD for the random data are
always larger compare to the brood data in both good and bad years, no matter
which approach or which solution we are taking into account. Therefore we may
say that the random data cannot fit into any of the three solution concepts we
studied in this thesis.

4.2.6 Largest Error: Worse Case

As we have mentioned earlier in the previous section, the largest minimum
overall error is achieved by the standard model for the random data using the
Prenucleolus solution concept with high level of convexity p3, resulting in an
unacceptable 2007,52% overall error. It is possibly because of these four reasons:

1. There are more coalitions to be considered in the standard approach rather
than in the restricted approach, thus the fitting procedure may take much
longer time to find the best fit and is then more likely to make mistake by
arriving at the local optima.
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2. It is hard to fit the random data since there is no specific structure, un-
like the brood datasets which have some ’special’ properties that can be
captured by some of the solution concepts.

3. The Prenucleolus solution concept itself contains a lot of sophisticated tun-
ing and balancing, unlike the Utopia value or the Shapley value solutions
which have the additivity property that enables a fast fitting.

4. The utility translation is convex instead of concave; in which we already
prove that concave translations pa, a = {1/3, 1/2}, usually give smaller
minimum overall error E(v) rather than the convex translation pa, a =
{2, 3} or the linear case without translations.

4.2.7 Time Consumption

As an addition to the analysis, below we will show the largest time consumption
for every solution concept in each brood datapack which we have not mention in
the previous chapter. Note that the two largest time consumptions (in seconds),
each corresponds to the standard and the restricted approach, are shown in bold.

Table 4.6: Time Consumptions

Appr DP Sol UT time
S B Sh 3 596,6758815

Uv 1/2 1258,745863
Pr 1 5482,497638

G Sh 2 1433,950145
Uv 1 5436,586818
Pr 1/3 6133,127812

R B Sh 1/2 6294,65302
Uv 1/3 1433,452379
Pr 2 4525,036143

G Sh 1 109,2940425
Uv 2 4140,893783
Pr 1/2 6470,758277

We see that the largest time consumptions in both approaches happen when we
consider the Prenucleolus solution, especially under the concave translations.

As an insight on the time consumption of the experiments, fitting using
the Prenucleolus solution concept is much slower compare to the other solution
concepts perhaps because the Prenucleolus does not have special properties like
linearity that can be explored in the implementation of the fitting procedure.
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Chapter 5

Final Conclusion

In this last chapter we provide conclusions and future works of our research.

5.1 Conclusions

As Forbes (2011) said in his paper [16], survival to leave the nest is a useful
proxy to measure the evolutionary fitness. It shows a range of variation, from
the virtually guaranteed survival of core offspring in small broods, to the near
certain death of marginal offspring in large broods. Knowing the importance of
this survival rate for the blackbird chicks, we conclude our research as follows:

• The modeling and calculation choices we made using the Shapley value
solution concept have proved that parental favoritism does exist in most
cases of the brood data, especially during the bad years period.

• In general, property such as linearity in the Shapley value solution allows
a fast fitting in the brood data. The restricted structure of the brood
datasets also enables the Shapley value solution concept to give a reason-
able fit within a reasonable time.

• Prenucleolus solution results are shown in various kind of experiments,
perhaps because of the fact that it is a high profile solution where there are
quite a lot of balancing in the procedure, i.e. fine tuning is sophisticated.

• If we want a simple, ’quick and dirty’ solution which also enable fast
fitting with quite feasible solution, then Utopia value solution concept can
be considered as a choice.

• Whatever model of the brood data we are taking, the results of the ex-
periments have some tendencies:

1. The weights of the marginals are usually larger than the cores, since
the food is valued more by the marginals as a result of parental
favoritism.
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2. The concavity translations fit best as our brood data is not linear.
Small increase on the food allocation for the marginals could increase
the chick’s probability of survive a lot more, while giving more food
to the core chick who already has a high survival rate does not give a
different output as the core already has a great chance of surviving.

• The worst case of error is achieved by the standard model for the random
data using the Prenucleolus solution concept with high level of convexity
p3. Thus, the more complex the model, the harder it fits.

• To summarize the results of the experiments, we can say that the more
concave the utility translation, the smaller the error, the better the game
fits the solutions, the more we can trust the resulting weight system.

Finally we conclude that we have been able to implement the Shapley value
solution concept to tackle the bird brood food allocation problem, and compare
its result with the other known solution concepts namely the Utopia value and
the Prenucleolus.

We also successfully translate the biological problem of blackbird food al-
location into a cooperative game approach using various techniques known in
literature.

5.2 Future Works

Given a vast amount of brood data as well as a vast amount of results from
the experiments, there are still a lot to be investigated further in this research.
One can really discriminate among the approaches, the solutions, the utility
functions, and the datapacks that are used, and analyze the results for each
experiment.

To get a better understanding, one might also change the solution concept
and examine the effects in the current situation. To some extent, we adapted
the anonimity property of the Shapley value by applying weights. What will
happen if we furthermore play around with the dummy player property, or when
we allow for restricted cooperation settings, as are seen in the Utopia value. In
all these cases we may arrive at more weight in the importance of the game
solution properties in the interpretation of the data.

The fitting procedure may also be tuned in a different way. The applied
settings were tuned only briefly and only in the Shapley value application. A
more sophisticated calibration might enable a fitting with smaller erroors, and
thus with more reliable conclusions.
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